xref: /linux/kernel/time/hrtimer.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include <trace/events/timer.h>
49 
50 #include "tick-internal.h"
51 
52 /*
53  * Masks for selecting the soft and hard context timers from
54  * cpu_base->active
55  */
56 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
57 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
58 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60 
61 /*
62  * The timer bases:
63  *
64  * There are more clockids than hrtimer bases. Thus, we index
65  * into the timer bases by the hrtimer_base_type enum. When trying
66  * to reach a base using a clockid, hrtimer_clockid_to_base()
67  * is used to convert from clockid to the proper hrtimer_base_type.
68  */
69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
70 {
71 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
72 	.clock_base =
73 	{
74 		{
75 			.index = HRTIMER_BASE_MONOTONIC,
76 			.clockid = CLOCK_MONOTONIC,
77 			.get_time = &ktime_get,
78 		},
79 		{
80 			.index = HRTIMER_BASE_REALTIME,
81 			.clockid = CLOCK_REALTIME,
82 			.get_time = &ktime_get_real,
83 		},
84 		{
85 			.index = HRTIMER_BASE_BOOTTIME,
86 			.clockid = CLOCK_BOOTTIME,
87 			.get_time = &ktime_get_boottime,
88 		},
89 		{
90 			.index = HRTIMER_BASE_TAI,
91 			.clockid = CLOCK_TAI,
92 			.get_time = &ktime_get_clocktai,
93 		},
94 		{
95 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
96 			.clockid = CLOCK_MONOTONIC,
97 			.get_time = &ktime_get,
98 		},
99 		{
100 			.index = HRTIMER_BASE_REALTIME_SOFT,
101 			.clockid = CLOCK_REALTIME,
102 			.get_time = &ktime_get_real,
103 		},
104 		{
105 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
106 			.clockid = CLOCK_BOOTTIME,
107 			.get_time = &ktime_get_boottime,
108 		},
109 		{
110 			.index = HRTIMER_BASE_TAI_SOFT,
111 			.clockid = CLOCK_TAI,
112 			.get_time = &ktime_get_clocktai,
113 		},
114 	}
115 };
116 
117 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
118 	/* Make sure we catch unsupported clockids */
119 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
120 
121 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
122 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
123 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
124 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
125 };
126 
127 /*
128  * Functions and macros which are different for UP/SMP systems are kept in a
129  * single place
130  */
131 #ifdef CONFIG_SMP
132 
133 /*
134  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
135  * such that hrtimer_callback_running() can unconditionally dereference
136  * timer->base->cpu_base
137  */
138 static struct hrtimer_cpu_base migration_cpu_base = {
139 	.clock_base = { {
140 		.cpu_base = &migration_cpu_base,
141 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
142 						     &migration_cpu_base.lock),
143 	}, },
144 };
145 
146 #define migration_base	migration_cpu_base.clock_base[0]
147 
148 static inline bool is_migration_base(struct hrtimer_clock_base *base)
149 {
150 	return base == &migration_base;
151 }
152 
153 /*
154  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155  * means that all timers which are tied to this base via timer->base are
156  * locked, and the base itself is locked too.
157  *
158  * So __run_timers/migrate_timers can safely modify all timers which could
159  * be found on the lists/queues.
160  *
161  * When the timer's base is locked, and the timer removed from list, it is
162  * possible to set timer->base = &migration_base and drop the lock: the timer
163  * remains locked.
164  */
165 static
166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
167 					     unsigned long *flags)
168 	__acquires(&timer->base->lock)
169 {
170 	struct hrtimer_clock_base *base;
171 
172 	for (;;) {
173 		base = READ_ONCE(timer->base);
174 		if (likely(base != &migration_base)) {
175 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
176 			if (likely(base == timer->base))
177 				return base;
178 			/* The timer has migrated to another CPU: */
179 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
180 		}
181 		cpu_relax();
182 	}
183 }
184 
185 /*
186  * We do not migrate the timer when it is expiring before the next
187  * event on the target cpu. When high resolution is enabled, we cannot
188  * reprogram the target cpu hardware and we would cause it to fire
189  * late. To keep it simple, we handle the high resolution enabled and
190  * disabled case similar.
191  *
192  * Called with cpu_base->lock of target cpu held.
193  */
194 static int
195 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
196 {
197 	ktime_t expires;
198 
199 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
200 	return expires < new_base->cpu_base->expires_next;
201 }
202 
203 static inline
204 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
205 					 int pinned)
206 {
207 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
208 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
209 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
210 #endif
211 	return base;
212 }
213 
214 /*
215  * We switch the timer base to a power-optimized selected CPU target,
216  * if:
217  *	- NO_HZ_COMMON is enabled
218  *	- timer migration is enabled
219  *	- the timer callback is not running
220  *	- the timer is not the first expiring timer on the new target
221  *
222  * If one of the above requirements is not fulfilled we move the timer
223  * to the current CPU or leave it on the previously assigned CPU if
224  * the timer callback is currently running.
225  */
226 static inline struct hrtimer_clock_base *
227 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
228 		    int pinned)
229 {
230 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
231 	struct hrtimer_clock_base *new_base;
232 	int basenum = base->index;
233 
234 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
235 	new_cpu_base = get_target_base(this_cpu_base, pinned);
236 again:
237 	new_base = &new_cpu_base->clock_base[basenum];
238 
239 	if (base != new_base) {
240 		/*
241 		 * We are trying to move timer to new_base.
242 		 * However we can't change timer's base while it is running,
243 		 * so we keep it on the same CPU. No hassle vs. reprogramming
244 		 * the event source in the high resolution case. The softirq
245 		 * code will take care of this when the timer function has
246 		 * completed. There is no conflict as we hold the lock until
247 		 * the timer is enqueued.
248 		 */
249 		if (unlikely(hrtimer_callback_running(timer)))
250 			return base;
251 
252 		/* See the comment in lock_hrtimer_base() */
253 		WRITE_ONCE(timer->base, &migration_base);
254 		raw_spin_unlock(&base->cpu_base->lock);
255 		raw_spin_lock(&new_base->cpu_base->lock);
256 
257 		if (new_cpu_base != this_cpu_base &&
258 		    hrtimer_check_target(timer, new_base)) {
259 			raw_spin_unlock(&new_base->cpu_base->lock);
260 			raw_spin_lock(&base->cpu_base->lock);
261 			new_cpu_base = this_cpu_base;
262 			WRITE_ONCE(timer->base, base);
263 			goto again;
264 		}
265 		WRITE_ONCE(timer->base, new_base);
266 	} else {
267 		if (new_cpu_base != this_cpu_base &&
268 		    hrtimer_check_target(timer, new_base)) {
269 			new_cpu_base = this_cpu_base;
270 			goto again;
271 		}
272 	}
273 	return new_base;
274 }
275 
276 #else /* CONFIG_SMP */
277 
278 static inline bool is_migration_base(struct hrtimer_clock_base *base)
279 {
280 	return false;
281 }
282 
283 static inline struct hrtimer_clock_base *
284 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
285 	__acquires(&timer->base->cpu_base->lock)
286 {
287 	struct hrtimer_clock_base *base = timer->base;
288 
289 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
290 
291 	return base;
292 }
293 
294 # define switch_hrtimer_base(t, b, p)	(b)
295 
296 #endif	/* !CONFIG_SMP */
297 
298 /*
299  * Functions for the union type storage format of ktime_t which are
300  * too large for inlining:
301  */
302 #if BITS_PER_LONG < 64
303 /*
304  * Divide a ktime value by a nanosecond value
305  */
306 s64 __ktime_divns(const ktime_t kt, s64 div)
307 {
308 	int sft = 0;
309 	s64 dclc;
310 	u64 tmp;
311 
312 	dclc = ktime_to_ns(kt);
313 	tmp = dclc < 0 ? -dclc : dclc;
314 
315 	/* Make sure the divisor is less than 2^32: */
316 	while (div >> 32) {
317 		sft++;
318 		div >>= 1;
319 	}
320 	tmp >>= sft;
321 	do_div(tmp, (u32) div);
322 	return dclc < 0 ? -tmp : tmp;
323 }
324 EXPORT_SYMBOL_GPL(__ktime_divns);
325 #endif /* BITS_PER_LONG >= 64 */
326 
327 /*
328  * Add two ktime values and do a safety check for overflow:
329  */
330 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
331 {
332 	ktime_t res = ktime_add_unsafe(lhs, rhs);
333 
334 	/*
335 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
336 	 * return to user space in a timespec:
337 	 */
338 	if (res < 0 || res < lhs || res < rhs)
339 		res = ktime_set(KTIME_SEC_MAX, 0);
340 
341 	return res;
342 }
343 
344 EXPORT_SYMBOL_GPL(ktime_add_safe);
345 
346 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
347 
348 static const struct debug_obj_descr hrtimer_debug_descr;
349 
350 static void *hrtimer_debug_hint(void *addr)
351 {
352 	return ((struct hrtimer *) addr)->function;
353 }
354 
355 /*
356  * fixup_init is called when:
357  * - an active object is initialized
358  */
359 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
360 {
361 	struct hrtimer *timer = addr;
362 
363 	switch (state) {
364 	case ODEBUG_STATE_ACTIVE:
365 		hrtimer_cancel(timer);
366 		debug_object_init(timer, &hrtimer_debug_descr);
367 		return true;
368 	default:
369 		return false;
370 	}
371 }
372 
373 /*
374  * fixup_activate is called when:
375  * - an active object is activated
376  * - an unknown non-static object is activated
377  */
378 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
379 {
380 	switch (state) {
381 	case ODEBUG_STATE_ACTIVE:
382 		WARN_ON(1);
383 		fallthrough;
384 	default:
385 		return false;
386 	}
387 }
388 
389 /*
390  * fixup_free is called when:
391  * - an active object is freed
392  */
393 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
394 {
395 	struct hrtimer *timer = addr;
396 
397 	switch (state) {
398 	case ODEBUG_STATE_ACTIVE:
399 		hrtimer_cancel(timer);
400 		debug_object_free(timer, &hrtimer_debug_descr);
401 		return true;
402 	default:
403 		return false;
404 	}
405 }
406 
407 static const struct debug_obj_descr hrtimer_debug_descr = {
408 	.name		= "hrtimer",
409 	.debug_hint	= hrtimer_debug_hint,
410 	.fixup_init	= hrtimer_fixup_init,
411 	.fixup_activate	= hrtimer_fixup_activate,
412 	.fixup_free	= hrtimer_fixup_free,
413 };
414 
415 static inline void debug_hrtimer_init(struct hrtimer *timer)
416 {
417 	debug_object_init(timer, &hrtimer_debug_descr);
418 }
419 
420 static inline void debug_hrtimer_activate(struct hrtimer *timer,
421 					  enum hrtimer_mode mode)
422 {
423 	debug_object_activate(timer, &hrtimer_debug_descr);
424 }
425 
426 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
427 {
428 	debug_object_deactivate(timer, &hrtimer_debug_descr);
429 }
430 
431 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
432 			   enum hrtimer_mode mode);
433 
434 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
435 			   enum hrtimer_mode mode)
436 {
437 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
438 	__hrtimer_init(timer, clock_id, mode);
439 }
440 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
441 
442 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
443 				   clockid_t clock_id, enum hrtimer_mode mode);
444 
445 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
446 				   clockid_t clock_id, enum hrtimer_mode mode)
447 {
448 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
449 	__hrtimer_init_sleeper(sl, clock_id, mode);
450 }
451 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
452 
453 void destroy_hrtimer_on_stack(struct hrtimer *timer)
454 {
455 	debug_object_free(timer, &hrtimer_debug_descr);
456 }
457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
458 
459 #else
460 
461 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
462 static inline void debug_hrtimer_activate(struct hrtimer *timer,
463 					  enum hrtimer_mode mode) { }
464 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
465 #endif
466 
467 static inline void
468 debug_init(struct hrtimer *timer, clockid_t clockid,
469 	   enum hrtimer_mode mode)
470 {
471 	debug_hrtimer_init(timer);
472 	trace_hrtimer_init(timer, clockid, mode);
473 }
474 
475 static inline void debug_activate(struct hrtimer *timer,
476 				  enum hrtimer_mode mode)
477 {
478 	debug_hrtimer_activate(timer, mode);
479 	trace_hrtimer_start(timer, mode);
480 }
481 
482 static inline void debug_deactivate(struct hrtimer *timer)
483 {
484 	debug_hrtimer_deactivate(timer);
485 	trace_hrtimer_cancel(timer);
486 }
487 
488 static struct hrtimer_clock_base *
489 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
490 {
491 	unsigned int idx;
492 
493 	if (!*active)
494 		return NULL;
495 
496 	idx = __ffs(*active);
497 	*active &= ~(1U << idx);
498 
499 	return &cpu_base->clock_base[idx];
500 }
501 
502 #define for_each_active_base(base, cpu_base, active)	\
503 	while ((base = __next_base((cpu_base), &(active))))
504 
505 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
506 					 const struct hrtimer *exclude,
507 					 unsigned int active,
508 					 ktime_t expires_next)
509 {
510 	struct hrtimer_clock_base *base;
511 	ktime_t expires;
512 
513 	for_each_active_base(base, cpu_base, active) {
514 		struct timerqueue_node *next;
515 		struct hrtimer *timer;
516 
517 		next = timerqueue_getnext(&base->active);
518 		timer = container_of(next, struct hrtimer, node);
519 		if (timer == exclude) {
520 			/* Get to the next timer in the queue. */
521 			next = timerqueue_iterate_next(next);
522 			if (!next)
523 				continue;
524 
525 			timer = container_of(next, struct hrtimer, node);
526 		}
527 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
528 		if (expires < expires_next) {
529 			expires_next = expires;
530 
531 			/* Skip cpu_base update if a timer is being excluded. */
532 			if (exclude)
533 				continue;
534 
535 			if (timer->is_soft)
536 				cpu_base->softirq_next_timer = timer;
537 			else
538 				cpu_base->next_timer = timer;
539 		}
540 	}
541 	/*
542 	 * clock_was_set() might have changed base->offset of any of
543 	 * the clock bases so the result might be negative. Fix it up
544 	 * to prevent a false positive in clockevents_program_event().
545 	 */
546 	if (expires_next < 0)
547 		expires_next = 0;
548 	return expires_next;
549 }
550 
551 /*
552  * Recomputes cpu_base::*next_timer and returns the earliest expires_next
553  * but does not set cpu_base::*expires_next, that is done by
554  * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
555  * cpu_base::*expires_next right away, reprogramming logic would no longer
556  * work.
557  *
558  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
559  * those timers will get run whenever the softirq gets handled, at the end of
560  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
561  *
562  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
563  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
564  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
565  *
566  * @active_mask must be one of:
567  *  - HRTIMER_ACTIVE_ALL,
568  *  - HRTIMER_ACTIVE_SOFT, or
569  *  - HRTIMER_ACTIVE_HARD.
570  */
571 static ktime_t
572 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
573 {
574 	unsigned int active;
575 	struct hrtimer *next_timer = NULL;
576 	ktime_t expires_next = KTIME_MAX;
577 
578 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
579 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
580 		cpu_base->softirq_next_timer = NULL;
581 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
582 							 active, KTIME_MAX);
583 
584 		next_timer = cpu_base->softirq_next_timer;
585 	}
586 
587 	if (active_mask & HRTIMER_ACTIVE_HARD) {
588 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
589 		cpu_base->next_timer = next_timer;
590 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
591 							 expires_next);
592 	}
593 
594 	return expires_next;
595 }
596 
597 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
598 {
599 	ktime_t expires_next, soft = KTIME_MAX;
600 
601 	/*
602 	 * If the soft interrupt has already been activated, ignore the
603 	 * soft bases. They will be handled in the already raised soft
604 	 * interrupt.
605 	 */
606 	if (!cpu_base->softirq_activated) {
607 		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
608 		/*
609 		 * Update the soft expiry time. clock_settime() might have
610 		 * affected it.
611 		 */
612 		cpu_base->softirq_expires_next = soft;
613 	}
614 
615 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
616 	/*
617 	 * If a softirq timer is expiring first, update cpu_base->next_timer
618 	 * and program the hardware with the soft expiry time.
619 	 */
620 	if (expires_next > soft) {
621 		cpu_base->next_timer = cpu_base->softirq_next_timer;
622 		expires_next = soft;
623 	}
624 
625 	return expires_next;
626 }
627 
628 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
629 {
630 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
631 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
632 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
633 
634 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
635 					    offs_real, offs_boot, offs_tai);
636 
637 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
638 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
639 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
640 
641 	return now;
642 }
643 
644 /*
645  * Is the high resolution mode active ?
646  */
647 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
648 {
649 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
650 		cpu_base->hres_active : 0;
651 }
652 
653 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
654 				struct hrtimer *next_timer,
655 				ktime_t expires_next)
656 {
657 	cpu_base->expires_next = expires_next;
658 
659 	/*
660 	 * If hres is not active, hardware does not have to be
661 	 * reprogrammed yet.
662 	 *
663 	 * If a hang was detected in the last timer interrupt then we
664 	 * leave the hang delay active in the hardware. We want the
665 	 * system to make progress. That also prevents the following
666 	 * scenario:
667 	 * T1 expires 50ms from now
668 	 * T2 expires 5s from now
669 	 *
670 	 * T1 is removed, so this code is called and would reprogram
671 	 * the hardware to 5s from now. Any hrtimer_start after that
672 	 * will not reprogram the hardware due to hang_detected being
673 	 * set. So we'd effectively block all timers until the T2 event
674 	 * fires.
675 	 */
676 	if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
677 		return;
678 
679 	tick_program_event(expires_next, 1);
680 }
681 
682 /*
683  * Reprogram the event source with checking both queues for the
684  * next event
685  * Called with interrupts disabled and base->lock held
686  */
687 static void
688 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
689 {
690 	ktime_t expires_next;
691 
692 	expires_next = hrtimer_update_next_event(cpu_base);
693 
694 	if (skip_equal && expires_next == cpu_base->expires_next)
695 		return;
696 
697 	__hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
698 }
699 
700 /* High resolution timer related functions */
701 #ifdef CONFIG_HIGH_RES_TIMERS
702 
703 /*
704  * High resolution timer enabled ?
705  */
706 static bool hrtimer_hres_enabled __read_mostly  = true;
707 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
708 EXPORT_SYMBOL_GPL(hrtimer_resolution);
709 
710 /*
711  * Enable / Disable high resolution mode
712  */
713 static int __init setup_hrtimer_hres(char *str)
714 {
715 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
716 }
717 
718 __setup("highres=", setup_hrtimer_hres);
719 
720 /*
721  * hrtimer_high_res_enabled - query, if the highres mode is enabled
722  */
723 static inline int hrtimer_is_hres_enabled(void)
724 {
725 	return hrtimer_hres_enabled;
726 }
727 
728 static void retrigger_next_event(void *arg);
729 
730 /*
731  * Switch to high resolution mode
732  */
733 static void hrtimer_switch_to_hres(void)
734 {
735 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
736 
737 	if (tick_init_highres()) {
738 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
739 			base->cpu);
740 		return;
741 	}
742 	base->hres_active = 1;
743 	hrtimer_resolution = HIGH_RES_NSEC;
744 
745 	tick_setup_sched_timer(true);
746 	/* "Retrigger" the interrupt to get things going */
747 	retrigger_next_event(NULL);
748 }
749 
750 #else
751 
752 static inline int hrtimer_is_hres_enabled(void) { return 0; }
753 static inline void hrtimer_switch_to_hres(void) { }
754 
755 #endif /* CONFIG_HIGH_RES_TIMERS */
756 /*
757  * Retrigger next event is called after clock was set with interrupts
758  * disabled through an SMP function call or directly from low level
759  * resume code.
760  *
761  * This is only invoked when:
762  *	- CONFIG_HIGH_RES_TIMERS is enabled.
763  *	- CONFIG_NOHZ_COMMON is enabled
764  *
765  * For the other cases this function is empty and because the call sites
766  * are optimized out it vanishes as well, i.e. no need for lots of
767  * #ifdeffery.
768  */
769 static void retrigger_next_event(void *arg)
770 {
771 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
772 
773 	/*
774 	 * When high resolution mode or nohz is active, then the offsets of
775 	 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
776 	 * next tick will take care of that.
777 	 *
778 	 * If high resolution mode is active then the next expiring timer
779 	 * must be reevaluated and the clock event device reprogrammed if
780 	 * necessary.
781 	 *
782 	 * In the NOHZ case the update of the offset and the reevaluation
783 	 * of the next expiring timer is enough. The return from the SMP
784 	 * function call will take care of the reprogramming in case the
785 	 * CPU was in a NOHZ idle sleep.
786 	 */
787 	if (!hrtimer_hres_active(base) && !tick_nohz_active)
788 		return;
789 
790 	raw_spin_lock(&base->lock);
791 	hrtimer_update_base(base);
792 	if (hrtimer_hres_active(base))
793 		hrtimer_force_reprogram(base, 0);
794 	else
795 		hrtimer_update_next_event(base);
796 	raw_spin_unlock(&base->lock);
797 }
798 
799 /*
800  * When a timer is enqueued and expires earlier than the already enqueued
801  * timers, we have to check, whether it expires earlier than the timer for
802  * which the clock event device was armed.
803  *
804  * Called with interrupts disabled and base->cpu_base.lock held
805  */
806 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
807 {
808 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
809 	struct hrtimer_clock_base *base = timer->base;
810 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
811 
812 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
813 
814 	/*
815 	 * CLOCK_REALTIME timer might be requested with an absolute
816 	 * expiry time which is less than base->offset. Set it to 0.
817 	 */
818 	if (expires < 0)
819 		expires = 0;
820 
821 	if (timer->is_soft) {
822 		/*
823 		 * soft hrtimer could be started on a remote CPU. In this
824 		 * case softirq_expires_next needs to be updated on the
825 		 * remote CPU. The soft hrtimer will not expire before the
826 		 * first hard hrtimer on the remote CPU -
827 		 * hrtimer_check_target() prevents this case.
828 		 */
829 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
830 
831 		if (timer_cpu_base->softirq_activated)
832 			return;
833 
834 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
835 			return;
836 
837 		timer_cpu_base->softirq_next_timer = timer;
838 		timer_cpu_base->softirq_expires_next = expires;
839 
840 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
841 		    !reprogram)
842 			return;
843 	}
844 
845 	/*
846 	 * If the timer is not on the current cpu, we cannot reprogram
847 	 * the other cpus clock event device.
848 	 */
849 	if (base->cpu_base != cpu_base)
850 		return;
851 
852 	if (expires >= cpu_base->expires_next)
853 		return;
854 
855 	/*
856 	 * If the hrtimer interrupt is running, then it will reevaluate the
857 	 * clock bases and reprogram the clock event device.
858 	 */
859 	if (cpu_base->in_hrtirq)
860 		return;
861 
862 	cpu_base->next_timer = timer;
863 
864 	__hrtimer_reprogram(cpu_base, timer, expires);
865 }
866 
867 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
868 			     unsigned int active)
869 {
870 	struct hrtimer_clock_base *base;
871 	unsigned int seq;
872 	ktime_t expires;
873 
874 	/*
875 	 * Update the base offsets unconditionally so the following
876 	 * checks whether the SMP function call is required works.
877 	 *
878 	 * The update is safe even when the remote CPU is in the hrtimer
879 	 * interrupt or the hrtimer soft interrupt and expiring affected
880 	 * bases. Either it will see the update before handling a base or
881 	 * it will see it when it finishes the processing and reevaluates
882 	 * the next expiring timer.
883 	 */
884 	seq = cpu_base->clock_was_set_seq;
885 	hrtimer_update_base(cpu_base);
886 
887 	/*
888 	 * If the sequence did not change over the update then the
889 	 * remote CPU already handled it.
890 	 */
891 	if (seq == cpu_base->clock_was_set_seq)
892 		return false;
893 
894 	/*
895 	 * If the remote CPU is currently handling an hrtimer interrupt, it
896 	 * will reevaluate the first expiring timer of all clock bases
897 	 * before reprogramming. Nothing to do here.
898 	 */
899 	if (cpu_base->in_hrtirq)
900 		return false;
901 
902 	/*
903 	 * Walk the affected clock bases and check whether the first expiring
904 	 * timer in a clock base is moving ahead of the first expiring timer of
905 	 * @cpu_base. If so, the IPI must be invoked because per CPU clock
906 	 * event devices cannot be remotely reprogrammed.
907 	 */
908 	active &= cpu_base->active_bases;
909 
910 	for_each_active_base(base, cpu_base, active) {
911 		struct timerqueue_node *next;
912 
913 		next = timerqueue_getnext(&base->active);
914 		expires = ktime_sub(next->expires, base->offset);
915 		if (expires < cpu_base->expires_next)
916 			return true;
917 
918 		/* Extra check for softirq clock bases */
919 		if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
920 			continue;
921 		if (cpu_base->softirq_activated)
922 			continue;
923 		if (expires < cpu_base->softirq_expires_next)
924 			return true;
925 	}
926 	return false;
927 }
928 
929 /*
930  * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
931  * CLOCK_BOOTTIME (for late sleep time injection).
932  *
933  * This requires to update the offsets for these clocks
934  * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
935  * also requires to eventually reprogram the per CPU clock event devices
936  * when the change moves an affected timer ahead of the first expiring
937  * timer on that CPU. Obviously remote per CPU clock event devices cannot
938  * be reprogrammed. The other reason why an IPI has to be sent is when the
939  * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
940  * in the tick, which obviously might be stopped, so this has to bring out
941  * the remote CPU which might sleep in idle to get this sorted.
942  */
943 void clock_was_set(unsigned int bases)
944 {
945 	struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
946 	cpumask_var_t mask;
947 	int cpu;
948 
949 	if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
950 		goto out_timerfd;
951 
952 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
953 		on_each_cpu(retrigger_next_event, NULL, 1);
954 		goto out_timerfd;
955 	}
956 
957 	/* Avoid interrupting CPUs if possible */
958 	cpus_read_lock();
959 	for_each_online_cpu(cpu) {
960 		unsigned long flags;
961 
962 		cpu_base = &per_cpu(hrtimer_bases, cpu);
963 		raw_spin_lock_irqsave(&cpu_base->lock, flags);
964 
965 		if (update_needs_ipi(cpu_base, bases))
966 			cpumask_set_cpu(cpu, mask);
967 
968 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
969 	}
970 
971 	preempt_disable();
972 	smp_call_function_many(mask, retrigger_next_event, NULL, 1);
973 	preempt_enable();
974 	cpus_read_unlock();
975 	free_cpumask_var(mask);
976 
977 out_timerfd:
978 	timerfd_clock_was_set();
979 }
980 
981 static void clock_was_set_work(struct work_struct *work)
982 {
983 	clock_was_set(CLOCK_SET_WALL);
984 }
985 
986 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
987 
988 /*
989  * Called from timekeeping code to reprogram the hrtimer interrupt device
990  * on all cpus and to notify timerfd.
991  */
992 void clock_was_set_delayed(void)
993 {
994 	schedule_work(&hrtimer_work);
995 }
996 
997 /*
998  * Called during resume either directly from via timekeeping_resume()
999  * or in the case of s2idle from tick_unfreeze() to ensure that the
1000  * hrtimers are up to date.
1001  */
1002 void hrtimers_resume_local(void)
1003 {
1004 	lockdep_assert_irqs_disabled();
1005 	/* Retrigger on the local CPU */
1006 	retrigger_next_event(NULL);
1007 }
1008 
1009 /*
1010  * Counterpart to lock_hrtimer_base above:
1011  */
1012 static inline
1013 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1014 	__releases(&timer->base->cpu_base->lock)
1015 {
1016 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1017 }
1018 
1019 /**
1020  * hrtimer_forward() - forward the timer expiry
1021  * @timer:	hrtimer to forward
1022  * @now:	forward past this time
1023  * @interval:	the interval to forward
1024  *
1025  * Forward the timer expiry so it will expire in the future.
1026  *
1027  * .. note::
1028  *  This only updates the timer expiry value and does not requeue the timer.
1029  *
1030  * There is also a variant of the function hrtimer_forward_now().
1031  *
1032  * Context: Can be safely called from the callback function of @timer. If called
1033  *          from other contexts @timer must neither be enqueued nor running the
1034  *          callback and the caller needs to take care of serialization.
1035  *
1036  * Return: The number of overruns are returned.
1037  */
1038 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1039 {
1040 	u64 orun = 1;
1041 	ktime_t delta;
1042 
1043 	delta = ktime_sub(now, hrtimer_get_expires(timer));
1044 
1045 	if (delta < 0)
1046 		return 0;
1047 
1048 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1049 		return 0;
1050 
1051 	if (interval < hrtimer_resolution)
1052 		interval = hrtimer_resolution;
1053 
1054 	if (unlikely(delta >= interval)) {
1055 		s64 incr = ktime_to_ns(interval);
1056 
1057 		orun = ktime_divns(delta, incr);
1058 		hrtimer_add_expires_ns(timer, incr * orun);
1059 		if (hrtimer_get_expires_tv64(timer) > now)
1060 			return orun;
1061 		/*
1062 		 * This (and the ktime_add() below) is the
1063 		 * correction for exact:
1064 		 */
1065 		orun++;
1066 	}
1067 	hrtimer_add_expires(timer, interval);
1068 
1069 	return orun;
1070 }
1071 EXPORT_SYMBOL_GPL(hrtimer_forward);
1072 
1073 /*
1074  * enqueue_hrtimer - internal function to (re)start a timer
1075  *
1076  * The timer is inserted in expiry order. Insertion into the
1077  * red black tree is O(log(n)). Must hold the base lock.
1078  *
1079  * Returns 1 when the new timer is the leftmost timer in the tree.
1080  */
1081 static int enqueue_hrtimer(struct hrtimer *timer,
1082 			   struct hrtimer_clock_base *base,
1083 			   enum hrtimer_mode mode)
1084 {
1085 	debug_activate(timer, mode);
1086 	WARN_ON_ONCE(!base->cpu_base->online);
1087 
1088 	base->cpu_base->active_bases |= 1 << base->index;
1089 
1090 	/* Pairs with the lockless read in hrtimer_is_queued() */
1091 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1092 
1093 	return timerqueue_add(&base->active, &timer->node);
1094 }
1095 
1096 /*
1097  * __remove_hrtimer - internal function to remove a timer
1098  *
1099  * Caller must hold the base lock.
1100  *
1101  * High resolution timer mode reprograms the clock event device when the
1102  * timer is the one which expires next. The caller can disable this by setting
1103  * reprogram to zero. This is useful, when the context does a reprogramming
1104  * anyway (e.g. timer interrupt)
1105  */
1106 static void __remove_hrtimer(struct hrtimer *timer,
1107 			     struct hrtimer_clock_base *base,
1108 			     u8 newstate, int reprogram)
1109 {
1110 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1111 	u8 state = timer->state;
1112 
1113 	/* Pairs with the lockless read in hrtimer_is_queued() */
1114 	WRITE_ONCE(timer->state, newstate);
1115 	if (!(state & HRTIMER_STATE_ENQUEUED))
1116 		return;
1117 
1118 	if (!timerqueue_del(&base->active, &timer->node))
1119 		cpu_base->active_bases &= ~(1 << base->index);
1120 
1121 	/*
1122 	 * Note: If reprogram is false we do not update
1123 	 * cpu_base->next_timer. This happens when we remove the first
1124 	 * timer on a remote cpu. No harm as we never dereference
1125 	 * cpu_base->next_timer. So the worst thing what can happen is
1126 	 * an superfluous call to hrtimer_force_reprogram() on the
1127 	 * remote cpu later on if the same timer gets enqueued again.
1128 	 */
1129 	if (reprogram && timer == cpu_base->next_timer)
1130 		hrtimer_force_reprogram(cpu_base, 1);
1131 }
1132 
1133 /*
1134  * remove hrtimer, called with base lock held
1135  */
1136 static inline int
1137 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1138 	       bool restart, bool keep_local)
1139 {
1140 	u8 state = timer->state;
1141 
1142 	if (state & HRTIMER_STATE_ENQUEUED) {
1143 		bool reprogram;
1144 
1145 		/*
1146 		 * Remove the timer and force reprogramming when high
1147 		 * resolution mode is active and the timer is on the current
1148 		 * CPU. If we remove a timer on another CPU, reprogramming is
1149 		 * skipped. The interrupt event on this CPU is fired and
1150 		 * reprogramming happens in the interrupt handler. This is a
1151 		 * rare case and less expensive than a smp call.
1152 		 */
1153 		debug_deactivate(timer);
1154 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1155 
1156 		/*
1157 		 * If the timer is not restarted then reprogramming is
1158 		 * required if the timer is local. If it is local and about
1159 		 * to be restarted, avoid programming it twice (on removal
1160 		 * and a moment later when it's requeued).
1161 		 */
1162 		if (!restart)
1163 			state = HRTIMER_STATE_INACTIVE;
1164 		else
1165 			reprogram &= !keep_local;
1166 
1167 		__remove_hrtimer(timer, base, state, reprogram);
1168 		return 1;
1169 	}
1170 	return 0;
1171 }
1172 
1173 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1174 					    const enum hrtimer_mode mode)
1175 {
1176 #ifdef CONFIG_TIME_LOW_RES
1177 	/*
1178 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1179 	 * granular time values. For relative timers we add hrtimer_resolution
1180 	 * (i.e. one jiffie) to prevent short timeouts.
1181 	 */
1182 	timer->is_rel = mode & HRTIMER_MODE_REL;
1183 	if (timer->is_rel)
1184 		tim = ktime_add_safe(tim, hrtimer_resolution);
1185 #endif
1186 	return tim;
1187 }
1188 
1189 static void
1190 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1191 {
1192 	ktime_t expires;
1193 
1194 	/*
1195 	 * Find the next SOFT expiration.
1196 	 */
1197 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1198 
1199 	/*
1200 	 * reprogramming needs to be triggered, even if the next soft
1201 	 * hrtimer expires at the same time than the next hard
1202 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1203 	 */
1204 	if (expires == KTIME_MAX)
1205 		return;
1206 
1207 	/*
1208 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1209 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1210 	 */
1211 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1212 }
1213 
1214 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1215 				    u64 delta_ns, const enum hrtimer_mode mode,
1216 				    struct hrtimer_clock_base *base)
1217 {
1218 	struct hrtimer_clock_base *new_base;
1219 	bool force_local, first;
1220 
1221 	/*
1222 	 * If the timer is on the local cpu base and is the first expiring
1223 	 * timer then this might end up reprogramming the hardware twice
1224 	 * (on removal and on enqueue). To avoid that by prevent the
1225 	 * reprogram on removal, keep the timer local to the current CPU
1226 	 * and enforce reprogramming after it is queued no matter whether
1227 	 * it is the new first expiring timer again or not.
1228 	 */
1229 	force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1230 	force_local &= base->cpu_base->next_timer == timer;
1231 
1232 	/*
1233 	 * Remove an active timer from the queue. In case it is not queued
1234 	 * on the current CPU, make sure that remove_hrtimer() updates the
1235 	 * remote data correctly.
1236 	 *
1237 	 * If it's on the current CPU and the first expiring timer, then
1238 	 * skip reprogramming, keep the timer local and enforce
1239 	 * reprogramming later if it was the first expiring timer.  This
1240 	 * avoids programming the underlying clock event twice (once at
1241 	 * removal and once after enqueue).
1242 	 */
1243 	remove_hrtimer(timer, base, true, force_local);
1244 
1245 	if (mode & HRTIMER_MODE_REL)
1246 		tim = ktime_add_safe(tim, base->get_time());
1247 
1248 	tim = hrtimer_update_lowres(timer, tim, mode);
1249 
1250 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1251 
1252 	/* Switch the timer base, if necessary: */
1253 	if (!force_local) {
1254 		new_base = switch_hrtimer_base(timer, base,
1255 					       mode & HRTIMER_MODE_PINNED);
1256 	} else {
1257 		new_base = base;
1258 	}
1259 
1260 	first = enqueue_hrtimer(timer, new_base, mode);
1261 	if (!force_local)
1262 		return first;
1263 
1264 	/*
1265 	 * Timer was forced to stay on the current CPU to avoid
1266 	 * reprogramming on removal and enqueue. Force reprogram the
1267 	 * hardware by evaluating the new first expiring timer.
1268 	 */
1269 	hrtimer_force_reprogram(new_base->cpu_base, 1);
1270 	return 0;
1271 }
1272 
1273 /**
1274  * hrtimer_start_range_ns - (re)start an hrtimer
1275  * @timer:	the timer to be added
1276  * @tim:	expiry time
1277  * @delta_ns:	"slack" range for the timer
1278  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1279  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1280  *		softirq based mode is considered for debug purpose only!
1281  */
1282 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1283 			    u64 delta_ns, const enum hrtimer_mode mode)
1284 {
1285 	struct hrtimer_clock_base *base;
1286 	unsigned long flags;
1287 
1288 	if (WARN_ON_ONCE(!timer->function))
1289 		return;
1290 	/*
1291 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1292 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1293 	 * expiry mode because unmarked timers are moved to softirq expiry.
1294 	 */
1295 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1296 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1297 	else
1298 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1299 
1300 	base = lock_hrtimer_base(timer, &flags);
1301 
1302 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1303 		hrtimer_reprogram(timer, true);
1304 
1305 	unlock_hrtimer_base(timer, &flags);
1306 }
1307 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1308 
1309 /**
1310  * hrtimer_try_to_cancel - try to deactivate a timer
1311  * @timer:	hrtimer to stop
1312  *
1313  * Returns:
1314  *
1315  *  *  0 when the timer was not active
1316  *  *  1 when the timer was active
1317  *  * -1 when the timer is currently executing the callback function and
1318  *    cannot be stopped
1319  */
1320 int hrtimer_try_to_cancel(struct hrtimer *timer)
1321 {
1322 	struct hrtimer_clock_base *base;
1323 	unsigned long flags;
1324 	int ret = -1;
1325 
1326 	/*
1327 	 * Check lockless first. If the timer is not active (neither
1328 	 * enqueued nor running the callback, nothing to do here.  The
1329 	 * base lock does not serialize against a concurrent enqueue,
1330 	 * so we can avoid taking it.
1331 	 */
1332 	if (!hrtimer_active(timer))
1333 		return 0;
1334 
1335 	base = lock_hrtimer_base(timer, &flags);
1336 
1337 	if (!hrtimer_callback_running(timer))
1338 		ret = remove_hrtimer(timer, base, false, false);
1339 
1340 	unlock_hrtimer_base(timer, &flags);
1341 
1342 	return ret;
1343 
1344 }
1345 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1346 
1347 #ifdef CONFIG_PREEMPT_RT
1348 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1349 {
1350 	spin_lock_init(&base->softirq_expiry_lock);
1351 }
1352 
1353 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1354 {
1355 	spin_lock(&base->softirq_expiry_lock);
1356 }
1357 
1358 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1359 {
1360 	spin_unlock(&base->softirq_expiry_lock);
1361 }
1362 
1363 /*
1364  * The counterpart to hrtimer_cancel_wait_running().
1365  *
1366  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1367  * the timer callback to finish. Drop expiry_lock and reacquire it. That
1368  * allows the waiter to acquire the lock and make progress.
1369  */
1370 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1371 				      unsigned long flags)
1372 {
1373 	if (atomic_read(&cpu_base->timer_waiters)) {
1374 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1375 		spin_unlock(&cpu_base->softirq_expiry_lock);
1376 		spin_lock(&cpu_base->softirq_expiry_lock);
1377 		raw_spin_lock_irq(&cpu_base->lock);
1378 	}
1379 }
1380 
1381 /*
1382  * This function is called on PREEMPT_RT kernels when the fast path
1383  * deletion of a timer failed because the timer callback function was
1384  * running.
1385  *
1386  * This prevents priority inversion: if the soft irq thread is preempted
1387  * in the middle of a timer callback, then calling del_timer_sync() can
1388  * lead to two issues:
1389  *
1390  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1391  *    handler to complete. This can result in unbound priority inversion.
1392  *
1393  *  - If the caller originates from the task which preempted the timer
1394  *    handler on the same CPU, then spin waiting for the timer handler to
1395  *    complete is never going to end.
1396  */
1397 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1398 {
1399 	/* Lockless read. Prevent the compiler from reloading it below */
1400 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1401 
1402 	/*
1403 	 * Just relax if the timer expires in hard interrupt context or if
1404 	 * it is currently on the migration base.
1405 	 */
1406 	if (!timer->is_soft || is_migration_base(base)) {
1407 		cpu_relax();
1408 		return;
1409 	}
1410 
1411 	/*
1412 	 * Mark the base as contended and grab the expiry lock, which is
1413 	 * held by the softirq across the timer callback. Drop the lock
1414 	 * immediately so the softirq can expire the next timer. In theory
1415 	 * the timer could already be running again, but that's more than
1416 	 * unlikely and just causes another wait loop.
1417 	 */
1418 	atomic_inc(&base->cpu_base->timer_waiters);
1419 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1420 	atomic_dec(&base->cpu_base->timer_waiters);
1421 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1422 }
1423 #else
1424 static inline void
1425 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1426 static inline void
1427 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1428 static inline void
1429 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1430 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1431 					     unsigned long flags) { }
1432 #endif
1433 
1434 /**
1435  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1436  * @timer:	the timer to be cancelled
1437  *
1438  * Returns:
1439  *  0 when the timer was not active
1440  *  1 when the timer was active
1441  */
1442 int hrtimer_cancel(struct hrtimer *timer)
1443 {
1444 	int ret;
1445 
1446 	do {
1447 		ret = hrtimer_try_to_cancel(timer);
1448 
1449 		if (ret < 0)
1450 			hrtimer_cancel_wait_running(timer);
1451 	} while (ret < 0);
1452 	return ret;
1453 }
1454 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1455 
1456 /**
1457  * __hrtimer_get_remaining - get remaining time for the timer
1458  * @timer:	the timer to read
1459  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1460  */
1461 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1462 {
1463 	unsigned long flags;
1464 	ktime_t rem;
1465 
1466 	lock_hrtimer_base(timer, &flags);
1467 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1468 		rem = hrtimer_expires_remaining_adjusted(timer);
1469 	else
1470 		rem = hrtimer_expires_remaining(timer);
1471 	unlock_hrtimer_base(timer, &flags);
1472 
1473 	return rem;
1474 }
1475 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1476 
1477 #ifdef CONFIG_NO_HZ_COMMON
1478 /**
1479  * hrtimer_get_next_event - get the time until next expiry event
1480  *
1481  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1482  */
1483 u64 hrtimer_get_next_event(void)
1484 {
1485 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1486 	u64 expires = KTIME_MAX;
1487 	unsigned long flags;
1488 
1489 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1490 
1491 	if (!hrtimer_hres_active(cpu_base))
1492 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1493 
1494 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1495 
1496 	return expires;
1497 }
1498 
1499 /**
1500  * hrtimer_next_event_without - time until next expiry event w/o one timer
1501  * @exclude:	timer to exclude
1502  *
1503  * Returns the next expiry time over all timers except for the @exclude one or
1504  * KTIME_MAX if none of them is pending.
1505  */
1506 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1507 {
1508 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1509 	u64 expires = KTIME_MAX;
1510 	unsigned long flags;
1511 
1512 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1513 
1514 	if (hrtimer_hres_active(cpu_base)) {
1515 		unsigned int active;
1516 
1517 		if (!cpu_base->softirq_activated) {
1518 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1519 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1520 							    active, KTIME_MAX);
1521 		}
1522 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1523 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1524 						    expires);
1525 	}
1526 
1527 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1528 
1529 	return expires;
1530 }
1531 #endif
1532 
1533 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1534 {
1535 	if (likely(clock_id < MAX_CLOCKS)) {
1536 		int base = hrtimer_clock_to_base_table[clock_id];
1537 
1538 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1539 			return base;
1540 	}
1541 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1542 	return HRTIMER_BASE_MONOTONIC;
1543 }
1544 
1545 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1546 			   enum hrtimer_mode mode)
1547 {
1548 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1549 	struct hrtimer_cpu_base *cpu_base;
1550 	int base;
1551 
1552 	/*
1553 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1554 	 * marked for hard interrupt expiry mode are moved into soft
1555 	 * interrupt context for latency reasons and because the callbacks
1556 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1557 	 */
1558 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1559 		softtimer = true;
1560 
1561 	memset(timer, 0, sizeof(struct hrtimer));
1562 
1563 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1564 
1565 	/*
1566 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1567 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1568 	 * ensure POSIX compliance.
1569 	 */
1570 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1571 		clock_id = CLOCK_MONOTONIC;
1572 
1573 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1574 	base += hrtimer_clockid_to_base(clock_id);
1575 	timer->is_soft = softtimer;
1576 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1577 	timer->base = &cpu_base->clock_base[base];
1578 	timerqueue_init(&timer->node);
1579 }
1580 
1581 /**
1582  * hrtimer_init - initialize a timer to the given clock
1583  * @timer:	the timer to be initialized
1584  * @clock_id:	the clock to be used
1585  * @mode:       The modes which are relevant for initialization:
1586  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1587  *              HRTIMER_MODE_REL_SOFT
1588  *
1589  *              The PINNED variants of the above can be handed in,
1590  *              but the PINNED bit is ignored as pinning happens
1591  *              when the hrtimer is started
1592  */
1593 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1594 		  enum hrtimer_mode mode)
1595 {
1596 	debug_init(timer, clock_id, mode);
1597 	__hrtimer_init(timer, clock_id, mode);
1598 }
1599 EXPORT_SYMBOL_GPL(hrtimer_init);
1600 
1601 /*
1602  * A timer is active, when it is enqueued into the rbtree or the
1603  * callback function is running or it's in the state of being migrated
1604  * to another cpu.
1605  *
1606  * It is important for this function to not return a false negative.
1607  */
1608 bool hrtimer_active(const struct hrtimer *timer)
1609 {
1610 	struct hrtimer_clock_base *base;
1611 	unsigned int seq;
1612 
1613 	do {
1614 		base = READ_ONCE(timer->base);
1615 		seq = raw_read_seqcount_begin(&base->seq);
1616 
1617 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1618 		    base->running == timer)
1619 			return true;
1620 
1621 	} while (read_seqcount_retry(&base->seq, seq) ||
1622 		 base != READ_ONCE(timer->base));
1623 
1624 	return false;
1625 }
1626 EXPORT_SYMBOL_GPL(hrtimer_active);
1627 
1628 /*
1629  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1630  * distinct sections:
1631  *
1632  *  - queued:	the timer is queued
1633  *  - callback:	the timer is being ran
1634  *  - post:	the timer is inactive or (re)queued
1635  *
1636  * On the read side we ensure we observe timer->state and cpu_base->running
1637  * from the same section, if anything changed while we looked at it, we retry.
1638  * This includes timer->base changing because sequence numbers alone are
1639  * insufficient for that.
1640  *
1641  * The sequence numbers are required because otherwise we could still observe
1642  * a false negative if the read side got smeared over multiple consecutive
1643  * __run_hrtimer() invocations.
1644  */
1645 
1646 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1647 			  struct hrtimer_clock_base *base,
1648 			  struct hrtimer *timer, ktime_t *now,
1649 			  unsigned long flags) __must_hold(&cpu_base->lock)
1650 {
1651 	enum hrtimer_restart (*fn)(struct hrtimer *);
1652 	bool expires_in_hardirq;
1653 	int restart;
1654 
1655 	lockdep_assert_held(&cpu_base->lock);
1656 
1657 	debug_deactivate(timer);
1658 	base->running = timer;
1659 
1660 	/*
1661 	 * Separate the ->running assignment from the ->state assignment.
1662 	 *
1663 	 * As with a regular write barrier, this ensures the read side in
1664 	 * hrtimer_active() cannot observe base->running == NULL &&
1665 	 * timer->state == INACTIVE.
1666 	 */
1667 	raw_write_seqcount_barrier(&base->seq);
1668 
1669 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1670 	fn = timer->function;
1671 
1672 	/*
1673 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1674 	 * timer is restarted with a period then it becomes an absolute
1675 	 * timer. If its not restarted it does not matter.
1676 	 */
1677 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1678 		timer->is_rel = false;
1679 
1680 	/*
1681 	 * The timer is marked as running in the CPU base, so it is
1682 	 * protected against migration to a different CPU even if the lock
1683 	 * is dropped.
1684 	 */
1685 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1686 	trace_hrtimer_expire_entry(timer, now);
1687 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1688 
1689 	restart = fn(timer);
1690 
1691 	lockdep_hrtimer_exit(expires_in_hardirq);
1692 	trace_hrtimer_expire_exit(timer);
1693 	raw_spin_lock_irq(&cpu_base->lock);
1694 
1695 	/*
1696 	 * Note: We clear the running state after enqueue_hrtimer and
1697 	 * we do not reprogram the event hardware. Happens either in
1698 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1699 	 *
1700 	 * Note: Because we dropped the cpu_base->lock above,
1701 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1702 	 * for us already.
1703 	 */
1704 	if (restart != HRTIMER_NORESTART &&
1705 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1706 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1707 
1708 	/*
1709 	 * Separate the ->running assignment from the ->state assignment.
1710 	 *
1711 	 * As with a regular write barrier, this ensures the read side in
1712 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1713 	 * timer->state == INACTIVE.
1714 	 */
1715 	raw_write_seqcount_barrier(&base->seq);
1716 
1717 	WARN_ON_ONCE(base->running != timer);
1718 	base->running = NULL;
1719 }
1720 
1721 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1722 				 unsigned long flags, unsigned int active_mask)
1723 {
1724 	struct hrtimer_clock_base *base;
1725 	unsigned int active = cpu_base->active_bases & active_mask;
1726 
1727 	for_each_active_base(base, cpu_base, active) {
1728 		struct timerqueue_node *node;
1729 		ktime_t basenow;
1730 
1731 		basenow = ktime_add(now, base->offset);
1732 
1733 		while ((node = timerqueue_getnext(&base->active))) {
1734 			struct hrtimer *timer;
1735 
1736 			timer = container_of(node, struct hrtimer, node);
1737 
1738 			/*
1739 			 * The immediate goal for using the softexpires is
1740 			 * minimizing wakeups, not running timers at the
1741 			 * earliest interrupt after their soft expiration.
1742 			 * This allows us to avoid using a Priority Search
1743 			 * Tree, which can answer a stabbing query for
1744 			 * overlapping intervals and instead use the simple
1745 			 * BST we already have.
1746 			 * We don't add extra wakeups by delaying timers that
1747 			 * are right-of a not yet expired timer, because that
1748 			 * timer will have to trigger a wakeup anyway.
1749 			 */
1750 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1751 				break;
1752 
1753 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1754 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1755 				hrtimer_sync_wait_running(cpu_base, flags);
1756 		}
1757 	}
1758 }
1759 
1760 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1761 {
1762 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1763 	unsigned long flags;
1764 	ktime_t now;
1765 
1766 	hrtimer_cpu_base_lock_expiry(cpu_base);
1767 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1768 
1769 	now = hrtimer_update_base(cpu_base);
1770 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1771 
1772 	cpu_base->softirq_activated = 0;
1773 	hrtimer_update_softirq_timer(cpu_base, true);
1774 
1775 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1776 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1777 }
1778 
1779 #ifdef CONFIG_HIGH_RES_TIMERS
1780 
1781 /*
1782  * High resolution timer interrupt
1783  * Called with interrupts disabled
1784  */
1785 void hrtimer_interrupt(struct clock_event_device *dev)
1786 {
1787 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1788 	ktime_t expires_next, now, entry_time, delta;
1789 	unsigned long flags;
1790 	int retries = 0;
1791 
1792 	BUG_ON(!cpu_base->hres_active);
1793 	cpu_base->nr_events++;
1794 	dev->next_event = KTIME_MAX;
1795 
1796 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1797 	entry_time = now = hrtimer_update_base(cpu_base);
1798 retry:
1799 	cpu_base->in_hrtirq = 1;
1800 	/*
1801 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1802 	 * held to prevent that a timer is enqueued in our queue via
1803 	 * the migration code. This does not affect enqueueing of
1804 	 * timers which run their callback and need to be requeued on
1805 	 * this CPU.
1806 	 */
1807 	cpu_base->expires_next = KTIME_MAX;
1808 
1809 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1810 		cpu_base->softirq_expires_next = KTIME_MAX;
1811 		cpu_base->softirq_activated = 1;
1812 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1813 	}
1814 
1815 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1816 
1817 	/* Reevaluate the clock bases for the [soft] next expiry */
1818 	expires_next = hrtimer_update_next_event(cpu_base);
1819 	/*
1820 	 * Store the new expiry value so the migration code can verify
1821 	 * against it.
1822 	 */
1823 	cpu_base->expires_next = expires_next;
1824 	cpu_base->in_hrtirq = 0;
1825 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1826 
1827 	/* Reprogramming necessary ? */
1828 	if (!tick_program_event(expires_next, 0)) {
1829 		cpu_base->hang_detected = 0;
1830 		return;
1831 	}
1832 
1833 	/*
1834 	 * The next timer was already expired due to:
1835 	 * - tracing
1836 	 * - long lasting callbacks
1837 	 * - being scheduled away when running in a VM
1838 	 *
1839 	 * We need to prevent that we loop forever in the hrtimer
1840 	 * interrupt routine. We give it 3 attempts to avoid
1841 	 * overreacting on some spurious event.
1842 	 *
1843 	 * Acquire base lock for updating the offsets and retrieving
1844 	 * the current time.
1845 	 */
1846 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1847 	now = hrtimer_update_base(cpu_base);
1848 	cpu_base->nr_retries++;
1849 	if (++retries < 3)
1850 		goto retry;
1851 	/*
1852 	 * Give the system a chance to do something else than looping
1853 	 * here. We stored the entry time, so we know exactly how long
1854 	 * we spent here. We schedule the next event this amount of
1855 	 * time away.
1856 	 */
1857 	cpu_base->nr_hangs++;
1858 	cpu_base->hang_detected = 1;
1859 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1860 
1861 	delta = ktime_sub(now, entry_time);
1862 	if ((unsigned int)delta > cpu_base->max_hang_time)
1863 		cpu_base->max_hang_time = (unsigned int) delta;
1864 	/*
1865 	 * Limit it to a sensible value as we enforce a longer
1866 	 * delay. Give the CPU at least 100ms to catch up.
1867 	 */
1868 	if (delta > 100 * NSEC_PER_MSEC)
1869 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1870 	else
1871 		expires_next = ktime_add(now, delta);
1872 	tick_program_event(expires_next, 1);
1873 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1874 }
1875 #endif /* !CONFIG_HIGH_RES_TIMERS */
1876 
1877 /*
1878  * Called from run_local_timers in hardirq context every jiffy
1879  */
1880 void hrtimer_run_queues(void)
1881 {
1882 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1883 	unsigned long flags;
1884 	ktime_t now;
1885 
1886 	if (hrtimer_hres_active(cpu_base))
1887 		return;
1888 
1889 	/*
1890 	 * This _is_ ugly: We have to check periodically, whether we
1891 	 * can switch to highres and / or nohz mode. The clocksource
1892 	 * switch happens with xtime_lock held. Notification from
1893 	 * there only sets the check bit in the tick_oneshot code,
1894 	 * otherwise we might deadlock vs. xtime_lock.
1895 	 */
1896 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1897 		hrtimer_switch_to_hres();
1898 		return;
1899 	}
1900 
1901 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1902 	now = hrtimer_update_base(cpu_base);
1903 
1904 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1905 		cpu_base->softirq_expires_next = KTIME_MAX;
1906 		cpu_base->softirq_activated = 1;
1907 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1908 	}
1909 
1910 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1911 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1912 }
1913 
1914 /*
1915  * Sleep related functions:
1916  */
1917 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1918 {
1919 	struct hrtimer_sleeper *t =
1920 		container_of(timer, struct hrtimer_sleeper, timer);
1921 	struct task_struct *task = t->task;
1922 
1923 	t->task = NULL;
1924 	if (task)
1925 		wake_up_process(task);
1926 
1927 	return HRTIMER_NORESTART;
1928 }
1929 
1930 /**
1931  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1932  * @sl:		sleeper to be started
1933  * @mode:	timer mode abs/rel
1934  *
1935  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1936  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1937  */
1938 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1939 				   enum hrtimer_mode mode)
1940 {
1941 	/*
1942 	 * Make the enqueue delivery mode check work on RT. If the sleeper
1943 	 * was initialized for hard interrupt delivery, force the mode bit.
1944 	 * This is a special case for hrtimer_sleepers because
1945 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1946 	 * fiddling with this decision is avoided at the call sites.
1947 	 */
1948 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1949 		mode |= HRTIMER_MODE_HARD;
1950 
1951 	hrtimer_start_expires(&sl->timer, mode);
1952 }
1953 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1954 
1955 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1956 				   clockid_t clock_id, enum hrtimer_mode mode)
1957 {
1958 	/*
1959 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1960 	 * marked for hard interrupt expiry mode are moved into soft
1961 	 * interrupt context either for latency reasons or because the
1962 	 * hrtimer callback takes regular spinlocks or invokes other
1963 	 * functions which are not suitable for hard interrupt context on
1964 	 * PREEMPT_RT.
1965 	 *
1966 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1967 	 * context, but there is a latency concern: Untrusted userspace can
1968 	 * spawn many threads which arm timers for the same expiry time on
1969 	 * the same CPU. That causes a latency spike due to the wakeup of
1970 	 * a gazillion threads.
1971 	 *
1972 	 * OTOH, privileged real-time user space applications rely on the
1973 	 * low latency of hard interrupt wakeups. If the current task is in
1974 	 * a real-time scheduling class, mark the mode for hard interrupt
1975 	 * expiry.
1976 	 */
1977 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1978 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1979 			mode |= HRTIMER_MODE_HARD;
1980 	}
1981 
1982 	__hrtimer_init(&sl->timer, clock_id, mode);
1983 	sl->timer.function = hrtimer_wakeup;
1984 	sl->task = current;
1985 }
1986 
1987 /**
1988  * hrtimer_init_sleeper - initialize sleeper to the given clock
1989  * @sl:		sleeper to be initialized
1990  * @clock_id:	the clock to be used
1991  * @mode:	timer mode abs/rel
1992  */
1993 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1994 			  enum hrtimer_mode mode)
1995 {
1996 	debug_init(&sl->timer, clock_id, mode);
1997 	__hrtimer_init_sleeper(sl, clock_id, mode);
1998 
1999 }
2000 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2001 
2002 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2003 {
2004 	switch(restart->nanosleep.type) {
2005 #ifdef CONFIG_COMPAT_32BIT_TIME
2006 	case TT_COMPAT:
2007 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2008 			return -EFAULT;
2009 		break;
2010 #endif
2011 	case TT_NATIVE:
2012 		if (put_timespec64(ts, restart->nanosleep.rmtp))
2013 			return -EFAULT;
2014 		break;
2015 	default:
2016 		BUG();
2017 	}
2018 	return -ERESTART_RESTARTBLOCK;
2019 }
2020 
2021 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2022 {
2023 	struct restart_block *restart;
2024 
2025 	do {
2026 		set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2027 		hrtimer_sleeper_start_expires(t, mode);
2028 
2029 		if (likely(t->task))
2030 			schedule();
2031 
2032 		hrtimer_cancel(&t->timer);
2033 		mode = HRTIMER_MODE_ABS;
2034 
2035 	} while (t->task && !signal_pending(current));
2036 
2037 	__set_current_state(TASK_RUNNING);
2038 
2039 	if (!t->task)
2040 		return 0;
2041 
2042 	restart = &current->restart_block;
2043 	if (restart->nanosleep.type != TT_NONE) {
2044 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
2045 		struct timespec64 rmt;
2046 
2047 		if (rem <= 0)
2048 			return 0;
2049 		rmt = ktime_to_timespec64(rem);
2050 
2051 		return nanosleep_copyout(restart, &rmt);
2052 	}
2053 	return -ERESTART_RESTARTBLOCK;
2054 }
2055 
2056 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2057 {
2058 	struct hrtimer_sleeper t;
2059 	int ret;
2060 
2061 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2062 				      HRTIMER_MODE_ABS);
2063 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2064 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2065 	destroy_hrtimer_on_stack(&t.timer);
2066 	return ret;
2067 }
2068 
2069 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2070 		       const clockid_t clockid)
2071 {
2072 	struct restart_block *restart;
2073 	struct hrtimer_sleeper t;
2074 	int ret = 0;
2075 	u64 slack;
2076 
2077 	slack = current->timer_slack_ns;
2078 	if (rt_task(current))
2079 		slack = 0;
2080 
2081 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2082 	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
2083 	ret = do_nanosleep(&t, mode);
2084 	if (ret != -ERESTART_RESTARTBLOCK)
2085 		goto out;
2086 
2087 	/* Absolute timers do not update the rmtp value and restart: */
2088 	if (mode == HRTIMER_MODE_ABS) {
2089 		ret = -ERESTARTNOHAND;
2090 		goto out;
2091 	}
2092 
2093 	restart = &current->restart_block;
2094 	restart->nanosleep.clockid = t.timer.base->clockid;
2095 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2096 	set_restart_fn(restart, hrtimer_nanosleep_restart);
2097 out:
2098 	destroy_hrtimer_on_stack(&t.timer);
2099 	return ret;
2100 }
2101 
2102 #ifdef CONFIG_64BIT
2103 
2104 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2105 		struct __kernel_timespec __user *, rmtp)
2106 {
2107 	struct timespec64 tu;
2108 
2109 	if (get_timespec64(&tu, rqtp))
2110 		return -EFAULT;
2111 
2112 	if (!timespec64_valid(&tu))
2113 		return -EINVAL;
2114 
2115 	current->restart_block.fn = do_no_restart_syscall;
2116 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2117 	current->restart_block.nanosleep.rmtp = rmtp;
2118 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2119 				 CLOCK_MONOTONIC);
2120 }
2121 
2122 #endif
2123 
2124 #ifdef CONFIG_COMPAT_32BIT_TIME
2125 
2126 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2127 		       struct old_timespec32 __user *, rmtp)
2128 {
2129 	struct timespec64 tu;
2130 
2131 	if (get_old_timespec32(&tu, rqtp))
2132 		return -EFAULT;
2133 
2134 	if (!timespec64_valid(&tu))
2135 		return -EINVAL;
2136 
2137 	current->restart_block.fn = do_no_restart_syscall;
2138 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2139 	current->restart_block.nanosleep.compat_rmtp = rmtp;
2140 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2141 				 CLOCK_MONOTONIC);
2142 }
2143 #endif
2144 
2145 /*
2146  * Functions related to boot-time initialization:
2147  */
2148 int hrtimers_prepare_cpu(unsigned int cpu)
2149 {
2150 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2151 	int i;
2152 
2153 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2154 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2155 
2156 		clock_b->cpu_base = cpu_base;
2157 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2158 		timerqueue_init_head(&clock_b->active);
2159 	}
2160 
2161 	cpu_base->cpu = cpu;
2162 	cpu_base->active_bases = 0;
2163 	cpu_base->hres_active = 0;
2164 	cpu_base->hang_detected = 0;
2165 	cpu_base->next_timer = NULL;
2166 	cpu_base->softirq_next_timer = NULL;
2167 	cpu_base->expires_next = KTIME_MAX;
2168 	cpu_base->softirq_expires_next = KTIME_MAX;
2169 	cpu_base->online = 1;
2170 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2171 	return 0;
2172 }
2173 
2174 #ifdef CONFIG_HOTPLUG_CPU
2175 
2176 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2177 				struct hrtimer_clock_base *new_base)
2178 {
2179 	struct hrtimer *timer;
2180 	struct timerqueue_node *node;
2181 
2182 	while ((node = timerqueue_getnext(&old_base->active))) {
2183 		timer = container_of(node, struct hrtimer, node);
2184 		BUG_ON(hrtimer_callback_running(timer));
2185 		debug_deactivate(timer);
2186 
2187 		/*
2188 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2189 		 * timer could be seen as !active and just vanish away
2190 		 * under us on another CPU
2191 		 */
2192 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2193 		timer->base = new_base;
2194 		/*
2195 		 * Enqueue the timers on the new cpu. This does not
2196 		 * reprogram the event device in case the timer
2197 		 * expires before the earliest on this CPU, but we run
2198 		 * hrtimer_interrupt after we migrated everything to
2199 		 * sort out already expired timers and reprogram the
2200 		 * event device.
2201 		 */
2202 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2203 	}
2204 }
2205 
2206 int hrtimers_cpu_dying(unsigned int dying_cpu)
2207 {
2208 	int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2209 	struct hrtimer_cpu_base *old_base, *new_base;
2210 
2211 	old_base = this_cpu_ptr(&hrtimer_bases);
2212 	new_base = &per_cpu(hrtimer_bases, ncpu);
2213 
2214 	/*
2215 	 * The caller is globally serialized and nobody else
2216 	 * takes two locks at once, deadlock is not possible.
2217 	 */
2218 	raw_spin_lock(&old_base->lock);
2219 	raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2220 
2221 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2222 		migrate_hrtimer_list(&old_base->clock_base[i],
2223 				     &new_base->clock_base[i]);
2224 	}
2225 
2226 	/*
2227 	 * The migration might have changed the first expiring softirq
2228 	 * timer on this CPU. Update it.
2229 	 */
2230 	__hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2231 	/* Tell the other CPU to retrigger the next event */
2232 	smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2233 
2234 	raw_spin_unlock(&new_base->lock);
2235 	old_base->online = 0;
2236 	raw_spin_unlock(&old_base->lock);
2237 
2238 	return 0;
2239 }
2240 
2241 #endif /* CONFIG_HOTPLUG_CPU */
2242 
2243 void __init hrtimers_init(void)
2244 {
2245 	hrtimers_prepare_cpu(smp_processor_id());
2246 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2247 }
2248 
2249 /**
2250  * schedule_hrtimeout_range_clock - sleep until timeout
2251  * @expires:	timeout value (ktime_t)
2252  * @delta:	slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2253  * @mode:	timer mode
2254  * @clock_id:	timer clock to be used
2255  */
2256 int __sched
2257 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2258 			       const enum hrtimer_mode mode, clockid_t clock_id)
2259 {
2260 	struct hrtimer_sleeper t;
2261 
2262 	/*
2263 	 * Optimize when a zero timeout value is given. It does not
2264 	 * matter whether this is an absolute or a relative time.
2265 	 */
2266 	if (expires && *expires == 0) {
2267 		__set_current_state(TASK_RUNNING);
2268 		return 0;
2269 	}
2270 
2271 	/*
2272 	 * A NULL parameter means "infinite"
2273 	 */
2274 	if (!expires) {
2275 		schedule();
2276 		return -EINTR;
2277 	}
2278 
2279 	/*
2280 	 * Override any slack passed by the user if under
2281 	 * rt contraints.
2282 	 */
2283 	if (rt_task(current))
2284 		delta = 0;
2285 
2286 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2287 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2288 	hrtimer_sleeper_start_expires(&t, mode);
2289 
2290 	if (likely(t.task))
2291 		schedule();
2292 
2293 	hrtimer_cancel(&t.timer);
2294 	destroy_hrtimer_on_stack(&t.timer);
2295 
2296 	__set_current_state(TASK_RUNNING);
2297 
2298 	return !t.task ? 0 : -EINTR;
2299 }
2300 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2301 
2302 /**
2303  * schedule_hrtimeout_range - sleep until timeout
2304  * @expires:	timeout value (ktime_t)
2305  * @delta:	slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2306  * @mode:	timer mode
2307  *
2308  * Make the current task sleep until the given expiry time has
2309  * elapsed. The routine will return immediately unless
2310  * the current task state has been set (see set_current_state()).
2311  *
2312  * The @delta argument gives the kernel the freedom to schedule the
2313  * actual wakeup to a time that is both power and performance friendly
2314  * for regular (non RT/DL) tasks.
2315  * The kernel give the normal best effort behavior for "@expires+@delta",
2316  * but may decide to fire the timer earlier, but no earlier than @expires.
2317  *
2318  * You can set the task state as follows -
2319  *
2320  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2321  * pass before the routine returns unless the current task is explicitly
2322  * woken up, (e.g. by wake_up_process()).
2323  *
2324  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2325  * delivered to the current task or the current task is explicitly woken
2326  * up.
2327  *
2328  * The current task state is guaranteed to be TASK_RUNNING when this
2329  * routine returns.
2330  *
2331  * Returns 0 when the timer has expired. If the task was woken before the
2332  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2333  * by an explicit wakeup, it returns -EINTR.
2334  */
2335 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2336 				     const enum hrtimer_mode mode)
2337 {
2338 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2339 					      CLOCK_MONOTONIC);
2340 }
2341 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2342 
2343 /**
2344  * schedule_hrtimeout - sleep until timeout
2345  * @expires:	timeout value (ktime_t)
2346  * @mode:	timer mode
2347  *
2348  * Make the current task sleep until the given expiry time has
2349  * elapsed. The routine will return immediately unless
2350  * the current task state has been set (see set_current_state()).
2351  *
2352  * You can set the task state as follows -
2353  *
2354  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2355  * pass before the routine returns unless the current task is explicitly
2356  * woken up, (e.g. by wake_up_process()).
2357  *
2358  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2359  * delivered to the current task or the current task is explicitly woken
2360  * up.
2361  *
2362  * The current task state is guaranteed to be TASK_RUNNING when this
2363  * routine returns.
2364  *
2365  * Returns 0 when the timer has expired. If the task was woken before the
2366  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2367  * by an explicit wakeup, it returns -EINTR.
2368  */
2369 int __sched schedule_hrtimeout(ktime_t *expires,
2370 			       const enum hrtimer_mode mode)
2371 {
2372 	return schedule_hrtimeout_range(expires, 0, mode);
2373 }
2374 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2375