1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/sched/isolation.h> 42 #include <linux/timer.h> 43 #include <linux/freezer.h> 44 #include <linux/compat.h> 45 46 #include <linux/uaccess.h> 47 48 #include <trace/events/timer.h> 49 50 #include "tick-internal.h" 51 52 /* 53 * Masks for selecting the soft and hard context timers from 54 * cpu_base->active 55 */ 56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 60 61 /* 62 * The timer bases: 63 * 64 * There are more clockids than hrtimer bases. Thus, we index 65 * into the timer bases by the hrtimer_base_type enum. When trying 66 * to reach a base using a clockid, hrtimer_clockid_to_base() 67 * is used to convert from clockid to the proper hrtimer_base_type. 68 */ 69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 70 { 71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 72 .clock_base = 73 { 74 { 75 .index = HRTIMER_BASE_MONOTONIC, 76 .clockid = CLOCK_MONOTONIC, 77 .get_time = &ktime_get, 78 }, 79 { 80 .index = HRTIMER_BASE_REALTIME, 81 .clockid = CLOCK_REALTIME, 82 .get_time = &ktime_get_real, 83 }, 84 { 85 .index = HRTIMER_BASE_BOOTTIME, 86 .clockid = CLOCK_BOOTTIME, 87 .get_time = &ktime_get_boottime, 88 }, 89 { 90 .index = HRTIMER_BASE_TAI, 91 .clockid = CLOCK_TAI, 92 .get_time = &ktime_get_clocktai, 93 }, 94 { 95 .index = HRTIMER_BASE_MONOTONIC_SOFT, 96 .clockid = CLOCK_MONOTONIC, 97 .get_time = &ktime_get, 98 }, 99 { 100 .index = HRTIMER_BASE_REALTIME_SOFT, 101 .clockid = CLOCK_REALTIME, 102 .get_time = &ktime_get_real, 103 }, 104 { 105 .index = HRTIMER_BASE_BOOTTIME_SOFT, 106 .clockid = CLOCK_BOOTTIME, 107 .get_time = &ktime_get_boottime, 108 }, 109 { 110 .index = HRTIMER_BASE_TAI_SOFT, 111 .clockid = CLOCK_TAI, 112 .get_time = &ktime_get_clocktai, 113 }, 114 } 115 }; 116 117 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 118 /* Make sure we catch unsupported clockids */ 119 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 120 121 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 122 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 123 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 124 [CLOCK_TAI] = HRTIMER_BASE_TAI, 125 }; 126 127 /* 128 * Functions and macros which are different for UP/SMP systems are kept in a 129 * single place 130 */ 131 #ifdef CONFIG_SMP 132 133 /* 134 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 135 * such that hrtimer_callback_running() can unconditionally dereference 136 * timer->base->cpu_base 137 */ 138 static struct hrtimer_cpu_base migration_cpu_base = { 139 .clock_base = { { 140 .cpu_base = &migration_cpu_base, 141 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 142 &migration_cpu_base.lock), 143 }, }, 144 }; 145 146 #define migration_base migration_cpu_base.clock_base[0] 147 148 static inline bool is_migration_base(struct hrtimer_clock_base *base) 149 { 150 return base == &migration_base; 151 } 152 153 /* 154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 155 * means that all timers which are tied to this base via timer->base are 156 * locked, and the base itself is locked too. 157 * 158 * So __run_timers/migrate_timers can safely modify all timers which could 159 * be found on the lists/queues. 160 * 161 * When the timer's base is locked, and the timer removed from list, it is 162 * possible to set timer->base = &migration_base and drop the lock: the timer 163 * remains locked. 164 */ 165 static 166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 167 unsigned long *flags) 168 __acquires(&timer->base->lock) 169 { 170 struct hrtimer_clock_base *base; 171 172 for (;;) { 173 base = READ_ONCE(timer->base); 174 if (likely(base != &migration_base)) { 175 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 176 if (likely(base == timer->base)) 177 return base; 178 /* The timer has migrated to another CPU: */ 179 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 180 } 181 cpu_relax(); 182 } 183 } 184 185 /* 186 * We do not migrate the timer when it is expiring before the next 187 * event on the target cpu. When high resolution is enabled, we cannot 188 * reprogram the target cpu hardware and we would cause it to fire 189 * late. To keep it simple, we handle the high resolution enabled and 190 * disabled case similar. 191 * 192 * Called with cpu_base->lock of target cpu held. 193 */ 194 static int 195 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 196 { 197 ktime_t expires; 198 199 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 200 return expires < new_base->cpu_base->expires_next; 201 } 202 203 static inline 204 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 205 int pinned) 206 { 207 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 208 if (static_branch_likely(&timers_migration_enabled) && !pinned) 209 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 210 #endif 211 return base; 212 } 213 214 /* 215 * We switch the timer base to a power-optimized selected CPU target, 216 * if: 217 * - NO_HZ_COMMON is enabled 218 * - timer migration is enabled 219 * - the timer callback is not running 220 * - the timer is not the first expiring timer on the new target 221 * 222 * If one of the above requirements is not fulfilled we move the timer 223 * to the current CPU or leave it on the previously assigned CPU if 224 * the timer callback is currently running. 225 */ 226 static inline struct hrtimer_clock_base * 227 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 228 int pinned) 229 { 230 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 231 struct hrtimer_clock_base *new_base; 232 int basenum = base->index; 233 234 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 235 new_cpu_base = get_target_base(this_cpu_base, pinned); 236 again: 237 new_base = &new_cpu_base->clock_base[basenum]; 238 239 if (base != new_base) { 240 /* 241 * We are trying to move timer to new_base. 242 * However we can't change timer's base while it is running, 243 * so we keep it on the same CPU. No hassle vs. reprogramming 244 * the event source in the high resolution case. The softirq 245 * code will take care of this when the timer function has 246 * completed. There is no conflict as we hold the lock until 247 * the timer is enqueued. 248 */ 249 if (unlikely(hrtimer_callback_running(timer))) 250 return base; 251 252 /* See the comment in lock_hrtimer_base() */ 253 WRITE_ONCE(timer->base, &migration_base); 254 raw_spin_unlock(&base->cpu_base->lock); 255 raw_spin_lock(&new_base->cpu_base->lock); 256 257 if (new_cpu_base != this_cpu_base && 258 hrtimer_check_target(timer, new_base)) { 259 raw_spin_unlock(&new_base->cpu_base->lock); 260 raw_spin_lock(&base->cpu_base->lock); 261 new_cpu_base = this_cpu_base; 262 WRITE_ONCE(timer->base, base); 263 goto again; 264 } 265 WRITE_ONCE(timer->base, new_base); 266 } else { 267 if (new_cpu_base != this_cpu_base && 268 hrtimer_check_target(timer, new_base)) { 269 new_cpu_base = this_cpu_base; 270 goto again; 271 } 272 } 273 return new_base; 274 } 275 276 #else /* CONFIG_SMP */ 277 278 static inline bool is_migration_base(struct hrtimer_clock_base *base) 279 { 280 return false; 281 } 282 283 static inline struct hrtimer_clock_base * 284 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 285 __acquires(&timer->base->cpu_base->lock) 286 { 287 struct hrtimer_clock_base *base = timer->base; 288 289 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 290 291 return base; 292 } 293 294 # define switch_hrtimer_base(t, b, p) (b) 295 296 #endif /* !CONFIG_SMP */ 297 298 /* 299 * Functions for the union type storage format of ktime_t which are 300 * too large for inlining: 301 */ 302 #if BITS_PER_LONG < 64 303 /* 304 * Divide a ktime value by a nanosecond value 305 */ 306 s64 __ktime_divns(const ktime_t kt, s64 div) 307 { 308 int sft = 0; 309 s64 dclc; 310 u64 tmp; 311 312 dclc = ktime_to_ns(kt); 313 tmp = dclc < 0 ? -dclc : dclc; 314 315 /* Make sure the divisor is less than 2^32: */ 316 while (div >> 32) { 317 sft++; 318 div >>= 1; 319 } 320 tmp >>= sft; 321 do_div(tmp, (u32) div); 322 return dclc < 0 ? -tmp : tmp; 323 } 324 EXPORT_SYMBOL_GPL(__ktime_divns); 325 #endif /* BITS_PER_LONG >= 64 */ 326 327 /* 328 * Add two ktime values and do a safety check for overflow: 329 */ 330 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 331 { 332 ktime_t res = ktime_add_unsafe(lhs, rhs); 333 334 /* 335 * We use KTIME_SEC_MAX here, the maximum timeout which we can 336 * return to user space in a timespec: 337 */ 338 if (res < 0 || res < lhs || res < rhs) 339 res = ktime_set(KTIME_SEC_MAX, 0); 340 341 return res; 342 } 343 344 EXPORT_SYMBOL_GPL(ktime_add_safe); 345 346 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 347 348 static const struct debug_obj_descr hrtimer_debug_descr; 349 350 static void *hrtimer_debug_hint(void *addr) 351 { 352 return ((struct hrtimer *) addr)->function; 353 } 354 355 /* 356 * fixup_init is called when: 357 * - an active object is initialized 358 */ 359 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 360 { 361 struct hrtimer *timer = addr; 362 363 switch (state) { 364 case ODEBUG_STATE_ACTIVE: 365 hrtimer_cancel(timer); 366 debug_object_init(timer, &hrtimer_debug_descr); 367 return true; 368 default: 369 return false; 370 } 371 } 372 373 /* 374 * fixup_activate is called when: 375 * - an active object is activated 376 * - an unknown non-static object is activated 377 */ 378 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 379 { 380 switch (state) { 381 case ODEBUG_STATE_ACTIVE: 382 WARN_ON(1); 383 fallthrough; 384 default: 385 return false; 386 } 387 } 388 389 /* 390 * fixup_free is called when: 391 * - an active object is freed 392 */ 393 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 394 { 395 struct hrtimer *timer = addr; 396 397 switch (state) { 398 case ODEBUG_STATE_ACTIVE: 399 hrtimer_cancel(timer); 400 debug_object_free(timer, &hrtimer_debug_descr); 401 return true; 402 default: 403 return false; 404 } 405 } 406 407 static const struct debug_obj_descr hrtimer_debug_descr = { 408 .name = "hrtimer", 409 .debug_hint = hrtimer_debug_hint, 410 .fixup_init = hrtimer_fixup_init, 411 .fixup_activate = hrtimer_fixup_activate, 412 .fixup_free = hrtimer_fixup_free, 413 }; 414 415 static inline void debug_hrtimer_init(struct hrtimer *timer) 416 { 417 debug_object_init(timer, &hrtimer_debug_descr); 418 } 419 420 static inline void debug_hrtimer_activate(struct hrtimer *timer, 421 enum hrtimer_mode mode) 422 { 423 debug_object_activate(timer, &hrtimer_debug_descr); 424 } 425 426 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 427 { 428 debug_object_deactivate(timer, &hrtimer_debug_descr); 429 } 430 431 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 432 enum hrtimer_mode mode); 433 434 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 435 enum hrtimer_mode mode) 436 { 437 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 438 __hrtimer_init(timer, clock_id, mode); 439 } 440 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 441 442 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 443 clockid_t clock_id, enum hrtimer_mode mode); 444 445 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 446 clockid_t clock_id, enum hrtimer_mode mode) 447 { 448 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 449 __hrtimer_init_sleeper(sl, clock_id, mode); 450 } 451 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 452 453 void destroy_hrtimer_on_stack(struct hrtimer *timer) 454 { 455 debug_object_free(timer, &hrtimer_debug_descr); 456 } 457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 458 459 #else 460 461 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 462 static inline void debug_hrtimer_activate(struct hrtimer *timer, 463 enum hrtimer_mode mode) { } 464 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 465 #endif 466 467 static inline void 468 debug_init(struct hrtimer *timer, clockid_t clockid, 469 enum hrtimer_mode mode) 470 { 471 debug_hrtimer_init(timer); 472 trace_hrtimer_init(timer, clockid, mode); 473 } 474 475 static inline void debug_activate(struct hrtimer *timer, 476 enum hrtimer_mode mode) 477 { 478 debug_hrtimer_activate(timer, mode); 479 trace_hrtimer_start(timer, mode); 480 } 481 482 static inline void debug_deactivate(struct hrtimer *timer) 483 { 484 debug_hrtimer_deactivate(timer); 485 trace_hrtimer_cancel(timer); 486 } 487 488 static struct hrtimer_clock_base * 489 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 490 { 491 unsigned int idx; 492 493 if (!*active) 494 return NULL; 495 496 idx = __ffs(*active); 497 *active &= ~(1U << idx); 498 499 return &cpu_base->clock_base[idx]; 500 } 501 502 #define for_each_active_base(base, cpu_base, active) \ 503 while ((base = __next_base((cpu_base), &(active)))) 504 505 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 506 const struct hrtimer *exclude, 507 unsigned int active, 508 ktime_t expires_next) 509 { 510 struct hrtimer_clock_base *base; 511 ktime_t expires; 512 513 for_each_active_base(base, cpu_base, active) { 514 struct timerqueue_node *next; 515 struct hrtimer *timer; 516 517 next = timerqueue_getnext(&base->active); 518 timer = container_of(next, struct hrtimer, node); 519 if (timer == exclude) { 520 /* Get to the next timer in the queue. */ 521 next = timerqueue_iterate_next(next); 522 if (!next) 523 continue; 524 525 timer = container_of(next, struct hrtimer, node); 526 } 527 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 528 if (expires < expires_next) { 529 expires_next = expires; 530 531 /* Skip cpu_base update if a timer is being excluded. */ 532 if (exclude) 533 continue; 534 535 if (timer->is_soft) 536 cpu_base->softirq_next_timer = timer; 537 else 538 cpu_base->next_timer = timer; 539 } 540 } 541 /* 542 * clock_was_set() might have changed base->offset of any of 543 * the clock bases so the result might be negative. Fix it up 544 * to prevent a false positive in clockevents_program_event(). 545 */ 546 if (expires_next < 0) 547 expires_next = 0; 548 return expires_next; 549 } 550 551 /* 552 * Recomputes cpu_base::*next_timer and returns the earliest expires_next 553 * but does not set cpu_base::*expires_next, that is done by 554 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating 555 * cpu_base::*expires_next right away, reprogramming logic would no longer 556 * work. 557 * 558 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 559 * those timers will get run whenever the softirq gets handled, at the end of 560 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 561 * 562 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 563 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 564 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 565 * 566 * @active_mask must be one of: 567 * - HRTIMER_ACTIVE_ALL, 568 * - HRTIMER_ACTIVE_SOFT, or 569 * - HRTIMER_ACTIVE_HARD. 570 */ 571 static ktime_t 572 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 573 { 574 unsigned int active; 575 struct hrtimer *next_timer = NULL; 576 ktime_t expires_next = KTIME_MAX; 577 578 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 579 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 580 cpu_base->softirq_next_timer = NULL; 581 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 582 active, KTIME_MAX); 583 584 next_timer = cpu_base->softirq_next_timer; 585 } 586 587 if (active_mask & HRTIMER_ACTIVE_HARD) { 588 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 589 cpu_base->next_timer = next_timer; 590 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 591 expires_next); 592 } 593 594 return expires_next; 595 } 596 597 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) 598 { 599 ktime_t expires_next, soft = KTIME_MAX; 600 601 /* 602 * If the soft interrupt has already been activated, ignore the 603 * soft bases. They will be handled in the already raised soft 604 * interrupt. 605 */ 606 if (!cpu_base->softirq_activated) { 607 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 608 /* 609 * Update the soft expiry time. clock_settime() might have 610 * affected it. 611 */ 612 cpu_base->softirq_expires_next = soft; 613 } 614 615 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); 616 /* 617 * If a softirq timer is expiring first, update cpu_base->next_timer 618 * and program the hardware with the soft expiry time. 619 */ 620 if (expires_next > soft) { 621 cpu_base->next_timer = cpu_base->softirq_next_timer; 622 expires_next = soft; 623 } 624 625 return expires_next; 626 } 627 628 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 629 { 630 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 631 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 632 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 633 634 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 635 offs_real, offs_boot, offs_tai); 636 637 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 638 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 639 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 640 641 return now; 642 } 643 644 /* 645 * Is the high resolution mode active ? 646 */ 647 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 648 { 649 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 650 cpu_base->hres_active : 0; 651 } 652 653 static inline int hrtimer_hres_active(void) 654 { 655 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 656 } 657 658 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, 659 struct hrtimer *next_timer, 660 ktime_t expires_next) 661 { 662 cpu_base->expires_next = expires_next; 663 664 /* 665 * If hres is not active, hardware does not have to be 666 * reprogrammed yet. 667 * 668 * If a hang was detected in the last timer interrupt then we 669 * leave the hang delay active in the hardware. We want the 670 * system to make progress. That also prevents the following 671 * scenario: 672 * T1 expires 50ms from now 673 * T2 expires 5s from now 674 * 675 * T1 is removed, so this code is called and would reprogram 676 * the hardware to 5s from now. Any hrtimer_start after that 677 * will not reprogram the hardware due to hang_detected being 678 * set. So we'd effectively block all timers until the T2 event 679 * fires. 680 */ 681 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 682 return; 683 684 tick_program_event(expires_next, 1); 685 } 686 687 /* 688 * Reprogram the event source with checking both queues for the 689 * next event 690 * Called with interrupts disabled and base->lock held 691 */ 692 static void 693 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 694 { 695 ktime_t expires_next; 696 697 expires_next = hrtimer_update_next_event(cpu_base); 698 699 if (skip_equal && expires_next == cpu_base->expires_next) 700 return; 701 702 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next); 703 } 704 705 /* High resolution timer related functions */ 706 #ifdef CONFIG_HIGH_RES_TIMERS 707 708 /* 709 * High resolution timer enabled ? 710 */ 711 static bool hrtimer_hres_enabled __read_mostly = true; 712 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 713 EXPORT_SYMBOL_GPL(hrtimer_resolution); 714 715 /* 716 * Enable / Disable high resolution mode 717 */ 718 static int __init setup_hrtimer_hres(char *str) 719 { 720 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 721 } 722 723 __setup("highres=", setup_hrtimer_hres); 724 725 /* 726 * hrtimer_high_res_enabled - query, if the highres mode is enabled 727 */ 728 static inline int hrtimer_is_hres_enabled(void) 729 { 730 return hrtimer_hres_enabled; 731 } 732 733 static void retrigger_next_event(void *arg); 734 735 /* 736 * Switch to high resolution mode 737 */ 738 static void hrtimer_switch_to_hres(void) 739 { 740 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 741 742 if (tick_init_highres()) { 743 pr_warn("Could not switch to high resolution mode on CPU %u\n", 744 base->cpu); 745 return; 746 } 747 base->hres_active = 1; 748 hrtimer_resolution = HIGH_RES_NSEC; 749 750 tick_setup_sched_timer(true); 751 /* "Retrigger" the interrupt to get things going */ 752 retrigger_next_event(NULL); 753 } 754 755 #else 756 757 static inline int hrtimer_is_hres_enabled(void) { return 0; } 758 static inline void hrtimer_switch_to_hres(void) { } 759 760 #endif /* CONFIG_HIGH_RES_TIMERS */ 761 /* 762 * Retrigger next event is called after clock was set with interrupts 763 * disabled through an SMP function call or directly from low level 764 * resume code. 765 * 766 * This is only invoked when: 767 * - CONFIG_HIGH_RES_TIMERS is enabled. 768 * - CONFIG_NOHZ_COMMON is enabled 769 * 770 * For the other cases this function is empty and because the call sites 771 * are optimized out it vanishes as well, i.e. no need for lots of 772 * #ifdeffery. 773 */ 774 static void retrigger_next_event(void *arg) 775 { 776 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 777 778 /* 779 * When high resolution mode or nohz is active, then the offsets of 780 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the 781 * next tick will take care of that. 782 * 783 * If high resolution mode is active then the next expiring timer 784 * must be reevaluated and the clock event device reprogrammed if 785 * necessary. 786 * 787 * In the NOHZ case the update of the offset and the reevaluation 788 * of the next expiring timer is enough. The return from the SMP 789 * function call will take care of the reprogramming in case the 790 * CPU was in a NOHZ idle sleep. 791 */ 792 if (!__hrtimer_hres_active(base) && !tick_nohz_active) 793 return; 794 795 raw_spin_lock(&base->lock); 796 hrtimer_update_base(base); 797 if (__hrtimer_hres_active(base)) 798 hrtimer_force_reprogram(base, 0); 799 else 800 hrtimer_update_next_event(base); 801 raw_spin_unlock(&base->lock); 802 } 803 804 /* 805 * When a timer is enqueued and expires earlier than the already enqueued 806 * timers, we have to check, whether it expires earlier than the timer for 807 * which the clock event device was armed. 808 * 809 * Called with interrupts disabled and base->cpu_base.lock held 810 */ 811 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 812 { 813 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 814 struct hrtimer_clock_base *base = timer->base; 815 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 816 817 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 818 819 /* 820 * CLOCK_REALTIME timer might be requested with an absolute 821 * expiry time which is less than base->offset. Set it to 0. 822 */ 823 if (expires < 0) 824 expires = 0; 825 826 if (timer->is_soft) { 827 /* 828 * soft hrtimer could be started on a remote CPU. In this 829 * case softirq_expires_next needs to be updated on the 830 * remote CPU. The soft hrtimer will not expire before the 831 * first hard hrtimer on the remote CPU - 832 * hrtimer_check_target() prevents this case. 833 */ 834 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 835 836 if (timer_cpu_base->softirq_activated) 837 return; 838 839 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 840 return; 841 842 timer_cpu_base->softirq_next_timer = timer; 843 timer_cpu_base->softirq_expires_next = expires; 844 845 if (!ktime_before(expires, timer_cpu_base->expires_next) || 846 !reprogram) 847 return; 848 } 849 850 /* 851 * If the timer is not on the current cpu, we cannot reprogram 852 * the other cpus clock event device. 853 */ 854 if (base->cpu_base != cpu_base) 855 return; 856 857 if (expires >= cpu_base->expires_next) 858 return; 859 860 /* 861 * If the hrtimer interrupt is running, then it will reevaluate the 862 * clock bases and reprogram the clock event device. 863 */ 864 if (cpu_base->in_hrtirq) 865 return; 866 867 cpu_base->next_timer = timer; 868 869 __hrtimer_reprogram(cpu_base, timer, expires); 870 } 871 872 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, 873 unsigned int active) 874 { 875 struct hrtimer_clock_base *base; 876 unsigned int seq; 877 ktime_t expires; 878 879 /* 880 * Update the base offsets unconditionally so the following 881 * checks whether the SMP function call is required works. 882 * 883 * The update is safe even when the remote CPU is in the hrtimer 884 * interrupt or the hrtimer soft interrupt and expiring affected 885 * bases. Either it will see the update before handling a base or 886 * it will see it when it finishes the processing and reevaluates 887 * the next expiring timer. 888 */ 889 seq = cpu_base->clock_was_set_seq; 890 hrtimer_update_base(cpu_base); 891 892 /* 893 * If the sequence did not change over the update then the 894 * remote CPU already handled it. 895 */ 896 if (seq == cpu_base->clock_was_set_seq) 897 return false; 898 899 /* 900 * If the remote CPU is currently handling an hrtimer interrupt, it 901 * will reevaluate the first expiring timer of all clock bases 902 * before reprogramming. Nothing to do here. 903 */ 904 if (cpu_base->in_hrtirq) 905 return false; 906 907 /* 908 * Walk the affected clock bases and check whether the first expiring 909 * timer in a clock base is moving ahead of the first expiring timer of 910 * @cpu_base. If so, the IPI must be invoked because per CPU clock 911 * event devices cannot be remotely reprogrammed. 912 */ 913 active &= cpu_base->active_bases; 914 915 for_each_active_base(base, cpu_base, active) { 916 struct timerqueue_node *next; 917 918 next = timerqueue_getnext(&base->active); 919 expires = ktime_sub(next->expires, base->offset); 920 if (expires < cpu_base->expires_next) 921 return true; 922 923 /* Extra check for softirq clock bases */ 924 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) 925 continue; 926 if (cpu_base->softirq_activated) 927 continue; 928 if (expires < cpu_base->softirq_expires_next) 929 return true; 930 } 931 return false; 932 } 933 934 /* 935 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and 936 * CLOCK_BOOTTIME (for late sleep time injection). 937 * 938 * This requires to update the offsets for these clocks 939 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this 940 * also requires to eventually reprogram the per CPU clock event devices 941 * when the change moves an affected timer ahead of the first expiring 942 * timer on that CPU. Obviously remote per CPU clock event devices cannot 943 * be reprogrammed. The other reason why an IPI has to be sent is when the 944 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets 945 * in the tick, which obviously might be stopped, so this has to bring out 946 * the remote CPU which might sleep in idle to get this sorted. 947 */ 948 void clock_was_set(unsigned int bases) 949 { 950 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); 951 cpumask_var_t mask; 952 int cpu; 953 954 if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active) 955 goto out_timerfd; 956 957 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 958 on_each_cpu(retrigger_next_event, NULL, 1); 959 goto out_timerfd; 960 } 961 962 /* Avoid interrupting CPUs if possible */ 963 cpus_read_lock(); 964 for_each_online_cpu(cpu) { 965 unsigned long flags; 966 967 cpu_base = &per_cpu(hrtimer_bases, cpu); 968 raw_spin_lock_irqsave(&cpu_base->lock, flags); 969 970 if (update_needs_ipi(cpu_base, bases)) 971 cpumask_set_cpu(cpu, mask); 972 973 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 974 } 975 976 preempt_disable(); 977 smp_call_function_many(mask, retrigger_next_event, NULL, 1); 978 preempt_enable(); 979 cpus_read_unlock(); 980 free_cpumask_var(mask); 981 982 out_timerfd: 983 timerfd_clock_was_set(); 984 } 985 986 static void clock_was_set_work(struct work_struct *work) 987 { 988 clock_was_set(CLOCK_SET_WALL); 989 } 990 991 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 992 993 /* 994 * Called from timekeeping code to reprogram the hrtimer interrupt device 995 * on all cpus and to notify timerfd. 996 */ 997 void clock_was_set_delayed(void) 998 { 999 schedule_work(&hrtimer_work); 1000 } 1001 1002 /* 1003 * Called during resume either directly from via timekeeping_resume() 1004 * or in the case of s2idle from tick_unfreeze() to ensure that the 1005 * hrtimers are up to date. 1006 */ 1007 void hrtimers_resume_local(void) 1008 { 1009 lockdep_assert_irqs_disabled(); 1010 /* Retrigger on the local CPU */ 1011 retrigger_next_event(NULL); 1012 } 1013 1014 /* 1015 * Counterpart to lock_hrtimer_base above: 1016 */ 1017 static inline 1018 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 1019 __releases(&timer->base->cpu_base->lock) 1020 { 1021 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 1022 } 1023 1024 /** 1025 * hrtimer_forward() - forward the timer expiry 1026 * @timer: hrtimer to forward 1027 * @now: forward past this time 1028 * @interval: the interval to forward 1029 * 1030 * Forward the timer expiry so it will expire in the future. 1031 * 1032 * .. note:: 1033 * This only updates the timer expiry value and does not requeue the timer. 1034 * 1035 * There is also a variant of the function hrtimer_forward_now(). 1036 * 1037 * Context: Can be safely called from the callback function of @timer. If called 1038 * from other contexts @timer must neither be enqueued nor running the 1039 * callback and the caller needs to take care of serialization. 1040 * 1041 * Return: The number of overruns are returned. 1042 */ 1043 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 1044 { 1045 u64 orun = 1; 1046 ktime_t delta; 1047 1048 delta = ktime_sub(now, hrtimer_get_expires(timer)); 1049 1050 if (delta < 0) 1051 return 0; 1052 1053 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 1054 return 0; 1055 1056 if (interval < hrtimer_resolution) 1057 interval = hrtimer_resolution; 1058 1059 if (unlikely(delta >= interval)) { 1060 s64 incr = ktime_to_ns(interval); 1061 1062 orun = ktime_divns(delta, incr); 1063 hrtimer_add_expires_ns(timer, incr * orun); 1064 if (hrtimer_get_expires_tv64(timer) > now) 1065 return orun; 1066 /* 1067 * This (and the ktime_add() below) is the 1068 * correction for exact: 1069 */ 1070 orun++; 1071 } 1072 hrtimer_add_expires(timer, interval); 1073 1074 return orun; 1075 } 1076 EXPORT_SYMBOL_GPL(hrtimer_forward); 1077 1078 /* 1079 * enqueue_hrtimer - internal function to (re)start a timer 1080 * 1081 * The timer is inserted in expiry order. Insertion into the 1082 * red black tree is O(log(n)). Must hold the base lock. 1083 * 1084 * Returns 1 when the new timer is the leftmost timer in the tree. 1085 */ 1086 static int enqueue_hrtimer(struct hrtimer *timer, 1087 struct hrtimer_clock_base *base, 1088 enum hrtimer_mode mode) 1089 { 1090 debug_activate(timer, mode); 1091 WARN_ON_ONCE(!base->cpu_base->online); 1092 1093 base->cpu_base->active_bases |= 1 << base->index; 1094 1095 /* Pairs with the lockless read in hrtimer_is_queued() */ 1096 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 1097 1098 return timerqueue_add(&base->active, &timer->node); 1099 } 1100 1101 /* 1102 * __remove_hrtimer - internal function to remove a timer 1103 * 1104 * Caller must hold the base lock. 1105 * 1106 * High resolution timer mode reprograms the clock event device when the 1107 * timer is the one which expires next. The caller can disable this by setting 1108 * reprogram to zero. This is useful, when the context does a reprogramming 1109 * anyway (e.g. timer interrupt) 1110 */ 1111 static void __remove_hrtimer(struct hrtimer *timer, 1112 struct hrtimer_clock_base *base, 1113 u8 newstate, int reprogram) 1114 { 1115 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1116 u8 state = timer->state; 1117 1118 /* Pairs with the lockless read in hrtimer_is_queued() */ 1119 WRITE_ONCE(timer->state, newstate); 1120 if (!(state & HRTIMER_STATE_ENQUEUED)) 1121 return; 1122 1123 if (!timerqueue_del(&base->active, &timer->node)) 1124 cpu_base->active_bases &= ~(1 << base->index); 1125 1126 /* 1127 * Note: If reprogram is false we do not update 1128 * cpu_base->next_timer. This happens when we remove the first 1129 * timer on a remote cpu. No harm as we never dereference 1130 * cpu_base->next_timer. So the worst thing what can happen is 1131 * an superfluous call to hrtimer_force_reprogram() on the 1132 * remote cpu later on if the same timer gets enqueued again. 1133 */ 1134 if (reprogram && timer == cpu_base->next_timer) 1135 hrtimer_force_reprogram(cpu_base, 1); 1136 } 1137 1138 /* 1139 * remove hrtimer, called with base lock held 1140 */ 1141 static inline int 1142 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1143 bool restart, bool keep_local) 1144 { 1145 u8 state = timer->state; 1146 1147 if (state & HRTIMER_STATE_ENQUEUED) { 1148 bool reprogram; 1149 1150 /* 1151 * Remove the timer and force reprogramming when high 1152 * resolution mode is active and the timer is on the current 1153 * CPU. If we remove a timer on another CPU, reprogramming is 1154 * skipped. The interrupt event on this CPU is fired and 1155 * reprogramming happens in the interrupt handler. This is a 1156 * rare case and less expensive than a smp call. 1157 */ 1158 debug_deactivate(timer); 1159 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1160 1161 /* 1162 * If the timer is not restarted then reprogramming is 1163 * required if the timer is local. If it is local and about 1164 * to be restarted, avoid programming it twice (on removal 1165 * and a moment later when it's requeued). 1166 */ 1167 if (!restart) 1168 state = HRTIMER_STATE_INACTIVE; 1169 else 1170 reprogram &= !keep_local; 1171 1172 __remove_hrtimer(timer, base, state, reprogram); 1173 return 1; 1174 } 1175 return 0; 1176 } 1177 1178 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1179 const enum hrtimer_mode mode) 1180 { 1181 #ifdef CONFIG_TIME_LOW_RES 1182 /* 1183 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1184 * granular time values. For relative timers we add hrtimer_resolution 1185 * (i.e. one jiffie) to prevent short timeouts. 1186 */ 1187 timer->is_rel = mode & HRTIMER_MODE_REL; 1188 if (timer->is_rel) 1189 tim = ktime_add_safe(tim, hrtimer_resolution); 1190 #endif 1191 return tim; 1192 } 1193 1194 static void 1195 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1196 { 1197 ktime_t expires; 1198 1199 /* 1200 * Find the next SOFT expiration. 1201 */ 1202 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1203 1204 /* 1205 * reprogramming needs to be triggered, even if the next soft 1206 * hrtimer expires at the same time than the next hard 1207 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1208 */ 1209 if (expires == KTIME_MAX) 1210 return; 1211 1212 /* 1213 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1214 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1215 */ 1216 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1217 } 1218 1219 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1220 u64 delta_ns, const enum hrtimer_mode mode, 1221 struct hrtimer_clock_base *base) 1222 { 1223 struct hrtimer_clock_base *new_base; 1224 bool force_local, first; 1225 1226 /* 1227 * If the timer is on the local cpu base and is the first expiring 1228 * timer then this might end up reprogramming the hardware twice 1229 * (on removal and on enqueue). To avoid that by prevent the 1230 * reprogram on removal, keep the timer local to the current CPU 1231 * and enforce reprogramming after it is queued no matter whether 1232 * it is the new first expiring timer again or not. 1233 */ 1234 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1235 force_local &= base->cpu_base->next_timer == timer; 1236 1237 /* 1238 * Remove an active timer from the queue. In case it is not queued 1239 * on the current CPU, make sure that remove_hrtimer() updates the 1240 * remote data correctly. 1241 * 1242 * If it's on the current CPU and the first expiring timer, then 1243 * skip reprogramming, keep the timer local and enforce 1244 * reprogramming later if it was the first expiring timer. This 1245 * avoids programming the underlying clock event twice (once at 1246 * removal and once after enqueue). 1247 */ 1248 remove_hrtimer(timer, base, true, force_local); 1249 1250 if (mode & HRTIMER_MODE_REL) 1251 tim = ktime_add_safe(tim, base->get_time()); 1252 1253 tim = hrtimer_update_lowres(timer, tim, mode); 1254 1255 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1256 1257 /* Switch the timer base, if necessary: */ 1258 if (!force_local) { 1259 new_base = switch_hrtimer_base(timer, base, 1260 mode & HRTIMER_MODE_PINNED); 1261 } else { 1262 new_base = base; 1263 } 1264 1265 first = enqueue_hrtimer(timer, new_base, mode); 1266 if (!force_local) 1267 return first; 1268 1269 /* 1270 * Timer was forced to stay on the current CPU to avoid 1271 * reprogramming on removal and enqueue. Force reprogram the 1272 * hardware by evaluating the new first expiring timer. 1273 */ 1274 hrtimer_force_reprogram(new_base->cpu_base, 1); 1275 return 0; 1276 } 1277 1278 /** 1279 * hrtimer_start_range_ns - (re)start an hrtimer 1280 * @timer: the timer to be added 1281 * @tim: expiry time 1282 * @delta_ns: "slack" range for the timer 1283 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1284 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1285 * softirq based mode is considered for debug purpose only! 1286 */ 1287 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1288 u64 delta_ns, const enum hrtimer_mode mode) 1289 { 1290 struct hrtimer_clock_base *base; 1291 unsigned long flags; 1292 1293 /* 1294 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1295 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1296 * expiry mode because unmarked timers are moved to softirq expiry. 1297 */ 1298 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1299 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1300 else 1301 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1302 1303 base = lock_hrtimer_base(timer, &flags); 1304 1305 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1306 hrtimer_reprogram(timer, true); 1307 1308 unlock_hrtimer_base(timer, &flags); 1309 } 1310 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1311 1312 /** 1313 * hrtimer_try_to_cancel - try to deactivate a timer 1314 * @timer: hrtimer to stop 1315 * 1316 * Returns: 1317 * 1318 * * 0 when the timer was not active 1319 * * 1 when the timer was active 1320 * * -1 when the timer is currently executing the callback function and 1321 * cannot be stopped 1322 */ 1323 int hrtimer_try_to_cancel(struct hrtimer *timer) 1324 { 1325 struct hrtimer_clock_base *base; 1326 unsigned long flags; 1327 int ret = -1; 1328 1329 /* 1330 * Check lockless first. If the timer is not active (neither 1331 * enqueued nor running the callback, nothing to do here. The 1332 * base lock does not serialize against a concurrent enqueue, 1333 * so we can avoid taking it. 1334 */ 1335 if (!hrtimer_active(timer)) 1336 return 0; 1337 1338 base = lock_hrtimer_base(timer, &flags); 1339 1340 if (!hrtimer_callback_running(timer)) 1341 ret = remove_hrtimer(timer, base, false, false); 1342 1343 unlock_hrtimer_base(timer, &flags); 1344 1345 return ret; 1346 1347 } 1348 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1349 1350 #ifdef CONFIG_PREEMPT_RT 1351 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1352 { 1353 spin_lock_init(&base->softirq_expiry_lock); 1354 } 1355 1356 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1357 { 1358 spin_lock(&base->softirq_expiry_lock); 1359 } 1360 1361 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1362 { 1363 spin_unlock(&base->softirq_expiry_lock); 1364 } 1365 1366 /* 1367 * The counterpart to hrtimer_cancel_wait_running(). 1368 * 1369 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1370 * the timer callback to finish. Drop expiry_lock and reacquire it. That 1371 * allows the waiter to acquire the lock and make progress. 1372 */ 1373 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1374 unsigned long flags) 1375 { 1376 if (atomic_read(&cpu_base->timer_waiters)) { 1377 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1378 spin_unlock(&cpu_base->softirq_expiry_lock); 1379 spin_lock(&cpu_base->softirq_expiry_lock); 1380 raw_spin_lock_irq(&cpu_base->lock); 1381 } 1382 } 1383 1384 /* 1385 * This function is called on PREEMPT_RT kernels when the fast path 1386 * deletion of a timer failed because the timer callback function was 1387 * running. 1388 * 1389 * This prevents priority inversion: if the soft irq thread is preempted 1390 * in the middle of a timer callback, then calling del_timer_sync() can 1391 * lead to two issues: 1392 * 1393 * - If the caller is on a remote CPU then it has to spin wait for the timer 1394 * handler to complete. This can result in unbound priority inversion. 1395 * 1396 * - If the caller originates from the task which preempted the timer 1397 * handler on the same CPU, then spin waiting for the timer handler to 1398 * complete is never going to end. 1399 */ 1400 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1401 { 1402 /* Lockless read. Prevent the compiler from reloading it below */ 1403 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1404 1405 /* 1406 * Just relax if the timer expires in hard interrupt context or if 1407 * it is currently on the migration base. 1408 */ 1409 if (!timer->is_soft || is_migration_base(base)) { 1410 cpu_relax(); 1411 return; 1412 } 1413 1414 /* 1415 * Mark the base as contended and grab the expiry lock, which is 1416 * held by the softirq across the timer callback. Drop the lock 1417 * immediately so the softirq can expire the next timer. In theory 1418 * the timer could already be running again, but that's more than 1419 * unlikely and just causes another wait loop. 1420 */ 1421 atomic_inc(&base->cpu_base->timer_waiters); 1422 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1423 atomic_dec(&base->cpu_base->timer_waiters); 1424 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1425 } 1426 #else 1427 static inline void 1428 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1429 static inline void 1430 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1431 static inline void 1432 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1433 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1434 unsigned long flags) { } 1435 #endif 1436 1437 /** 1438 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1439 * @timer: the timer to be cancelled 1440 * 1441 * Returns: 1442 * 0 when the timer was not active 1443 * 1 when the timer was active 1444 */ 1445 int hrtimer_cancel(struct hrtimer *timer) 1446 { 1447 int ret; 1448 1449 do { 1450 ret = hrtimer_try_to_cancel(timer); 1451 1452 if (ret < 0) 1453 hrtimer_cancel_wait_running(timer); 1454 } while (ret < 0); 1455 return ret; 1456 } 1457 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1458 1459 /** 1460 * __hrtimer_get_remaining - get remaining time for the timer 1461 * @timer: the timer to read 1462 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1463 */ 1464 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1465 { 1466 unsigned long flags; 1467 ktime_t rem; 1468 1469 lock_hrtimer_base(timer, &flags); 1470 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1471 rem = hrtimer_expires_remaining_adjusted(timer); 1472 else 1473 rem = hrtimer_expires_remaining(timer); 1474 unlock_hrtimer_base(timer, &flags); 1475 1476 return rem; 1477 } 1478 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1479 1480 #ifdef CONFIG_NO_HZ_COMMON 1481 /** 1482 * hrtimer_get_next_event - get the time until next expiry event 1483 * 1484 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1485 */ 1486 u64 hrtimer_get_next_event(void) 1487 { 1488 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1489 u64 expires = KTIME_MAX; 1490 unsigned long flags; 1491 1492 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1493 1494 if (!__hrtimer_hres_active(cpu_base)) 1495 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1496 1497 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1498 1499 return expires; 1500 } 1501 1502 /** 1503 * hrtimer_next_event_without - time until next expiry event w/o one timer 1504 * @exclude: timer to exclude 1505 * 1506 * Returns the next expiry time over all timers except for the @exclude one or 1507 * KTIME_MAX if none of them is pending. 1508 */ 1509 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1510 { 1511 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1512 u64 expires = KTIME_MAX; 1513 unsigned long flags; 1514 1515 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1516 1517 if (__hrtimer_hres_active(cpu_base)) { 1518 unsigned int active; 1519 1520 if (!cpu_base->softirq_activated) { 1521 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1522 expires = __hrtimer_next_event_base(cpu_base, exclude, 1523 active, KTIME_MAX); 1524 } 1525 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1526 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1527 expires); 1528 } 1529 1530 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1531 1532 return expires; 1533 } 1534 #endif 1535 1536 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1537 { 1538 if (likely(clock_id < MAX_CLOCKS)) { 1539 int base = hrtimer_clock_to_base_table[clock_id]; 1540 1541 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1542 return base; 1543 } 1544 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1545 return HRTIMER_BASE_MONOTONIC; 1546 } 1547 1548 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1549 enum hrtimer_mode mode) 1550 { 1551 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1552 struct hrtimer_cpu_base *cpu_base; 1553 int base; 1554 1555 /* 1556 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1557 * marked for hard interrupt expiry mode are moved into soft 1558 * interrupt context for latency reasons and because the callbacks 1559 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1560 */ 1561 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1562 softtimer = true; 1563 1564 memset(timer, 0, sizeof(struct hrtimer)); 1565 1566 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1567 1568 /* 1569 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1570 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1571 * ensure POSIX compliance. 1572 */ 1573 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1574 clock_id = CLOCK_MONOTONIC; 1575 1576 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1577 base += hrtimer_clockid_to_base(clock_id); 1578 timer->is_soft = softtimer; 1579 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1580 timer->base = &cpu_base->clock_base[base]; 1581 timerqueue_init(&timer->node); 1582 } 1583 1584 /** 1585 * hrtimer_init - initialize a timer to the given clock 1586 * @timer: the timer to be initialized 1587 * @clock_id: the clock to be used 1588 * @mode: The modes which are relevant for initialization: 1589 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1590 * HRTIMER_MODE_REL_SOFT 1591 * 1592 * The PINNED variants of the above can be handed in, 1593 * but the PINNED bit is ignored as pinning happens 1594 * when the hrtimer is started 1595 */ 1596 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1597 enum hrtimer_mode mode) 1598 { 1599 debug_init(timer, clock_id, mode); 1600 __hrtimer_init(timer, clock_id, mode); 1601 } 1602 EXPORT_SYMBOL_GPL(hrtimer_init); 1603 1604 /* 1605 * A timer is active, when it is enqueued into the rbtree or the 1606 * callback function is running or it's in the state of being migrated 1607 * to another cpu. 1608 * 1609 * It is important for this function to not return a false negative. 1610 */ 1611 bool hrtimer_active(const struct hrtimer *timer) 1612 { 1613 struct hrtimer_clock_base *base; 1614 unsigned int seq; 1615 1616 do { 1617 base = READ_ONCE(timer->base); 1618 seq = raw_read_seqcount_begin(&base->seq); 1619 1620 if (timer->state != HRTIMER_STATE_INACTIVE || 1621 base->running == timer) 1622 return true; 1623 1624 } while (read_seqcount_retry(&base->seq, seq) || 1625 base != READ_ONCE(timer->base)); 1626 1627 return false; 1628 } 1629 EXPORT_SYMBOL_GPL(hrtimer_active); 1630 1631 /* 1632 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1633 * distinct sections: 1634 * 1635 * - queued: the timer is queued 1636 * - callback: the timer is being ran 1637 * - post: the timer is inactive or (re)queued 1638 * 1639 * On the read side we ensure we observe timer->state and cpu_base->running 1640 * from the same section, if anything changed while we looked at it, we retry. 1641 * This includes timer->base changing because sequence numbers alone are 1642 * insufficient for that. 1643 * 1644 * The sequence numbers are required because otherwise we could still observe 1645 * a false negative if the read side got smeared over multiple consecutive 1646 * __run_hrtimer() invocations. 1647 */ 1648 1649 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1650 struct hrtimer_clock_base *base, 1651 struct hrtimer *timer, ktime_t *now, 1652 unsigned long flags) __must_hold(&cpu_base->lock) 1653 { 1654 enum hrtimer_restart (*fn)(struct hrtimer *); 1655 bool expires_in_hardirq; 1656 int restart; 1657 1658 lockdep_assert_held(&cpu_base->lock); 1659 1660 debug_deactivate(timer); 1661 base->running = timer; 1662 1663 /* 1664 * Separate the ->running assignment from the ->state assignment. 1665 * 1666 * As with a regular write barrier, this ensures the read side in 1667 * hrtimer_active() cannot observe base->running == NULL && 1668 * timer->state == INACTIVE. 1669 */ 1670 raw_write_seqcount_barrier(&base->seq); 1671 1672 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1673 fn = timer->function; 1674 1675 /* 1676 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1677 * timer is restarted with a period then it becomes an absolute 1678 * timer. If its not restarted it does not matter. 1679 */ 1680 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1681 timer->is_rel = false; 1682 1683 /* 1684 * The timer is marked as running in the CPU base, so it is 1685 * protected against migration to a different CPU even if the lock 1686 * is dropped. 1687 */ 1688 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1689 trace_hrtimer_expire_entry(timer, now); 1690 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1691 1692 restart = fn(timer); 1693 1694 lockdep_hrtimer_exit(expires_in_hardirq); 1695 trace_hrtimer_expire_exit(timer); 1696 raw_spin_lock_irq(&cpu_base->lock); 1697 1698 /* 1699 * Note: We clear the running state after enqueue_hrtimer and 1700 * we do not reprogram the event hardware. Happens either in 1701 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1702 * 1703 * Note: Because we dropped the cpu_base->lock above, 1704 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1705 * for us already. 1706 */ 1707 if (restart != HRTIMER_NORESTART && 1708 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1709 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1710 1711 /* 1712 * Separate the ->running assignment from the ->state assignment. 1713 * 1714 * As with a regular write barrier, this ensures the read side in 1715 * hrtimer_active() cannot observe base->running.timer == NULL && 1716 * timer->state == INACTIVE. 1717 */ 1718 raw_write_seqcount_barrier(&base->seq); 1719 1720 WARN_ON_ONCE(base->running != timer); 1721 base->running = NULL; 1722 } 1723 1724 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1725 unsigned long flags, unsigned int active_mask) 1726 { 1727 struct hrtimer_clock_base *base; 1728 unsigned int active = cpu_base->active_bases & active_mask; 1729 1730 for_each_active_base(base, cpu_base, active) { 1731 struct timerqueue_node *node; 1732 ktime_t basenow; 1733 1734 basenow = ktime_add(now, base->offset); 1735 1736 while ((node = timerqueue_getnext(&base->active))) { 1737 struct hrtimer *timer; 1738 1739 timer = container_of(node, struct hrtimer, node); 1740 1741 /* 1742 * The immediate goal for using the softexpires is 1743 * minimizing wakeups, not running timers at the 1744 * earliest interrupt after their soft expiration. 1745 * This allows us to avoid using a Priority Search 1746 * Tree, which can answer a stabbing query for 1747 * overlapping intervals and instead use the simple 1748 * BST we already have. 1749 * We don't add extra wakeups by delaying timers that 1750 * are right-of a not yet expired timer, because that 1751 * timer will have to trigger a wakeup anyway. 1752 */ 1753 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1754 break; 1755 1756 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1757 if (active_mask == HRTIMER_ACTIVE_SOFT) 1758 hrtimer_sync_wait_running(cpu_base, flags); 1759 } 1760 } 1761 } 1762 1763 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1764 { 1765 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1766 unsigned long flags; 1767 ktime_t now; 1768 1769 hrtimer_cpu_base_lock_expiry(cpu_base); 1770 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1771 1772 now = hrtimer_update_base(cpu_base); 1773 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1774 1775 cpu_base->softirq_activated = 0; 1776 hrtimer_update_softirq_timer(cpu_base, true); 1777 1778 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1779 hrtimer_cpu_base_unlock_expiry(cpu_base); 1780 } 1781 1782 #ifdef CONFIG_HIGH_RES_TIMERS 1783 1784 /* 1785 * High resolution timer interrupt 1786 * Called with interrupts disabled 1787 */ 1788 void hrtimer_interrupt(struct clock_event_device *dev) 1789 { 1790 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1791 ktime_t expires_next, now, entry_time, delta; 1792 unsigned long flags; 1793 int retries = 0; 1794 1795 BUG_ON(!cpu_base->hres_active); 1796 cpu_base->nr_events++; 1797 dev->next_event = KTIME_MAX; 1798 1799 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1800 entry_time = now = hrtimer_update_base(cpu_base); 1801 retry: 1802 cpu_base->in_hrtirq = 1; 1803 /* 1804 * We set expires_next to KTIME_MAX here with cpu_base->lock 1805 * held to prevent that a timer is enqueued in our queue via 1806 * the migration code. This does not affect enqueueing of 1807 * timers which run their callback and need to be requeued on 1808 * this CPU. 1809 */ 1810 cpu_base->expires_next = KTIME_MAX; 1811 1812 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1813 cpu_base->softirq_expires_next = KTIME_MAX; 1814 cpu_base->softirq_activated = 1; 1815 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1816 } 1817 1818 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1819 1820 /* Reevaluate the clock bases for the [soft] next expiry */ 1821 expires_next = hrtimer_update_next_event(cpu_base); 1822 /* 1823 * Store the new expiry value so the migration code can verify 1824 * against it. 1825 */ 1826 cpu_base->expires_next = expires_next; 1827 cpu_base->in_hrtirq = 0; 1828 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1829 1830 /* Reprogramming necessary ? */ 1831 if (!tick_program_event(expires_next, 0)) { 1832 cpu_base->hang_detected = 0; 1833 return; 1834 } 1835 1836 /* 1837 * The next timer was already expired due to: 1838 * - tracing 1839 * - long lasting callbacks 1840 * - being scheduled away when running in a VM 1841 * 1842 * We need to prevent that we loop forever in the hrtimer 1843 * interrupt routine. We give it 3 attempts to avoid 1844 * overreacting on some spurious event. 1845 * 1846 * Acquire base lock for updating the offsets and retrieving 1847 * the current time. 1848 */ 1849 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1850 now = hrtimer_update_base(cpu_base); 1851 cpu_base->nr_retries++; 1852 if (++retries < 3) 1853 goto retry; 1854 /* 1855 * Give the system a chance to do something else than looping 1856 * here. We stored the entry time, so we know exactly how long 1857 * we spent here. We schedule the next event this amount of 1858 * time away. 1859 */ 1860 cpu_base->nr_hangs++; 1861 cpu_base->hang_detected = 1; 1862 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1863 1864 delta = ktime_sub(now, entry_time); 1865 if ((unsigned int)delta > cpu_base->max_hang_time) 1866 cpu_base->max_hang_time = (unsigned int) delta; 1867 /* 1868 * Limit it to a sensible value as we enforce a longer 1869 * delay. Give the CPU at least 100ms to catch up. 1870 */ 1871 if (delta > 100 * NSEC_PER_MSEC) 1872 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1873 else 1874 expires_next = ktime_add(now, delta); 1875 tick_program_event(expires_next, 1); 1876 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1877 } 1878 1879 /* called with interrupts disabled */ 1880 static inline void __hrtimer_peek_ahead_timers(void) 1881 { 1882 struct tick_device *td; 1883 1884 if (!hrtimer_hres_active()) 1885 return; 1886 1887 td = this_cpu_ptr(&tick_cpu_device); 1888 if (td && td->evtdev) 1889 hrtimer_interrupt(td->evtdev); 1890 } 1891 1892 #else /* CONFIG_HIGH_RES_TIMERS */ 1893 1894 static inline void __hrtimer_peek_ahead_timers(void) { } 1895 1896 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1897 1898 /* 1899 * Called from run_local_timers in hardirq context every jiffy 1900 */ 1901 void hrtimer_run_queues(void) 1902 { 1903 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1904 unsigned long flags; 1905 ktime_t now; 1906 1907 if (__hrtimer_hres_active(cpu_base)) 1908 return; 1909 1910 /* 1911 * This _is_ ugly: We have to check periodically, whether we 1912 * can switch to highres and / or nohz mode. The clocksource 1913 * switch happens with xtime_lock held. Notification from 1914 * there only sets the check bit in the tick_oneshot code, 1915 * otherwise we might deadlock vs. xtime_lock. 1916 */ 1917 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1918 hrtimer_switch_to_hres(); 1919 return; 1920 } 1921 1922 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1923 now = hrtimer_update_base(cpu_base); 1924 1925 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1926 cpu_base->softirq_expires_next = KTIME_MAX; 1927 cpu_base->softirq_activated = 1; 1928 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1929 } 1930 1931 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1932 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1933 } 1934 1935 /* 1936 * Sleep related functions: 1937 */ 1938 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1939 { 1940 struct hrtimer_sleeper *t = 1941 container_of(timer, struct hrtimer_sleeper, timer); 1942 struct task_struct *task = t->task; 1943 1944 t->task = NULL; 1945 if (task) 1946 wake_up_process(task); 1947 1948 return HRTIMER_NORESTART; 1949 } 1950 1951 /** 1952 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1953 * @sl: sleeper to be started 1954 * @mode: timer mode abs/rel 1955 * 1956 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1957 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1958 */ 1959 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1960 enum hrtimer_mode mode) 1961 { 1962 /* 1963 * Make the enqueue delivery mode check work on RT. If the sleeper 1964 * was initialized for hard interrupt delivery, force the mode bit. 1965 * This is a special case for hrtimer_sleepers because 1966 * hrtimer_init_sleeper() determines the delivery mode on RT so the 1967 * fiddling with this decision is avoided at the call sites. 1968 */ 1969 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 1970 mode |= HRTIMER_MODE_HARD; 1971 1972 hrtimer_start_expires(&sl->timer, mode); 1973 } 1974 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1975 1976 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1977 clockid_t clock_id, enum hrtimer_mode mode) 1978 { 1979 /* 1980 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1981 * marked for hard interrupt expiry mode are moved into soft 1982 * interrupt context either for latency reasons or because the 1983 * hrtimer callback takes regular spinlocks or invokes other 1984 * functions which are not suitable for hard interrupt context on 1985 * PREEMPT_RT. 1986 * 1987 * The hrtimer_sleeper callback is RT compatible in hard interrupt 1988 * context, but there is a latency concern: Untrusted userspace can 1989 * spawn many threads which arm timers for the same expiry time on 1990 * the same CPU. That causes a latency spike due to the wakeup of 1991 * a gazillion threads. 1992 * 1993 * OTOH, privileged real-time user space applications rely on the 1994 * low latency of hard interrupt wakeups. If the current task is in 1995 * a real-time scheduling class, mark the mode for hard interrupt 1996 * expiry. 1997 */ 1998 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1999 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) 2000 mode |= HRTIMER_MODE_HARD; 2001 } 2002 2003 __hrtimer_init(&sl->timer, clock_id, mode); 2004 sl->timer.function = hrtimer_wakeup; 2005 sl->task = current; 2006 } 2007 2008 /** 2009 * hrtimer_init_sleeper - initialize sleeper to the given clock 2010 * @sl: sleeper to be initialized 2011 * @clock_id: the clock to be used 2012 * @mode: timer mode abs/rel 2013 */ 2014 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 2015 enum hrtimer_mode mode) 2016 { 2017 debug_init(&sl->timer, clock_id, mode); 2018 __hrtimer_init_sleeper(sl, clock_id, mode); 2019 2020 } 2021 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 2022 2023 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 2024 { 2025 switch(restart->nanosleep.type) { 2026 #ifdef CONFIG_COMPAT_32BIT_TIME 2027 case TT_COMPAT: 2028 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 2029 return -EFAULT; 2030 break; 2031 #endif 2032 case TT_NATIVE: 2033 if (put_timespec64(ts, restart->nanosleep.rmtp)) 2034 return -EFAULT; 2035 break; 2036 default: 2037 BUG(); 2038 } 2039 return -ERESTART_RESTARTBLOCK; 2040 } 2041 2042 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 2043 { 2044 struct restart_block *restart; 2045 2046 do { 2047 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2048 hrtimer_sleeper_start_expires(t, mode); 2049 2050 if (likely(t->task)) 2051 schedule(); 2052 2053 hrtimer_cancel(&t->timer); 2054 mode = HRTIMER_MODE_ABS; 2055 2056 } while (t->task && !signal_pending(current)); 2057 2058 __set_current_state(TASK_RUNNING); 2059 2060 if (!t->task) 2061 return 0; 2062 2063 restart = ¤t->restart_block; 2064 if (restart->nanosleep.type != TT_NONE) { 2065 ktime_t rem = hrtimer_expires_remaining(&t->timer); 2066 struct timespec64 rmt; 2067 2068 if (rem <= 0) 2069 return 0; 2070 rmt = ktime_to_timespec64(rem); 2071 2072 return nanosleep_copyout(restart, &rmt); 2073 } 2074 return -ERESTART_RESTARTBLOCK; 2075 } 2076 2077 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 2078 { 2079 struct hrtimer_sleeper t; 2080 int ret; 2081 2082 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 2083 HRTIMER_MODE_ABS); 2084 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 2085 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 2086 destroy_hrtimer_on_stack(&t.timer); 2087 return ret; 2088 } 2089 2090 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 2091 const clockid_t clockid) 2092 { 2093 struct restart_block *restart; 2094 struct hrtimer_sleeper t; 2095 int ret = 0; 2096 u64 slack; 2097 2098 slack = current->timer_slack_ns; 2099 if (rt_task(current)) 2100 slack = 0; 2101 2102 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 2103 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); 2104 ret = do_nanosleep(&t, mode); 2105 if (ret != -ERESTART_RESTARTBLOCK) 2106 goto out; 2107 2108 /* Absolute timers do not update the rmtp value and restart: */ 2109 if (mode == HRTIMER_MODE_ABS) { 2110 ret = -ERESTARTNOHAND; 2111 goto out; 2112 } 2113 2114 restart = ¤t->restart_block; 2115 restart->nanosleep.clockid = t.timer.base->clockid; 2116 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 2117 set_restart_fn(restart, hrtimer_nanosleep_restart); 2118 out: 2119 destroy_hrtimer_on_stack(&t.timer); 2120 return ret; 2121 } 2122 2123 #ifdef CONFIG_64BIT 2124 2125 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 2126 struct __kernel_timespec __user *, rmtp) 2127 { 2128 struct timespec64 tu; 2129 2130 if (get_timespec64(&tu, rqtp)) 2131 return -EFAULT; 2132 2133 if (!timespec64_valid(&tu)) 2134 return -EINVAL; 2135 2136 current->restart_block.fn = do_no_restart_syscall; 2137 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 2138 current->restart_block.nanosleep.rmtp = rmtp; 2139 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2140 CLOCK_MONOTONIC); 2141 } 2142 2143 #endif 2144 2145 #ifdef CONFIG_COMPAT_32BIT_TIME 2146 2147 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 2148 struct old_timespec32 __user *, rmtp) 2149 { 2150 struct timespec64 tu; 2151 2152 if (get_old_timespec32(&tu, rqtp)) 2153 return -EFAULT; 2154 2155 if (!timespec64_valid(&tu)) 2156 return -EINVAL; 2157 2158 current->restart_block.fn = do_no_restart_syscall; 2159 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 2160 current->restart_block.nanosleep.compat_rmtp = rmtp; 2161 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2162 CLOCK_MONOTONIC); 2163 } 2164 #endif 2165 2166 /* 2167 * Functions related to boot-time initialization: 2168 */ 2169 int hrtimers_prepare_cpu(unsigned int cpu) 2170 { 2171 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2172 int i; 2173 2174 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2175 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2176 2177 clock_b->cpu_base = cpu_base; 2178 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2179 timerqueue_init_head(&clock_b->active); 2180 } 2181 2182 cpu_base->cpu = cpu; 2183 cpu_base->active_bases = 0; 2184 cpu_base->hres_active = 0; 2185 cpu_base->hang_detected = 0; 2186 cpu_base->next_timer = NULL; 2187 cpu_base->softirq_next_timer = NULL; 2188 cpu_base->expires_next = KTIME_MAX; 2189 cpu_base->softirq_expires_next = KTIME_MAX; 2190 cpu_base->online = 1; 2191 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2192 return 0; 2193 } 2194 2195 #ifdef CONFIG_HOTPLUG_CPU 2196 2197 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2198 struct hrtimer_clock_base *new_base) 2199 { 2200 struct hrtimer *timer; 2201 struct timerqueue_node *node; 2202 2203 while ((node = timerqueue_getnext(&old_base->active))) { 2204 timer = container_of(node, struct hrtimer, node); 2205 BUG_ON(hrtimer_callback_running(timer)); 2206 debug_deactivate(timer); 2207 2208 /* 2209 * Mark it as ENQUEUED not INACTIVE otherwise the 2210 * timer could be seen as !active and just vanish away 2211 * under us on another CPU 2212 */ 2213 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2214 timer->base = new_base; 2215 /* 2216 * Enqueue the timers on the new cpu. This does not 2217 * reprogram the event device in case the timer 2218 * expires before the earliest on this CPU, but we run 2219 * hrtimer_interrupt after we migrated everything to 2220 * sort out already expired timers and reprogram the 2221 * event device. 2222 */ 2223 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2224 } 2225 } 2226 2227 int hrtimers_cpu_dying(unsigned int dying_cpu) 2228 { 2229 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER)); 2230 struct hrtimer_cpu_base *old_base, *new_base; 2231 2232 old_base = this_cpu_ptr(&hrtimer_bases); 2233 new_base = &per_cpu(hrtimer_bases, ncpu); 2234 2235 /* 2236 * The caller is globally serialized and nobody else 2237 * takes two locks at once, deadlock is not possible. 2238 */ 2239 raw_spin_lock(&old_base->lock); 2240 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); 2241 2242 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2243 migrate_hrtimer_list(&old_base->clock_base[i], 2244 &new_base->clock_base[i]); 2245 } 2246 2247 /* 2248 * The migration might have changed the first expiring softirq 2249 * timer on this CPU. Update it. 2250 */ 2251 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT); 2252 /* Tell the other CPU to retrigger the next event */ 2253 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0); 2254 2255 raw_spin_unlock(&new_base->lock); 2256 old_base->online = 0; 2257 raw_spin_unlock(&old_base->lock); 2258 2259 return 0; 2260 } 2261 2262 #endif /* CONFIG_HOTPLUG_CPU */ 2263 2264 void __init hrtimers_init(void) 2265 { 2266 hrtimers_prepare_cpu(smp_processor_id()); 2267 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2268 } 2269 2270 /** 2271 * schedule_hrtimeout_range_clock - sleep until timeout 2272 * @expires: timeout value (ktime_t) 2273 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks 2274 * @mode: timer mode 2275 * @clock_id: timer clock to be used 2276 */ 2277 int __sched 2278 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 2279 const enum hrtimer_mode mode, clockid_t clock_id) 2280 { 2281 struct hrtimer_sleeper t; 2282 2283 /* 2284 * Optimize when a zero timeout value is given. It does not 2285 * matter whether this is an absolute or a relative time. 2286 */ 2287 if (expires && *expires == 0) { 2288 __set_current_state(TASK_RUNNING); 2289 return 0; 2290 } 2291 2292 /* 2293 * A NULL parameter means "infinite" 2294 */ 2295 if (!expires) { 2296 schedule(); 2297 return -EINTR; 2298 } 2299 2300 /* 2301 * Override any slack passed by the user if under 2302 * rt contraints. 2303 */ 2304 if (rt_task(current)) 2305 delta = 0; 2306 2307 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 2308 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2309 hrtimer_sleeper_start_expires(&t, mode); 2310 2311 if (likely(t.task)) 2312 schedule(); 2313 2314 hrtimer_cancel(&t.timer); 2315 destroy_hrtimer_on_stack(&t.timer); 2316 2317 __set_current_state(TASK_RUNNING); 2318 2319 return !t.task ? 0 : -EINTR; 2320 } 2321 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock); 2322 2323 /** 2324 * schedule_hrtimeout_range - sleep until timeout 2325 * @expires: timeout value (ktime_t) 2326 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks 2327 * @mode: timer mode 2328 * 2329 * Make the current task sleep until the given expiry time has 2330 * elapsed. The routine will return immediately unless 2331 * the current task state has been set (see set_current_state()). 2332 * 2333 * The @delta argument gives the kernel the freedom to schedule the 2334 * actual wakeup to a time that is both power and performance friendly 2335 * for regular (non RT/DL) tasks. 2336 * The kernel give the normal best effort behavior for "@expires+@delta", 2337 * but may decide to fire the timer earlier, but no earlier than @expires. 2338 * 2339 * You can set the task state as follows - 2340 * 2341 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2342 * pass before the routine returns unless the current task is explicitly 2343 * woken up, (e.g. by wake_up_process()). 2344 * 2345 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2346 * delivered to the current task or the current task is explicitly woken 2347 * up. 2348 * 2349 * The current task state is guaranteed to be TASK_RUNNING when this 2350 * routine returns. 2351 * 2352 * Returns 0 when the timer has expired. If the task was woken before the 2353 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2354 * by an explicit wakeup, it returns -EINTR. 2355 */ 2356 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2357 const enum hrtimer_mode mode) 2358 { 2359 return schedule_hrtimeout_range_clock(expires, delta, mode, 2360 CLOCK_MONOTONIC); 2361 } 2362 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2363 2364 /** 2365 * schedule_hrtimeout - sleep until timeout 2366 * @expires: timeout value (ktime_t) 2367 * @mode: timer mode 2368 * 2369 * Make the current task sleep until the given expiry time has 2370 * elapsed. The routine will return immediately unless 2371 * the current task state has been set (see set_current_state()). 2372 * 2373 * You can set the task state as follows - 2374 * 2375 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2376 * pass before the routine returns unless the current task is explicitly 2377 * woken up, (e.g. by wake_up_process()). 2378 * 2379 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2380 * delivered to the current task or the current task is explicitly woken 2381 * up. 2382 * 2383 * The current task state is guaranteed to be TASK_RUNNING when this 2384 * routine returns. 2385 * 2386 * Returns 0 when the timer has expired. If the task was woken before the 2387 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2388 * by an explicit wakeup, it returns -EINTR. 2389 */ 2390 int __sched schedule_hrtimeout(ktime_t *expires, 2391 const enum hrtimer_mode mode) 2392 { 2393 return schedule_hrtimeout_range(expires, 0, mode); 2394 } 2395 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2396