xref: /linux/kernel/time/hrtimer.c (revision cc3ae7b0af27118994c1e491382b253be3b762bf)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "tick-internal.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids than hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 	}
94 };
95 
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
98 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
99 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101 };
102 
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 	return hrtimer_clock_to_base_table[clock_id];
106 }
107 
108 /*
109  * Functions and macros which are different for UP/SMP systems are kept in a
110  * single place
111  */
112 #ifdef CONFIG_SMP
113 
114 /*
115  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116  * such that hrtimer_callback_running() can unconditionally dereference
117  * timer->base->cpu_base
118  */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 	.seq = SEQCNT_ZERO(migration_cpu_base),
121 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123 
124 #define migration_base	migration_cpu_base.clock_base[0]
125 
126 /*
127  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128  * means that all timers which are tied to this base via timer->base are
129  * locked, and the base itself is locked too.
130  *
131  * So __run_timers/migrate_timers can safely modify all timers which could
132  * be found on the lists/queues.
133  *
134  * When the timer's base is locked, and the timer removed from list, it is
135  * possible to set timer->base = &migration_base and drop the lock: the timer
136  * remains locked.
137  */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 					     unsigned long *flags)
141 {
142 	struct hrtimer_clock_base *base;
143 
144 	for (;;) {
145 		base = timer->base;
146 		if (likely(base != &migration_base)) {
147 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 			if (likely(base == timer->base))
149 				return base;
150 			/* The timer has migrated to another CPU: */
151 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 		}
153 		cpu_relax();
154 	}
155 }
156 
157 /*
158  * With HIGHRES=y we do not migrate the timer when it is expiring
159  * before the next event on the target cpu because we cannot reprogram
160  * the target cpu hardware and we would cause it to fire late.
161  *
162  * Called with cpu_base->lock of target cpu held.
163  */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 	ktime_t expires;
169 
170 	if (!new_base->cpu_base->hres_active)
171 		return 0;
172 
173 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 	return 0;
177 #endif
178 }
179 
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 					 int pinned)
184 {
185 	if (pinned || !base->migration_enabled)
186 		return base;
187 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 					 int pinned)
193 {
194 	return base;
195 }
196 #endif
197 
198 /*
199  * We switch the timer base to a power-optimized selected CPU target,
200  * if:
201  *	- NO_HZ_COMMON is enabled
202  *	- timer migration is enabled
203  *	- the timer callback is not running
204  *	- the timer is not the first expiring timer on the new target
205  *
206  * If one of the above requirements is not fulfilled we move the timer
207  * to the current CPU or leave it on the previously assigned CPU if
208  * the timer callback is currently running.
209  */
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 		    int pinned)
213 {
214 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215 	struct hrtimer_clock_base *new_base;
216 	int basenum = base->index;
217 
218 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 	new_cpu_base = get_target_base(this_cpu_base, pinned);
220 again:
221 	new_base = &new_cpu_base->clock_base[basenum];
222 
223 	if (base != new_base) {
224 		/*
225 		 * We are trying to move timer to new_base.
226 		 * However we can't change timer's base while it is running,
227 		 * so we keep it on the same CPU. No hassle vs. reprogramming
228 		 * the event source in the high resolution case. The softirq
229 		 * code will take care of this when the timer function has
230 		 * completed. There is no conflict as we hold the lock until
231 		 * the timer is enqueued.
232 		 */
233 		if (unlikely(hrtimer_callback_running(timer)))
234 			return base;
235 
236 		/* See the comment in lock_hrtimer_base() */
237 		timer->base = &migration_base;
238 		raw_spin_unlock(&base->cpu_base->lock);
239 		raw_spin_lock(&new_base->cpu_base->lock);
240 
241 		if (new_cpu_base != this_cpu_base &&
242 		    hrtimer_check_target(timer, new_base)) {
243 			raw_spin_unlock(&new_base->cpu_base->lock);
244 			raw_spin_lock(&base->cpu_base->lock);
245 			new_cpu_base = this_cpu_base;
246 			timer->base = base;
247 			goto again;
248 		}
249 		timer->base = new_base;
250 	} else {
251 		if (new_cpu_base != this_cpu_base &&
252 		    hrtimer_check_target(timer, new_base)) {
253 			new_cpu_base = this_cpu_base;
254 			goto again;
255 		}
256 	}
257 	return new_base;
258 }
259 
260 #else /* CONFIG_SMP */
261 
262 static inline struct hrtimer_clock_base *
263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264 {
265 	struct hrtimer_clock_base *base = timer->base;
266 
267 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 
269 	return base;
270 }
271 
272 # define switch_hrtimer_base(t, b, p)	(b)
273 
274 #endif	/* !CONFIG_SMP */
275 
276 /*
277  * Functions for the union type storage format of ktime_t which are
278  * too large for inlining:
279  */
280 #if BITS_PER_LONG < 64
281 /*
282  * Divide a ktime value by a nanosecond value
283  */
284 s64 __ktime_divns(const ktime_t kt, s64 div)
285 {
286 	int sft = 0;
287 	s64 dclc;
288 	u64 tmp;
289 
290 	dclc = ktime_to_ns(kt);
291 	tmp = dclc < 0 ? -dclc : dclc;
292 
293 	/* Make sure the divisor is less than 2^32: */
294 	while (div >> 32) {
295 		sft++;
296 		div >>= 1;
297 	}
298 	tmp >>= sft;
299 	do_div(tmp, (unsigned long) div);
300 	return dclc < 0 ? -tmp : tmp;
301 }
302 EXPORT_SYMBOL_GPL(__ktime_divns);
303 #endif /* BITS_PER_LONG >= 64 */
304 
305 /*
306  * Add two ktime values and do a safety check for overflow:
307  */
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309 {
310 	ktime_t res = ktime_add(lhs, rhs);
311 
312 	/*
313 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 	 * return to user space in a timespec:
315 	 */
316 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
317 		res = ktime_set(KTIME_SEC_MAX, 0);
318 
319 	return res;
320 }
321 
322 EXPORT_SYMBOL_GPL(ktime_add_safe);
323 
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325 
326 static struct debug_obj_descr hrtimer_debug_descr;
327 
328 static void *hrtimer_debug_hint(void *addr)
329 {
330 	return ((struct hrtimer *) addr)->function;
331 }
332 
333 /*
334  * fixup_init is called when:
335  * - an active object is initialized
336  */
337 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 {
339 	struct hrtimer *timer = addr;
340 
341 	switch (state) {
342 	case ODEBUG_STATE_ACTIVE:
343 		hrtimer_cancel(timer);
344 		debug_object_init(timer, &hrtimer_debug_descr);
345 		return true;
346 	default:
347 		return false;
348 	}
349 }
350 
351 /*
352  * fixup_activate is called when:
353  * - an active object is activated
354  * - an unknown non-static object is activated
355  */
356 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 {
358 	switch (state) {
359 	case ODEBUG_STATE_ACTIVE:
360 		WARN_ON(1);
361 
362 	default:
363 		return false;
364 	}
365 }
366 
367 /*
368  * fixup_free is called when:
369  * - an active object is freed
370  */
371 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
372 {
373 	struct hrtimer *timer = addr;
374 
375 	switch (state) {
376 	case ODEBUG_STATE_ACTIVE:
377 		hrtimer_cancel(timer);
378 		debug_object_free(timer, &hrtimer_debug_descr);
379 		return true;
380 	default:
381 		return false;
382 	}
383 }
384 
385 static struct debug_obj_descr hrtimer_debug_descr = {
386 	.name		= "hrtimer",
387 	.debug_hint	= hrtimer_debug_hint,
388 	.fixup_init	= hrtimer_fixup_init,
389 	.fixup_activate	= hrtimer_fixup_activate,
390 	.fixup_free	= hrtimer_fixup_free,
391 };
392 
393 static inline void debug_hrtimer_init(struct hrtimer *timer)
394 {
395 	debug_object_init(timer, &hrtimer_debug_descr);
396 }
397 
398 static inline void debug_hrtimer_activate(struct hrtimer *timer)
399 {
400 	debug_object_activate(timer, &hrtimer_debug_descr);
401 }
402 
403 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
404 {
405 	debug_object_deactivate(timer, &hrtimer_debug_descr);
406 }
407 
408 static inline void debug_hrtimer_free(struct hrtimer *timer)
409 {
410 	debug_object_free(timer, &hrtimer_debug_descr);
411 }
412 
413 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
414 			   enum hrtimer_mode mode);
415 
416 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
417 			   enum hrtimer_mode mode)
418 {
419 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
420 	__hrtimer_init(timer, clock_id, mode);
421 }
422 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
423 
424 void destroy_hrtimer_on_stack(struct hrtimer *timer)
425 {
426 	debug_object_free(timer, &hrtimer_debug_descr);
427 }
428 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
429 
430 #else
431 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
432 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
433 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
434 #endif
435 
436 static inline void
437 debug_init(struct hrtimer *timer, clockid_t clockid,
438 	   enum hrtimer_mode mode)
439 {
440 	debug_hrtimer_init(timer);
441 	trace_hrtimer_init(timer, clockid, mode);
442 }
443 
444 static inline void debug_activate(struct hrtimer *timer)
445 {
446 	debug_hrtimer_activate(timer);
447 	trace_hrtimer_start(timer);
448 }
449 
450 static inline void debug_deactivate(struct hrtimer *timer)
451 {
452 	debug_hrtimer_deactivate(timer);
453 	trace_hrtimer_cancel(timer);
454 }
455 
456 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
457 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
458 					     struct hrtimer *timer)
459 {
460 #ifdef CONFIG_HIGH_RES_TIMERS
461 	cpu_base->next_timer = timer;
462 #endif
463 }
464 
465 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
466 {
467 	struct hrtimer_clock_base *base = cpu_base->clock_base;
468 	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
469 	unsigned int active = cpu_base->active_bases;
470 
471 	hrtimer_update_next_timer(cpu_base, NULL);
472 	for (; active; base++, active >>= 1) {
473 		struct timerqueue_node *next;
474 		struct hrtimer *timer;
475 
476 		if (!(active & 0x01))
477 			continue;
478 
479 		next = timerqueue_getnext(&base->active);
480 		timer = container_of(next, struct hrtimer, node);
481 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
482 		if (expires.tv64 < expires_next.tv64) {
483 			expires_next = expires;
484 			hrtimer_update_next_timer(cpu_base, timer);
485 		}
486 	}
487 	/*
488 	 * clock_was_set() might have changed base->offset of any of
489 	 * the clock bases so the result might be negative. Fix it up
490 	 * to prevent a false positive in clockevents_program_event().
491 	 */
492 	if (expires_next.tv64 < 0)
493 		expires_next.tv64 = 0;
494 	return expires_next;
495 }
496 #endif
497 
498 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
499 {
500 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
501 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
502 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
503 
504 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
505 					    offs_real, offs_boot, offs_tai);
506 }
507 
508 /* High resolution timer related functions */
509 #ifdef CONFIG_HIGH_RES_TIMERS
510 
511 /*
512  * High resolution timer enabled ?
513  */
514 static bool hrtimer_hres_enabled __read_mostly  = true;
515 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
516 EXPORT_SYMBOL_GPL(hrtimer_resolution);
517 
518 /*
519  * Enable / Disable high resolution mode
520  */
521 static int __init setup_hrtimer_hres(char *str)
522 {
523 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
524 }
525 
526 __setup("highres=", setup_hrtimer_hres);
527 
528 /*
529  * hrtimer_high_res_enabled - query, if the highres mode is enabled
530  */
531 static inline int hrtimer_is_hres_enabled(void)
532 {
533 	return hrtimer_hres_enabled;
534 }
535 
536 /*
537  * Is the high resolution mode active ?
538  */
539 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
540 {
541 	return cpu_base->hres_active;
542 }
543 
544 static inline int hrtimer_hres_active(void)
545 {
546 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
547 }
548 
549 /*
550  * Reprogram the event source with checking both queues for the
551  * next event
552  * Called with interrupts disabled and base->lock held
553  */
554 static void
555 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
556 {
557 	ktime_t expires_next;
558 
559 	if (!cpu_base->hres_active)
560 		return;
561 
562 	expires_next = __hrtimer_get_next_event(cpu_base);
563 
564 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
565 		return;
566 
567 	cpu_base->expires_next.tv64 = expires_next.tv64;
568 
569 	/*
570 	 * If a hang was detected in the last timer interrupt then we
571 	 * leave the hang delay active in the hardware. We want the
572 	 * system to make progress. That also prevents the following
573 	 * scenario:
574 	 * T1 expires 50ms from now
575 	 * T2 expires 5s from now
576 	 *
577 	 * T1 is removed, so this code is called and would reprogram
578 	 * the hardware to 5s from now. Any hrtimer_start after that
579 	 * will not reprogram the hardware due to hang_detected being
580 	 * set. So we'd effectivly block all timers until the T2 event
581 	 * fires.
582 	 */
583 	if (cpu_base->hang_detected)
584 		return;
585 
586 	tick_program_event(cpu_base->expires_next, 1);
587 }
588 
589 /*
590  * When a timer is enqueued and expires earlier than the already enqueued
591  * timers, we have to check, whether it expires earlier than the timer for
592  * which the clock event device was armed.
593  *
594  * Called with interrupts disabled and base->cpu_base.lock held
595  */
596 static void hrtimer_reprogram(struct hrtimer *timer,
597 			      struct hrtimer_clock_base *base)
598 {
599 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
600 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
601 
602 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
603 
604 	/*
605 	 * If the timer is not on the current cpu, we cannot reprogram
606 	 * the other cpus clock event device.
607 	 */
608 	if (base->cpu_base != cpu_base)
609 		return;
610 
611 	/*
612 	 * If the hrtimer interrupt is running, then it will
613 	 * reevaluate the clock bases and reprogram the clock event
614 	 * device. The callbacks are always executed in hard interrupt
615 	 * context so we don't need an extra check for a running
616 	 * callback.
617 	 */
618 	if (cpu_base->in_hrtirq)
619 		return;
620 
621 	/*
622 	 * CLOCK_REALTIME timer might be requested with an absolute
623 	 * expiry time which is less than base->offset. Set it to 0.
624 	 */
625 	if (expires.tv64 < 0)
626 		expires.tv64 = 0;
627 
628 	if (expires.tv64 >= cpu_base->expires_next.tv64)
629 		return;
630 
631 	/* Update the pointer to the next expiring timer */
632 	cpu_base->next_timer = timer;
633 
634 	/*
635 	 * If a hang was detected in the last timer interrupt then we
636 	 * do not schedule a timer which is earlier than the expiry
637 	 * which we enforced in the hang detection. We want the system
638 	 * to make progress.
639 	 */
640 	if (cpu_base->hang_detected)
641 		return;
642 
643 	/*
644 	 * Program the timer hardware. We enforce the expiry for
645 	 * events which are already in the past.
646 	 */
647 	cpu_base->expires_next = expires;
648 	tick_program_event(expires, 1);
649 }
650 
651 /*
652  * Initialize the high resolution related parts of cpu_base
653  */
654 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
655 {
656 	base->expires_next.tv64 = KTIME_MAX;
657 	base->hres_active = 0;
658 }
659 
660 /*
661  * Retrigger next event is called after clock was set
662  *
663  * Called with interrupts disabled via on_each_cpu()
664  */
665 static void retrigger_next_event(void *arg)
666 {
667 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
668 
669 	if (!base->hres_active)
670 		return;
671 
672 	raw_spin_lock(&base->lock);
673 	hrtimer_update_base(base);
674 	hrtimer_force_reprogram(base, 0);
675 	raw_spin_unlock(&base->lock);
676 }
677 
678 /*
679  * Switch to high resolution mode
680  */
681 static void hrtimer_switch_to_hres(void)
682 {
683 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
684 
685 	if (tick_init_highres()) {
686 		printk(KERN_WARNING "Could not switch to high resolution "
687 				    "mode on CPU %d\n", base->cpu);
688 		return;
689 	}
690 	base->hres_active = 1;
691 	hrtimer_resolution = HIGH_RES_NSEC;
692 
693 	tick_setup_sched_timer();
694 	/* "Retrigger" the interrupt to get things going */
695 	retrigger_next_event(NULL);
696 }
697 
698 static void clock_was_set_work(struct work_struct *work)
699 {
700 	clock_was_set();
701 }
702 
703 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
704 
705 /*
706  * Called from timekeeping and resume code to reprogramm the hrtimer
707  * interrupt device on all cpus.
708  */
709 void clock_was_set_delayed(void)
710 {
711 	schedule_work(&hrtimer_work);
712 }
713 
714 #else
715 
716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
717 static inline int hrtimer_hres_active(void) { return 0; }
718 static inline int hrtimer_is_hres_enabled(void) { return 0; }
719 static inline void hrtimer_switch_to_hres(void) { }
720 static inline void
721 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
722 static inline int hrtimer_reprogram(struct hrtimer *timer,
723 				    struct hrtimer_clock_base *base)
724 {
725 	return 0;
726 }
727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
728 static inline void retrigger_next_event(void *arg) { }
729 
730 #endif /* CONFIG_HIGH_RES_TIMERS */
731 
732 /*
733  * Clock realtime was set
734  *
735  * Change the offset of the realtime clock vs. the monotonic
736  * clock.
737  *
738  * We might have to reprogram the high resolution timer interrupt. On
739  * SMP we call the architecture specific code to retrigger _all_ high
740  * resolution timer interrupts. On UP we just disable interrupts and
741  * call the high resolution interrupt code.
742  */
743 void clock_was_set(void)
744 {
745 #ifdef CONFIG_HIGH_RES_TIMERS
746 	/* Retrigger the CPU local events everywhere */
747 	on_each_cpu(retrigger_next_event, NULL, 1);
748 #endif
749 	timerfd_clock_was_set();
750 }
751 
752 /*
753  * During resume we might have to reprogram the high resolution timer
754  * interrupt on all online CPUs.  However, all other CPUs will be
755  * stopped with IRQs interrupts disabled so the clock_was_set() call
756  * must be deferred.
757  */
758 void hrtimers_resume(void)
759 {
760 	WARN_ONCE(!irqs_disabled(),
761 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
762 
763 	/* Retrigger on the local CPU */
764 	retrigger_next_event(NULL);
765 	/* And schedule a retrigger for all others */
766 	clock_was_set_delayed();
767 }
768 
769 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
770 {
771 #ifdef CONFIG_TIMER_STATS
772 	if (timer->start_site)
773 		return;
774 	timer->start_site = __builtin_return_address(0);
775 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
776 	timer->start_pid = current->pid;
777 #endif
778 }
779 
780 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
781 {
782 #ifdef CONFIG_TIMER_STATS
783 	timer->start_site = NULL;
784 #endif
785 }
786 
787 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
788 {
789 #ifdef CONFIG_TIMER_STATS
790 	if (likely(!timer_stats_active))
791 		return;
792 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
793 				 timer->function, timer->start_comm, 0);
794 #endif
795 }
796 
797 /*
798  * Counterpart to lock_hrtimer_base above:
799  */
800 static inline
801 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
802 {
803 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
804 }
805 
806 /**
807  * hrtimer_forward - forward the timer expiry
808  * @timer:	hrtimer to forward
809  * @now:	forward past this time
810  * @interval:	the interval to forward
811  *
812  * Forward the timer expiry so it will expire in the future.
813  * Returns the number of overruns.
814  *
815  * Can be safely called from the callback function of @timer. If
816  * called from other contexts @timer must neither be enqueued nor
817  * running the callback and the caller needs to take care of
818  * serialization.
819  *
820  * Note: This only updates the timer expiry value and does not requeue
821  * the timer.
822  */
823 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
824 {
825 	u64 orun = 1;
826 	ktime_t delta;
827 
828 	delta = ktime_sub(now, hrtimer_get_expires(timer));
829 
830 	if (delta.tv64 < 0)
831 		return 0;
832 
833 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
834 		return 0;
835 
836 	if (interval.tv64 < hrtimer_resolution)
837 		interval.tv64 = hrtimer_resolution;
838 
839 	if (unlikely(delta.tv64 >= interval.tv64)) {
840 		s64 incr = ktime_to_ns(interval);
841 
842 		orun = ktime_divns(delta, incr);
843 		hrtimer_add_expires_ns(timer, incr * orun);
844 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
845 			return orun;
846 		/*
847 		 * This (and the ktime_add() below) is the
848 		 * correction for exact:
849 		 */
850 		orun++;
851 	}
852 	hrtimer_add_expires(timer, interval);
853 
854 	return orun;
855 }
856 EXPORT_SYMBOL_GPL(hrtimer_forward);
857 
858 /*
859  * enqueue_hrtimer - internal function to (re)start a timer
860  *
861  * The timer is inserted in expiry order. Insertion into the
862  * red black tree is O(log(n)). Must hold the base lock.
863  *
864  * Returns 1 when the new timer is the leftmost timer in the tree.
865  */
866 static int enqueue_hrtimer(struct hrtimer *timer,
867 			   struct hrtimer_clock_base *base)
868 {
869 	debug_activate(timer);
870 
871 	base->cpu_base->active_bases |= 1 << base->index;
872 
873 	timer->state = HRTIMER_STATE_ENQUEUED;
874 
875 	return timerqueue_add(&base->active, &timer->node);
876 }
877 
878 /*
879  * __remove_hrtimer - internal function to remove a timer
880  *
881  * Caller must hold the base lock.
882  *
883  * High resolution timer mode reprograms the clock event device when the
884  * timer is the one which expires next. The caller can disable this by setting
885  * reprogram to zero. This is useful, when the context does a reprogramming
886  * anyway (e.g. timer interrupt)
887  */
888 static void __remove_hrtimer(struct hrtimer *timer,
889 			     struct hrtimer_clock_base *base,
890 			     u8 newstate, int reprogram)
891 {
892 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
893 	u8 state = timer->state;
894 
895 	timer->state = newstate;
896 	if (!(state & HRTIMER_STATE_ENQUEUED))
897 		return;
898 
899 	if (!timerqueue_del(&base->active, &timer->node))
900 		cpu_base->active_bases &= ~(1 << base->index);
901 
902 #ifdef CONFIG_HIGH_RES_TIMERS
903 	/*
904 	 * Note: If reprogram is false we do not update
905 	 * cpu_base->next_timer. This happens when we remove the first
906 	 * timer on a remote cpu. No harm as we never dereference
907 	 * cpu_base->next_timer. So the worst thing what can happen is
908 	 * an superflous call to hrtimer_force_reprogram() on the
909 	 * remote cpu later on if the same timer gets enqueued again.
910 	 */
911 	if (reprogram && timer == cpu_base->next_timer)
912 		hrtimer_force_reprogram(cpu_base, 1);
913 #endif
914 }
915 
916 /*
917  * remove hrtimer, called with base lock held
918  */
919 static inline int
920 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
921 {
922 	if (hrtimer_is_queued(timer)) {
923 		u8 state = timer->state;
924 		int reprogram;
925 
926 		/*
927 		 * Remove the timer and force reprogramming when high
928 		 * resolution mode is active and the timer is on the current
929 		 * CPU. If we remove a timer on another CPU, reprogramming is
930 		 * skipped. The interrupt event on this CPU is fired and
931 		 * reprogramming happens in the interrupt handler. This is a
932 		 * rare case and less expensive than a smp call.
933 		 */
934 		debug_deactivate(timer);
935 		timer_stats_hrtimer_clear_start_info(timer);
936 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
937 
938 		if (!restart)
939 			state = HRTIMER_STATE_INACTIVE;
940 
941 		__remove_hrtimer(timer, base, state, reprogram);
942 		return 1;
943 	}
944 	return 0;
945 }
946 
947 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
948 					    const enum hrtimer_mode mode)
949 {
950 #ifdef CONFIG_TIME_LOW_RES
951 	/*
952 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
953 	 * granular time values. For relative timers we add hrtimer_resolution
954 	 * (i.e. one jiffie) to prevent short timeouts.
955 	 */
956 	timer->is_rel = mode & HRTIMER_MODE_REL;
957 	if (timer->is_rel)
958 		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
959 #endif
960 	return tim;
961 }
962 
963 /**
964  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
965  * @timer:	the timer to be added
966  * @tim:	expiry time
967  * @delta_ns:	"slack" range for the timer
968  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
969  *		relative (HRTIMER_MODE_REL)
970  */
971 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
972 			    u64 delta_ns, const enum hrtimer_mode mode)
973 {
974 	struct hrtimer_clock_base *base, *new_base;
975 	unsigned long flags;
976 	int leftmost;
977 
978 	base = lock_hrtimer_base(timer, &flags);
979 
980 	/* Remove an active timer from the queue: */
981 	remove_hrtimer(timer, base, true);
982 
983 	if (mode & HRTIMER_MODE_REL)
984 		tim = ktime_add_safe(tim, base->get_time());
985 
986 	tim = hrtimer_update_lowres(timer, tim, mode);
987 
988 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
989 
990 	/* Switch the timer base, if necessary: */
991 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
992 
993 	timer_stats_hrtimer_set_start_info(timer);
994 
995 	leftmost = enqueue_hrtimer(timer, new_base);
996 	if (!leftmost)
997 		goto unlock;
998 
999 	if (!hrtimer_is_hres_active(timer)) {
1000 		/*
1001 		 * Kick to reschedule the next tick to handle the new timer
1002 		 * on dynticks target.
1003 		 */
1004 		if (new_base->cpu_base->nohz_active)
1005 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1006 	} else {
1007 		hrtimer_reprogram(timer, new_base);
1008 	}
1009 unlock:
1010 	unlock_hrtimer_base(timer, &flags);
1011 }
1012 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1013 
1014 /**
1015  * hrtimer_try_to_cancel - try to deactivate a timer
1016  * @timer:	hrtimer to stop
1017  *
1018  * Returns:
1019  *  0 when the timer was not active
1020  *  1 when the timer was active
1021  * -1 when the timer is currently excuting the callback function and
1022  *    cannot be stopped
1023  */
1024 int hrtimer_try_to_cancel(struct hrtimer *timer)
1025 {
1026 	struct hrtimer_clock_base *base;
1027 	unsigned long flags;
1028 	int ret = -1;
1029 
1030 	/*
1031 	 * Check lockless first. If the timer is not active (neither
1032 	 * enqueued nor running the callback, nothing to do here.  The
1033 	 * base lock does not serialize against a concurrent enqueue,
1034 	 * so we can avoid taking it.
1035 	 */
1036 	if (!hrtimer_active(timer))
1037 		return 0;
1038 
1039 	base = lock_hrtimer_base(timer, &flags);
1040 
1041 	if (!hrtimer_callback_running(timer))
1042 		ret = remove_hrtimer(timer, base, false);
1043 
1044 	unlock_hrtimer_base(timer, &flags);
1045 
1046 	return ret;
1047 
1048 }
1049 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1050 
1051 /**
1052  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1053  * @timer:	the timer to be cancelled
1054  *
1055  * Returns:
1056  *  0 when the timer was not active
1057  *  1 when the timer was active
1058  */
1059 int hrtimer_cancel(struct hrtimer *timer)
1060 {
1061 	for (;;) {
1062 		int ret = hrtimer_try_to_cancel(timer);
1063 
1064 		if (ret >= 0)
1065 			return ret;
1066 		cpu_relax();
1067 	}
1068 }
1069 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1070 
1071 /**
1072  * hrtimer_get_remaining - get remaining time for the timer
1073  * @timer:	the timer to read
1074  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1075  */
1076 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1077 {
1078 	unsigned long flags;
1079 	ktime_t rem;
1080 
1081 	lock_hrtimer_base(timer, &flags);
1082 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1083 		rem = hrtimer_expires_remaining_adjusted(timer);
1084 	else
1085 		rem = hrtimer_expires_remaining(timer);
1086 	unlock_hrtimer_base(timer, &flags);
1087 
1088 	return rem;
1089 }
1090 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1091 
1092 #ifdef CONFIG_NO_HZ_COMMON
1093 /**
1094  * hrtimer_get_next_event - get the time until next expiry event
1095  *
1096  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1097  */
1098 u64 hrtimer_get_next_event(void)
1099 {
1100 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1101 	u64 expires = KTIME_MAX;
1102 	unsigned long flags;
1103 
1104 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1105 
1106 	if (!__hrtimer_hres_active(cpu_base))
1107 		expires = __hrtimer_get_next_event(cpu_base).tv64;
1108 
1109 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1110 
1111 	return expires;
1112 }
1113 #endif
1114 
1115 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1116 			   enum hrtimer_mode mode)
1117 {
1118 	struct hrtimer_cpu_base *cpu_base;
1119 	int base;
1120 
1121 	memset(timer, 0, sizeof(struct hrtimer));
1122 
1123 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1124 
1125 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1126 		clock_id = CLOCK_MONOTONIC;
1127 
1128 	base = hrtimer_clockid_to_base(clock_id);
1129 	timer->base = &cpu_base->clock_base[base];
1130 	timerqueue_init(&timer->node);
1131 
1132 #ifdef CONFIG_TIMER_STATS
1133 	timer->start_site = NULL;
1134 	timer->start_pid = -1;
1135 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1136 #endif
1137 }
1138 
1139 /**
1140  * hrtimer_init - initialize a timer to the given clock
1141  * @timer:	the timer to be initialized
1142  * @clock_id:	the clock to be used
1143  * @mode:	timer mode abs/rel
1144  */
1145 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1146 		  enum hrtimer_mode mode)
1147 {
1148 	debug_init(timer, clock_id, mode);
1149 	__hrtimer_init(timer, clock_id, mode);
1150 }
1151 EXPORT_SYMBOL_GPL(hrtimer_init);
1152 
1153 /*
1154  * A timer is active, when it is enqueued into the rbtree or the
1155  * callback function is running or it's in the state of being migrated
1156  * to another cpu.
1157  *
1158  * It is important for this function to not return a false negative.
1159  */
1160 bool hrtimer_active(const struct hrtimer *timer)
1161 {
1162 	struct hrtimer_cpu_base *cpu_base;
1163 	unsigned int seq;
1164 
1165 	do {
1166 		cpu_base = READ_ONCE(timer->base->cpu_base);
1167 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1168 
1169 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1170 		    cpu_base->running == timer)
1171 			return true;
1172 
1173 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1174 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1175 
1176 	return false;
1177 }
1178 EXPORT_SYMBOL_GPL(hrtimer_active);
1179 
1180 /*
1181  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1182  * distinct sections:
1183  *
1184  *  - queued:	the timer is queued
1185  *  - callback:	the timer is being ran
1186  *  - post:	the timer is inactive or (re)queued
1187  *
1188  * On the read side we ensure we observe timer->state and cpu_base->running
1189  * from the same section, if anything changed while we looked at it, we retry.
1190  * This includes timer->base changing because sequence numbers alone are
1191  * insufficient for that.
1192  *
1193  * The sequence numbers are required because otherwise we could still observe
1194  * a false negative if the read side got smeared over multiple consequtive
1195  * __run_hrtimer() invocations.
1196  */
1197 
1198 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1199 			  struct hrtimer_clock_base *base,
1200 			  struct hrtimer *timer, ktime_t *now)
1201 {
1202 	enum hrtimer_restart (*fn)(struct hrtimer *);
1203 	int restart;
1204 
1205 	lockdep_assert_held(&cpu_base->lock);
1206 
1207 	debug_deactivate(timer);
1208 	cpu_base->running = timer;
1209 
1210 	/*
1211 	 * Separate the ->running assignment from the ->state assignment.
1212 	 *
1213 	 * As with a regular write barrier, this ensures the read side in
1214 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1215 	 * timer->state == INACTIVE.
1216 	 */
1217 	raw_write_seqcount_barrier(&cpu_base->seq);
1218 
1219 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1220 	timer_stats_account_hrtimer(timer);
1221 	fn = timer->function;
1222 
1223 	/*
1224 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1225 	 * timer is restarted with a period then it becomes an absolute
1226 	 * timer. If its not restarted it does not matter.
1227 	 */
1228 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1229 		timer->is_rel = false;
1230 
1231 	/*
1232 	 * Because we run timers from hardirq context, there is no chance
1233 	 * they get migrated to another cpu, therefore its safe to unlock
1234 	 * the timer base.
1235 	 */
1236 	raw_spin_unlock(&cpu_base->lock);
1237 	trace_hrtimer_expire_entry(timer, now);
1238 	restart = fn(timer);
1239 	trace_hrtimer_expire_exit(timer);
1240 	raw_spin_lock(&cpu_base->lock);
1241 
1242 	/*
1243 	 * Note: We clear the running state after enqueue_hrtimer and
1244 	 * we do not reprogramm the event hardware. Happens either in
1245 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1246 	 *
1247 	 * Note: Because we dropped the cpu_base->lock above,
1248 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1249 	 * for us already.
1250 	 */
1251 	if (restart != HRTIMER_NORESTART &&
1252 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1253 		enqueue_hrtimer(timer, base);
1254 
1255 	/*
1256 	 * Separate the ->running assignment from the ->state assignment.
1257 	 *
1258 	 * As with a regular write barrier, this ensures the read side in
1259 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1260 	 * timer->state == INACTIVE.
1261 	 */
1262 	raw_write_seqcount_barrier(&cpu_base->seq);
1263 
1264 	WARN_ON_ONCE(cpu_base->running != timer);
1265 	cpu_base->running = NULL;
1266 }
1267 
1268 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1269 {
1270 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1271 	unsigned int active = cpu_base->active_bases;
1272 
1273 	for (; active; base++, active >>= 1) {
1274 		struct timerqueue_node *node;
1275 		ktime_t basenow;
1276 
1277 		if (!(active & 0x01))
1278 			continue;
1279 
1280 		basenow = ktime_add(now, base->offset);
1281 
1282 		while ((node = timerqueue_getnext(&base->active))) {
1283 			struct hrtimer *timer;
1284 
1285 			timer = container_of(node, struct hrtimer, node);
1286 
1287 			/*
1288 			 * The immediate goal for using the softexpires is
1289 			 * minimizing wakeups, not running timers at the
1290 			 * earliest interrupt after their soft expiration.
1291 			 * This allows us to avoid using a Priority Search
1292 			 * Tree, which can answer a stabbing querry for
1293 			 * overlapping intervals and instead use the simple
1294 			 * BST we already have.
1295 			 * We don't add extra wakeups by delaying timers that
1296 			 * are right-of a not yet expired timer, because that
1297 			 * timer will have to trigger a wakeup anyway.
1298 			 */
1299 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1300 				break;
1301 
1302 			__run_hrtimer(cpu_base, base, timer, &basenow);
1303 		}
1304 	}
1305 }
1306 
1307 #ifdef CONFIG_HIGH_RES_TIMERS
1308 
1309 /*
1310  * High resolution timer interrupt
1311  * Called with interrupts disabled
1312  */
1313 void hrtimer_interrupt(struct clock_event_device *dev)
1314 {
1315 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1316 	ktime_t expires_next, now, entry_time, delta;
1317 	int retries = 0;
1318 
1319 	BUG_ON(!cpu_base->hres_active);
1320 	cpu_base->nr_events++;
1321 	dev->next_event.tv64 = KTIME_MAX;
1322 
1323 	raw_spin_lock(&cpu_base->lock);
1324 	entry_time = now = hrtimer_update_base(cpu_base);
1325 retry:
1326 	cpu_base->in_hrtirq = 1;
1327 	/*
1328 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1329 	 * held to prevent that a timer is enqueued in our queue via
1330 	 * the migration code. This does not affect enqueueing of
1331 	 * timers which run their callback and need to be requeued on
1332 	 * this CPU.
1333 	 */
1334 	cpu_base->expires_next.tv64 = KTIME_MAX;
1335 
1336 	__hrtimer_run_queues(cpu_base, now);
1337 
1338 	/* Reevaluate the clock bases for the next expiry */
1339 	expires_next = __hrtimer_get_next_event(cpu_base);
1340 	/*
1341 	 * Store the new expiry value so the migration code can verify
1342 	 * against it.
1343 	 */
1344 	cpu_base->expires_next = expires_next;
1345 	cpu_base->in_hrtirq = 0;
1346 	raw_spin_unlock(&cpu_base->lock);
1347 
1348 	/* Reprogramming necessary ? */
1349 	if (!tick_program_event(expires_next, 0)) {
1350 		cpu_base->hang_detected = 0;
1351 		return;
1352 	}
1353 
1354 	/*
1355 	 * The next timer was already expired due to:
1356 	 * - tracing
1357 	 * - long lasting callbacks
1358 	 * - being scheduled away when running in a VM
1359 	 *
1360 	 * We need to prevent that we loop forever in the hrtimer
1361 	 * interrupt routine. We give it 3 attempts to avoid
1362 	 * overreacting on some spurious event.
1363 	 *
1364 	 * Acquire base lock for updating the offsets and retrieving
1365 	 * the current time.
1366 	 */
1367 	raw_spin_lock(&cpu_base->lock);
1368 	now = hrtimer_update_base(cpu_base);
1369 	cpu_base->nr_retries++;
1370 	if (++retries < 3)
1371 		goto retry;
1372 	/*
1373 	 * Give the system a chance to do something else than looping
1374 	 * here. We stored the entry time, so we know exactly how long
1375 	 * we spent here. We schedule the next event this amount of
1376 	 * time away.
1377 	 */
1378 	cpu_base->nr_hangs++;
1379 	cpu_base->hang_detected = 1;
1380 	raw_spin_unlock(&cpu_base->lock);
1381 	delta = ktime_sub(now, entry_time);
1382 	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1383 		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1384 	/*
1385 	 * Limit it to a sensible value as we enforce a longer
1386 	 * delay. Give the CPU at least 100ms to catch up.
1387 	 */
1388 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1389 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1390 	else
1391 		expires_next = ktime_add(now, delta);
1392 	tick_program_event(expires_next, 1);
1393 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1394 		    ktime_to_ns(delta));
1395 }
1396 
1397 /*
1398  * local version of hrtimer_peek_ahead_timers() called with interrupts
1399  * disabled.
1400  */
1401 static inline void __hrtimer_peek_ahead_timers(void)
1402 {
1403 	struct tick_device *td;
1404 
1405 	if (!hrtimer_hres_active())
1406 		return;
1407 
1408 	td = this_cpu_ptr(&tick_cpu_device);
1409 	if (td && td->evtdev)
1410 		hrtimer_interrupt(td->evtdev);
1411 }
1412 
1413 #else /* CONFIG_HIGH_RES_TIMERS */
1414 
1415 static inline void __hrtimer_peek_ahead_timers(void) { }
1416 
1417 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1418 
1419 /*
1420  * Called from run_local_timers in hardirq context every jiffy
1421  */
1422 void hrtimer_run_queues(void)
1423 {
1424 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1425 	ktime_t now;
1426 
1427 	if (__hrtimer_hres_active(cpu_base))
1428 		return;
1429 
1430 	/*
1431 	 * This _is_ ugly: We have to check periodically, whether we
1432 	 * can switch to highres and / or nohz mode. The clocksource
1433 	 * switch happens with xtime_lock held. Notification from
1434 	 * there only sets the check bit in the tick_oneshot code,
1435 	 * otherwise we might deadlock vs. xtime_lock.
1436 	 */
1437 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1438 		hrtimer_switch_to_hres();
1439 		return;
1440 	}
1441 
1442 	raw_spin_lock(&cpu_base->lock);
1443 	now = hrtimer_update_base(cpu_base);
1444 	__hrtimer_run_queues(cpu_base, now);
1445 	raw_spin_unlock(&cpu_base->lock);
1446 }
1447 
1448 /*
1449  * Sleep related functions:
1450  */
1451 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1452 {
1453 	struct hrtimer_sleeper *t =
1454 		container_of(timer, struct hrtimer_sleeper, timer);
1455 	struct task_struct *task = t->task;
1456 
1457 	t->task = NULL;
1458 	if (task)
1459 		wake_up_process(task);
1460 
1461 	return HRTIMER_NORESTART;
1462 }
1463 
1464 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1465 {
1466 	sl->timer.function = hrtimer_wakeup;
1467 	sl->task = task;
1468 }
1469 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1470 
1471 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1472 {
1473 	hrtimer_init_sleeper(t, current);
1474 
1475 	do {
1476 		set_current_state(TASK_INTERRUPTIBLE);
1477 		hrtimer_start_expires(&t->timer, mode);
1478 
1479 		if (likely(t->task))
1480 			freezable_schedule();
1481 
1482 		hrtimer_cancel(&t->timer);
1483 		mode = HRTIMER_MODE_ABS;
1484 
1485 	} while (t->task && !signal_pending(current));
1486 
1487 	__set_current_state(TASK_RUNNING);
1488 
1489 	return t->task == NULL;
1490 }
1491 
1492 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1493 {
1494 	struct timespec rmt;
1495 	ktime_t rem;
1496 
1497 	rem = hrtimer_expires_remaining(timer);
1498 	if (rem.tv64 <= 0)
1499 		return 0;
1500 	rmt = ktime_to_timespec(rem);
1501 
1502 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1503 		return -EFAULT;
1504 
1505 	return 1;
1506 }
1507 
1508 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1509 {
1510 	struct hrtimer_sleeper t;
1511 	struct timespec __user  *rmtp;
1512 	int ret = 0;
1513 
1514 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1515 				HRTIMER_MODE_ABS);
1516 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1517 
1518 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1519 		goto out;
1520 
1521 	rmtp = restart->nanosleep.rmtp;
1522 	if (rmtp) {
1523 		ret = update_rmtp(&t.timer, rmtp);
1524 		if (ret <= 0)
1525 			goto out;
1526 	}
1527 
1528 	/* The other values in restart are already filled in */
1529 	ret = -ERESTART_RESTARTBLOCK;
1530 out:
1531 	destroy_hrtimer_on_stack(&t.timer);
1532 	return ret;
1533 }
1534 
1535 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1536 		       const enum hrtimer_mode mode, const clockid_t clockid)
1537 {
1538 	struct restart_block *restart;
1539 	struct hrtimer_sleeper t;
1540 	int ret = 0;
1541 	u64 slack;
1542 
1543 	slack = current->timer_slack_ns;
1544 	if (dl_task(current) || rt_task(current))
1545 		slack = 0;
1546 
1547 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1548 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1549 	if (do_nanosleep(&t, mode))
1550 		goto out;
1551 
1552 	/* Absolute timers do not update the rmtp value and restart: */
1553 	if (mode == HRTIMER_MODE_ABS) {
1554 		ret = -ERESTARTNOHAND;
1555 		goto out;
1556 	}
1557 
1558 	if (rmtp) {
1559 		ret = update_rmtp(&t.timer, rmtp);
1560 		if (ret <= 0)
1561 			goto out;
1562 	}
1563 
1564 	restart = &current->restart_block;
1565 	restart->fn = hrtimer_nanosleep_restart;
1566 	restart->nanosleep.clockid = t.timer.base->clockid;
1567 	restart->nanosleep.rmtp = rmtp;
1568 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1569 
1570 	ret = -ERESTART_RESTARTBLOCK;
1571 out:
1572 	destroy_hrtimer_on_stack(&t.timer);
1573 	return ret;
1574 }
1575 
1576 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1577 		struct timespec __user *, rmtp)
1578 {
1579 	struct timespec tu;
1580 
1581 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1582 		return -EFAULT;
1583 
1584 	if (!timespec_valid(&tu))
1585 		return -EINVAL;
1586 
1587 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1588 }
1589 
1590 /*
1591  * Functions related to boot-time initialization:
1592  */
1593 static void init_hrtimers_cpu(int cpu)
1594 {
1595 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1596 	int i;
1597 
1598 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1599 		cpu_base->clock_base[i].cpu_base = cpu_base;
1600 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1601 	}
1602 
1603 	cpu_base->cpu = cpu;
1604 	hrtimer_init_hres(cpu_base);
1605 }
1606 
1607 #ifdef CONFIG_HOTPLUG_CPU
1608 
1609 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1610 				struct hrtimer_clock_base *new_base)
1611 {
1612 	struct hrtimer *timer;
1613 	struct timerqueue_node *node;
1614 
1615 	while ((node = timerqueue_getnext(&old_base->active))) {
1616 		timer = container_of(node, struct hrtimer, node);
1617 		BUG_ON(hrtimer_callback_running(timer));
1618 		debug_deactivate(timer);
1619 
1620 		/*
1621 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1622 		 * timer could be seen as !active and just vanish away
1623 		 * under us on another CPU
1624 		 */
1625 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1626 		timer->base = new_base;
1627 		/*
1628 		 * Enqueue the timers on the new cpu. This does not
1629 		 * reprogram the event device in case the timer
1630 		 * expires before the earliest on this CPU, but we run
1631 		 * hrtimer_interrupt after we migrated everything to
1632 		 * sort out already expired timers and reprogram the
1633 		 * event device.
1634 		 */
1635 		enqueue_hrtimer(timer, new_base);
1636 	}
1637 }
1638 
1639 static void migrate_hrtimers(int scpu)
1640 {
1641 	struct hrtimer_cpu_base *old_base, *new_base;
1642 	int i;
1643 
1644 	BUG_ON(cpu_online(scpu));
1645 	tick_cancel_sched_timer(scpu);
1646 
1647 	local_irq_disable();
1648 	old_base = &per_cpu(hrtimer_bases, scpu);
1649 	new_base = this_cpu_ptr(&hrtimer_bases);
1650 	/*
1651 	 * The caller is globally serialized and nobody else
1652 	 * takes two locks at once, deadlock is not possible.
1653 	 */
1654 	raw_spin_lock(&new_base->lock);
1655 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1656 
1657 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1658 		migrate_hrtimer_list(&old_base->clock_base[i],
1659 				     &new_base->clock_base[i]);
1660 	}
1661 
1662 	raw_spin_unlock(&old_base->lock);
1663 	raw_spin_unlock(&new_base->lock);
1664 
1665 	/* Check, if we got expired work to do */
1666 	__hrtimer_peek_ahead_timers();
1667 	local_irq_enable();
1668 }
1669 
1670 #endif /* CONFIG_HOTPLUG_CPU */
1671 
1672 static int hrtimer_cpu_notify(struct notifier_block *self,
1673 					unsigned long action, void *hcpu)
1674 {
1675 	int scpu = (long)hcpu;
1676 
1677 	switch (action) {
1678 
1679 	case CPU_UP_PREPARE:
1680 	case CPU_UP_PREPARE_FROZEN:
1681 		init_hrtimers_cpu(scpu);
1682 		break;
1683 
1684 #ifdef CONFIG_HOTPLUG_CPU
1685 	case CPU_DEAD:
1686 	case CPU_DEAD_FROZEN:
1687 		migrate_hrtimers(scpu);
1688 		break;
1689 #endif
1690 
1691 	default:
1692 		break;
1693 	}
1694 
1695 	return NOTIFY_OK;
1696 }
1697 
1698 static struct notifier_block hrtimers_nb = {
1699 	.notifier_call = hrtimer_cpu_notify,
1700 };
1701 
1702 void __init hrtimers_init(void)
1703 {
1704 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1705 			  (void *)(long)smp_processor_id());
1706 	register_cpu_notifier(&hrtimers_nb);
1707 }
1708 
1709 /**
1710  * schedule_hrtimeout_range_clock - sleep until timeout
1711  * @expires:	timeout value (ktime_t)
1712  * @delta:	slack in expires timeout (ktime_t)
1713  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1714  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1715  */
1716 int __sched
1717 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1718 			       const enum hrtimer_mode mode, int clock)
1719 {
1720 	struct hrtimer_sleeper t;
1721 
1722 	/*
1723 	 * Optimize when a zero timeout value is given. It does not
1724 	 * matter whether this is an absolute or a relative time.
1725 	 */
1726 	if (expires && !expires->tv64) {
1727 		__set_current_state(TASK_RUNNING);
1728 		return 0;
1729 	}
1730 
1731 	/*
1732 	 * A NULL parameter means "infinite"
1733 	 */
1734 	if (!expires) {
1735 		schedule();
1736 		return -EINTR;
1737 	}
1738 
1739 	hrtimer_init_on_stack(&t.timer, clock, mode);
1740 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1741 
1742 	hrtimer_init_sleeper(&t, current);
1743 
1744 	hrtimer_start_expires(&t.timer, mode);
1745 
1746 	if (likely(t.task))
1747 		schedule();
1748 
1749 	hrtimer_cancel(&t.timer);
1750 	destroy_hrtimer_on_stack(&t.timer);
1751 
1752 	__set_current_state(TASK_RUNNING);
1753 
1754 	return !t.task ? 0 : -EINTR;
1755 }
1756 
1757 /**
1758  * schedule_hrtimeout_range - sleep until timeout
1759  * @expires:	timeout value (ktime_t)
1760  * @delta:	slack in expires timeout (ktime_t)
1761  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1762  *
1763  * Make the current task sleep until the given expiry time has
1764  * elapsed. The routine will return immediately unless
1765  * the current task state has been set (see set_current_state()).
1766  *
1767  * The @delta argument gives the kernel the freedom to schedule the
1768  * actual wakeup to a time that is both power and performance friendly.
1769  * The kernel give the normal best effort behavior for "@expires+@delta",
1770  * but may decide to fire the timer earlier, but no earlier than @expires.
1771  *
1772  * You can set the task state as follows -
1773  *
1774  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1775  * pass before the routine returns.
1776  *
1777  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1778  * delivered to the current task.
1779  *
1780  * The current task state is guaranteed to be TASK_RUNNING when this
1781  * routine returns.
1782  *
1783  * Returns 0 when the timer has expired otherwise -EINTR
1784  */
1785 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1786 				     const enum hrtimer_mode mode)
1787 {
1788 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1789 					      CLOCK_MONOTONIC);
1790 }
1791 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1792 
1793 /**
1794  * schedule_hrtimeout - sleep until timeout
1795  * @expires:	timeout value (ktime_t)
1796  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1797  *
1798  * Make the current task sleep until the given expiry time has
1799  * elapsed. The routine will return immediately unless
1800  * the current task state has been set (see set_current_state()).
1801  *
1802  * You can set the task state as follows -
1803  *
1804  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1805  * pass before the routine returns.
1806  *
1807  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1808  * delivered to the current task.
1809  *
1810  * The current task state is guaranteed to be TASK_RUNNING when this
1811  * routine returns.
1812  *
1813  * Returns 0 when the timer has expired otherwise -EINTR
1814  */
1815 int __sched schedule_hrtimeout(ktime_t *expires,
1816 			       const enum hrtimer_mode mode)
1817 {
1818 	return schedule_hrtimeout_range(expires, 0, mode);
1819 }
1820 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1821