1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/sched/isolation.h> 42 #include <linux/timer.h> 43 #include <linux/freezer.h> 44 #include <linux/compat.h> 45 46 #include <linux/uaccess.h> 47 48 #include <trace/events/timer.h> 49 50 #include "tick-internal.h" 51 52 /* 53 * Masks for selecting the soft and hard context timers from 54 * cpu_base->active 55 */ 56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 60 61 static void retrigger_next_event(void *arg); 62 63 /* 64 * The timer bases: 65 * 66 * There are more clockids than hrtimer bases. Thus, we index 67 * into the timer bases by the hrtimer_base_type enum. When trying 68 * to reach a base using a clockid, hrtimer_clockid_to_base() 69 * is used to convert from clockid to the proper hrtimer_base_type. 70 */ 71 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 72 { 73 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 74 .clock_base = 75 { 76 { 77 .index = HRTIMER_BASE_MONOTONIC, 78 .clockid = CLOCK_MONOTONIC, 79 .get_time = &ktime_get, 80 }, 81 { 82 .index = HRTIMER_BASE_REALTIME, 83 .clockid = CLOCK_REALTIME, 84 .get_time = &ktime_get_real, 85 }, 86 { 87 .index = HRTIMER_BASE_BOOTTIME, 88 .clockid = CLOCK_BOOTTIME, 89 .get_time = &ktime_get_boottime, 90 }, 91 { 92 .index = HRTIMER_BASE_TAI, 93 .clockid = CLOCK_TAI, 94 .get_time = &ktime_get_clocktai, 95 }, 96 { 97 .index = HRTIMER_BASE_MONOTONIC_SOFT, 98 .clockid = CLOCK_MONOTONIC, 99 .get_time = &ktime_get, 100 }, 101 { 102 .index = HRTIMER_BASE_REALTIME_SOFT, 103 .clockid = CLOCK_REALTIME, 104 .get_time = &ktime_get_real, 105 }, 106 { 107 .index = HRTIMER_BASE_BOOTTIME_SOFT, 108 .clockid = CLOCK_BOOTTIME, 109 .get_time = &ktime_get_boottime, 110 }, 111 { 112 .index = HRTIMER_BASE_TAI_SOFT, 113 .clockid = CLOCK_TAI, 114 .get_time = &ktime_get_clocktai, 115 }, 116 }, 117 .csd = CSD_INIT(retrigger_next_event, NULL) 118 }; 119 120 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 121 /* Make sure we catch unsupported clockids */ 122 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 123 124 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 125 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 126 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 127 [CLOCK_TAI] = HRTIMER_BASE_TAI, 128 }; 129 130 static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base) 131 { 132 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 133 return true; 134 else 135 return likely(base->online); 136 } 137 138 /* 139 * Functions and macros which are different for UP/SMP systems are kept in a 140 * single place 141 */ 142 #ifdef CONFIG_SMP 143 144 /* 145 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 146 * such that hrtimer_callback_running() can unconditionally dereference 147 * timer->base->cpu_base 148 */ 149 static struct hrtimer_cpu_base migration_cpu_base = { 150 .clock_base = { { 151 .cpu_base = &migration_cpu_base, 152 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 153 &migration_cpu_base.lock), 154 }, }, 155 }; 156 157 #define migration_base migration_cpu_base.clock_base[0] 158 159 /* 160 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 161 * means that all timers which are tied to this base via timer->base are 162 * locked, and the base itself is locked too. 163 * 164 * So __run_timers/migrate_timers can safely modify all timers which could 165 * be found on the lists/queues. 166 * 167 * When the timer's base is locked, and the timer removed from list, it is 168 * possible to set timer->base = &migration_base and drop the lock: the timer 169 * remains locked. 170 */ 171 static 172 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 173 unsigned long *flags) 174 __acquires(&timer->base->lock) 175 { 176 struct hrtimer_clock_base *base; 177 178 for (;;) { 179 base = READ_ONCE(timer->base); 180 if (likely(base != &migration_base)) { 181 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 182 if (likely(base == timer->base)) 183 return base; 184 /* The timer has migrated to another CPU: */ 185 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 186 } 187 cpu_relax(); 188 } 189 } 190 191 /* 192 * Check if the elected target is suitable considering its next 193 * event and the hotplug state of the current CPU. 194 * 195 * If the elected target is remote and its next event is after the timer 196 * to queue, then a remote reprogram is necessary. However there is no 197 * guarantee the IPI handling the operation would arrive in time to meet 198 * the high resolution deadline. In this case the local CPU becomes a 199 * preferred target, unless it is offline. 200 * 201 * High and low resolution modes are handled the same way for simplicity. 202 * 203 * Called with cpu_base->lock of target cpu held. 204 */ 205 static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base, 206 struct hrtimer_cpu_base *new_cpu_base, 207 struct hrtimer_cpu_base *this_cpu_base) 208 { 209 ktime_t expires; 210 211 /* 212 * The local CPU clockevent can be reprogrammed. Also get_target_base() 213 * guarantees it is online. 214 */ 215 if (new_cpu_base == this_cpu_base) 216 return true; 217 218 /* 219 * The offline local CPU can't be the default target if the 220 * next remote target event is after this timer. Keep the 221 * elected new base. An IPI will we issued to reprogram 222 * it as a last resort. 223 */ 224 if (!hrtimer_base_is_online(this_cpu_base)) 225 return true; 226 227 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 228 229 return expires >= new_base->cpu_base->expires_next; 230 } 231 232 static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned) 233 { 234 if (!hrtimer_base_is_online(base)) { 235 int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER)); 236 237 return &per_cpu(hrtimer_bases, cpu); 238 } 239 240 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 241 if (static_branch_likely(&timers_migration_enabled) && !pinned) 242 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 243 #endif 244 return base; 245 } 246 247 /* 248 * We switch the timer base to a power-optimized selected CPU target, 249 * if: 250 * - NO_HZ_COMMON is enabled 251 * - timer migration is enabled 252 * - the timer callback is not running 253 * - the timer is not the first expiring timer on the new target 254 * 255 * If one of the above requirements is not fulfilled we move the timer 256 * to the current CPU or leave it on the previously assigned CPU if 257 * the timer callback is currently running. 258 */ 259 static inline struct hrtimer_clock_base * 260 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 261 int pinned) 262 { 263 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 264 struct hrtimer_clock_base *new_base; 265 int basenum = base->index; 266 267 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 268 new_cpu_base = get_target_base(this_cpu_base, pinned); 269 again: 270 new_base = &new_cpu_base->clock_base[basenum]; 271 272 if (base != new_base) { 273 /* 274 * We are trying to move timer to new_base. 275 * However we can't change timer's base while it is running, 276 * so we keep it on the same CPU. No hassle vs. reprogramming 277 * the event source in the high resolution case. The softirq 278 * code will take care of this when the timer function has 279 * completed. There is no conflict as we hold the lock until 280 * the timer is enqueued. 281 */ 282 if (unlikely(hrtimer_callback_running(timer))) 283 return base; 284 285 /* See the comment in lock_hrtimer_base() */ 286 WRITE_ONCE(timer->base, &migration_base); 287 raw_spin_unlock(&base->cpu_base->lock); 288 raw_spin_lock(&new_base->cpu_base->lock); 289 290 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, 291 this_cpu_base)) { 292 raw_spin_unlock(&new_base->cpu_base->lock); 293 raw_spin_lock(&base->cpu_base->lock); 294 new_cpu_base = this_cpu_base; 295 WRITE_ONCE(timer->base, base); 296 goto again; 297 } 298 WRITE_ONCE(timer->base, new_base); 299 } else { 300 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, this_cpu_base)) { 301 new_cpu_base = this_cpu_base; 302 goto again; 303 } 304 } 305 return new_base; 306 } 307 308 #else /* CONFIG_SMP */ 309 310 static inline struct hrtimer_clock_base * 311 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 312 __acquires(&timer->base->cpu_base->lock) 313 { 314 struct hrtimer_clock_base *base = timer->base; 315 316 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 317 318 return base; 319 } 320 321 # define switch_hrtimer_base(t, b, p) (b) 322 323 #endif /* !CONFIG_SMP */ 324 325 /* 326 * Functions for the union type storage format of ktime_t which are 327 * too large for inlining: 328 */ 329 #if BITS_PER_LONG < 64 330 /* 331 * Divide a ktime value by a nanosecond value 332 */ 333 s64 __ktime_divns(const ktime_t kt, s64 div) 334 { 335 int sft = 0; 336 s64 dclc; 337 u64 tmp; 338 339 dclc = ktime_to_ns(kt); 340 tmp = dclc < 0 ? -dclc : dclc; 341 342 /* Make sure the divisor is less than 2^32: */ 343 while (div >> 32) { 344 sft++; 345 div >>= 1; 346 } 347 tmp >>= sft; 348 do_div(tmp, (u32) div); 349 return dclc < 0 ? -tmp : tmp; 350 } 351 EXPORT_SYMBOL_GPL(__ktime_divns); 352 #endif /* BITS_PER_LONG >= 64 */ 353 354 /* 355 * Add two ktime values and do a safety check for overflow: 356 */ 357 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 358 { 359 ktime_t res = ktime_add_unsafe(lhs, rhs); 360 361 /* 362 * We use KTIME_SEC_MAX here, the maximum timeout which we can 363 * return to user space in a timespec: 364 */ 365 if (res < 0 || res < lhs || res < rhs) 366 res = ktime_set(KTIME_SEC_MAX, 0); 367 368 return res; 369 } 370 371 EXPORT_SYMBOL_GPL(ktime_add_safe); 372 373 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 374 375 static const struct debug_obj_descr hrtimer_debug_descr; 376 377 static void *hrtimer_debug_hint(void *addr) 378 { 379 return ((struct hrtimer *) addr)->function; 380 } 381 382 /* 383 * fixup_init is called when: 384 * - an active object is initialized 385 */ 386 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 387 { 388 struct hrtimer *timer = addr; 389 390 switch (state) { 391 case ODEBUG_STATE_ACTIVE: 392 hrtimer_cancel(timer); 393 debug_object_init(timer, &hrtimer_debug_descr); 394 return true; 395 default: 396 return false; 397 } 398 } 399 400 /* 401 * fixup_activate is called when: 402 * - an active object is activated 403 * - an unknown non-static object is activated 404 */ 405 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 406 { 407 switch (state) { 408 case ODEBUG_STATE_ACTIVE: 409 WARN_ON(1); 410 fallthrough; 411 default: 412 return false; 413 } 414 } 415 416 /* 417 * fixup_free is called when: 418 * - an active object is freed 419 */ 420 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 421 { 422 struct hrtimer *timer = addr; 423 424 switch (state) { 425 case ODEBUG_STATE_ACTIVE: 426 hrtimer_cancel(timer); 427 debug_object_free(timer, &hrtimer_debug_descr); 428 return true; 429 default: 430 return false; 431 } 432 } 433 434 static const struct debug_obj_descr hrtimer_debug_descr = { 435 .name = "hrtimer", 436 .debug_hint = hrtimer_debug_hint, 437 .fixup_init = hrtimer_fixup_init, 438 .fixup_activate = hrtimer_fixup_activate, 439 .fixup_free = hrtimer_fixup_free, 440 }; 441 442 static inline void debug_hrtimer_init(struct hrtimer *timer) 443 { 444 debug_object_init(timer, &hrtimer_debug_descr); 445 } 446 447 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) 448 { 449 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 450 } 451 452 static inline void debug_hrtimer_activate(struct hrtimer *timer, 453 enum hrtimer_mode mode) 454 { 455 debug_object_activate(timer, &hrtimer_debug_descr); 456 } 457 458 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 459 { 460 debug_object_deactivate(timer, &hrtimer_debug_descr); 461 } 462 463 void destroy_hrtimer_on_stack(struct hrtimer *timer) 464 { 465 debug_object_free(timer, &hrtimer_debug_descr); 466 } 467 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 468 469 #else 470 471 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 472 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { } 473 static inline void debug_hrtimer_activate(struct hrtimer *timer, 474 enum hrtimer_mode mode) { } 475 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 476 #endif 477 478 static inline void 479 debug_init(struct hrtimer *timer, clockid_t clockid, 480 enum hrtimer_mode mode) 481 { 482 debug_hrtimer_init(timer); 483 trace_hrtimer_init(timer, clockid, mode); 484 } 485 486 static inline void debug_init_on_stack(struct hrtimer *timer, clockid_t clockid, 487 enum hrtimer_mode mode) 488 { 489 debug_hrtimer_init_on_stack(timer); 490 trace_hrtimer_init(timer, clockid, mode); 491 } 492 493 static inline void debug_activate(struct hrtimer *timer, 494 enum hrtimer_mode mode) 495 { 496 debug_hrtimer_activate(timer, mode); 497 trace_hrtimer_start(timer, mode); 498 } 499 500 static inline void debug_deactivate(struct hrtimer *timer) 501 { 502 debug_hrtimer_deactivate(timer); 503 trace_hrtimer_cancel(timer); 504 } 505 506 static struct hrtimer_clock_base * 507 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 508 { 509 unsigned int idx; 510 511 if (!*active) 512 return NULL; 513 514 idx = __ffs(*active); 515 *active &= ~(1U << idx); 516 517 return &cpu_base->clock_base[idx]; 518 } 519 520 #define for_each_active_base(base, cpu_base, active) \ 521 while ((base = __next_base((cpu_base), &(active)))) 522 523 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 524 const struct hrtimer *exclude, 525 unsigned int active, 526 ktime_t expires_next) 527 { 528 struct hrtimer_clock_base *base; 529 ktime_t expires; 530 531 for_each_active_base(base, cpu_base, active) { 532 struct timerqueue_node *next; 533 struct hrtimer *timer; 534 535 next = timerqueue_getnext(&base->active); 536 timer = container_of(next, struct hrtimer, node); 537 if (timer == exclude) { 538 /* Get to the next timer in the queue. */ 539 next = timerqueue_iterate_next(next); 540 if (!next) 541 continue; 542 543 timer = container_of(next, struct hrtimer, node); 544 } 545 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 546 if (expires < expires_next) { 547 expires_next = expires; 548 549 /* Skip cpu_base update if a timer is being excluded. */ 550 if (exclude) 551 continue; 552 553 if (timer->is_soft) 554 cpu_base->softirq_next_timer = timer; 555 else 556 cpu_base->next_timer = timer; 557 } 558 } 559 /* 560 * clock_was_set() might have changed base->offset of any of 561 * the clock bases so the result might be negative. Fix it up 562 * to prevent a false positive in clockevents_program_event(). 563 */ 564 if (expires_next < 0) 565 expires_next = 0; 566 return expires_next; 567 } 568 569 /* 570 * Recomputes cpu_base::*next_timer and returns the earliest expires_next 571 * but does not set cpu_base::*expires_next, that is done by 572 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating 573 * cpu_base::*expires_next right away, reprogramming logic would no longer 574 * work. 575 * 576 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 577 * those timers will get run whenever the softirq gets handled, at the end of 578 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 579 * 580 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 581 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 582 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 583 * 584 * @active_mask must be one of: 585 * - HRTIMER_ACTIVE_ALL, 586 * - HRTIMER_ACTIVE_SOFT, or 587 * - HRTIMER_ACTIVE_HARD. 588 */ 589 static ktime_t 590 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 591 { 592 unsigned int active; 593 struct hrtimer *next_timer = NULL; 594 ktime_t expires_next = KTIME_MAX; 595 596 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 597 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 598 cpu_base->softirq_next_timer = NULL; 599 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 600 active, KTIME_MAX); 601 602 next_timer = cpu_base->softirq_next_timer; 603 } 604 605 if (active_mask & HRTIMER_ACTIVE_HARD) { 606 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 607 cpu_base->next_timer = next_timer; 608 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 609 expires_next); 610 } 611 612 return expires_next; 613 } 614 615 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) 616 { 617 ktime_t expires_next, soft = KTIME_MAX; 618 619 /* 620 * If the soft interrupt has already been activated, ignore the 621 * soft bases. They will be handled in the already raised soft 622 * interrupt. 623 */ 624 if (!cpu_base->softirq_activated) { 625 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 626 /* 627 * Update the soft expiry time. clock_settime() might have 628 * affected it. 629 */ 630 cpu_base->softirq_expires_next = soft; 631 } 632 633 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); 634 /* 635 * If a softirq timer is expiring first, update cpu_base->next_timer 636 * and program the hardware with the soft expiry time. 637 */ 638 if (expires_next > soft) { 639 cpu_base->next_timer = cpu_base->softirq_next_timer; 640 expires_next = soft; 641 } 642 643 return expires_next; 644 } 645 646 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 647 { 648 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 649 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 650 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 651 652 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 653 offs_real, offs_boot, offs_tai); 654 655 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 656 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 657 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 658 659 return now; 660 } 661 662 /* 663 * Is the high resolution mode active ? 664 */ 665 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 666 { 667 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 668 cpu_base->hres_active : 0; 669 } 670 671 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, 672 struct hrtimer *next_timer, 673 ktime_t expires_next) 674 { 675 cpu_base->expires_next = expires_next; 676 677 /* 678 * If hres is not active, hardware does not have to be 679 * reprogrammed yet. 680 * 681 * If a hang was detected in the last timer interrupt then we 682 * leave the hang delay active in the hardware. We want the 683 * system to make progress. That also prevents the following 684 * scenario: 685 * T1 expires 50ms from now 686 * T2 expires 5s from now 687 * 688 * T1 is removed, so this code is called and would reprogram 689 * the hardware to 5s from now. Any hrtimer_start after that 690 * will not reprogram the hardware due to hang_detected being 691 * set. So we'd effectively block all timers until the T2 event 692 * fires. 693 */ 694 if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 695 return; 696 697 tick_program_event(expires_next, 1); 698 } 699 700 /* 701 * Reprogram the event source with checking both queues for the 702 * next event 703 * Called with interrupts disabled and base->lock held 704 */ 705 static void 706 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 707 { 708 ktime_t expires_next; 709 710 expires_next = hrtimer_update_next_event(cpu_base); 711 712 if (skip_equal && expires_next == cpu_base->expires_next) 713 return; 714 715 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next); 716 } 717 718 /* High resolution timer related functions */ 719 #ifdef CONFIG_HIGH_RES_TIMERS 720 721 /* 722 * High resolution timer enabled ? 723 */ 724 static bool hrtimer_hres_enabled __read_mostly = true; 725 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 726 EXPORT_SYMBOL_GPL(hrtimer_resolution); 727 728 /* 729 * Enable / Disable high resolution mode 730 */ 731 static int __init setup_hrtimer_hres(char *str) 732 { 733 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 734 } 735 736 __setup("highres=", setup_hrtimer_hres); 737 738 /* 739 * hrtimer_high_res_enabled - query, if the highres mode is enabled 740 */ 741 static inline int hrtimer_is_hres_enabled(void) 742 { 743 return hrtimer_hres_enabled; 744 } 745 746 /* 747 * Switch to high resolution mode 748 */ 749 static void hrtimer_switch_to_hres(void) 750 { 751 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 752 753 if (tick_init_highres()) { 754 pr_warn("Could not switch to high resolution mode on CPU %u\n", 755 base->cpu); 756 return; 757 } 758 base->hres_active = 1; 759 hrtimer_resolution = HIGH_RES_NSEC; 760 761 tick_setup_sched_timer(true); 762 /* "Retrigger" the interrupt to get things going */ 763 retrigger_next_event(NULL); 764 } 765 766 #else 767 768 static inline int hrtimer_is_hres_enabled(void) { return 0; } 769 static inline void hrtimer_switch_to_hres(void) { } 770 771 #endif /* CONFIG_HIGH_RES_TIMERS */ 772 /* 773 * Retrigger next event is called after clock was set with interrupts 774 * disabled through an SMP function call or directly from low level 775 * resume code. 776 * 777 * This is only invoked when: 778 * - CONFIG_HIGH_RES_TIMERS is enabled. 779 * - CONFIG_NOHZ_COMMON is enabled 780 * 781 * For the other cases this function is empty and because the call sites 782 * are optimized out it vanishes as well, i.e. no need for lots of 783 * #ifdeffery. 784 */ 785 static void retrigger_next_event(void *arg) 786 { 787 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 788 789 /* 790 * When high resolution mode or nohz is active, then the offsets of 791 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the 792 * next tick will take care of that. 793 * 794 * If high resolution mode is active then the next expiring timer 795 * must be reevaluated and the clock event device reprogrammed if 796 * necessary. 797 * 798 * In the NOHZ case the update of the offset and the reevaluation 799 * of the next expiring timer is enough. The return from the SMP 800 * function call will take care of the reprogramming in case the 801 * CPU was in a NOHZ idle sleep. 802 */ 803 if (!hrtimer_hres_active(base) && !tick_nohz_active) 804 return; 805 806 raw_spin_lock(&base->lock); 807 hrtimer_update_base(base); 808 if (hrtimer_hres_active(base)) 809 hrtimer_force_reprogram(base, 0); 810 else 811 hrtimer_update_next_event(base); 812 raw_spin_unlock(&base->lock); 813 } 814 815 /* 816 * When a timer is enqueued and expires earlier than the already enqueued 817 * timers, we have to check, whether it expires earlier than the timer for 818 * which the clock event device was armed. 819 * 820 * Called with interrupts disabled and base->cpu_base.lock held 821 */ 822 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 823 { 824 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 825 struct hrtimer_clock_base *base = timer->base; 826 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 827 828 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 829 830 /* 831 * CLOCK_REALTIME timer might be requested with an absolute 832 * expiry time which is less than base->offset. Set it to 0. 833 */ 834 if (expires < 0) 835 expires = 0; 836 837 if (timer->is_soft) { 838 /* 839 * soft hrtimer could be started on a remote CPU. In this 840 * case softirq_expires_next needs to be updated on the 841 * remote CPU. The soft hrtimer will not expire before the 842 * first hard hrtimer on the remote CPU - 843 * hrtimer_check_target() prevents this case. 844 */ 845 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 846 847 if (timer_cpu_base->softirq_activated) 848 return; 849 850 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 851 return; 852 853 timer_cpu_base->softirq_next_timer = timer; 854 timer_cpu_base->softirq_expires_next = expires; 855 856 if (!ktime_before(expires, timer_cpu_base->expires_next) || 857 !reprogram) 858 return; 859 } 860 861 /* 862 * If the timer is not on the current cpu, we cannot reprogram 863 * the other cpus clock event device. 864 */ 865 if (base->cpu_base != cpu_base) 866 return; 867 868 if (expires >= cpu_base->expires_next) 869 return; 870 871 /* 872 * If the hrtimer interrupt is running, then it will reevaluate the 873 * clock bases and reprogram the clock event device. 874 */ 875 if (cpu_base->in_hrtirq) 876 return; 877 878 cpu_base->next_timer = timer; 879 880 __hrtimer_reprogram(cpu_base, timer, expires); 881 } 882 883 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, 884 unsigned int active) 885 { 886 struct hrtimer_clock_base *base; 887 unsigned int seq; 888 ktime_t expires; 889 890 /* 891 * Update the base offsets unconditionally so the following 892 * checks whether the SMP function call is required works. 893 * 894 * The update is safe even when the remote CPU is in the hrtimer 895 * interrupt or the hrtimer soft interrupt and expiring affected 896 * bases. Either it will see the update before handling a base or 897 * it will see it when it finishes the processing and reevaluates 898 * the next expiring timer. 899 */ 900 seq = cpu_base->clock_was_set_seq; 901 hrtimer_update_base(cpu_base); 902 903 /* 904 * If the sequence did not change over the update then the 905 * remote CPU already handled it. 906 */ 907 if (seq == cpu_base->clock_was_set_seq) 908 return false; 909 910 /* 911 * If the remote CPU is currently handling an hrtimer interrupt, it 912 * will reevaluate the first expiring timer of all clock bases 913 * before reprogramming. Nothing to do here. 914 */ 915 if (cpu_base->in_hrtirq) 916 return false; 917 918 /* 919 * Walk the affected clock bases and check whether the first expiring 920 * timer in a clock base is moving ahead of the first expiring timer of 921 * @cpu_base. If so, the IPI must be invoked because per CPU clock 922 * event devices cannot be remotely reprogrammed. 923 */ 924 active &= cpu_base->active_bases; 925 926 for_each_active_base(base, cpu_base, active) { 927 struct timerqueue_node *next; 928 929 next = timerqueue_getnext(&base->active); 930 expires = ktime_sub(next->expires, base->offset); 931 if (expires < cpu_base->expires_next) 932 return true; 933 934 /* Extra check for softirq clock bases */ 935 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) 936 continue; 937 if (cpu_base->softirq_activated) 938 continue; 939 if (expires < cpu_base->softirq_expires_next) 940 return true; 941 } 942 return false; 943 } 944 945 /* 946 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and 947 * CLOCK_BOOTTIME (for late sleep time injection). 948 * 949 * This requires to update the offsets for these clocks 950 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this 951 * also requires to eventually reprogram the per CPU clock event devices 952 * when the change moves an affected timer ahead of the first expiring 953 * timer on that CPU. Obviously remote per CPU clock event devices cannot 954 * be reprogrammed. The other reason why an IPI has to be sent is when the 955 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets 956 * in the tick, which obviously might be stopped, so this has to bring out 957 * the remote CPU which might sleep in idle to get this sorted. 958 */ 959 void clock_was_set(unsigned int bases) 960 { 961 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); 962 cpumask_var_t mask; 963 int cpu; 964 965 if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active) 966 goto out_timerfd; 967 968 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 969 on_each_cpu(retrigger_next_event, NULL, 1); 970 goto out_timerfd; 971 } 972 973 /* Avoid interrupting CPUs if possible */ 974 cpus_read_lock(); 975 for_each_online_cpu(cpu) { 976 unsigned long flags; 977 978 cpu_base = &per_cpu(hrtimer_bases, cpu); 979 raw_spin_lock_irqsave(&cpu_base->lock, flags); 980 981 if (update_needs_ipi(cpu_base, bases)) 982 cpumask_set_cpu(cpu, mask); 983 984 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 985 } 986 987 preempt_disable(); 988 smp_call_function_many(mask, retrigger_next_event, NULL, 1); 989 preempt_enable(); 990 cpus_read_unlock(); 991 free_cpumask_var(mask); 992 993 out_timerfd: 994 timerfd_clock_was_set(); 995 } 996 997 static void clock_was_set_work(struct work_struct *work) 998 { 999 clock_was_set(CLOCK_SET_WALL); 1000 } 1001 1002 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 1003 1004 /* 1005 * Called from timekeeping code to reprogram the hrtimer interrupt device 1006 * on all cpus and to notify timerfd. 1007 */ 1008 void clock_was_set_delayed(void) 1009 { 1010 schedule_work(&hrtimer_work); 1011 } 1012 1013 /* 1014 * Called during resume either directly from via timekeeping_resume() 1015 * or in the case of s2idle from tick_unfreeze() to ensure that the 1016 * hrtimers are up to date. 1017 */ 1018 void hrtimers_resume_local(void) 1019 { 1020 lockdep_assert_irqs_disabled(); 1021 /* Retrigger on the local CPU */ 1022 retrigger_next_event(NULL); 1023 } 1024 1025 /* 1026 * Counterpart to lock_hrtimer_base above: 1027 */ 1028 static inline 1029 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 1030 __releases(&timer->base->cpu_base->lock) 1031 { 1032 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 1033 } 1034 1035 /** 1036 * hrtimer_forward() - forward the timer expiry 1037 * @timer: hrtimer to forward 1038 * @now: forward past this time 1039 * @interval: the interval to forward 1040 * 1041 * Forward the timer expiry so it will expire in the future. 1042 * 1043 * .. note:: 1044 * This only updates the timer expiry value and does not requeue the timer. 1045 * 1046 * There is also a variant of the function hrtimer_forward_now(). 1047 * 1048 * Context: Can be safely called from the callback function of @timer. If called 1049 * from other contexts @timer must neither be enqueued nor running the 1050 * callback and the caller needs to take care of serialization. 1051 * 1052 * Return: The number of overruns are returned. 1053 */ 1054 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 1055 { 1056 u64 orun = 1; 1057 ktime_t delta; 1058 1059 delta = ktime_sub(now, hrtimer_get_expires(timer)); 1060 1061 if (delta < 0) 1062 return 0; 1063 1064 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 1065 return 0; 1066 1067 if (interval < hrtimer_resolution) 1068 interval = hrtimer_resolution; 1069 1070 if (unlikely(delta >= interval)) { 1071 s64 incr = ktime_to_ns(interval); 1072 1073 orun = ktime_divns(delta, incr); 1074 hrtimer_add_expires_ns(timer, incr * orun); 1075 if (hrtimer_get_expires_tv64(timer) > now) 1076 return orun; 1077 /* 1078 * This (and the ktime_add() below) is the 1079 * correction for exact: 1080 */ 1081 orun++; 1082 } 1083 hrtimer_add_expires(timer, interval); 1084 1085 return orun; 1086 } 1087 EXPORT_SYMBOL_GPL(hrtimer_forward); 1088 1089 /* 1090 * enqueue_hrtimer - internal function to (re)start a timer 1091 * 1092 * The timer is inserted in expiry order. Insertion into the 1093 * red black tree is O(log(n)). Must hold the base lock. 1094 * 1095 * Returns true when the new timer is the leftmost timer in the tree. 1096 */ 1097 static bool enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1098 enum hrtimer_mode mode) 1099 { 1100 debug_activate(timer, mode); 1101 WARN_ON_ONCE(!base->cpu_base->online); 1102 1103 base->cpu_base->active_bases |= 1 << base->index; 1104 1105 /* Pairs with the lockless read in hrtimer_is_queued() */ 1106 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 1107 1108 return timerqueue_add(&base->active, &timer->node); 1109 } 1110 1111 /* 1112 * __remove_hrtimer - internal function to remove a timer 1113 * 1114 * Caller must hold the base lock. 1115 * 1116 * High resolution timer mode reprograms the clock event device when the 1117 * timer is the one which expires next. The caller can disable this by setting 1118 * reprogram to zero. This is useful, when the context does a reprogramming 1119 * anyway (e.g. timer interrupt) 1120 */ 1121 static void __remove_hrtimer(struct hrtimer *timer, 1122 struct hrtimer_clock_base *base, 1123 u8 newstate, int reprogram) 1124 { 1125 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1126 u8 state = timer->state; 1127 1128 /* Pairs with the lockless read in hrtimer_is_queued() */ 1129 WRITE_ONCE(timer->state, newstate); 1130 if (!(state & HRTIMER_STATE_ENQUEUED)) 1131 return; 1132 1133 if (!timerqueue_del(&base->active, &timer->node)) 1134 cpu_base->active_bases &= ~(1 << base->index); 1135 1136 /* 1137 * Note: If reprogram is false we do not update 1138 * cpu_base->next_timer. This happens when we remove the first 1139 * timer on a remote cpu. No harm as we never dereference 1140 * cpu_base->next_timer. So the worst thing what can happen is 1141 * an superfluous call to hrtimer_force_reprogram() on the 1142 * remote cpu later on if the same timer gets enqueued again. 1143 */ 1144 if (reprogram && timer == cpu_base->next_timer) 1145 hrtimer_force_reprogram(cpu_base, 1); 1146 } 1147 1148 /* 1149 * remove hrtimer, called with base lock held 1150 */ 1151 static inline int 1152 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1153 bool restart, bool keep_local) 1154 { 1155 u8 state = timer->state; 1156 1157 if (state & HRTIMER_STATE_ENQUEUED) { 1158 bool reprogram; 1159 1160 /* 1161 * Remove the timer and force reprogramming when high 1162 * resolution mode is active and the timer is on the current 1163 * CPU. If we remove a timer on another CPU, reprogramming is 1164 * skipped. The interrupt event on this CPU is fired and 1165 * reprogramming happens in the interrupt handler. This is a 1166 * rare case and less expensive than a smp call. 1167 */ 1168 debug_deactivate(timer); 1169 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1170 1171 /* 1172 * If the timer is not restarted then reprogramming is 1173 * required if the timer is local. If it is local and about 1174 * to be restarted, avoid programming it twice (on removal 1175 * and a moment later when it's requeued). 1176 */ 1177 if (!restart) 1178 state = HRTIMER_STATE_INACTIVE; 1179 else 1180 reprogram &= !keep_local; 1181 1182 __remove_hrtimer(timer, base, state, reprogram); 1183 return 1; 1184 } 1185 return 0; 1186 } 1187 1188 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1189 const enum hrtimer_mode mode) 1190 { 1191 #ifdef CONFIG_TIME_LOW_RES 1192 /* 1193 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1194 * granular time values. For relative timers we add hrtimer_resolution 1195 * (i.e. one jiffy) to prevent short timeouts. 1196 */ 1197 timer->is_rel = mode & HRTIMER_MODE_REL; 1198 if (timer->is_rel) 1199 tim = ktime_add_safe(tim, hrtimer_resolution); 1200 #endif 1201 return tim; 1202 } 1203 1204 static void 1205 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1206 { 1207 ktime_t expires; 1208 1209 /* 1210 * Find the next SOFT expiration. 1211 */ 1212 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1213 1214 /* 1215 * reprogramming needs to be triggered, even if the next soft 1216 * hrtimer expires at the same time than the next hard 1217 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1218 */ 1219 if (expires == KTIME_MAX) 1220 return; 1221 1222 /* 1223 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1224 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1225 */ 1226 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1227 } 1228 1229 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1230 u64 delta_ns, const enum hrtimer_mode mode, 1231 struct hrtimer_clock_base *base) 1232 { 1233 struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases); 1234 struct hrtimer_clock_base *new_base; 1235 bool force_local, first; 1236 1237 /* 1238 * If the timer is on the local cpu base and is the first expiring 1239 * timer then this might end up reprogramming the hardware twice 1240 * (on removal and on enqueue). To avoid that by prevent the 1241 * reprogram on removal, keep the timer local to the current CPU 1242 * and enforce reprogramming after it is queued no matter whether 1243 * it is the new first expiring timer again or not. 1244 */ 1245 force_local = base->cpu_base == this_cpu_base; 1246 force_local &= base->cpu_base->next_timer == timer; 1247 1248 /* 1249 * Don't force local queuing if this enqueue happens on a unplugged 1250 * CPU after hrtimer_cpu_dying() has been invoked. 1251 */ 1252 force_local &= this_cpu_base->online; 1253 1254 /* 1255 * Remove an active timer from the queue. In case it is not queued 1256 * on the current CPU, make sure that remove_hrtimer() updates the 1257 * remote data correctly. 1258 * 1259 * If it's on the current CPU and the first expiring timer, then 1260 * skip reprogramming, keep the timer local and enforce 1261 * reprogramming later if it was the first expiring timer. This 1262 * avoids programming the underlying clock event twice (once at 1263 * removal and once after enqueue). 1264 */ 1265 remove_hrtimer(timer, base, true, force_local); 1266 1267 if (mode & HRTIMER_MODE_REL) 1268 tim = ktime_add_safe(tim, base->get_time()); 1269 1270 tim = hrtimer_update_lowres(timer, tim, mode); 1271 1272 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1273 1274 /* Switch the timer base, if necessary: */ 1275 if (!force_local) { 1276 new_base = switch_hrtimer_base(timer, base, 1277 mode & HRTIMER_MODE_PINNED); 1278 } else { 1279 new_base = base; 1280 } 1281 1282 first = enqueue_hrtimer(timer, new_base, mode); 1283 if (!force_local) { 1284 /* 1285 * If the current CPU base is online, then the timer is 1286 * never queued on a remote CPU if it would be the first 1287 * expiring timer there. 1288 */ 1289 if (hrtimer_base_is_online(this_cpu_base)) 1290 return first; 1291 1292 /* 1293 * Timer was enqueued remote because the current base is 1294 * already offline. If the timer is the first to expire, 1295 * kick the remote CPU to reprogram the clock event. 1296 */ 1297 if (first) { 1298 struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base; 1299 1300 smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd); 1301 } 1302 return 0; 1303 } 1304 1305 /* 1306 * Timer was forced to stay on the current CPU to avoid 1307 * reprogramming on removal and enqueue. Force reprogram the 1308 * hardware by evaluating the new first expiring timer. 1309 */ 1310 hrtimer_force_reprogram(new_base->cpu_base, 1); 1311 return 0; 1312 } 1313 1314 /** 1315 * hrtimer_start_range_ns - (re)start an hrtimer 1316 * @timer: the timer to be added 1317 * @tim: expiry time 1318 * @delta_ns: "slack" range for the timer 1319 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1320 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1321 * softirq based mode is considered for debug purpose only! 1322 */ 1323 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1324 u64 delta_ns, const enum hrtimer_mode mode) 1325 { 1326 struct hrtimer_clock_base *base; 1327 unsigned long flags; 1328 1329 if (WARN_ON_ONCE(!timer->function)) 1330 return; 1331 /* 1332 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1333 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1334 * expiry mode because unmarked timers are moved to softirq expiry. 1335 */ 1336 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1337 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1338 else 1339 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1340 1341 base = lock_hrtimer_base(timer, &flags); 1342 1343 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1344 hrtimer_reprogram(timer, true); 1345 1346 unlock_hrtimer_base(timer, &flags); 1347 } 1348 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1349 1350 /** 1351 * hrtimer_try_to_cancel - try to deactivate a timer 1352 * @timer: hrtimer to stop 1353 * 1354 * Returns: 1355 * 1356 * * 0 when the timer was not active 1357 * * 1 when the timer was active 1358 * * -1 when the timer is currently executing the callback function and 1359 * cannot be stopped 1360 */ 1361 int hrtimer_try_to_cancel(struct hrtimer *timer) 1362 { 1363 struct hrtimer_clock_base *base; 1364 unsigned long flags; 1365 int ret = -1; 1366 1367 /* 1368 * Check lockless first. If the timer is not active (neither 1369 * enqueued nor running the callback, nothing to do here. The 1370 * base lock does not serialize against a concurrent enqueue, 1371 * so we can avoid taking it. 1372 */ 1373 if (!hrtimer_active(timer)) 1374 return 0; 1375 1376 base = lock_hrtimer_base(timer, &flags); 1377 1378 if (!hrtimer_callback_running(timer)) 1379 ret = remove_hrtimer(timer, base, false, false); 1380 1381 unlock_hrtimer_base(timer, &flags); 1382 1383 return ret; 1384 1385 } 1386 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1387 1388 #ifdef CONFIG_PREEMPT_RT 1389 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1390 { 1391 spin_lock_init(&base->softirq_expiry_lock); 1392 } 1393 1394 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1395 __acquires(&base->softirq_expiry_lock) 1396 { 1397 spin_lock(&base->softirq_expiry_lock); 1398 } 1399 1400 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1401 __releases(&base->softirq_expiry_lock) 1402 { 1403 spin_unlock(&base->softirq_expiry_lock); 1404 } 1405 1406 /* 1407 * The counterpart to hrtimer_cancel_wait_running(). 1408 * 1409 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1410 * the timer callback to finish. Drop expiry_lock and reacquire it. That 1411 * allows the waiter to acquire the lock and make progress. 1412 */ 1413 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1414 unsigned long flags) 1415 { 1416 if (atomic_read(&cpu_base->timer_waiters)) { 1417 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1418 spin_unlock(&cpu_base->softirq_expiry_lock); 1419 spin_lock(&cpu_base->softirq_expiry_lock); 1420 raw_spin_lock_irq(&cpu_base->lock); 1421 } 1422 } 1423 1424 #ifdef CONFIG_SMP 1425 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base) 1426 { 1427 return base == &migration_base; 1428 } 1429 #else 1430 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base) 1431 { 1432 return false; 1433 } 1434 #endif 1435 1436 /* 1437 * This function is called on PREEMPT_RT kernels when the fast path 1438 * deletion of a timer failed because the timer callback function was 1439 * running. 1440 * 1441 * This prevents priority inversion: if the soft irq thread is preempted 1442 * in the middle of a timer callback, then calling del_timer_sync() can 1443 * lead to two issues: 1444 * 1445 * - If the caller is on a remote CPU then it has to spin wait for the timer 1446 * handler to complete. This can result in unbound priority inversion. 1447 * 1448 * - If the caller originates from the task which preempted the timer 1449 * handler on the same CPU, then spin waiting for the timer handler to 1450 * complete is never going to end. 1451 */ 1452 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1453 { 1454 /* Lockless read. Prevent the compiler from reloading it below */ 1455 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1456 1457 /* 1458 * Just relax if the timer expires in hard interrupt context or if 1459 * it is currently on the migration base. 1460 */ 1461 if (!timer->is_soft || is_migration_base(base)) { 1462 cpu_relax(); 1463 return; 1464 } 1465 1466 /* 1467 * Mark the base as contended and grab the expiry lock, which is 1468 * held by the softirq across the timer callback. Drop the lock 1469 * immediately so the softirq can expire the next timer. In theory 1470 * the timer could already be running again, but that's more than 1471 * unlikely and just causes another wait loop. 1472 */ 1473 atomic_inc(&base->cpu_base->timer_waiters); 1474 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1475 atomic_dec(&base->cpu_base->timer_waiters); 1476 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1477 } 1478 #else 1479 static inline void 1480 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1481 static inline void 1482 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1483 static inline void 1484 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1485 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1486 unsigned long flags) { } 1487 #endif 1488 1489 /** 1490 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1491 * @timer: the timer to be cancelled 1492 * 1493 * Returns: 1494 * 0 when the timer was not active 1495 * 1 when the timer was active 1496 */ 1497 int hrtimer_cancel(struct hrtimer *timer) 1498 { 1499 int ret; 1500 1501 do { 1502 ret = hrtimer_try_to_cancel(timer); 1503 1504 if (ret < 0) 1505 hrtimer_cancel_wait_running(timer); 1506 } while (ret < 0); 1507 return ret; 1508 } 1509 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1510 1511 /** 1512 * __hrtimer_get_remaining - get remaining time for the timer 1513 * @timer: the timer to read 1514 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1515 */ 1516 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1517 { 1518 unsigned long flags; 1519 ktime_t rem; 1520 1521 lock_hrtimer_base(timer, &flags); 1522 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1523 rem = hrtimer_expires_remaining_adjusted(timer); 1524 else 1525 rem = hrtimer_expires_remaining(timer); 1526 unlock_hrtimer_base(timer, &flags); 1527 1528 return rem; 1529 } 1530 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1531 1532 #ifdef CONFIG_NO_HZ_COMMON 1533 /** 1534 * hrtimer_get_next_event - get the time until next expiry event 1535 * 1536 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1537 */ 1538 u64 hrtimer_get_next_event(void) 1539 { 1540 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1541 u64 expires = KTIME_MAX; 1542 unsigned long flags; 1543 1544 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1545 1546 if (!hrtimer_hres_active(cpu_base)) 1547 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1548 1549 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1550 1551 return expires; 1552 } 1553 1554 /** 1555 * hrtimer_next_event_without - time until next expiry event w/o one timer 1556 * @exclude: timer to exclude 1557 * 1558 * Returns the next expiry time over all timers except for the @exclude one or 1559 * KTIME_MAX if none of them is pending. 1560 */ 1561 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1562 { 1563 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1564 u64 expires = KTIME_MAX; 1565 unsigned long flags; 1566 1567 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1568 1569 if (hrtimer_hres_active(cpu_base)) { 1570 unsigned int active; 1571 1572 if (!cpu_base->softirq_activated) { 1573 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1574 expires = __hrtimer_next_event_base(cpu_base, exclude, 1575 active, KTIME_MAX); 1576 } 1577 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1578 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1579 expires); 1580 } 1581 1582 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1583 1584 return expires; 1585 } 1586 #endif 1587 1588 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1589 { 1590 if (likely(clock_id < MAX_CLOCKS)) { 1591 int base = hrtimer_clock_to_base_table[clock_id]; 1592 1593 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1594 return base; 1595 } 1596 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1597 return HRTIMER_BASE_MONOTONIC; 1598 } 1599 1600 static enum hrtimer_restart hrtimer_dummy_timeout(struct hrtimer *unused) 1601 { 1602 return HRTIMER_NORESTART; 1603 } 1604 1605 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1606 enum hrtimer_mode mode) 1607 { 1608 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1609 struct hrtimer_cpu_base *cpu_base; 1610 int base; 1611 1612 /* 1613 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1614 * marked for hard interrupt expiry mode are moved into soft 1615 * interrupt context for latency reasons and because the callbacks 1616 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1617 */ 1618 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1619 softtimer = true; 1620 1621 memset(timer, 0, sizeof(struct hrtimer)); 1622 1623 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1624 1625 /* 1626 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1627 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1628 * ensure POSIX compliance. 1629 */ 1630 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1631 clock_id = CLOCK_MONOTONIC; 1632 1633 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1634 base += hrtimer_clockid_to_base(clock_id); 1635 timer->is_soft = softtimer; 1636 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1637 timer->base = &cpu_base->clock_base[base]; 1638 timerqueue_init(&timer->node); 1639 } 1640 1641 static void __hrtimer_setup(struct hrtimer *timer, 1642 enum hrtimer_restart (*function)(struct hrtimer *), 1643 clockid_t clock_id, enum hrtimer_mode mode) 1644 { 1645 __hrtimer_init(timer, clock_id, mode); 1646 1647 if (WARN_ON_ONCE(!function)) 1648 timer->function = hrtimer_dummy_timeout; 1649 else 1650 timer->function = function; 1651 } 1652 1653 /** 1654 * hrtimer_init - initialize a timer to the given clock 1655 * @timer: the timer to be initialized 1656 * @clock_id: the clock to be used 1657 * @mode: The modes which are relevant for initialization: 1658 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1659 * HRTIMER_MODE_REL_SOFT 1660 * 1661 * The PINNED variants of the above can be handed in, 1662 * but the PINNED bit is ignored as pinning happens 1663 * when the hrtimer is started 1664 */ 1665 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1666 enum hrtimer_mode mode) 1667 { 1668 debug_init(timer, clock_id, mode); 1669 __hrtimer_init(timer, clock_id, mode); 1670 } 1671 EXPORT_SYMBOL_GPL(hrtimer_init); 1672 1673 /** 1674 * hrtimer_setup - initialize a timer to the given clock 1675 * @timer: the timer to be initialized 1676 * @function: the callback function 1677 * @clock_id: the clock to be used 1678 * @mode: The modes which are relevant for initialization: 1679 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1680 * HRTIMER_MODE_REL_SOFT 1681 * 1682 * The PINNED variants of the above can be handed in, 1683 * but the PINNED bit is ignored as pinning happens 1684 * when the hrtimer is started 1685 */ 1686 void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *), 1687 clockid_t clock_id, enum hrtimer_mode mode) 1688 { 1689 debug_init(timer, clock_id, mode); 1690 __hrtimer_setup(timer, function, clock_id, mode); 1691 } 1692 EXPORT_SYMBOL_GPL(hrtimer_setup); 1693 1694 /** 1695 * hrtimer_setup_on_stack - initialize a timer on stack memory 1696 * @timer: The timer to be initialized 1697 * @function: the callback function 1698 * @clock_id: The clock to be used 1699 * @mode: The timer mode 1700 * 1701 * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack 1702 * memory. 1703 */ 1704 void hrtimer_setup_on_stack(struct hrtimer *timer, 1705 enum hrtimer_restart (*function)(struct hrtimer *), 1706 clockid_t clock_id, enum hrtimer_mode mode) 1707 { 1708 debug_init_on_stack(timer, clock_id, mode); 1709 __hrtimer_setup(timer, function, clock_id, mode); 1710 } 1711 EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack); 1712 1713 /* 1714 * A timer is active, when it is enqueued into the rbtree or the 1715 * callback function is running or it's in the state of being migrated 1716 * to another cpu. 1717 * 1718 * It is important for this function to not return a false negative. 1719 */ 1720 bool hrtimer_active(const struct hrtimer *timer) 1721 { 1722 struct hrtimer_clock_base *base; 1723 unsigned int seq; 1724 1725 do { 1726 base = READ_ONCE(timer->base); 1727 seq = raw_read_seqcount_begin(&base->seq); 1728 1729 if (timer->state != HRTIMER_STATE_INACTIVE || 1730 base->running == timer) 1731 return true; 1732 1733 } while (read_seqcount_retry(&base->seq, seq) || 1734 base != READ_ONCE(timer->base)); 1735 1736 return false; 1737 } 1738 EXPORT_SYMBOL_GPL(hrtimer_active); 1739 1740 /* 1741 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1742 * distinct sections: 1743 * 1744 * - queued: the timer is queued 1745 * - callback: the timer is being ran 1746 * - post: the timer is inactive or (re)queued 1747 * 1748 * On the read side we ensure we observe timer->state and cpu_base->running 1749 * from the same section, if anything changed while we looked at it, we retry. 1750 * This includes timer->base changing because sequence numbers alone are 1751 * insufficient for that. 1752 * 1753 * The sequence numbers are required because otherwise we could still observe 1754 * a false negative if the read side got smeared over multiple consecutive 1755 * __run_hrtimer() invocations. 1756 */ 1757 1758 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1759 struct hrtimer_clock_base *base, 1760 struct hrtimer *timer, ktime_t *now, 1761 unsigned long flags) __must_hold(&cpu_base->lock) 1762 { 1763 enum hrtimer_restart (*fn)(struct hrtimer *); 1764 bool expires_in_hardirq; 1765 int restart; 1766 1767 lockdep_assert_held(&cpu_base->lock); 1768 1769 debug_deactivate(timer); 1770 base->running = timer; 1771 1772 /* 1773 * Separate the ->running assignment from the ->state assignment. 1774 * 1775 * As with a regular write barrier, this ensures the read side in 1776 * hrtimer_active() cannot observe base->running == NULL && 1777 * timer->state == INACTIVE. 1778 */ 1779 raw_write_seqcount_barrier(&base->seq); 1780 1781 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1782 fn = timer->function; 1783 1784 /* 1785 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1786 * timer is restarted with a period then it becomes an absolute 1787 * timer. If its not restarted it does not matter. 1788 */ 1789 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1790 timer->is_rel = false; 1791 1792 /* 1793 * The timer is marked as running in the CPU base, so it is 1794 * protected against migration to a different CPU even if the lock 1795 * is dropped. 1796 */ 1797 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1798 trace_hrtimer_expire_entry(timer, now); 1799 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1800 1801 restart = fn(timer); 1802 1803 lockdep_hrtimer_exit(expires_in_hardirq); 1804 trace_hrtimer_expire_exit(timer); 1805 raw_spin_lock_irq(&cpu_base->lock); 1806 1807 /* 1808 * Note: We clear the running state after enqueue_hrtimer and 1809 * we do not reprogram the event hardware. Happens either in 1810 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1811 * 1812 * Note: Because we dropped the cpu_base->lock above, 1813 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1814 * for us already. 1815 */ 1816 if (restart != HRTIMER_NORESTART && 1817 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1818 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1819 1820 /* 1821 * Separate the ->running assignment from the ->state assignment. 1822 * 1823 * As with a regular write barrier, this ensures the read side in 1824 * hrtimer_active() cannot observe base->running.timer == NULL && 1825 * timer->state == INACTIVE. 1826 */ 1827 raw_write_seqcount_barrier(&base->seq); 1828 1829 WARN_ON_ONCE(base->running != timer); 1830 base->running = NULL; 1831 } 1832 1833 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1834 unsigned long flags, unsigned int active_mask) 1835 { 1836 struct hrtimer_clock_base *base; 1837 unsigned int active = cpu_base->active_bases & active_mask; 1838 1839 for_each_active_base(base, cpu_base, active) { 1840 struct timerqueue_node *node; 1841 ktime_t basenow; 1842 1843 basenow = ktime_add(now, base->offset); 1844 1845 while ((node = timerqueue_getnext(&base->active))) { 1846 struct hrtimer *timer; 1847 1848 timer = container_of(node, struct hrtimer, node); 1849 1850 /* 1851 * The immediate goal for using the softexpires is 1852 * minimizing wakeups, not running timers at the 1853 * earliest interrupt after their soft expiration. 1854 * This allows us to avoid using a Priority Search 1855 * Tree, which can answer a stabbing query for 1856 * overlapping intervals and instead use the simple 1857 * BST we already have. 1858 * We don't add extra wakeups by delaying timers that 1859 * are right-of a not yet expired timer, because that 1860 * timer will have to trigger a wakeup anyway. 1861 */ 1862 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1863 break; 1864 1865 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1866 if (active_mask == HRTIMER_ACTIVE_SOFT) 1867 hrtimer_sync_wait_running(cpu_base, flags); 1868 } 1869 } 1870 } 1871 1872 static __latent_entropy void hrtimer_run_softirq(void) 1873 { 1874 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1875 unsigned long flags; 1876 ktime_t now; 1877 1878 hrtimer_cpu_base_lock_expiry(cpu_base); 1879 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1880 1881 now = hrtimer_update_base(cpu_base); 1882 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1883 1884 cpu_base->softirq_activated = 0; 1885 hrtimer_update_softirq_timer(cpu_base, true); 1886 1887 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1888 hrtimer_cpu_base_unlock_expiry(cpu_base); 1889 } 1890 1891 #ifdef CONFIG_HIGH_RES_TIMERS 1892 1893 /* 1894 * High resolution timer interrupt 1895 * Called with interrupts disabled 1896 */ 1897 void hrtimer_interrupt(struct clock_event_device *dev) 1898 { 1899 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1900 ktime_t expires_next, now, entry_time, delta; 1901 unsigned long flags; 1902 int retries = 0; 1903 1904 BUG_ON(!cpu_base->hres_active); 1905 cpu_base->nr_events++; 1906 dev->next_event = KTIME_MAX; 1907 1908 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1909 entry_time = now = hrtimer_update_base(cpu_base); 1910 retry: 1911 cpu_base->in_hrtirq = 1; 1912 /* 1913 * We set expires_next to KTIME_MAX here with cpu_base->lock 1914 * held to prevent that a timer is enqueued in our queue via 1915 * the migration code. This does not affect enqueueing of 1916 * timers which run their callback and need to be requeued on 1917 * this CPU. 1918 */ 1919 cpu_base->expires_next = KTIME_MAX; 1920 1921 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1922 cpu_base->softirq_expires_next = KTIME_MAX; 1923 cpu_base->softirq_activated = 1; 1924 raise_timer_softirq(HRTIMER_SOFTIRQ); 1925 } 1926 1927 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1928 1929 /* Reevaluate the clock bases for the [soft] next expiry */ 1930 expires_next = hrtimer_update_next_event(cpu_base); 1931 /* 1932 * Store the new expiry value so the migration code can verify 1933 * against it. 1934 */ 1935 cpu_base->expires_next = expires_next; 1936 cpu_base->in_hrtirq = 0; 1937 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1938 1939 /* Reprogramming necessary ? */ 1940 if (!tick_program_event(expires_next, 0)) { 1941 cpu_base->hang_detected = 0; 1942 return; 1943 } 1944 1945 /* 1946 * The next timer was already expired due to: 1947 * - tracing 1948 * - long lasting callbacks 1949 * - being scheduled away when running in a VM 1950 * 1951 * We need to prevent that we loop forever in the hrtimer 1952 * interrupt routine. We give it 3 attempts to avoid 1953 * overreacting on some spurious event. 1954 * 1955 * Acquire base lock for updating the offsets and retrieving 1956 * the current time. 1957 */ 1958 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1959 now = hrtimer_update_base(cpu_base); 1960 cpu_base->nr_retries++; 1961 if (++retries < 3) 1962 goto retry; 1963 /* 1964 * Give the system a chance to do something else than looping 1965 * here. We stored the entry time, so we know exactly how long 1966 * we spent here. We schedule the next event this amount of 1967 * time away. 1968 */ 1969 cpu_base->nr_hangs++; 1970 cpu_base->hang_detected = 1; 1971 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1972 1973 delta = ktime_sub(now, entry_time); 1974 if ((unsigned int)delta > cpu_base->max_hang_time) 1975 cpu_base->max_hang_time = (unsigned int) delta; 1976 /* 1977 * Limit it to a sensible value as we enforce a longer 1978 * delay. Give the CPU at least 100ms to catch up. 1979 */ 1980 if (delta > 100 * NSEC_PER_MSEC) 1981 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1982 else 1983 expires_next = ktime_add(now, delta); 1984 tick_program_event(expires_next, 1); 1985 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1986 } 1987 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1988 1989 /* 1990 * Called from run_local_timers in hardirq context every jiffy 1991 */ 1992 void hrtimer_run_queues(void) 1993 { 1994 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1995 unsigned long flags; 1996 ktime_t now; 1997 1998 if (hrtimer_hres_active(cpu_base)) 1999 return; 2000 2001 /* 2002 * This _is_ ugly: We have to check periodically, whether we 2003 * can switch to highres and / or nohz mode. The clocksource 2004 * switch happens with xtime_lock held. Notification from 2005 * there only sets the check bit in the tick_oneshot code, 2006 * otherwise we might deadlock vs. xtime_lock. 2007 */ 2008 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 2009 hrtimer_switch_to_hres(); 2010 return; 2011 } 2012 2013 raw_spin_lock_irqsave(&cpu_base->lock, flags); 2014 now = hrtimer_update_base(cpu_base); 2015 2016 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 2017 cpu_base->softirq_expires_next = KTIME_MAX; 2018 cpu_base->softirq_activated = 1; 2019 raise_timer_softirq(HRTIMER_SOFTIRQ); 2020 } 2021 2022 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 2023 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 2024 } 2025 2026 /* 2027 * Sleep related functions: 2028 */ 2029 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 2030 { 2031 struct hrtimer_sleeper *t = 2032 container_of(timer, struct hrtimer_sleeper, timer); 2033 struct task_struct *task = t->task; 2034 2035 t->task = NULL; 2036 if (task) 2037 wake_up_process(task); 2038 2039 return HRTIMER_NORESTART; 2040 } 2041 2042 /** 2043 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 2044 * @sl: sleeper to be started 2045 * @mode: timer mode abs/rel 2046 * 2047 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 2048 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 2049 */ 2050 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 2051 enum hrtimer_mode mode) 2052 { 2053 /* 2054 * Make the enqueue delivery mode check work on RT. If the sleeper 2055 * was initialized for hard interrupt delivery, force the mode bit. 2056 * This is a special case for hrtimer_sleepers because 2057 * __hrtimer_init_sleeper() determines the delivery mode on RT so the 2058 * fiddling with this decision is avoided at the call sites. 2059 */ 2060 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 2061 mode |= HRTIMER_MODE_HARD; 2062 2063 hrtimer_start_expires(&sl->timer, mode); 2064 } 2065 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 2066 2067 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 2068 clockid_t clock_id, enum hrtimer_mode mode) 2069 { 2070 /* 2071 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 2072 * marked for hard interrupt expiry mode are moved into soft 2073 * interrupt context either for latency reasons or because the 2074 * hrtimer callback takes regular spinlocks or invokes other 2075 * functions which are not suitable for hard interrupt context on 2076 * PREEMPT_RT. 2077 * 2078 * The hrtimer_sleeper callback is RT compatible in hard interrupt 2079 * context, but there is a latency concern: Untrusted userspace can 2080 * spawn many threads which arm timers for the same expiry time on 2081 * the same CPU. That causes a latency spike due to the wakeup of 2082 * a gazillion threads. 2083 * 2084 * OTOH, privileged real-time user space applications rely on the 2085 * low latency of hard interrupt wakeups. If the current task is in 2086 * a real-time scheduling class, mark the mode for hard interrupt 2087 * expiry. 2088 */ 2089 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 2090 if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT)) 2091 mode |= HRTIMER_MODE_HARD; 2092 } 2093 2094 __hrtimer_init(&sl->timer, clock_id, mode); 2095 sl->timer.function = hrtimer_wakeup; 2096 sl->task = current; 2097 } 2098 2099 /** 2100 * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory 2101 * @sl: sleeper to be initialized 2102 * @clock_id: the clock to be used 2103 * @mode: timer mode abs/rel 2104 */ 2105 void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl, 2106 clockid_t clock_id, enum hrtimer_mode mode) 2107 { 2108 debug_init_on_stack(&sl->timer, clock_id, mode); 2109 __hrtimer_init_sleeper(sl, clock_id, mode); 2110 } 2111 EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack); 2112 2113 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 2114 { 2115 switch(restart->nanosleep.type) { 2116 #ifdef CONFIG_COMPAT_32BIT_TIME 2117 case TT_COMPAT: 2118 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 2119 return -EFAULT; 2120 break; 2121 #endif 2122 case TT_NATIVE: 2123 if (put_timespec64(ts, restart->nanosleep.rmtp)) 2124 return -EFAULT; 2125 break; 2126 default: 2127 BUG(); 2128 } 2129 return -ERESTART_RESTARTBLOCK; 2130 } 2131 2132 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 2133 { 2134 struct restart_block *restart; 2135 2136 do { 2137 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2138 hrtimer_sleeper_start_expires(t, mode); 2139 2140 if (likely(t->task)) 2141 schedule(); 2142 2143 hrtimer_cancel(&t->timer); 2144 mode = HRTIMER_MODE_ABS; 2145 2146 } while (t->task && !signal_pending(current)); 2147 2148 __set_current_state(TASK_RUNNING); 2149 2150 if (!t->task) 2151 return 0; 2152 2153 restart = ¤t->restart_block; 2154 if (restart->nanosleep.type != TT_NONE) { 2155 ktime_t rem = hrtimer_expires_remaining(&t->timer); 2156 struct timespec64 rmt; 2157 2158 if (rem <= 0) 2159 return 0; 2160 rmt = ktime_to_timespec64(rem); 2161 2162 return nanosleep_copyout(restart, &rmt); 2163 } 2164 return -ERESTART_RESTARTBLOCK; 2165 } 2166 2167 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 2168 { 2169 struct hrtimer_sleeper t; 2170 int ret; 2171 2172 hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS); 2173 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 2174 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 2175 destroy_hrtimer_on_stack(&t.timer); 2176 return ret; 2177 } 2178 2179 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 2180 const clockid_t clockid) 2181 { 2182 struct restart_block *restart; 2183 struct hrtimer_sleeper t; 2184 int ret = 0; 2185 2186 hrtimer_setup_sleeper_on_stack(&t, clockid, mode); 2187 hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns); 2188 ret = do_nanosleep(&t, mode); 2189 if (ret != -ERESTART_RESTARTBLOCK) 2190 goto out; 2191 2192 /* Absolute timers do not update the rmtp value and restart: */ 2193 if (mode == HRTIMER_MODE_ABS) { 2194 ret = -ERESTARTNOHAND; 2195 goto out; 2196 } 2197 2198 restart = ¤t->restart_block; 2199 restart->nanosleep.clockid = t.timer.base->clockid; 2200 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 2201 set_restart_fn(restart, hrtimer_nanosleep_restart); 2202 out: 2203 destroy_hrtimer_on_stack(&t.timer); 2204 return ret; 2205 } 2206 2207 #ifdef CONFIG_64BIT 2208 2209 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 2210 struct __kernel_timespec __user *, rmtp) 2211 { 2212 struct timespec64 tu; 2213 2214 if (get_timespec64(&tu, rqtp)) 2215 return -EFAULT; 2216 2217 if (!timespec64_valid(&tu)) 2218 return -EINVAL; 2219 2220 current->restart_block.fn = do_no_restart_syscall; 2221 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 2222 current->restart_block.nanosleep.rmtp = rmtp; 2223 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2224 CLOCK_MONOTONIC); 2225 } 2226 2227 #endif 2228 2229 #ifdef CONFIG_COMPAT_32BIT_TIME 2230 2231 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 2232 struct old_timespec32 __user *, rmtp) 2233 { 2234 struct timespec64 tu; 2235 2236 if (get_old_timespec32(&tu, rqtp)) 2237 return -EFAULT; 2238 2239 if (!timespec64_valid(&tu)) 2240 return -EINVAL; 2241 2242 current->restart_block.fn = do_no_restart_syscall; 2243 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 2244 current->restart_block.nanosleep.compat_rmtp = rmtp; 2245 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2246 CLOCK_MONOTONIC); 2247 } 2248 #endif 2249 2250 /* 2251 * Functions related to boot-time initialization: 2252 */ 2253 int hrtimers_prepare_cpu(unsigned int cpu) 2254 { 2255 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2256 int i; 2257 2258 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2259 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2260 2261 clock_b->cpu_base = cpu_base; 2262 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2263 timerqueue_init_head(&clock_b->active); 2264 } 2265 2266 cpu_base->cpu = cpu; 2267 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2268 return 0; 2269 } 2270 2271 int hrtimers_cpu_starting(unsigned int cpu) 2272 { 2273 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 2274 2275 /* Clear out any left over state from a CPU down operation */ 2276 cpu_base->active_bases = 0; 2277 cpu_base->hres_active = 0; 2278 cpu_base->hang_detected = 0; 2279 cpu_base->next_timer = NULL; 2280 cpu_base->softirq_next_timer = NULL; 2281 cpu_base->expires_next = KTIME_MAX; 2282 cpu_base->softirq_expires_next = KTIME_MAX; 2283 cpu_base->online = 1; 2284 return 0; 2285 } 2286 2287 #ifdef CONFIG_HOTPLUG_CPU 2288 2289 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2290 struct hrtimer_clock_base *new_base) 2291 { 2292 struct hrtimer *timer; 2293 struct timerqueue_node *node; 2294 2295 while ((node = timerqueue_getnext(&old_base->active))) { 2296 timer = container_of(node, struct hrtimer, node); 2297 BUG_ON(hrtimer_callback_running(timer)); 2298 debug_deactivate(timer); 2299 2300 /* 2301 * Mark it as ENQUEUED not INACTIVE otherwise the 2302 * timer could be seen as !active and just vanish away 2303 * under us on another CPU 2304 */ 2305 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2306 timer->base = new_base; 2307 /* 2308 * Enqueue the timers on the new cpu. This does not 2309 * reprogram the event device in case the timer 2310 * expires before the earliest on this CPU, but we run 2311 * hrtimer_interrupt after we migrated everything to 2312 * sort out already expired timers and reprogram the 2313 * event device. 2314 */ 2315 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2316 } 2317 } 2318 2319 int hrtimers_cpu_dying(unsigned int dying_cpu) 2320 { 2321 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER)); 2322 struct hrtimer_cpu_base *old_base, *new_base; 2323 2324 old_base = this_cpu_ptr(&hrtimer_bases); 2325 new_base = &per_cpu(hrtimer_bases, ncpu); 2326 2327 /* 2328 * The caller is globally serialized and nobody else 2329 * takes two locks at once, deadlock is not possible. 2330 */ 2331 raw_spin_lock(&old_base->lock); 2332 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); 2333 2334 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2335 migrate_hrtimer_list(&old_base->clock_base[i], 2336 &new_base->clock_base[i]); 2337 } 2338 2339 /* 2340 * The migration might have changed the first expiring softirq 2341 * timer on this CPU. Update it. 2342 */ 2343 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT); 2344 /* Tell the other CPU to retrigger the next event */ 2345 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0); 2346 2347 raw_spin_unlock(&new_base->lock); 2348 old_base->online = 0; 2349 raw_spin_unlock(&old_base->lock); 2350 2351 return 0; 2352 } 2353 2354 #endif /* CONFIG_HOTPLUG_CPU */ 2355 2356 void __init hrtimers_init(void) 2357 { 2358 hrtimers_prepare_cpu(smp_processor_id()); 2359 hrtimers_cpu_starting(smp_processor_id()); 2360 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2361 } 2362