1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/timer.h> 42 #include <linux/freezer.h> 43 #include <linux/compat.h> 44 45 #include <linux/uaccess.h> 46 47 #include <trace/events/timer.h> 48 49 #include "tick-internal.h" 50 51 /* 52 * Masks for selecting the soft and hard context timers from 53 * cpu_base->active 54 */ 55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 59 60 /* 61 * The timer bases: 62 * 63 * There are more clockids than hrtimer bases. Thus, we index 64 * into the timer bases by the hrtimer_base_type enum. When trying 65 * to reach a base using a clockid, hrtimer_clockid_to_base() 66 * is used to convert from clockid to the proper hrtimer_base_type. 67 */ 68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 69 { 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 { 94 .index = HRTIMER_BASE_MONOTONIC_SOFT, 95 .clockid = CLOCK_MONOTONIC, 96 .get_time = &ktime_get, 97 }, 98 { 99 .index = HRTIMER_BASE_REALTIME_SOFT, 100 .clockid = CLOCK_REALTIME, 101 .get_time = &ktime_get_real, 102 }, 103 { 104 .index = HRTIMER_BASE_BOOTTIME_SOFT, 105 .clockid = CLOCK_BOOTTIME, 106 .get_time = &ktime_get_boottime, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { 139 .cpu_base = &migration_cpu_base, 140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 141 &migration_cpu_base.lock), 142 }, }, 143 }; 144 145 #define migration_base migration_cpu_base.clock_base[0] 146 147 static inline bool is_migration_base(struct hrtimer_clock_base *base) 148 { 149 return base == &migration_base; 150 } 151 152 /* 153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 154 * means that all timers which are tied to this base via timer->base are 155 * locked, and the base itself is locked too. 156 * 157 * So __run_timers/migrate_timers can safely modify all timers which could 158 * be found on the lists/queues. 159 * 160 * When the timer's base is locked, and the timer removed from list, it is 161 * possible to set timer->base = &migration_base and drop the lock: the timer 162 * remains locked. 163 */ 164 static 165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 166 unsigned long *flags) 167 { 168 struct hrtimer_clock_base *base; 169 170 for (;;) { 171 base = READ_ONCE(timer->base); 172 if (likely(base != &migration_base)) { 173 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 174 if (likely(base == timer->base)) 175 return base; 176 /* The timer has migrated to another CPU: */ 177 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 178 } 179 cpu_relax(); 180 } 181 } 182 183 /* 184 * We do not migrate the timer when it is expiring before the next 185 * event on the target cpu. When high resolution is enabled, we cannot 186 * reprogram the target cpu hardware and we would cause it to fire 187 * late. To keep it simple, we handle the high resolution enabled and 188 * disabled case similar. 189 * 190 * Called with cpu_base->lock of target cpu held. 191 */ 192 static int 193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 194 { 195 ktime_t expires; 196 197 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 198 return expires < new_base->cpu_base->expires_next; 199 } 200 201 static inline 202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 203 int pinned) 204 { 205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 206 if (static_branch_likely(&timers_migration_enabled) && !pinned) 207 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 208 #endif 209 return base; 210 } 211 212 /* 213 * We switch the timer base to a power-optimized selected CPU target, 214 * if: 215 * - NO_HZ_COMMON is enabled 216 * - timer migration is enabled 217 * - the timer callback is not running 218 * - the timer is not the first expiring timer on the new target 219 * 220 * If one of the above requirements is not fulfilled we move the timer 221 * to the current CPU or leave it on the previously assigned CPU if 222 * the timer callback is currently running. 223 */ 224 static inline struct hrtimer_clock_base * 225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 226 int pinned) 227 { 228 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 229 struct hrtimer_clock_base *new_base; 230 int basenum = base->index; 231 232 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 233 new_cpu_base = get_target_base(this_cpu_base, pinned); 234 again: 235 new_base = &new_cpu_base->clock_base[basenum]; 236 237 if (base != new_base) { 238 /* 239 * We are trying to move timer to new_base. 240 * However we can't change timer's base while it is running, 241 * so we keep it on the same CPU. No hassle vs. reprogramming 242 * the event source in the high resolution case. The softirq 243 * code will take care of this when the timer function has 244 * completed. There is no conflict as we hold the lock until 245 * the timer is enqueued. 246 */ 247 if (unlikely(hrtimer_callback_running(timer))) 248 return base; 249 250 /* See the comment in lock_hrtimer_base() */ 251 WRITE_ONCE(timer->base, &migration_base); 252 raw_spin_unlock(&base->cpu_base->lock); 253 raw_spin_lock(&new_base->cpu_base->lock); 254 255 if (new_cpu_base != this_cpu_base && 256 hrtimer_check_target(timer, new_base)) { 257 raw_spin_unlock(&new_base->cpu_base->lock); 258 raw_spin_lock(&base->cpu_base->lock); 259 new_cpu_base = this_cpu_base; 260 WRITE_ONCE(timer->base, base); 261 goto again; 262 } 263 WRITE_ONCE(timer->base, new_base); 264 } else { 265 if (new_cpu_base != this_cpu_base && 266 hrtimer_check_target(timer, new_base)) { 267 new_cpu_base = this_cpu_base; 268 goto again; 269 } 270 } 271 return new_base; 272 } 273 274 #else /* CONFIG_SMP */ 275 276 static inline bool is_migration_base(struct hrtimer_clock_base *base) 277 { 278 return false; 279 } 280 281 static inline struct hrtimer_clock_base * 282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 283 { 284 struct hrtimer_clock_base *base = timer->base; 285 286 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 287 288 return base; 289 } 290 291 # define switch_hrtimer_base(t, b, p) (b) 292 293 #endif /* !CONFIG_SMP */ 294 295 /* 296 * Functions for the union type storage format of ktime_t which are 297 * too large for inlining: 298 */ 299 #if BITS_PER_LONG < 64 300 /* 301 * Divide a ktime value by a nanosecond value 302 */ 303 s64 __ktime_divns(const ktime_t kt, s64 div) 304 { 305 int sft = 0; 306 s64 dclc; 307 u64 tmp; 308 309 dclc = ktime_to_ns(kt); 310 tmp = dclc < 0 ? -dclc : dclc; 311 312 /* Make sure the divisor is less than 2^32: */ 313 while (div >> 32) { 314 sft++; 315 div >>= 1; 316 } 317 tmp >>= sft; 318 do_div(tmp, (u32) div); 319 return dclc < 0 ? -tmp : tmp; 320 } 321 EXPORT_SYMBOL_GPL(__ktime_divns); 322 #endif /* BITS_PER_LONG >= 64 */ 323 324 /* 325 * Add two ktime values and do a safety check for overflow: 326 */ 327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 328 { 329 ktime_t res = ktime_add_unsafe(lhs, rhs); 330 331 /* 332 * We use KTIME_SEC_MAX here, the maximum timeout which we can 333 * return to user space in a timespec: 334 */ 335 if (res < 0 || res < lhs || res < rhs) 336 res = ktime_set(KTIME_SEC_MAX, 0); 337 338 return res; 339 } 340 341 EXPORT_SYMBOL_GPL(ktime_add_safe); 342 343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 344 345 static const struct debug_obj_descr hrtimer_debug_descr; 346 347 static void *hrtimer_debug_hint(void *addr) 348 { 349 return ((struct hrtimer *) addr)->function; 350 } 351 352 /* 353 * fixup_init is called when: 354 * - an active object is initialized 355 */ 356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 357 { 358 struct hrtimer *timer = addr; 359 360 switch (state) { 361 case ODEBUG_STATE_ACTIVE: 362 hrtimer_cancel(timer); 363 debug_object_init(timer, &hrtimer_debug_descr); 364 return true; 365 default: 366 return false; 367 } 368 } 369 370 /* 371 * fixup_activate is called when: 372 * - an active object is activated 373 * - an unknown non-static object is activated 374 */ 375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 376 { 377 switch (state) { 378 case ODEBUG_STATE_ACTIVE: 379 WARN_ON(1); 380 fallthrough; 381 default: 382 return false; 383 } 384 } 385 386 /* 387 * fixup_free is called when: 388 * - an active object is freed 389 */ 390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 391 { 392 struct hrtimer *timer = addr; 393 394 switch (state) { 395 case ODEBUG_STATE_ACTIVE: 396 hrtimer_cancel(timer); 397 debug_object_free(timer, &hrtimer_debug_descr); 398 return true; 399 default: 400 return false; 401 } 402 } 403 404 static const struct debug_obj_descr hrtimer_debug_descr = { 405 .name = "hrtimer", 406 .debug_hint = hrtimer_debug_hint, 407 .fixup_init = hrtimer_fixup_init, 408 .fixup_activate = hrtimer_fixup_activate, 409 .fixup_free = hrtimer_fixup_free, 410 }; 411 412 static inline void debug_hrtimer_init(struct hrtimer *timer) 413 { 414 debug_object_init(timer, &hrtimer_debug_descr); 415 } 416 417 static inline void debug_hrtimer_activate(struct hrtimer *timer, 418 enum hrtimer_mode mode) 419 { 420 debug_object_activate(timer, &hrtimer_debug_descr); 421 } 422 423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 424 { 425 debug_object_deactivate(timer, &hrtimer_debug_descr); 426 } 427 428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 429 enum hrtimer_mode mode); 430 431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 432 enum hrtimer_mode mode) 433 { 434 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 435 __hrtimer_init(timer, clock_id, mode); 436 } 437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 438 439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 440 clockid_t clock_id, enum hrtimer_mode mode); 441 442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 443 clockid_t clock_id, enum hrtimer_mode mode) 444 { 445 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 446 __hrtimer_init_sleeper(sl, clock_id, mode); 447 } 448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 449 450 void destroy_hrtimer_on_stack(struct hrtimer *timer) 451 { 452 debug_object_free(timer, &hrtimer_debug_descr); 453 } 454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 455 456 #else 457 458 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 459 static inline void debug_hrtimer_activate(struct hrtimer *timer, 460 enum hrtimer_mode mode) { } 461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 462 #endif 463 464 static inline void 465 debug_init(struct hrtimer *timer, clockid_t clockid, 466 enum hrtimer_mode mode) 467 { 468 debug_hrtimer_init(timer); 469 trace_hrtimer_init(timer, clockid, mode); 470 } 471 472 static inline void debug_activate(struct hrtimer *timer, 473 enum hrtimer_mode mode) 474 { 475 debug_hrtimer_activate(timer, mode); 476 trace_hrtimer_start(timer, mode); 477 } 478 479 static inline void debug_deactivate(struct hrtimer *timer) 480 { 481 debug_hrtimer_deactivate(timer); 482 trace_hrtimer_cancel(timer); 483 } 484 485 static struct hrtimer_clock_base * 486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 487 { 488 unsigned int idx; 489 490 if (!*active) 491 return NULL; 492 493 idx = __ffs(*active); 494 *active &= ~(1U << idx); 495 496 return &cpu_base->clock_base[idx]; 497 } 498 499 #define for_each_active_base(base, cpu_base, active) \ 500 while ((base = __next_base((cpu_base), &(active)))) 501 502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 503 const struct hrtimer *exclude, 504 unsigned int active, 505 ktime_t expires_next) 506 { 507 struct hrtimer_clock_base *base; 508 ktime_t expires; 509 510 for_each_active_base(base, cpu_base, active) { 511 struct timerqueue_node *next; 512 struct hrtimer *timer; 513 514 next = timerqueue_getnext(&base->active); 515 timer = container_of(next, struct hrtimer, node); 516 if (timer == exclude) { 517 /* Get to the next timer in the queue. */ 518 next = timerqueue_iterate_next(next); 519 if (!next) 520 continue; 521 522 timer = container_of(next, struct hrtimer, node); 523 } 524 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 525 if (expires < expires_next) { 526 expires_next = expires; 527 528 /* Skip cpu_base update if a timer is being excluded. */ 529 if (exclude) 530 continue; 531 532 if (timer->is_soft) 533 cpu_base->softirq_next_timer = timer; 534 else 535 cpu_base->next_timer = timer; 536 } 537 } 538 /* 539 * clock_was_set() might have changed base->offset of any of 540 * the clock bases so the result might be negative. Fix it up 541 * to prevent a false positive in clockevents_program_event(). 542 */ 543 if (expires_next < 0) 544 expires_next = 0; 545 return expires_next; 546 } 547 548 /* 549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but 550 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. 551 * 552 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 553 * those timers will get run whenever the softirq gets handled, at the end of 554 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 555 * 556 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 557 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 558 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 559 * 560 * @active_mask must be one of: 561 * - HRTIMER_ACTIVE_ALL, 562 * - HRTIMER_ACTIVE_SOFT, or 563 * - HRTIMER_ACTIVE_HARD. 564 */ 565 static ktime_t 566 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 567 { 568 unsigned int active; 569 struct hrtimer *next_timer = NULL; 570 ktime_t expires_next = KTIME_MAX; 571 572 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 573 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 574 cpu_base->softirq_next_timer = NULL; 575 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 576 active, KTIME_MAX); 577 578 next_timer = cpu_base->softirq_next_timer; 579 } 580 581 if (active_mask & HRTIMER_ACTIVE_HARD) { 582 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 583 cpu_base->next_timer = next_timer; 584 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 585 expires_next); 586 } 587 588 return expires_next; 589 } 590 591 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 592 { 593 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 594 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 595 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 596 597 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 598 offs_real, offs_boot, offs_tai); 599 600 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 601 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 602 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 603 604 return now; 605 } 606 607 /* 608 * Is the high resolution mode active ? 609 */ 610 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 611 { 612 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 613 cpu_base->hres_active : 0; 614 } 615 616 static inline int hrtimer_hres_active(void) 617 { 618 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 619 } 620 621 /* 622 * Reprogram the event source with checking both queues for the 623 * next event 624 * Called with interrupts disabled and base->lock held 625 */ 626 static void 627 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 628 { 629 ktime_t expires_next; 630 631 /* 632 * Find the current next expiration time. 633 */ 634 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 635 636 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { 637 /* 638 * When the softirq is activated, hrtimer has to be 639 * programmed with the first hard hrtimer because soft 640 * timer interrupt could occur too late. 641 */ 642 if (cpu_base->softirq_activated) 643 expires_next = __hrtimer_get_next_event(cpu_base, 644 HRTIMER_ACTIVE_HARD); 645 else 646 cpu_base->softirq_expires_next = expires_next; 647 } 648 649 if (skip_equal && expires_next == cpu_base->expires_next) 650 return; 651 652 cpu_base->expires_next = expires_next; 653 654 /* 655 * If hres is not active, hardware does not have to be 656 * reprogrammed yet. 657 * 658 * If a hang was detected in the last timer interrupt then we 659 * leave the hang delay active in the hardware. We want the 660 * system to make progress. That also prevents the following 661 * scenario: 662 * T1 expires 50ms from now 663 * T2 expires 5s from now 664 * 665 * T1 is removed, so this code is called and would reprogram 666 * the hardware to 5s from now. Any hrtimer_start after that 667 * will not reprogram the hardware due to hang_detected being 668 * set. So we'd effectivly block all timers until the T2 event 669 * fires. 670 */ 671 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 672 return; 673 674 tick_program_event(cpu_base->expires_next, 1); 675 } 676 677 /* High resolution timer related functions */ 678 #ifdef CONFIG_HIGH_RES_TIMERS 679 680 /* 681 * High resolution timer enabled ? 682 */ 683 static bool hrtimer_hres_enabled __read_mostly = true; 684 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 685 EXPORT_SYMBOL_GPL(hrtimer_resolution); 686 687 /* 688 * Enable / Disable high resolution mode 689 */ 690 static int __init setup_hrtimer_hres(char *str) 691 { 692 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 693 } 694 695 __setup("highres=", setup_hrtimer_hres); 696 697 /* 698 * hrtimer_high_res_enabled - query, if the highres mode is enabled 699 */ 700 static inline int hrtimer_is_hres_enabled(void) 701 { 702 return hrtimer_hres_enabled; 703 } 704 705 /* 706 * Retrigger next event is called after clock was set 707 * 708 * Called with interrupts disabled via on_each_cpu() 709 */ 710 static void retrigger_next_event(void *arg) 711 { 712 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 713 714 if (!__hrtimer_hres_active(base)) 715 return; 716 717 raw_spin_lock(&base->lock); 718 hrtimer_update_base(base); 719 hrtimer_force_reprogram(base, 0); 720 raw_spin_unlock(&base->lock); 721 } 722 723 /* 724 * Switch to high resolution mode 725 */ 726 static void hrtimer_switch_to_hres(void) 727 { 728 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 729 730 if (tick_init_highres()) { 731 pr_warn("Could not switch to high resolution mode on CPU %u\n", 732 base->cpu); 733 return; 734 } 735 base->hres_active = 1; 736 hrtimer_resolution = HIGH_RES_NSEC; 737 738 tick_setup_sched_timer(); 739 /* "Retrigger" the interrupt to get things going */ 740 retrigger_next_event(NULL); 741 } 742 743 static void clock_was_set_work(struct work_struct *work) 744 { 745 clock_was_set(); 746 } 747 748 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 749 750 /* 751 * Called from timekeeping and resume code to reprogram the hrtimer 752 * interrupt device on all cpus. 753 */ 754 void clock_was_set_delayed(void) 755 { 756 schedule_work(&hrtimer_work); 757 } 758 759 #else 760 761 static inline int hrtimer_is_hres_enabled(void) { return 0; } 762 static inline void hrtimer_switch_to_hres(void) { } 763 static inline void retrigger_next_event(void *arg) { } 764 765 #endif /* CONFIG_HIGH_RES_TIMERS */ 766 767 /* 768 * When a timer is enqueued and expires earlier than the already enqueued 769 * timers, we have to check, whether it expires earlier than the timer for 770 * which the clock event device was armed. 771 * 772 * Called with interrupts disabled and base->cpu_base.lock held 773 */ 774 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 775 { 776 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 777 struct hrtimer_clock_base *base = timer->base; 778 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 779 780 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 781 782 /* 783 * CLOCK_REALTIME timer might be requested with an absolute 784 * expiry time which is less than base->offset. Set it to 0. 785 */ 786 if (expires < 0) 787 expires = 0; 788 789 if (timer->is_soft) { 790 /* 791 * soft hrtimer could be started on a remote CPU. In this 792 * case softirq_expires_next needs to be updated on the 793 * remote CPU. The soft hrtimer will not expire before the 794 * first hard hrtimer on the remote CPU - 795 * hrtimer_check_target() prevents this case. 796 */ 797 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 798 799 if (timer_cpu_base->softirq_activated) 800 return; 801 802 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 803 return; 804 805 timer_cpu_base->softirq_next_timer = timer; 806 timer_cpu_base->softirq_expires_next = expires; 807 808 if (!ktime_before(expires, timer_cpu_base->expires_next) || 809 !reprogram) 810 return; 811 } 812 813 /* 814 * If the timer is not on the current cpu, we cannot reprogram 815 * the other cpus clock event device. 816 */ 817 if (base->cpu_base != cpu_base) 818 return; 819 820 /* 821 * If the hrtimer interrupt is running, then it will 822 * reevaluate the clock bases and reprogram the clock event 823 * device. The callbacks are always executed in hard interrupt 824 * context so we don't need an extra check for a running 825 * callback. 826 */ 827 if (cpu_base->in_hrtirq) 828 return; 829 830 if (expires >= cpu_base->expires_next) 831 return; 832 833 /* Update the pointer to the next expiring timer */ 834 cpu_base->next_timer = timer; 835 cpu_base->expires_next = expires; 836 837 /* 838 * If hres is not active, hardware does not have to be 839 * programmed yet. 840 * 841 * If a hang was detected in the last timer interrupt then we 842 * do not schedule a timer which is earlier than the expiry 843 * which we enforced in the hang detection. We want the system 844 * to make progress. 845 */ 846 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 847 return; 848 849 /* 850 * Program the timer hardware. We enforce the expiry for 851 * events which are already in the past. 852 */ 853 tick_program_event(expires, 1); 854 } 855 856 /* 857 * Clock realtime was set 858 * 859 * Change the offset of the realtime clock vs. the monotonic 860 * clock. 861 * 862 * We might have to reprogram the high resolution timer interrupt. On 863 * SMP we call the architecture specific code to retrigger _all_ high 864 * resolution timer interrupts. On UP we just disable interrupts and 865 * call the high resolution interrupt code. 866 */ 867 void clock_was_set(void) 868 { 869 #ifdef CONFIG_HIGH_RES_TIMERS 870 /* Retrigger the CPU local events everywhere */ 871 on_each_cpu(retrigger_next_event, NULL, 1); 872 #endif 873 timerfd_clock_was_set(); 874 } 875 876 /* 877 * During resume we might have to reprogram the high resolution timer 878 * interrupt on all online CPUs. However, all other CPUs will be 879 * stopped with IRQs interrupts disabled so the clock_was_set() call 880 * must be deferred. 881 */ 882 void hrtimers_resume(void) 883 { 884 lockdep_assert_irqs_disabled(); 885 /* Retrigger on the local CPU */ 886 retrigger_next_event(NULL); 887 /* And schedule a retrigger for all others */ 888 clock_was_set_delayed(); 889 } 890 891 /* 892 * Counterpart to lock_hrtimer_base above: 893 */ 894 static inline 895 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 896 { 897 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 898 } 899 900 /** 901 * hrtimer_forward - forward the timer expiry 902 * @timer: hrtimer to forward 903 * @now: forward past this time 904 * @interval: the interval to forward 905 * 906 * Forward the timer expiry so it will expire in the future. 907 * Returns the number of overruns. 908 * 909 * Can be safely called from the callback function of @timer. If 910 * called from other contexts @timer must neither be enqueued nor 911 * running the callback and the caller needs to take care of 912 * serialization. 913 * 914 * Note: This only updates the timer expiry value and does not requeue 915 * the timer. 916 */ 917 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 918 { 919 u64 orun = 1; 920 ktime_t delta; 921 922 delta = ktime_sub(now, hrtimer_get_expires(timer)); 923 924 if (delta < 0) 925 return 0; 926 927 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 928 return 0; 929 930 if (interval < hrtimer_resolution) 931 interval = hrtimer_resolution; 932 933 if (unlikely(delta >= interval)) { 934 s64 incr = ktime_to_ns(interval); 935 936 orun = ktime_divns(delta, incr); 937 hrtimer_add_expires_ns(timer, incr * orun); 938 if (hrtimer_get_expires_tv64(timer) > now) 939 return orun; 940 /* 941 * This (and the ktime_add() below) is the 942 * correction for exact: 943 */ 944 orun++; 945 } 946 hrtimer_add_expires(timer, interval); 947 948 return orun; 949 } 950 EXPORT_SYMBOL_GPL(hrtimer_forward); 951 952 /* 953 * enqueue_hrtimer - internal function to (re)start a timer 954 * 955 * The timer is inserted in expiry order. Insertion into the 956 * red black tree is O(log(n)). Must hold the base lock. 957 * 958 * Returns 1 when the new timer is the leftmost timer in the tree. 959 */ 960 static int enqueue_hrtimer(struct hrtimer *timer, 961 struct hrtimer_clock_base *base, 962 enum hrtimer_mode mode) 963 { 964 debug_activate(timer, mode); 965 966 base->cpu_base->active_bases |= 1 << base->index; 967 968 /* Pairs with the lockless read in hrtimer_is_queued() */ 969 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 970 971 return timerqueue_add(&base->active, &timer->node); 972 } 973 974 /* 975 * __remove_hrtimer - internal function to remove a timer 976 * 977 * Caller must hold the base lock. 978 * 979 * High resolution timer mode reprograms the clock event device when the 980 * timer is the one which expires next. The caller can disable this by setting 981 * reprogram to zero. This is useful, when the context does a reprogramming 982 * anyway (e.g. timer interrupt) 983 */ 984 static void __remove_hrtimer(struct hrtimer *timer, 985 struct hrtimer_clock_base *base, 986 u8 newstate, int reprogram) 987 { 988 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 989 u8 state = timer->state; 990 991 /* Pairs with the lockless read in hrtimer_is_queued() */ 992 WRITE_ONCE(timer->state, newstate); 993 if (!(state & HRTIMER_STATE_ENQUEUED)) 994 return; 995 996 if (!timerqueue_del(&base->active, &timer->node)) 997 cpu_base->active_bases &= ~(1 << base->index); 998 999 /* 1000 * Note: If reprogram is false we do not update 1001 * cpu_base->next_timer. This happens when we remove the first 1002 * timer on a remote cpu. No harm as we never dereference 1003 * cpu_base->next_timer. So the worst thing what can happen is 1004 * an superflous call to hrtimer_force_reprogram() on the 1005 * remote cpu later on if the same timer gets enqueued again. 1006 */ 1007 if (reprogram && timer == cpu_base->next_timer) 1008 hrtimer_force_reprogram(cpu_base, 1); 1009 } 1010 1011 /* 1012 * remove hrtimer, called with base lock held 1013 */ 1014 static inline int 1015 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 1016 { 1017 u8 state = timer->state; 1018 1019 if (state & HRTIMER_STATE_ENQUEUED) { 1020 int reprogram; 1021 1022 /* 1023 * Remove the timer and force reprogramming when high 1024 * resolution mode is active and the timer is on the current 1025 * CPU. If we remove a timer on another CPU, reprogramming is 1026 * skipped. The interrupt event on this CPU is fired and 1027 * reprogramming happens in the interrupt handler. This is a 1028 * rare case and less expensive than a smp call. 1029 */ 1030 debug_deactivate(timer); 1031 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1032 1033 if (!restart) 1034 state = HRTIMER_STATE_INACTIVE; 1035 1036 __remove_hrtimer(timer, base, state, reprogram); 1037 return 1; 1038 } 1039 return 0; 1040 } 1041 1042 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1043 const enum hrtimer_mode mode) 1044 { 1045 #ifdef CONFIG_TIME_LOW_RES 1046 /* 1047 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1048 * granular time values. For relative timers we add hrtimer_resolution 1049 * (i.e. one jiffie) to prevent short timeouts. 1050 */ 1051 timer->is_rel = mode & HRTIMER_MODE_REL; 1052 if (timer->is_rel) 1053 tim = ktime_add_safe(tim, hrtimer_resolution); 1054 #endif 1055 return tim; 1056 } 1057 1058 static void 1059 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1060 { 1061 ktime_t expires; 1062 1063 /* 1064 * Find the next SOFT expiration. 1065 */ 1066 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1067 1068 /* 1069 * reprogramming needs to be triggered, even if the next soft 1070 * hrtimer expires at the same time than the next hard 1071 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1072 */ 1073 if (expires == KTIME_MAX) 1074 return; 1075 1076 /* 1077 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1078 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1079 */ 1080 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1081 } 1082 1083 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1084 u64 delta_ns, const enum hrtimer_mode mode, 1085 struct hrtimer_clock_base *base) 1086 { 1087 struct hrtimer_clock_base *new_base; 1088 1089 /* Remove an active timer from the queue: */ 1090 remove_hrtimer(timer, base, true); 1091 1092 if (mode & HRTIMER_MODE_REL) 1093 tim = ktime_add_safe(tim, base->get_time()); 1094 1095 tim = hrtimer_update_lowres(timer, tim, mode); 1096 1097 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1098 1099 /* Switch the timer base, if necessary: */ 1100 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1101 1102 return enqueue_hrtimer(timer, new_base, mode); 1103 } 1104 1105 /** 1106 * hrtimer_start_range_ns - (re)start an hrtimer 1107 * @timer: the timer to be added 1108 * @tim: expiry time 1109 * @delta_ns: "slack" range for the timer 1110 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1111 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1112 * softirq based mode is considered for debug purpose only! 1113 */ 1114 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1115 u64 delta_ns, const enum hrtimer_mode mode) 1116 { 1117 struct hrtimer_clock_base *base; 1118 unsigned long flags; 1119 1120 /* 1121 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1122 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1123 * expiry mode because unmarked timers are moved to softirq expiry. 1124 */ 1125 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1126 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1127 else 1128 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1129 1130 base = lock_hrtimer_base(timer, &flags); 1131 1132 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1133 hrtimer_reprogram(timer, true); 1134 1135 unlock_hrtimer_base(timer, &flags); 1136 } 1137 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1138 1139 /** 1140 * hrtimer_try_to_cancel - try to deactivate a timer 1141 * @timer: hrtimer to stop 1142 * 1143 * Returns: 1144 * 1145 * * 0 when the timer was not active 1146 * * 1 when the timer was active 1147 * * -1 when the timer is currently executing the callback function and 1148 * cannot be stopped 1149 */ 1150 int hrtimer_try_to_cancel(struct hrtimer *timer) 1151 { 1152 struct hrtimer_clock_base *base; 1153 unsigned long flags; 1154 int ret = -1; 1155 1156 /* 1157 * Check lockless first. If the timer is not active (neither 1158 * enqueued nor running the callback, nothing to do here. The 1159 * base lock does not serialize against a concurrent enqueue, 1160 * so we can avoid taking it. 1161 */ 1162 if (!hrtimer_active(timer)) 1163 return 0; 1164 1165 base = lock_hrtimer_base(timer, &flags); 1166 1167 if (!hrtimer_callback_running(timer)) 1168 ret = remove_hrtimer(timer, base, false); 1169 1170 unlock_hrtimer_base(timer, &flags); 1171 1172 return ret; 1173 1174 } 1175 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1176 1177 #ifdef CONFIG_PREEMPT_RT 1178 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1179 { 1180 spin_lock_init(&base->softirq_expiry_lock); 1181 } 1182 1183 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1184 { 1185 spin_lock(&base->softirq_expiry_lock); 1186 } 1187 1188 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1189 { 1190 spin_unlock(&base->softirq_expiry_lock); 1191 } 1192 1193 /* 1194 * The counterpart to hrtimer_cancel_wait_running(). 1195 * 1196 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1197 * the timer callback to finish. Drop expiry_lock and reaquire it. That 1198 * allows the waiter to acquire the lock and make progress. 1199 */ 1200 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1201 unsigned long flags) 1202 { 1203 if (atomic_read(&cpu_base->timer_waiters)) { 1204 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1205 spin_unlock(&cpu_base->softirq_expiry_lock); 1206 spin_lock(&cpu_base->softirq_expiry_lock); 1207 raw_spin_lock_irq(&cpu_base->lock); 1208 } 1209 } 1210 1211 /* 1212 * This function is called on PREEMPT_RT kernels when the fast path 1213 * deletion of a timer failed because the timer callback function was 1214 * running. 1215 * 1216 * This prevents priority inversion: if the soft irq thread is preempted 1217 * in the middle of a timer callback, then calling del_timer_sync() can 1218 * lead to two issues: 1219 * 1220 * - If the caller is on a remote CPU then it has to spin wait for the timer 1221 * handler to complete. This can result in unbound priority inversion. 1222 * 1223 * - If the caller originates from the task which preempted the timer 1224 * handler on the same CPU, then spin waiting for the timer handler to 1225 * complete is never going to end. 1226 */ 1227 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1228 { 1229 /* Lockless read. Prevent the compiler from reloading it below */ 1230 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1231 1232 /* 1233 * Just relax if the timer expires in hard interrupt context or if 1234 * it is currently on the migration base. 1235 */ 1236 if (!timer->is_soft || is_migration_base(base)) { 1237 cpu_relax(); 1238 return; 1239 } 1240 1241 /* 1242 * Mark the base as contended and grab the expiry lock, which is 1243 * held by the softirq across the timer callback. Drop the lock 1244 * immediately so the softirq can expire the next timer. In theory 1245 * the timer could already be running again, but that's more than 1246 * unlikely and just causes another wait loop. 1247 */ 1248 atomic_inc(&base->cpu_base->timer_waiters); 1249 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1250 atomic_dec(&base->cpu_base->timer_waiters); 1251 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1252 } 1253 #else 1254 static inline void 1255 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1256 static inline void 1257 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1258 static inline void 1259 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1260 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1261 unsigned long flags) { } 1262 #endif 1263 1264 /** 1265 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1266 * @timer: the timer to be cancelled 1267 * 1268 * Returns: 1269 * 0 when the timer was not active 1270 * 1 when the timer was active 1271 */ 1272 int hrtimer_cancel(struct hrtimer *timer) 1273 { 1274 int ret; 1275 1276 do { 1277 ret = hrtimer_try_to_cancel(timer); 1278 1279 if (ret < 0) 1280 hrtimer_cancel_wait_running(timer); 1281 } while (ret < 0); 1282 return ret; 1283 } 1284 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1285 1286 /** 1287 * __hrtimer_get_remaining - get remaining time for the timer 1288 * @timer: the timer to read 1289 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1290 */ 1291 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1292 { 1293 unsigned long flags; 1294 ktime_t rem; 1295 1296 lock_hrtimer_base(timer, &flags); 1297 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1298 rem = hrtimer_expires_remaining_adjusted(timer); 1299 else 1300 rem = hrtimer_expires_remaining(timer); 1301 unlock_hrtimer_base(timer, &flags); 1302 1303 return rem; 1304 } 1305 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1306 1307 #ifdef CONFIG_NO_HZ_COMMON 1308 /** 1309 * hrtimer_get_next_event - get the time until next expiry event 1310 * 1311 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1312 */ 1313 u64 hrtimer_get_next_event(void) 1314 { 1315 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1316 u64 expires = KTIME_MAX; 1317 unsigned long flags; 1318 1319 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1320 1321 if (!__hrtimer_hres_active(cpu_base)) 1322 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1323 1324 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1325 1326 return expires; 1327 } 1328 1329 /** 1330 * hrtimer_next_event_without - time until next expiry event w/o one timer 1331 * @exclude: timer to exclude 1332 * 1333 * Returns the next expiry time over all timers except for the @exclude one or 1334 * KTIME_MAX if none of them is pending. 1335 */ 1336 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1337 { 1338 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1339 u64 expires = KTIME_MAX; 1340 unsigned long flags; 1341 1342 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1343 1344 if (__hrtimer_hres_active(cpu_base)) { 1345 unsigned int active; 1346 1347 if (!cpu_base->softirq_activated) { 1348 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1349 expires = __hrtimer_next_event_base(cpu_base, exclude, 1350 active, KTIME_MAX); 1351 } 1352 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1353 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1354 expires); 1355 } 1356 1357 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1358 1359 return expires; 1360 } 1361 #endif 1362 1363 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1364 { 1365 if (likely(clock_id < MAX_CLOCKS)) { 1366 int base = hrtimer_clock_to_base_table[clock_id]; 1367 1368 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1369 return base; 1370 } 1371 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1372 return HRTIMER_BASE_MONOTONIC; 1373 } 1374 1375 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1376 enum hrtimer_mode mode) 1377 { 1378 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1379 struct hrtimer_cpu_base *cpu_base; 1380 int base; 1381 1382 /* 1383 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely 1384 * marked for hard interrupt expiry mode are moved into soft 1385 * interrupt context for latency reasons and because the callbacks 1386 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1387 */ 1388 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1389 softtimer = true; 1390 1391 memset(timer, 0, sizeof(struct hrtimer)); 1392 1393 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1394 1395 /* 1396 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1397 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1398 * ensure POSIX compliance. 1399 */ 1400 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1401 clock_id = CLOCK_MONOTONIC; 1402 1403 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1404 base += hrtimer_clockid_to_base(clock_id); 1405 timer->is_soft = softtimer; 1406 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1407 timer->base = &cpu_base->clock_base[base]; 1408 timerqueue_init(&timer->node); 1409 } 1410 1411 /** 1412 * hrtimer_init - initialize a timer to the given clock 1413 * @timer: the timer to be initialized 1414 * @clock_id: the clock to be used 1415 * @mode: The modes which are relevant for intitialization: 1416 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1417 * HRTIMER_MODE_REL_SOFT 1418 * 1419 * The PINNED variants of the above can be handed in, 1420 * but the PINNED bit is ignored as pinning happens 1421 * when the hrtimer is started 1422 */ 1423 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1424 enum hrtimer_mode mode) 1425 { 1426 debug_init(timer, clock_id, mode); 1427 __hrtimer_init(timer, clock_id, mode); 1428 } 1429 EXPORT_SYMBOL_GPL(hrtimer_init); 1430 1431 /* 1432 * A timer is active, when it is enqueued into the rbtree or the 1433 * callback function is running or it's in the state of being migrated 1434 * to another cpu. 1435 * 1436 * It is important for this function to not return a false negative. 1437 */ 1438 bool hrtimer_active(const struct hrtimer *timer) 1439 { 1440 struct hrtimer_clock_base *base; 1441 unsigned int seq; 1442 1443 do { 1444 base = READ_ONCE(timer->base); 1445 seq = raw_read_seqcount_begin(&base->seq); 1446 1447 if (timer->state != HRTIMER_STATE_INACTIVE || 1448 base->running == timer) 1449 return true; 1450 1451 } while (read_seqcount_retry(&base->seq, seq) || 1452 base != READ_ONCE(timer->base)); 1453 1454 return false; 1455 } 1456 EXPORT_SYMBOL_GPL(hrtimer_active); 1457 1458 /* 1459 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1460 * distinct sections: 1461 * 1462 * - queued: the timer is queued 1463 * - callback: the timer is being ran 1464 * - post: the timer is inactive or (re)queued 1465 * 1466 * On the read side we ensure we observe timer->state and cpu_base->running 1467 * from the same section, if anything changed while we looked at it, we retry. 1468 * This includes timer->base changing because sequence numbers alone are 1469 * insufficient for that. 1470 * 1471 * The sequence numbers are required because otherwise we could still observe 1472 * a false negative if the read side got smeared over multiple consequtive 1473 * __run_hrtimer() invocations. 1474 */ 1475 1476 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1477 struct hrtimer_clock_base *base, 1478 struct hrtimer *timer, ktime_t *now, 1479 unsigned long flags) __must_hold(&cpu_base->lock) 1480 { 1481 enum hrtimer_restart (*fn)(struct hrtimer *); 1482 bool expires_in_hardirq; 1483 int restart; 1484 1485 lockdep_assert_held(&cpu_base->lock); 1486 1487 debug_deactivate(timer); 1488 base->running = timer; 1489 1490 /* 1491 * Separate the ->running assignment from the ->state assignment. 1492 * 1493 * As with a regular write barrier, this ensures the read side in 1494 * hrtimer_active() cannot observe base->running == NULL && 1495 * timer->state == INACTIVE. 1496 */ 1497 raw_write_seqcount_barrier(&base->seq); 1498 1499 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1500 fn = timer->function; 1501 1502 /* 1503 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1504 * timer is restarted with a period then it becomes an absolute 1505 * timer. If its not restarted it does not matter. 1506 */ 1507 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1508 timer->is_rel = false; 1509 1510 /* 1511 * The timer is marked as running in the CPU base, so it is 1512 * protected against migration to a different CPU even if the lock 1513 * is dropped. 1514 */ 1515 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1516 trace_hrtimer_expire_entry(timer, now); 1517 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1518 1519 restart = fn(timer); 1520 1521 lockdep_hrtimer_exit(expires_in_hardirq); 1522 trace_hrtimer_expire_exit(timer); 1523 raw_spin_lock_irq(&cpu_base->lock); 1524 1525 /* 1526 * Note: We clear the running state after enqueue_hrtimer and 1527 * we do not reprogram the event hardware. Happens either in 1528 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1529 * 1530 * Note: Because we dropped the cpu_base->lock above, 1531 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1532 * for us already. 1533 */ 1534 if (restart != HRTIMER_NORESTART && 1535 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1536 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1537 1538 /* 1539 * Separate the ->running assignment from the ->state assignment. 1540 * 1541 * As with a regular write barrier, this ensures the read side in 1542 * hrtimer_active() cannot observe base->running.timer == NULL && 1543 * timer->state == INACTIVE. 1544 */ 1545 raw_write_seqcount_barrier(&base->seq); 1546 1547 WARN_ON_ONCE(base->running != timer); 1548 base->running = NULL; 1549 } 1550 1551 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1552 unsigned long flags, unsigned int active_mask) 1553 { 1554 struct hrtimer_clock_base *base; 1555 unsigned int active = cpu_base->active_bases & active_mask; 1556 1557 for_each_active_base(base, cpu_base, active) { 1558 struct timerqueue_node *node; 1559 ktime_t basenow; 1560 1561 basenow = ktime_add(now, base->offset); 1562 1563 while ((node = timerqueue_getnext(&base->active))) { 1564 struct hrtimer *timer; 1565 1566 timer = container_of(node, struct hrtimer, node); 1567 1568 /* 1569 * The immediate goal for using the softexpires is 1570 * minimizing wakeups, not running timers at the 1571 * earliest interrupt after their soft expiration. 1572 * This allows us to avoid using a Priority Search 1573 * Tree, which can answer a stabbing querry for 1574 * overlapping intervals and instead use the simple 1575 * BST we already have. 1576 * We don't add extra wakeups by delaying timers that 1577 * are right-of a not yet expired timer, because that 1578 * timer will have to trigger a wakeup anyway. 1579 */ 1580 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1581 break; 1582 1583 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1584 if (active_mask == HRTIMER_ACTIVE_SOFT) 1585 hrtimer_sync_wait_running(cpu_base, flags); 1586 } 1587 } 1588 } 1589 1590 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1591 { 1592 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1593 unsigned long flags; 1594 ktime_t now; 1595 1596 hrtimer_cpu_base_lock_expiry(cpu_base); 1597 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1598 1599 now = hrtimer_update_base(cpu_base); 1600 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1601 1602 cpu_base->softirq_activated = 0; 1603 hrtimer_update_softirq_timer(cpu_base, true); 1604 1605 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1606 hrtimer_cpu_base_unlock_expiry(cpu_base); 1607 } 1608 1609 #ifdef CONFIG_HIGH_RES_TIMERS 1610 1611 /* 1612 * High resolution timer interrupt 1613 * Called with interrupts disabled 1614 */ 1615 void hrtimer_interrupt(struct clock_event_device *dev) 1616 { 1617 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1618 ktime_t expires_next, now, entry_time, delta; 1619 unsigned long flags; 1620 int retries = 0; 1621 1622 BUG_ON(!cpu_base->hres_active); 1623 cpu_base->nr_events++; 1624 dev->next_event = KTIME_MAX; 1625 1626 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1627 entry_time = now = hrtimer_update_base(cpu_base); 1628 retry: 1629 cpu_base->in_hrtirq = 1; 1630 /* 1631 * We set expires_next to KTIME_MAX here with cpu_base->lock 1632 * held to prevent that a timer is enqueued in our queue via 1633 * the migration code. This does not affect enqueueing of 1634 * timers which run their callback and need to be requeued on 1635 * this CPU. 1636 */ 1637 cpu_base->expires_next = KTIME_MAX; 1638 1639 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1640 cpu_base->softirq_expires_next = KTIME_MAX; 1641 cpu_base->softirq_activated = 1; 1642 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1643 } 1644 1645 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1646 1647 /* Reevaluate the clock bases for the next expiry */ 1648 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1649 /* 1650 * Store the new expiry value so the migration code can verify 1651 * against it. 1652 */ 1653 cpu_base->expires_next = expires_next; 1654 cpu_base->in_hrtirq = 0; 1655 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1656 1657 /* Reprogramming necessary ? */ 1658 if (!tick_program_event(expires_next, 0)) { 1659 cpu_base->hang_detected = 0; 1660 return; 1661 } 1662 1663 /* 1664 * The next timer was already expired due to: 1665 * - tracing 1666 * - long lasting callbacks 1667 * - being scheduled away when running in a VM 1668 * 1669 * We need to prevent that we loop forever in the hrtimer 1670 * interrupt routine. We give it 3 attempts to avoid 1671 * overreacting on some spurious event. 1672 * 1673 * Acquire base lock for updating the offsets and retrieving 1674 * the current time. 1675 */ 1676 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1677 now = hrtimer_update_base(cpu_base); 1678 cpu_base->nr_retries++; 1679 if (++retries < 3) 1680 goto retry; 1681 /* 1682 * Give the system a chance to do something else than looping 1683 * here. We stored the entry time, so we know exactly how long 1684 * we spent here. We schedule the next event this amount of 1685 * time away. 1686 */ 1687 cpu_base->nr_hangs++; 1688 cpu_base->hang_detected = 1; 1689 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1690 1691 delta = ktime_sub(now, entry_time); 1692 if ((unsigned int)delta > cpu_base->max_hang_time) 1693 cpu_base->max_hang_time = (unsigned int) delta; 1694 /* 1695 * Limit it to a sensible value as we enforce a longer 1696 * delay. Give the CPU at least 100ms to catch up. 1697 */ 1698 if (delta > 100 * NSEC_PER_MSEC) 1699 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1700 else 1701 expires_next = ktime_add(now, delta); 1702 tick_program_event(expires_next, 1); 1703 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1704 } 1705 1706 /* called with interrupts disabled */ 1707 static inline void __hrtimer_peek_ahead_timers(void) 1708 { 1709 struct tick_device *td; 1710 1711 if (!hrtimer_hres_active()) 1712 return; 1713 1714 td = this_cpu_ptr(&tick_cpu_device); 1715 if (td && td->evtdev) 1716 hrtimer_interrupt(td->evtdev); 1717 } 1718 1719 #else /* CONFIG_HIGH_RES_TIMERS */ 1720 1721 static inline void __hrtimer_peek_ahead_timers(void) { } 1722 1723 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1724 1725 /* 1726 * Called from run_local_timers in hardirq context every jiffy 1727 */ 1728 void hrtimer_run_queues(void) 1729 { 1730 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1731 unsigned long flags; 1732 ktime_t now; 1733 1734 if (__hrtimer_hres_active(cpu_base)) 1735 return; 1736 1737 /* 1738 * This _is_ ugly: We have to check periodically, whether we 1739 * can switch to highres and / or nohz mode. The clocksource 1740 * switch happens with xtime_lock held. Notification from 1741 * there only sets the check bit in the tick_oneshot code, 1742 * otherwise we might deadlock vs. xtime_lock. 1743 */ 1744 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1745 hrtimer_switch_to_hres(); 1746 return; 1747 } 1748 1749 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1750 now = hrtimer_update_base(cpu_base); 1751 1752 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1753 cpu_base->softirq_expires_next = KTIME_MAX; 1754 cpu_base->softirq_activated = 1; 1755 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1756 } 1757 1758 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1759 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1760 } 1761 1762 /* 1763 * Sleep related functions: 1764 */ 1765 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1766 { 1767 struct hrtimer_sleeper *t = 1768 container_of(timer, struct hrtimer_sleeper, timer); 1769 struct task_struct *task = t->task; 1770 1771 t->task = NULL; 1772 if (task) 1773 wake_up_process(task); 1774 1775 return HRTIMER_NORESTART; 1776 } 1777 1778 /** 1779 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1780 * @sl: sleeper to be started 1781 * @mode: timer mode abs/rel 1782 * 1783 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1784 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1785 */ 1786 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1787 enum hrtimer_mode mode) 1788 { 1789 /* 1790 * Make the enqueue delivery mode check work on RT. If the sleeper 1791 * was initialized for hard interrupt delivery, force the mode bit. 1792 * This is a special case for hrtimer_sleepers because 1793 * hrtimer_init_sleeper() determines the delivery mode on RT so the 1794 * fiddling with this decision is avoided at the call sites. 1795 */ 1796 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 1797 mode |= HRTIMER_MODE_HARD; 1798 1799 hrtimer_start_expires(&sl->timer, mode); 1800 } 1801 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1802 1803 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1804 clockid_t clock_id, enum hrtimer_mode mode) 1805 { 1806 /* 1807 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely 1808 * marked for hard interrupt expiry mode are moved into soft 1809 * interrupt context either for latency reasons or because the 1810 * hrtimer callback takes regular spinlocks or invokes other 1811 * functions which are not suitable for hard interrupt context on 1812 * PREEMPT_RT. 1813 * 1814 * The hrtimer_sleeper callback is RT compatible in hard interrupt 1815 * context, but there is a latency concern: Untrusted userspace can 1816 * spawn many threads which arm timers for the same expiry time on 1817 * the same CPU. That causes a latency spike due to the wakeup of 1818 * a gazillion threads. 1819 * 1820 * OTOH, priviledged real-time user space applications rely on the 1821 * low latency of hard interrupt wakeups. If the current task is in 1822 * a real-time scheduling class, mark the mode for hard interrupt 1823 * expiry. 1824 */ 1825 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1826 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) 1827 mode |= HRTIMER_MODE_HARD; 1828 } 1829 1830 __hrtimer_init(&sl->timer, clock_id, mode); 1831 sl->timer.function = hrtimer_wakeup; 1832 sl->task = current; 1833 } 1834 1835 /** 1836 * hrtimer_init_sleeper - initialize sleeper to the given clock 1837 * @sl: sleeper to be initialized 1838 * @clock_id: the clock to be used 1839 * @mode: timer mode abs/rel 1840 */ 1841 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 1842 enum hrtimer_mode mode) 1843 { 1844 debug_init(&sl->timer, clock_id, mode); 1845 __hrtimer_init_sleeper(sl, clock_id, mode); 1846 1847 } 1848 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1849 1850 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1851 { 1852 switch(restart->nanosleep.type) { 1853 #ifdef CONFIG_COMPAT_32BIT_TIME 1854 case TT_COMPAT: 1855 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 1856 return -EFAULT; 1857 break; 1858 #endif 1859 case TT_NATIVE: 1860 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1861 return -EFAULT; 1862 break; 1863 default: 1864 BUG(); 1865 } 1866 return -ERESTART_RESTARTBLOCK; 1867 } 1868 1869 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1870 { 1871 struct restart_block *restart; 1872 1873 do { 1874 set_current_state(TASK_INTERRUPTIBLE); 1875 hrtimer_sleeper_start_expires(t, mode); 1876 1877 if (likely(t->task)) 1878 freezable_schedule(); 1879 1880 hrtimer_cancel(&t->timer); 1881 mode = HRTIMER_MODE_ABS; 1882 1883 } while (t->task && !signal_pending(current)); 1884 1885 __set_current_state(TASK_RUNNING); 1886 1887 if (!t->task) 1888 return 0; 1889 1890 restart = ¤t->restart_block; 1891 if (restart->nanosleep.type != TT_NONE) { 1892 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1893 struct timespec64 rmt; 1894 1895 if (rem <= 0) 1896 return 0; 1897 rmt = ktime_to_timespec64(rem); 1898 1899 return nanosleep_copyout(restart, &rmt); 1900 } 1901 return -ERESTART_RESTARTBLOCK; 1902 } 1903 1904 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1905 { 1906 struct hrtimer_sleeper t; 1907 int ret; 1908 1909 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 1910 HRTIMER_MODE_ABS); 1911 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1912 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1913 destroy_hrtimer_on_stack(&t.timer); 1914 return ret; 1915 } 1916 1917 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 1918 const clockid_t clockid) 1919 { 1920 struct restart_block *restart; 1921 struct hrtimer_sleeper t; 1922 int ret = 0; 1923 u64 slack; 1924 1925 slack = current->timer_slack_ns; 1926 if (dl_task(current) || rt_task(current)) 1927 slack = 0; 1928 1929 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 1930 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); 1931 ret = do_nanosleep(&t, mode); 1932 if (ret != -ERESTART_RESTARTBLOCK) 1933 goto out; 1934 1935 /* Absolute timers do not update the rmtp value and restart: */ 1936 if (mode == HRTIMER_MODE_ABS) { 1937 ret = -ERESTARTNOHAND; 1938 goto out; 1939 } 1940 1941 restart = ¤t->restart_block; 1942 restart->fn = hrtimer_nanosleep_restart; 1943 restart->nanosleep.clockid = t.timer.base->clockid; 1944 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1945 out: 1946 destroy_hrtimer_on_stack(&t.timer); 1947 return ret; 1948 } 1949 1950 #ifdef CONFIG_64BIT 1951 1952 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 1953 struct __kernel_timespec __user *, rmtp) 1954 { 1955 struct timespec64 tu; 1956 1957 if (get_timespec64(&tu, rqtp)) 1958 return -EFAULT; 1959 1960 if (!timespec64_valid(&tu)) 1961 return -EINVAL; 1962 1963 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1964 current->restart_block.nanosleep.rmtp = rmtp; 1965 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 1966 CLOCK_MONOTONIC); 1967 } 1968 1969 #endif 1970 1971 #ifdef CONFIG_COMPAT_32BIT_TIME 1972 1973 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 1974 struct old_timespec32 __user *, rmtp) 1975 { 1976 struct timespec64 tu; 1977 1978 if (get_old_timespec32(&tu, rqtp)) 1979 return -EFAULT; 1980 1981 if (!timespec64_valid(&tu)) 1982 return -EINVAL; 1983 1984 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1985 current->restart_block.nanosleep.compat_rmtp = rmtp; 1986 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 1987 CLOCK_MONOTONIC); 1988 } 1989 #endif 1990 1991 /* 1992 * Functions related to boot-time initialization: 1993 */ 1994 int hrtimers_prepare_cpu(unsigned int cpu) 1995 { 1996 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1997 int i; 1998 1999 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2000 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2001 2002 clock_b->cpu_base = cpu_base; 2003 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2004 timerqueue_init_head(&clock_b->active); 2005 } 2006 2007 cpu_base->cpu = cpu; 2008 cpu_base->active_bases = 0; 2009 cpu_base->hres_active = 0; 2010 cpu_base->hang_detected = 0; 2011 cpu_base->next_timer = NULL; 2012 cpu_base->softirq_next_timer = NULL; 2013 cpu_base->expires_next = KTIME_MAX; 2014 cpu_base->softirq_expires_next = KTIME_MAX; 2015 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2016 return 0; 2017 } 2018 2019 #ifdef CONFIG_HOTPLUG_CPU 2020 2021 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2022 struct hrtimer_clock_base *new_base) 2023 { 2024 struct hrtimer *timer; 2025 struct timerqueue_node *node; 2026 2027 while ((node = timerqueue_getnext(&old_base->active))) { 2028 timer = container_of(node, struct hrtimer, node); 2029 BUG_ON(hrtimer_callback_running(timer)); 2030 debug_deactivate(timer); 2031 2032 /* 2033 * Mark it as ENQUEUED not INACTIVE otherwise the 2034 * timer could be seen as !active and just vanish away 2035 * under us on another CPU 2036 */ 2037 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2038 timer->base = new_base; 2039 /* 2040 * Enqueue the timers on the new cpu. This does not 2041 * reprogram the event device in case the timer 2042 * expires before the earliest on this CPU, but we run 2043 * hrtimer_interrupt after we migrated everything to 2044 * sort out already expired timers and reprogram the 2045 * event device. 2046 */ 2047 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2048 } 2049 } 2050 2051 int hrtimers_dead_cpu(unsigned int scpu) 2052 { 2053 struct hrtimer_cpu_base *old_base, *new_base; 2054 int i; 2055 2056 BUG_ON(cpu_online(scpu)); 2057 tick_cancel_sched_timer(scpu); 2058 2059 /* 2060 * this BH disable ensures that raise_softirq_irqoff() does 2061 * not wakeup ksoftirqd (and acquire the pi-lock) while 2062 * holding the cpu_base lock 2063 */ 2064 local_bh_disable(); 2065 local_irq_disable(); 2066 old_base = &per_cpu(hrtimer_bases, scpu); 2067 new_base = this_cpu_ptr(&hrtimer_bases); 2068 /* 2069 * The caller is globally serialized and nobody else 2070 * takes two locks at once, deadlock is not possible. 2071 */ 2072 raw_spin_lock(&new_base->lock); 2073 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 2074 2075 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2076 migrate_hrtimer_list(&old_base->clock_base[i], 2077 &new_base->clock_base[i]); 2078 } 2079 2080 /* 2081 * The migration might have changed the first expiring softirq 2082 * timer on this CPU. Update it. 2083 */ 2084 hrtimer_update_softirq_timer(new_base, false); 2085 2086 raw_spin_unlock(&old_base->lock); 2087 raw_spin_unlock(&new_base->lock); 2088 2089 /* Check, if we got expired work to do */ 2090 __hrtimer_peek_ahead_timers(); 2091 local_irq_enable(); 2092 local_bh_enable(); 2093 return 0; 2094 } 2095 2096 #endif /* CONFIG_HOTPLUG_CPU */ 2097 2098 void __init hrtimers_init(void) 2099 { 2100 hrtimers_prepare_cpu(smp_processor_id()); 2101 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2102 } 2103 2104 /** 2105 * schedule_hrtimeout_range_clock - sleep until timeout 2106 * @expires: timeout value (ktime_t) 2107 * @delta: slack in expires timeout (ktime_t) 2108 * @mode: timer mode 2109 * @clock_id: timer clock to be used 2110 */ 2111 int __sched 2112 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 2113 const enum hrtimer_mode mode, clockid_t clock_id) 2114 { 2115 struct hrtimer_sleeper t; 2116 2117 /* 2118 * Optimize when a zero timeout value is given. It does not 2119 * matter whether this is an absolute or a relative time. 2120 */ 2121 if (expires && *expires == 0) { 2122 __set_current_state(TASK_RUNNING); 2123 return 0; 2124 } 2125 2126 /* 2127 * A NULL parameter means "infinite" 2128 */ 2129 if (!expires) { 2130 schedule(); 2131 return -EINTR; 2132 } 2133 2134 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 2135 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2136 hrtimer_sleeper_start_expires(&t, mode); 2137 2138 if (likely(t.task)) 2139 schedule(); 2140 2141 hrtimer_cancel(&t.timer); 2142 destroy_hrtimer_on_stack(&t.timer); 2143 2144 __set_current_state(TASK_RUNNING); 2145 2146 return !t.task ? 0 : -EINTR; 2147 } 2148 2149 /** 2150 * schedule_hrtimeout_range - sleep until timeout 2151 * @expires: timeout value (ktime_t) 2152 * @delta: slack in expires timeout (ktime_t) 2153 * @mode: timer mode 2154 * 2155 * Make the current task sleep until the given expiry time has 2156 * elapsed. The routine will return immediately unless 2157 * the current task state has been set (see set_current_state()). 2158 * 2159 * The @delta argument gives the kernel the freedom to schedule the 2160 * actual wakeup to a time that is both power and performance friendly. 2161 * The kernel give the normal best effort behavior for "@expires+@delta", 2162 * but may decide to fire the timer earlier, but no earlier than @expires. 2163 * 2164 * You can set the task state as follows - 2165 * 2166 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2167 * pass before the routine returns unless the current task is explicitly 2168 * woken up, (e.g. by wake_up_process()). 2169 * 2170 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2171 * delivered to the current task or the current task is explicitly woken 2172 * up. 2173 * 2174 * The current task state is guaranteed to be TASK_RUNNING when this 2175 * routine returns. 2176 * 2177 * Returns 0 when the timer has expired. If the task was woken before the 2178 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2179 * by an explicit wakeup, it returns -EINTR. 2180 */ 2181 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2182 const enum hrtimer_mode mode) 2183 { 2184 return schedule_hrtimeout_range_clock(expires, delta, mode, 2185 CLOCK_MONOTONIC); 2186 } 2187 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2188 2189 /** 2190 * schedule_hrtimeout - sleep until timeout 2191 * @expires: timeout value (ktime_t) 2192 * @mode: timer mode 2193 * 2194 * Make the current task sleep until the given expiry time has 2195 * elapsed. The routine will return immediately unless 2196 * the current task state has been set (see set_current_state()). 2197 * 2198 * You can set the task state as follows - 2199 * 2200 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2201 * pass before the routine returns unless the current task is explicitly 2202 * woken up, (e.g. by wake_up_process()). 2203 * 2204 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2205 * delivered to the current task or the current task is explicitly woken 2206 * up. 2207 * 2208 * The current task state is guaranteed to be TASK_RUNNING when this 2209 * routine returns. 2210 * 2211 * Returns 0 when the timer has expired. If the task was woken before the 2212 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2213 * by an explicit wakeup, it returns -EINTR. 2214 */ 2215 int __sched schedule_hrtimeout(ktime_t *expires, 2216 const enum hrtimer_mode mode) 2217 { 2218 return schedule_hrtimeout_range(expires, 0, mode); 2219 } 2220 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2221