1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/tick.h> 43 #include <linux/seq_file.h> 44 #include <linux/err.h> 45 #include <linux/debugobjects.h> 46 #include <linux/sched.h> 47 #include <linux/sched/sysctl.h> 48 #include <linux/sched/rt.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/timer.h> 51 #include <linux/freezer.h> 52 53 #include <asm/uaccess.h> 54 55 #include <trace/events/timer.h> 56 57 #include "tick-internal.h" 58 59 /* 60 * The timer bases: 61 * 62 * There are more clockids then hrtimer bases. Thus, we index 63 * into the timer bases by the hrtimer_base_type enum. When trying 64 * to reach a base using a clockid, hrtimer_clockid_to_base() 65 * is used to convert from clockid to the proper hrtimer_base_type. 66 */ 67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 68 { 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 70 .seq = SEQCNT_ZERO(hrtimer_bases.seq), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 } 94 }; 95 96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 100 [CLOCK_TAI] = HRTIMER_BASE_TAI, 101 }; 102 103 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 104 { 105 return hrtimer_clock_to_base_table[clock_id]; 106 } 107 108 /* 109 * Functions and macros which are different for UP/SMP systems are kept in a 110 * single place 111 */ 112 #ifdef CONFIG_SMP 113 114 /* 115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 116 * such that hrtimer_callback_running() can unconditionally dereference 117 * timer->base->cpu_base 118 */ 119 static struct hrtimer_cpu_base migration_cpu_base = { 120 .seq = SEQCNT_ZERO(migration_cpu_base), 121 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 122 }; 123 124 #define migration_base migration_cpu_base.clock_base[0] 125 126 /* 127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 128 * means that all timers which are tied to this base via timer->base are 129 * locked, and the base itself is locked too. 130 * 131 * So __run_timers/migrate_timers can safely modify all timers which could 132 * be found on the lists/queues. 133 * 134 * When the timer's base is locked, and the timer removed from list, it is 135 * possible to set timer->base = &migration_base and drop the lock: the timer 136 * remains locked. 137 */ 138 static 139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 140 unsigned long *flags) 141 { 142 struct hrtimer_clock_base *base; 143 144 for (;;) { 145 base = timer->base; 146 if (likely(base != &migration_base)) { 147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 148 if (likely(base == timer->base)) 149 return base; 150 /* The timer has migrated to another CPU: */ 151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 152 } 153 cpu_relax(); 154 } 155 } 156 157 /* 158 * With HIGHRES=y we do not migrate the timer when it is expiring 159 * before the next event on the target cpu because we cannot reprogram 160 * the target cpu hardware and we would cause it to fire late. 161 * 162 * Called with cpu_base->lock of target cpu held. 163 */ 164 static int 165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 166 { 167 #ifdef CONFIG_HIGH_RES_TIMERS 168 ktime_t expires; 169 170 if (!new_base->cpu_base->hres_active) 171 return 0; 172 173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64; 175 #else 176 return 0; 177 #endif 178 } 179 180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 181 static inline 182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 183 int pinned) 184 { 185 if (pinned || !base->migration_enabled) 186 return this_cpu_ptr(&hrtimer_bases); 187 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 188 } 189 #else 190 static inline 191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 192 int pinned) 193 { 194 return this_cpu_ptr(&hrtimer_bases); 195 } 196 #endif 197 198 /* 199 * Switch the timer base to the current CPU when possible. 200 */ 201 static inline struct hrtimer_clock_base * 202 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 203 int pinned) 204 { 205 struct hrtimer_cpu_base *new_cpu_base, *this_base; 206 struct hrtimer_clock_base *new_base; 207 int basenum = base->index; 208 209 this_base = this_cpu_ptr(&hrtimer_bases); 210 new_cpu_base = get_target_base(this_base, pinned); 211 again: 212 new_base = &new_cpu_base->clock_base[basenum]; 213 214 if (base != new_base) { 215 /* 216 * We are trying to move timer to new_base. 217 * However we can't change timer's base while it is running, 218 * so we keep it on the same CPU. No hassle vs. reprogramming 219 * the event source in the high resolution case. The softirq 220 * code will take care of this when the timer function has 221 * completed. There is no conflict as we hold the lock until 222 * the timer is enqueued. 223 */ 224 if (unlikely(hrtimer_callback_running(timer))) 225 return base; 226 227 /* See the comment in lock_hrtimer_base() */ 228 timer->base = &migration_base; 229 raw_spin_unlock(&base->cpu_base->lock); 230 raw_spin_lock(&new_base->cpu_base->lock); 231 232 if (new_cpu_base != this_base && 233 hrtimer_check_target(timer, new_base)) { 234 raw_spin_unlock(&new_base->cpu_base->lock); 235 raw_spin_lock(&base->cpu_base->lock); 236 new_cpu_base = this_base; 237 timer->base = base; 238 goto again; 239 } 240 timer->base = new_base; 241 } else { 242 if (new_cpu_base != this_base && 243 hrtimer_check_target(timer, new_base)) { 244 new_cpu_base = this_base; 245 goto again; 246 } 247 } 248 return new_base; 249 } 250 251 #else /* CONFIG_SMP */ 252 253 static inline struct hrtimer_clock_base * 254 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 255 { 256 struct hrtimer_clock_base *base = timer->base; 257 258 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 259 260 return base; 261 } 262 263 # define switch_hrtimer_base(t, b, p) (b) 264 265 #endif /* !CONFIG_SMP */ 266 267 /* 268 * Functions for the union type storage format of ktime_t which are 269 * too large for inlining: 270 */ 271 #if BITS_PER_LONG < 64 272 /* 273 * Divide a ktime value by a nanosecond value 274 */ 275 s64 __ktime_divns(const ktime_t kt, s64 div) 276 { 277 int sft = 0; 278 s64 dclc; 279 u64 tmp; 280 281 dclc = ktime_to_ns(kt); 282 tmp = dclc < 0 ? -dclc : dclc; 283 284 /* Make sure the divisor is less than 2^32: */ 285 while (div >> 32) { 286 sft++; 287 div >>= 1; 288 } 289 tmp >>= sft; 290 do_div(tmp, (unsigned long) div); 291 return dclc < 0 ? -tmp : tmp; 292 } 293 EXPORT_SYMBOL_GPL(__ktime_divns); 294 #endif /* BITS_PER_LONG >= 64 */ 295 296 /* 297 * Add two ktime values and do a safety check for overflow: 298 */ 299 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 300 { 301 ktime_t res = ktime_add(lhs, rhs); 302 303 /* 304 * We use KTIME_SEC_MAX here, the maximum timeout which we can 305 * return to user space in a timespec: 306 */ 307 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) 308 res = ktime_set(KTIME_SEC_MAX, 0); 309 310 return res; 311 } 312 313 EXPORT_SYMBOL_GPL(ktime_add_safe); 314 315 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 316 317 static struct debug_obj_descr hrtimer_debug_descr; 318 319 static void *hrtimer_debug_hint(void *addr) 320 { 321 return ((struct hrtimer *) addr)->function; 322 } 323 324 /* 325 * fixup_init is called when: 326 * - an active object is initialized 327 */ 328 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) 329 { 330 struct hrtimer *timer = addr; 331 332 switch (state) { 333 case ODEBUG_STATE_ACTIVE: 334 hrtimer_cancel(timer); 335 debug_object_init(timer, &hrtimer_debug_descr); 336 return 1; 337 default: 338 return 0; 339 } 340 } 341 342 /* 343 * fixup_activate is called when: 344 * - an active object is activated 345 * - an unknown object is activated (might be a statically initialized object) 346 */ 347 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 348 { 349 switch (state) { 350 351 case ODEBUG_STATE_NOTAVAILABLE: 352 WARN_ON_ONCE(1); 353 return 0; 354 355 case ODEBUG_STATE_ACTIVE: 356 WARN_ON(1); 357 358 default: 359 return 0; 360 } 361 } 362 363 /* 364 * fixup_free is called when: 365 * - an active object is freed 366 */ 367 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) 368 { 369 struct hrtimer *timer = addr; 370 371 switch (state) { 372 case ODEBUG_STATE_ACTIVE: 373 hrtimer_cancel(timer); 374 debug_object_free(timer, &hrtimer_debug_descr); 375 return 1; 376 default: 377 return 0; 378 } 379 } 380 381 static struct debug_obj_descr hrtimer_debug_descr = { 382 .name = "hrtimer", 383 .debug_hint = hrtimer_debug_hint, 384 .fixup_init = hrtimer_fixup_init, 385 .fixup_activate = hrtimer_fixup_activate, 386 .fixup_free = hrtimer_fixup_free, 387 }; 388 389 static inline void debug_hrtimer_init(struct hrtimer *timer) 390 { 391 debug_object_init(timer, &hrtimer_debug_descr); 392 } 393 394 static inline void debug_hrtimer_activate(struct hrtimer *timer) 395 { 396 debug_object_activate(timer, &hrtimer_debug_descr); 397 } 398 399 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 400 { 401 debug_object_deactivate(timer, &hrtimer_debug_descr); 402 } 403 404 static inline void debug_hrtimer_free(struct hrtimer *timer) 405 { 406 debug_object_free(timer, &hrtimer_debug_descr); 407 } 408 409 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 410 enum hrtimer_mode mode); 411 412 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 413 enum hrtimer_mode mode) 414 { 415 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 416 __hrtimer_init(timer, clock_id, mode); 417 } 418 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 419 420 void destroy_hrtimer_on_stack(struct hrtimer *timer) 421 { 422 debug_object_free(timer, &hrtimer_debug_descr); 423 } 424 425 #else 426 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 427 static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 428 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 429 #endif 430 431 static inline void 432 debug_init(struct hrtimer *timer, clockid_t clockid, 433 enum hrtimer_mode mode) 434 { 435 debug_hrtimer_init(timer); 436 trace_hrtimer_init(timer, clockid, mode); 437 } 438 439 static inline void debug_activate(struct hrtimer *timer) 440 { 441 debug_hrtimer_activate(timer); 442 trace_hrtimer_start(timer); 443 } 444 445 static inline void debug_deactivate(struct hrtimer *timer) 446 { 447 debug_hrtimer_deactivate(timer); 448 trace_hrtimer_cancel(timer); 449 } 450 451 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 452 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base, 453 struct hrtimer *timer) 454 { 455 #ifdef CONFIG_HIGH_RES_TIMERS 456 cpu_base->next_timer = timer; 457 #endif 458 } 459 460 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base) 461 { 462 struct hrtimer_clock_base *base = cpu_base->clock_base; 463 ktime_t expires, expires_next = { .tv64 = KTIME_MAX }; 464 unsigned int active = cpu_base->active_bases; 465 466 hrtimer_update_next_timer(cpu_base, NULL); 467 for (; active; base++, active >>= 1) { 468 struct timerqueue_node *next; 469 struct hrtimer *timer; 470 471 if (!(active & 0x01)) 472 continue; 473 474 next = timerqueue_getnext(&base->active); 475 timer = container_of(next, struct hrtimer, node); 476 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 477 if (expires.tv64 < expires_next.tv64) { 478 expires_next = expires; 479 hrtimer_update_next_timer(cpu_base, timer); 480 } 481 } 482 /* 483 * clock_was_set() might have changed base->offset of any of 484 * the clock bases so the result might be negative. Fix it up 485 * to prevent a false positive in clockevents_program_event(). 486 */ 487 if (expires_next.tv64 < 0) 488 expires_next.tv64 = 0; 489 return expires_next; 490 } 491 #endif 492 493 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 494 { 495 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 496 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 497 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 498 499 return ktime_get_update_offsets_now(&base->clock_was_set_seq, 500 offs_real, offs_boot, offs_tai); 501 } 502 503 /* High resolution timer related functions */ 504 #ifdef CONFIG_HIGH_RES_TIMERS 505 506 /* 507 * High resolution timer enabled ? 508 */ 509 static int hrtimer_hres_enabled __read_mostly = 1; 510 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 511 EXPORT_SYMBOL_GPL(hrtimer_resolution); 512 513 /* 514 * Enable / Disable high resolution mode 515 */ 516 static int __init setup_hrtimer_hres(char *str) 517 { 518 if (!strcmp(str, "off")) 519 hrtimer_hres_enabled = 0; 520 else if (!strcmp(str, "on")) 521 hrtimer_hres_enabled = 1; 522 else 523 return 0; 524 return 1; 525 } 526 527 __setup("highres=", setup_hrtimer_hres); 528 529 /* 530 * hrtimer_high_res_enabled - query, if the highres mode is enabled 531 */ 532 static inline int hrtimer_is_hres_enabled(void) 533 { 534 return hrtimer_hres_enabled; 535 } 536 537 /* 538 * Is the high resolution mode active ? 539 */ 540 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 541 { 542 return cpu_base->hres_active; 543 } 544 545 static inline int hrtimer_hres_active(void) 546 { 547 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 548 } 549 550 /* 551 * Reprogram the event source with checking both queues for the 552 * next event 553 * Called with interrupts disabled and base->lock held 554 */ 555 static void 556 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 557 { 558 ktime_t expires_next; 559 560 if (!cpu_base->hres_active) 561 return; 562 563 expires_next = __hrtimer_get_next_event(cpu_base); 564 565 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) 566 return; 567 568 cpu_base->expires_next.tv64 = expires_next.tv64; 569 570 /* 571 * If a hang was detected in the last timer interrupt then we 572 * leave the hang delay active in the hardware. We want the 573 * system to make progress. That also prevents the following 574 * scenario: 575 * T1 expires 50ms from now 576 * T2 expires 5s from now 577 * 578 * T1 is removed, so this code is called and would reprogram 579 * the hardware to 5s from now. Any hrtimer_start after that 580 * will not reprogram the hardware due to hang_detected being 581 * set. So we'd effectivly block all timers until the T2 event 582 * fires. 583 */ 584 if (cpu_base->hang_detected) 585 return; 586 587 tick_program_event(cpu_base->expires_next, 1); 588 } 589 590 /* 591 * When a timer is enqueued and expires earlier than the already enqueued 592 * timers, we have to check, whether it expires earlier than the timer for 593 * which the clock event device was armed. 594 * 595 * Called with interrupts disabled and base->cpu_base.lock held 596 */ 597 static void hrtimer_reprogram(struct hrtimer *timer, 598 struct hrtimer_clock_base *base) 599 { 600 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 601 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 602 603 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 604 605 /* 606 * If the timer is not on the current cpu, we cannot reprogram 607 * the other cpus clock event device. 608 */ 609 if (base->cpu_base != cpu_base) 610 return; 611 612 /* 613 * If the hrtimer interrupt is running, then it will 614 * reevaluate the clock bases and reprogram the clock event 615 * device. The callbacks are always executed in hard interrupt 616 * context so we don't need an extra check for a running 617 * callback. 618 */ 619 if (cpu_base->in_hrtirq) 620 return; 621 622 /* 623 * CLOCK_REALTIME timer might be requested with an absolute 624 * expiry time which is less than base->offset. Set it to 0. 625 */ 626 if (expires.tv64 < 0) 627 expires.tv64 = 0; 628 629 if (expires.tv64 >= cpu_base->expires_next.tv64) 630 return; 631 632 /* Update the pointer to the next expiring timer */ 633 cpu_base->next_timer = timer; 634 635 /* 636 * If a hang was detected in the last timer interrupt then we 637 * do not schedule a timer which is earlier than the expiry 638 * which we enforced in the hang detection. We want the system 639 * to make progress. 640 */ 641 if (cpu_base->hang_detected) 642 return; 643 644 /* 645 * Program the timer hardware. We enforce the expiry for 646 * events which are already in the past. 647 */ 648 cpu_base->expires_next = expires; 649 tick_program_event(expires, 1); 650 } 651 652 /* 653 * Initialize the high resolution related parts of cpu_base 654 */ 655 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 656 { 657 base->expires_next.tv64 = KTIME_MAX; 658 base->hres_active = 0; 659 } 660 661 /* 662 * Retrigger next event is called after clock was set 663 * 664 * Called with interrupts disabled via on_each_cpu() 665 */ 666 static void retrigger_next_event(void *arg) 667 { 668 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 669 670 if (!base->hres_active) 671 return; 672 673 raw_spin_lock(&base->lock); 674 hrtimer_update_base(base); 675 hrtimer_force_reprogram(base, 0); 676 raw_spin_unlock(&base->lock); 677 } 678 679 /* 680 * Switch to high resolution mode 681 */ 682 static int hrtimer_switch_to_hres(void) 683 { 684 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 685 686 if (tick_init_highres()) { 687 printk(KERN_WARNING "Could not switch to high resolution " 688 "mode on CPU %d\n", base->cpu); 689 return 0; 690 } 691 base->hres_active = 1; 692 hrtimer_resolution = HIGH_RES_NSEC; 693 694 tick_setup_sched_timer(); 695 /* "Retrigger" the interrupt to get things going */ 696 retrigger_next_event(NULL); 697 return 1; 698 } 699 700 static void clock_was_set_work(struct work_struct *work) 701 { 702 clock_was_set(); 703 } 704 705 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 706 707 /* 708 * Called from timekeeping and resume code to reprogramm the hrtimer 709 * interrupt device on all cpus. 710 */ 711 void clock_was_set_delayed(void) 712 { 713 schedule_work(&hrtimer_work); 714 } 715 716 #else 717 718 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; } 719 static inline int hrtimer_hres_active(void) { return 0; } 720 static inline int hrtimer_is_hres_enabled(void) { return 0; } 721 static inline int hrtimer_switch_to_hres(void) { return 0; } 722 static inline void 723 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } 724 static inline int hrtimer_reprogram(struct hrtimer *timer, 725 struct hrtimer_clock_base *base) 726 { 727 return 0; 728 } 729 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 730 static inline void retrigger_next_event(void *arg) { } 731 732 #endif /* CONFIG_HIGH_RES_TIMERS */ 733 734 /* 735 * Clock realtime was set 736 * 737 * Change the offset of the realtime clock vs. the monotonic 738 * clock. 739 * 740 * We might have to reprogram the high resolution timer interrupt. On 741 * SMP we call the architecture specific code to retrigger _all_ high 742 * resolution timer interrupts. On UP we just disable interrupts and 743 * call the high resolution interrupt code. 744 */ 745 void clock_was_set(void) 746 { 747 #ifdef CONFIG_HIGH_RES_TIMERS 748 /* Retrigger the CPU local events everywhere */ 749 on_each_cpu(retrigger_next_event, NULL, 1); 750 #endif 751 timerfd_clock_was_set(); 752 } 753 754 /* 755 * During resume we might have to reprogram the high resolution timer 756 * interrupt on all online CPUs. However, all other CPUs will be 757 * stopped with IRQs interrupts disabled so the clock_was_set() call 758 * must be deferred. 759 */ 760 void hrtimers_resume(void) 761 { 762 WARN_ONCE(!irqs_disabled(), 763 KERN_INFO "hrtimers_resume() called with IRQs enabled!"); 764 765 /* Retrigger on the local CPU */ 766 retrigger_next_event(NULL); 767 /* And schedule a retrigger for all others */ 768 clock_was_set_delayed(); 769 } 770 771 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) 772 { 773 #ifdef CONFIG_TIMER_STATS 774 if (timer->start_site) 775 return; 776 timer->start_site = __builtin_return_address(0); 777 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 778 timer->start_pid = current->pid; 779 #endif 780 } 781 782 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) 783 { 784 #ifdef CONFIG_TIMER_STATS 785 timer->start_site = NULL; 786 #endif 787 } 788 789 static inline void timer_stats_account_hrtimer(struct hrtimer *timer) 790 { 791 #ifdef CONFIG_TIMER_STATS 792 if (likely(!timer_stats_active)) 793 return; 794 timer_stats_update_stats(timer, timer->start_pid, timer->start_site, 795 timer->function, timer->start_comm, 0); 796 #endif 797 } 798 799 /* 800 * Counterpart to lock_hrtimer_base above: 801 */ 802 static inline 803 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 804 { 805 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 806 } 807 808 /** 809 * hrtimer_forward - forward the timer expiry 810 * @timer: hrtimer to forward 811 * @now: forward past this time 812 * @interval: the interval to forward 813 * 814 * Forward the timer expiry so it will expire in the future. 815 * Returns the number of overruns. 816 * 817 * Can be safely called from the callback function of @timer. If 818 * called from other contexts @timer must neither be enqueued nor 819 * running the callback and the caller needs to take care of 820 * serialization. 821 * 822 * Note: This only updates the timer expiry value and does not requeue 823 * the timer. 824 */ 825 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 826 { 827 u64 orun = 1; 828 ktime_t delta; 829 830 delta = ktime_sub(now, hrtimer_get_expires(timer)); 831 832 if (delta.tv64 < 0) 833 return 0; 834 835 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 836 return 0; 837 838 if (interval.tv64 < hrtimer_resolution) 839 interval.tv64 = hrtimer_resolution; 840 841 if (unlikely(delta.tv64 >= interval.tv64)) { 842 s64 incr = ktime_to_ns(interval); 843 844 orun = ktime_divns(delta, incr); 845 hrtimer_add_expires_ns(timer, incr * orun); 846 if (hrtimer_get_expires_tv64(timer) > now.tv64) 847 return orun; 848 /* 849 * This (and the ktime_add() below) is the 850 * correction for exact: 851 */ 852 orun++; 853 } 854 hrtimer_add_expires(timer, interval); 855 856 return orun; 857 } 858 EXPORT_SYMBOL_GPL(hrtimer_forward); 859 860 /* 861 * enqueue_hrtimer - internal function to (re)start a timer 862 * 863 * The timer is inserted in expiry order. Insertion into the 864 * red black tree is O(log(n)). Must hold the base lock. 865 * 866 * Returns 1 when the new timer is the leftmost timer in the tree. 867 */ 868 static int enqueue_hrtimer(struct hrtimer *timer, 869 struct hrtimer_clock_base *base) 870 { 871 debug_activate(timer); 872 873 base->cpu_base->active_bases |= 1 << base->index; 874 875 timer->state = HRTIMER_STATE_ENQUEUED; 876 877 return timerqueue_add(&base->active, &timer->node); 878 } 879 880 /* 881 * __remove_hrtimer - internal function to remove a timer 882 * 883 * Caller must hold the base lock. 884 * 885 * High resolution timer mode reprograms the clock event device when the 886 * timer is the one which expires next. The caller can disable this by setting 887 * reprogram to zero. This is useful, when the context does a reprogramming 888 * anyway (e.g. timer interrupt) 889 */ 890 static void __remove_hrtimer(struct hrtimer *timer, 891 struct hrtimer_clock_base *base, 892 unsigned long newstate, int reprogram) 893 { 894 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 895 unsigned int state = timer->state; 896 897 timer->state = newstate; 898 if (!(state & HRTIMER_STATE_ENQUEUED)) 899 return; 900 901 if (!timerqueue_del(&base->active, &timer->node)) 902 cpu_base->active_bases &= ~(1 << base->index); 903 904 #ifdef CONFIG_HIGH_RES_TIMERS 905 /* 906 * Note: If reprogram is false we do not update 907 * cpu_base->next_timer. This happens when we remove the first 908 * timer on a remote cpu. No harm as we never dereference 909 * cpu_base->next_timer. So the worst thing what can happen is 910 * an superflous call to hrtimer_force_reprogram() on the 911 * remote cpu later on if the same timer gets enqueued again. 912 */ 913 if (reprogram && timer == cpu_base->next_timer) 914 hrtimer_force_reprogram(cpu_base, 1); 915 #endif 916 } 917 918 /* 919 * remove hrtimer, called with base lock held 920 */ 921 static inline int 922 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 923 { 924 if (hrtimer_is_queued(timer)) { 925 unsigned long state = timer->state; 926 int reprogram; 927 928 /* 929 * Remove the timer and force reprogramming when high 930 * resolution mode is active and the timer is on the current 931 * CPU. If we remove a timer on another CPU, reprogramming is 932 * skipped. The interrupt event on this CPU is fired and 933 * reprogramming happens in the interrupt handler. This is a 934 * rare case and less expensive than a smp call. 935 */ 936 debug_deactivate(timer); 937 timer_stats_hrtimer_clear_start_info(timer); 938 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 939 940 if (!restart) 941 state = HRTIMER_STATE_INACTIVE; 942 943 __remove_hrtimer(timer, base, state, reprogram); 944 return 1; 945 } 946 return 0; 947 } 948 949 /** 950 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 951 * @timer: the timer to be added 952 * @tim: expiry time 953 * @delta_ns: "slack" range for the timer 954 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 955 * relative (HRTIMER_MODE_REL) 956 */ 957 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 958 unsigned long delta_ns, const enum hrtimer_mode mode) 959 { 960 struct hrtimer_clock_base *base, *new_base; 961 unsigned long flags; 962 int leftmost; 963 964 base = lock_hrtimer_base(timer, &flags); 965 966 /* Remove an active timer from the queue: */ 967 remove_hrtimer(timer, base, true); 968 969 if (mode & HRTIMER_MODE_REL) { 970 tim = ktime_add_safe(tim, base->get_time()); 971 /* 972 * CONFIG_TIME_LOW_RES is a temporary way for architectures 973 * to signal that they simply return xtime in 974 * do_gettimeoffset(). In this case we want to round up by 975 * resolution when starting a relative timer, to avoid short 976 * timeouts. This will go away with the GTOD framework. 977 */ 978 #ifdef CONFIG_TIME_LOW_RES 979 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution)); 980 #endif 981 } 982 983 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 984 985 /* Switch the timer base, if necessary: */ 986 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 987 988 timer_stats_hrtimer_set_start_info(timer); 989 990 leftmost = enqueue_hrtimer(timer, new_base); 991 if (!leftmost) 992 goto unlock; 993 994 if (!hrtimer_is_hres_active(timer)) { 995 /* 996 * Kick to reschedule the next tick to handle the new timer 997 * on dynticks target. 998 */ 999 if (new_base->cpu_base->nohz_active) 1000 wake_up_nohz_cpu(new_base->cpu_base->cpu); 1001 } else { 1002 hrtimer_reprogram(timer, new_base); 1003 } 1004 unlock: 1005 unlock_hrtimer_base(timer, &flags); 1006 } 1007 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1008 1009 /** 1010 * hrtimer_try_to_cancel - try to deactivate a timer 1011 * @timer: hrtimer to stop 1012 * 1013 * Returns: 1014 * 0 when the timer was not active 1015 * 1 when the timer was active 1016 * -1 when the timer is currently excuting the callback function and 1017 * cannot be stopped 1018 */ 1019 int hrtimer_try_to_cancel(struct hrtimer *timer) 1020 { 1021 struct hrtimer_clock_base *base; 1022 unsigned long flags; 1023 int ret = -1; 1024 1025 /* 1026 * Check lockless first. If the timer is not active (neither 1027 * enqueued nor running the callback, nothing to do here. The 1028 * base lock does not serialize against a concurrent enqueue, 1029 * so we can avoid taking it. 1030 */ 1031 if (!hrtimer_active(timer)) 1032 return 0; 1033 1034 base = lock_hrtimer_base(timer, &flags); 1035 1036 if (!hrtimer_callback_running(timer)) 1037 ret = remove_hrtimer(timer, base, false); 1038 1039 unlock_hrtimer_base(timer, &flags); 1040 1041 return ret; 1042 1043 } 1044 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1045 1046 /** 1047 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1048 * @timer: the timer to be cancelled 1049 * 1050 * Returns: 1051 * 0 when the timer was not active 1052 * 1 when the timer was active 1053 */ 1054 int hrtimer_cancel(struct hrtimer *timer) 1055 { 1056 for (;;) { 1057 int ret = hrtimer_try_to_cancel(timer); 1058 1059 if (ret >= 0) 1060 return ret; 1061 cpu_relax(); 1062 } 1063 } 1064 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1065 1066 /** 1067 * hrtimer_get_remaining - get remaining time for the timer 1068 * @timer: the timer to read 1069 */ 1070 ktime_t hrtimer_get_remaining(const struct hrtimer *timer) 1071 { 1072 unsigned long flags; 1073 ktime_t rem; 1074 1075 lock_hrtimer_base(timer, &flags); 1076 rem = hrtimer_expires_remaining(timer); 1077 unlock_hrtimer_base(timer, &flags); 1078 1079 return rem; 1080 } 1081 EXPORT_SYMBOL_GPL(hrtimer_get_remaining); 1082 1083 #ifdef CONFIG_NO_HZ_COMMON 1084 /** 1085 * hrtimer_get_next_event - get the time until next expiry event 1086 * 1087 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1088 */ 1089 u64 hrtimer_get_next_event(void) 1090 { 1091 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1092 u64 expires = KTIME_MAX; 1093 unsigned long flags; 1094 1095 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1096 1097 if (!__hrtimer_hres_active(cpu_base)) 1098 expires = __hrtimer_get_next_event(cpu_base).tv64; 1099 1100 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1101 1102 return expires; 1103 } 1104 #endif 1105 1106 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1107 enum hrtimer_mode mode) 1108 { 1109 struct hrtimer_cpu_base *cpu_base; 1110 int base; 1111 1112 memset(timer, 0, sizeof(struct hrtimer)); 1113 1114 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1115 1116 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1117 clock_id = CLOCK_MONOTONIC; 1118 1119 base = hrtimer_clockid_to_base(clock_id); 1120 timer->base = &cpu_base->clock_base[base]; 1121 timerqueue_init(&timer->node); 1122 1123 #ifdef CONFIG_TIMER_STATS 1124 timer->start_site = NULL; 1125 timer->start_pid = -1; 1126 memset(timer->start_comm, 0, TASK_COMM_LEN); 1127 #endif 1128 } 1129 1130 /** 1131 * hrtimer_init - initialize a timer to the given clock 1132 * @timer: the timer to be initialized 1133 * @clock_id: the clock to be used 1134 * @mode: timer mode abs/rel 1135 */ 1136 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1137 enum hrtimer_mode mode) 1138 { 1139 debug_init(timer, clock_id, mode); 1140 __hrtimer_init(timer, clock_id, mode); 1141 } 1142 EXPORT_SYMBOL_GPL(hrtimer_init); 1143 1144 /* 1145 * A timer is active, when it is enqueued into the rbtree or the 1146 * callback function is running or it's in the state of being migrated 1147 * to another cpu. 1148 * 1149 * It is important for this function to not return a false negative. 1150 */ 1151 bool hrtimer_active(const struct hrtimer *timer) 1152 { 1153 struct hrtimer_cpu_base *cpu_base; 1154 unsigned int seq; 1155 1156 do { 1157 cpu_base = READ_ONCE(timer->base->cpu_base); 1158 seq = raw_read_seqcount_begin(&cpu_base->seq); 1159 1160 if (timer->state != HRTIMER_STATE_INACTIVE || 1161 cpu_base->running == timer) 1162 return true; 1163 1164 } while (read_seqcount_retry(&cpu_base->seq, seq) || 1165 cpu_base != READ_ONCE(timer->base->cpu_base)); 1166 1167 return false; 1168 } 1169 EXPORT_SYMBOL_GPL(hrtimer_active); 1170 1171 /* 1172 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1173 * distinct sections: 1174 * 1175 * - queued: the timer is queued 1176 * - callback: the timer is being ran 1177 * - post: the timer is inactive or (re)queued 1178 * 1179 * On the read side we ensure we observe timer->state and cpu_base->running 1180 * from the same section, if anything changed while we looked at it, we retry. 1181 * This includes timer->base changing because sequence numbers alone are 1182 * insufficient for that. 1183 * 1184 * The sequence numbers are required because otherwise we could still observe 1185 * a false negative if the read side got smeared over multiple consequtive 1186 * __run_hrtimer() invocations. 1187 */ 1188 1189 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1190 struct hrtimer_clock_base *base, 1191 struct hrtimer *timer, ktime_t *now) 1192 { 1193 enum hrtimer_restart (*fn)(struct hrtimer *); 1194 int restart; 1195 1196 lockdep_assert_held(&cpu_base->lock); 1197 1198 debug_deactivate(timer); 1199 cpu_base->running = timer; 1200 1201 /* 1202 * Separate the ->running assignment from the ->state assignment. 1203 * 1204 * As with a regular write barrier, this ensures the read side in 1205 * hrtimer_active() cannot observe cpu_base->running == NULL && 1206 * timer->state == INACTIVE. 1207 */ 1208 raw_write_seqcount_barrier(&cpu_base->seq); 1209 1210 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1211 timer_stats_account_hrtimer(timer); 1212 fn = timer->function; 1213 1214 /* 1215 * Because we run timers from hardirq context, there is no chance 1216 * they get migrated to another cpu, therefore its safe to unlock 1217 * the timer base. 1218 */ 1219 raw_spin_unlock(&cpu_base->lock); 1220 trace_hrtimer_expire_entry(timer, now); 1221 restart = fn(timer); 1222 trace_hrtimer_expire_exit(timer); 1223 raw_spin_lock(&cpu_base->lock); 1224 1225 /* 1226 * Note: We clear the running state after enqueue_hrtimer and 1227 * we do not reprogramm the event hardware. Happens either in 1228 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1229 * 1230 * Note: Because we dropped the cpu_base->lock above, 1231 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1232 * for us already. 1233 */ 1234 if (restart != HRTIMER_NORESTART && 1235 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1236 enqueue_hrtimer(timer, base); 1237 1238 /* 1239 * Separate the ->running assignment from the ->state assignment. 1240 * 1241 * As with a regular write barrier, this ensures the read side in 1242 * hrtimer_active() cannot observe cpu_base->running == NULL && 1243 * timer->state == INACTIVE. 1244 */ 1245 raw_write_seqcount_barrier(&cpu_base->seq); 1246 1247 WARN_ON_ONCE(cpu_base->running != timer); 1248 cpu_base->running = NULL; 1249 } 1250 1251 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now) 1252 { 1253 struct hrtimer_clock_base *base = cpu_base->clock_base; 1254 unsigned int active = cpu_base->active_bases; 1255 1256 for (; active; base++, active >>= 1) { 1257 struct timerqueue_node *node; 1258 ktime_t basenow; 1259 1260 if (!(active & 0x01)) 1261 continue; 1262 1263 basenow = ktime_add(now, base->offset); 1264 1265 while ((node = timerqueue_getnext(&base->active))) { 1266 struct hrtimer *timer; 1267 1268 timer = container_of(node, struct hrtimer, node); 1269 1270 /* 1271 * The immediate goal for using the softexpires is 1272 * minimizing wakeups, not running timers at the 1273 * earliest interrupt after their soft expiration. 1274 * This allows us to avoid using a Priority Search 1275 * Tree, which can answer a stabbing querry for 1276 * overlapping intervals and instead use the simple 1277 * BST we already have. 1278 * We don't add extra wakeups by delaying timers that 1279 * are right-of a not yet expired timer, because that 1280 * timer will have to trigger a wakeup anyway. 1281 */ 1282 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) 1283 break; 1284 1285 __run_hrtimer(cpu_base, base, timer, &basenow); 1286 } 1287 } 1288 } 1289 1290 #ifdef CONFIG_HIGH_RES_TIMERS 1291 1292 /* 1293 * High resolution timer interrupt 1294 * Called with interrupts disabled 1295 */ 1296 void hrtimer_interrupt(struct clock_event_device *dev) 1297 { 1298 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1299 ktime_t expires_next, now, entry_time, delta; 1300 int retries = 0; 1301 1302 BUG_ON(!cpu_base->hres_active); 1303 cpu_base->nr_events++; 1304 dev->next_event.tv64 = KTIME_MAX; 1305 1306 raw_spin_lock(&cpu_base->lock); 1307 entry_time = now = hrtimer_update_base(cpu_base); 1308 retry: 1309 cpu_base->in_hrtirq = 1; 1310 /* 1311 * We set expires_next to KTIME_MAX here with cpu_base->lock 1312 * held to prevent that a timer is enqueued in our queue via 1313 * the migration code. This does not affect enqueueing of 1314 * timers which run their callback and need to be requeued on 1315 * this CPU. 1316 */ 1317 cpu_base->expires_next.tv64 = KTIME_MAX; 1318 1319 __hrtimer_run_queues(cpu_base, now); 1320 1321 /* Reevaluate the clock bases for the next expiry */ 1322 expires_next = __hrtimer_get_next_event(cpu_base); 1323 /* 1324 * Store the new expiry value so the migration code can verify 1325 * against it. 1326 */ 1327 cpu_base->expires_next = expires_next; 1328 cpu_base->in_hrtirq = 0; 1329 raw_spin_unlock(&cpu_base->lock); 1330 1331 /* Reprogramming necessary ? */ 1332 if (!tick_program_event(expires_next, 0)) { 1333 cpu_base->hang_detected = 0; 1334 return; 1335 } 1336 1337 /* 1338 * The next timer was already expired due to: 1339 * - tracing 1340 * - long lasting callbacks 1341 * - being scheduled away when running in a VM 1342 * 1343 * We need to prevent that we loop forever in the hrtimer 1344 * interrupt routine. We give it 3 attempts to avoid 1345 * overreacting on some spurious event. 1346 * 1347 * Acquire base lock for updating the offsets and retrieving 1348 * the current time. 1349 */ 1350 raw_spin_lock(&cpu_base->lock); 1351 now = hrtimer_update_base(cpu_base); 1352 cpu_base->nr_retries++; 1353 if (++retries < 3) 1354 goto retry; 1355 /* 1356 * Give the system a chance to do something else than looping 1357 * here. We stored the entry time, so we know exactly how long 1358 * we spent here. We schedule the next event this amount of 1359 * time away. 1360 */ 1361 cpu_base->nr_hangs++; 1362 cpu_base->hang_detected = 1; 1363 raw_spin_unlock(&cpu_base->lock); 1364 delta = ktime_sub(now, entry_time); 1365 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time) 1366 cpu_base->max_hang_time = (unsigned int) delta.tv64; 1367 /* 1368 * Limit it to a sensible value as we enforce a longer 1369 * delay. Give the CPU at least 100ms to catch up. 1370 */ 1371 if (delta.tv64 > 100 * NSEC_PER_MSEC) 1372 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1373 else 1374 expires_next = ktime_add(now, delta); 1375 tick_program_event(expires_next, 1); 1376 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1377 ktime_to_ns(delta)); 1378 } 1379 1380 /* 1381 * local version of hrtimer_peek_ahead_timers() called with interrupts 1382 * disabled. 1383 */ 1384 static inline void __hrtimer_peek_ahead_timers(void) 1385 { 1386 struct tick_device *td; 1387 1388 if (!hrtimer_hres_active()) 1389 return; 1390 1391 td = this_cpu_ptr(&tick_cpu_device); 1392 if (td && td->evtdev) 1393 hrtimer_interrupt(td->evtdev); 1394 } 1395 1396 #else /* CONFIG_HIGH_RES_TIMERS */ 1397 1398 static inline void __hrtimer_peek_ahead_timers(void) { } 1399 1400 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1401 1402 /* 1403 * Called from run_local_timers in hardirq context every jiffy 1404 */ 1405 void hrtimer_run_queues(void) 1406 { 1407 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1408 ktime_t now; 1409 1410 if (__hrtimer_hres_active(cpu_base)) 1411 return; 1412 1413 /* 1414 * This _is_ ugly: We have to check periodically, whether we 1415 * can switch to highres and / or nohz mode. The clocksource 1416 * switch happens with xtime_lock held. Notification from 1417 * there only sets the check bit in the tick_oneshot code, 1418 * otherwise we might deadlock vs. xtime_lock. 1419 */ 1420 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1421 hrtimer_switch_to_hres(); 1422 return; 1423 } 1424 1425 raw_spin_lock(&cpu_base->lock); 1426 now = hrtimer_update_base(cpu_base); 1427 __hrtimer_run_queues(cpu_base, now); 1428 raw_spin_unlock(&cpu_base->lock); 1429 } 1430 1431 /* 1432 * Sleep related functions: 1433 */ 1434 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1435 { 1436 struct hrtimer_sleeper *t = 1437 container_of(timer, struct hrtimer_sleeper, timer); 1438 struct task_struct *task = t->task; 1439 1440 t->task = NULL; 1441 if (task) 1442 wake_up_process(task); 1443 1444 return HRTIMER_NORESTART; 1445 } 1446 1447 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1448 { 1449 sl->timer.function = hrtimer_wakeup; 1450 sl->task = task; 1451 } 1452 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1453 1454 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1455 { 1456 hrtimer_init_sleeper(t, current); 1457 1458 do { 1459 set_current_state(TASK_INTERRUPTIBLE); 1460 hrtimer_start_expires(&t->timer, mode); 1461 1462 if (likely(t->task)) 1463 freezable_schedule(); 1464 1465 hrtimer_cancel(&t->timer); 1466 mode = HRTIMER_MODE_ABS; 1467 1468 } while (t->task && !signal_pending(current)); 1469 1470 __set_current_state(TASK_RUNNING); 1471 1472 return t->task == NULL; 1473 } 1474 1475 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1476 { 1477 struct timespec rmt; 1478 ktime_t rem; 1479 1480 rem = hrtimer_expires_remaining(timer); 1481 if (rem.tv64 <= 0) 1482 return 0; 1483 rmt = ktime_to_timespec(rem); 1484 1485 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1486 return -EFAULT; 1487 1488 return 1; 1489 } 1490 1491 long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1492 { 1493 struct hrtimer_sleeper t; 1494 struct timespec __user *rmtp; 1495 int ret = 0; 1496 1497 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1498 HRTIMER_MODE_ABS); 1499 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1500 1501 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1502 goto out; 1503 1504 rmtp = restart->nanosleep.rmtp; 1505 if (rmtp) { 1506 ret = update_rmtp(&t.timer, rmtp); 1507 if (ret <= 0) 1508 goto out; 1509 } 1510 1511 /* The other values in restart are already filled in */ 1512 ret = -ERESTART_RESTARTBLOCK; 1513 out: 1514 destroy_hrtimer_on_stack(&t.timer); 1515 return ret; 1516 } 1517 1518 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1519 const enum hrtimer_mode mode, const clockid_t clockid) 1520 { 1521 struct restart_block *restart; 1522 struct hrtimer_sleeper t; 1523 int ret = 0; 1524 unsigned long slack; 1525 1526 slack = current->timer_slack_ns; 1527 if (dl_task(current) || rt_task(current)) 1528 slack = 0; 1529 1530 hrtimer_init_on_stack(&t.timer, clockid, mode); 1531 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); 1532 if (do_nanosleep(&t, mode)) 1533 goto out; 1534 1535 /* Absolute timers do not update the rmtp value and restart: */ 1536 if (mode == HRTIMER_MODE_ABS) { 1537 ret = -ERESTARTNOHAND; 1538 goto out; 1539 } 1540 1541 if (rmtp) { 1542 ret = update_rmtp(&t.timer, rmtp); 1543 if (ret <= 0) 1544 goto out; 1545 } 1546 1547 restart = ¤t->restart_block; 1548 restart->fn = hrtimer_nanosleep_restart; 1549 restart->nanosleep.clockid = t.timer.base->clockid; 1550 restart->nanosleep.rmtp = rmtp; 1551 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1552 1553 ret = -ERESTART_RESTARTBLOCK; 1554 out: 1555 destroy_hrtimer_on_stack(&t.timer); 1556 return ret; 1557 } 1558 1559 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1560 struct timespec __user *, rmtp) 1561 { 1562 struct timespec tu; 1563 1564 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1565 return -EFAULT; 1566 1567 if (!timespec_valid(&tu)) 1568 return -EINVAL; 1569 1570 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1571 } 1572 1573 /* 1574 * Functions related to boot-time initialization: 1575 */ 1576 static void init_hrtimers_cpu(int cpu) 1577 { 1578 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1579 int i; 1580 1581 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1582 cpu_base->clock_base[i].cpu_base = cpu_base; 1583 timerqueue_init_head(&cpu_base->clock_base[i].active); 1584 } 1585 1586 cpu_base->cpu = cpu; 1587 hrtimer_init_hres(cpu_base); 1588 } 1589 1590 #ifdef CONFIG_HOTPLUG_CPU 1591 1592 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1593 struct hrtimer_clock_base *new_base) 1594 { 1595 struct hrtimer *timer; 1596 struct timerqueue_node *node; 1597 1598 while ((node = timerqueue_getnext(&old_base->active))) { 1599 timer = container_of(node, struct hrtimer, node); 1600 BUG_ON(hrtimer_callback_running(timer)); 1601 debug_deactivate(timer); 1602 1603 /* 1604 * Mark it as ENQUEUED not INACTIVE otherwise the 1605 * timer could be seen as !active and just vanish away 1606 * under us on another CPU 1607 */ 1608 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1609 timer->base = new_base; 1610 /* 1611 * Enqueue the timers on the new cpu. This does not 1612 * reprogram the event device in case the timer 1613 * expires before the earliest on this CPU, but we run 1614 * hrtimer_interrupt after we migrated everything to 1615 * sort out already expired timers and reprogram the 1616 * event device. 1617 */ 1618 enqueue_hrtimer(timer, new_base); 1619 } 1620 } 1621 1622 static void migrate_hrtimers(int scpu) 1623 { 1624 struct hrtimer_cpu_base *old_base, *new_base; 1625 int i; 1626 1627 BUG_ON(cpu_online(scpu)); 1628 tick_cancel_sched_timer(scpu); 1629 1630 local_irq_disable(); 1631 old_base = &per_cpu(hrtimer_bases, scpu); 1632 new_base = this_cpu_ptr(&hrtimer_bases); 1633 /* 1634 * The caller is globally serialized and nobody else 1635 * takes two locks at once, deadlock is not possible. 1636 */ 1637 raw_spin_lock(&new_base->lock); 1638 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1639 1640 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1641 migrate_hrtimer_list(&old_base->clock_base[i], 1642 &new_base->clock_base[i]); 1643 } 1644 1645 raw_spin_unlock(&old_base->lock); 1646 raw_spin_unlock(&new_base->lock); 1647 1648 /* Check, if we got expired work to do */ 1649 __hrtimer_peek_ahead_timers(); 1650 local_irq_enable(); 1651 } 1652 1653 #endif /* CONFIG_HOTPLUG_CPU */ 1654 1655 static int hrtimer_cpu_notify(struct notifier_block *self, 1656 unsigned long action, void *hcpu) 1657 { 1658 int scpu = (long)hcpu; 1659 1660 switch (action) { 1661 1662 case CPU_UP_PREPARE: 1663 case CPU_UP_PREPARE_FROZEN: 1664 init_hrtimers_cpu(scpu); 1665 break; 1666 1667 #ifdef CONFIG_HOTPLUG_CPU 1668 case CPU_DEAD: 1669 case CPU_DEAD_FROZEN: 1670 migrate_hrtimers(scpu); 1671 break; 1672 #endif 1673 1674 default: 1675 break; 1676 } 1677 1678 return NOTIFY_OK; 1679 } 1680 1681 static struct notifier_block hrtimers_nb = { 1682 .notifier_call = hrtimer_cpu_notify, 1683 }; 1684 1685 void __init hrtimers_init(void) 1686 { 1687 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1688 (void *)(long)smp_processor_id()); 1689 register_cpu_notifier(&hrtimers_nb); 1690 } 1691 1692 /** 1693 * schedule_hrtimeout_range_clock - sleep until timeout 1694 * @expires: timeout value (ktime_t) 1695 * @delta: slack in expires timeout (ktime_t) 1696 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1697 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME 1698 */ 1699 int __sched 1700 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, 1701 const enum hrtimer_mode mode, int clock) 1702 { 1703 struct hrtimer_sleeper t; 1704 1705 /* 1706 * Optimize when a zero timeout value is given. It does not 1707 * matter whether this is an absolute or a relative time. 1708 */ 1709 if (expires && !expires->tv64) { 1710 __set_current_state(TASK_RUNNING); 1711 return 0; 1712 } 1713 1714 /* 1715 * A NULL parameter means "infinite" 1716 */ 1717 if (!expires) { 1718 schedule(); 1719 return -EINTR; 1720 } 1721 1722 hrtimer_init_on_stack(&t.timer, clock, mode); 1723 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1724 1725 hrtimer_init_sleeper(&t, current); 1726 1727 hrtimer_start_expires(&t.timer, mode); 1728 1729 if (likely(t.task)) 1730 schedule(); 1731 1732 hrtimer_cancel(&t.timer); 1733 destroy_hrtimer_on_stack(&t.timer); 1734 1735 __set_current_state(TASK_RUNNING); 1736 1737 return !t.task ? 0 : -EINTR; 1738 } 1739 1740 /** 1741 * schedule_hrtimeout_range - sleep until timeout 1742 * @expires: timeout value (ktime_t) 1743 * @delta: slack in expires timeout (ktime_t) 1744 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1745 * 1746 * Make the current task sleep until the given expiry time has 1747 * elapsed. The routine will return immediately unless 1748 * the current task state has been set (see set_current_state()). 1749 * 1750 * The @delta argument gives the kernel the freedom to schedule the 1751 * actual wakeup to a time that is both power and performance friendly. 1752 * The kernel give the normal best effort behavior for "@expires+@delta", 1753 * but may decide to fire the timer earlier, but no earlier than @expires. 1754 * 1755 * You can set the task state as follows - 1756 * 1757 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1758 * pass before the routine returns. 1759 * 1760 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1761 * delivered to the current task. 1762 * 1763 * The current task state is guaranteed to be TASK_RUNNING when this 1764 * routine returns. 1765 * 1766 * Returns 0 when the timer has expired otherwise -EINTR 1767 */ 1768 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, 1769 const enum hrtimer_mode mode) 1770 { 1771 return schedule_hrtimeout_range_clock(expires, delta, mode, 1772 CLOCK_MONOTONIC); 1773 } 1774 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1775 1776 /** 1777 * schedule_hrtimeout - sleep until timeout 1778 * @expires: timeout value (ktime_t) 1779 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1780 * 1781 * Make the current task sleep until the given expiry time has 1782 * elapsed. The routine will return immediately unless 1783 * the current task state has been set (see set_current_state()). 1784 * 1785 * You can set the task state as follows - 1786 * 1787 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1788 * pass before the routine returns. 1789 * 1790 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1791 * delivered to the current task. 1792 * 1793 * The current task state is guaranteed to be TASK_RUNNING when this 1794 * routine returns. 1795 * 1796 * Returns 0 when the timer has expired otherwise -EINTR 1797 */ 1798 int __sched schedule_hrtimeout(ktime_t *expires, 1799 const enum hrtimer_mode mode) 1800 { 1801 return schedule_hrtimeout_range(expires, 0, mode); 1802 } 1803 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1804