xref: /linux/kernel/time/hrtimer.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/nohz.h>
51 #include <linux/sched/debug.h>
52 #include <linux/timer.h>
53 #include <linux/freezer.h>
54 #include <linux/compat.h>
55 
56 #include <linux/uaccess.h>
57 
58 #include <trace/events/timer.h>
59 
60 #include "tick-internal.h"
61 
62 /*
63  * Masks for selecting the soft and hard context timers from
64  * cpu_base->active
65  */
66 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
67 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
68 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
69 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
70 
71 /*
72  * The timer bases:
73  *
74  * There are more clockids than hrtimer bases. Thus, we index
75  * into the timer bases by the hrtimer_base_type enum. When trying
76  * to reach a base using a clockid, hrtimer_clockid_to_base()
77  * is used to convert from clockid to the proper hrtimer_base_type.
78  */
79 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
80 {
81 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
82 	.clock_base =
83 	{
84 		{
85 			.index = HRTIMER_BASE_MONOTONIC,
86 			.clockid = CLOCK_MONOTONIC,
87 			.get_time = &ktime_get,
88 		},
89 		{
90 			.index = HRTIMER_BASE_REALTIME,
91 			.clockid = CLOCK_REALTIME,
92 			.get_time = &ktime_get_real,
93 		},
94 		{
95 			.index = HRTIMER_BASE_BOOTTIME,
96 			.clockid = CLOCK_BOOTTIME,
97 			.get_time = &ktime_get_boottime,
98 		},
99 		{
100 			.index = HRTIMER_BASE_TAI,
101 			.clockid = CLOCK_TAI,
102 			.get_time = &ktime_get_clocktai,
103 		},
104 		{
105 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
106 			.clockid = CLOCK_MONOTONIC,
107 			.get_time = &ktime_get,
108 		},
109 		{
110 			.index = HRTIMER_BASE_REALTIME_SOFT,
111 			.clockid = CLOCK_REALTIME,
112 			.get_time = &ktime_get_real,
113 		},
114 		{
115 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
116 			.clockid = CLOCK_BOOTTIME,
117 			.get_time = &ktime_get_boottime,
118 		},
119 		{
120 			.index = HRTIMER_BASE_TAI_SOFT,
121 			.clockid = CLOCK_TAI,
122 			.get_time = &ktime_get_clocktai,
123 		},
124 	}
125 };
126 
127 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
128 	/* Make sure we catch unsupported clockids */
129 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
130 
131 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
132 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
133 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
134 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
135 };
136 
137 /*
138  * Functions and macros which are different for UP/SMP systems are kept in a
139  * single place
140  */
141 #ifdef CONFIG_SMP
142 
143 /*
144  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
145  * such that hrtimer_callback_running() can unconditionally dereference
146  * timer->base->cpu_base
147  */
148 static struct hrtimer_cpu_base migration_cpu_base = {
149 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
150 };
151 
152 #define migration_base	migration_cpu_base.clock_base[0]
153 
154 /*
155  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
156  * means that all timers which are tied to this base via timer->base are
157  * locked, and the base itself is locked too.
158  *
159  * So __run_timers/migrate_timers can safely modify all timers which could
160  * be found on the lists/queues.
161  *
162  * When the timer's base is locked, and the timer removed from list, it is
163  * possible to set timer->base = &migration_base and drop the lock: the timer
164  * remains locked.
165  */
166 static
167 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
168 					     unsigned long *flags)
169 {
170 	struct hrtimer_clock_base *base;
171 
172 	for (;;) {
173 		base = timer->base;
174 		if (likely(base != &migration_base)) {
175 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
176 			if (likely(base == timer->base))
177 				return base;
178 			/* The timer has migrated to another CPU: */
179 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
180 		}
181 		cpu_relax();
182 	}
183 }
184 
185 /*
186  * We do not migrate the timer when it is expiring before the next
187  * event on the target cpu. When high resolution is enabled, we cannot
188  * reprogram the target cpu hardware and we would cause it to fire
189  * late. To keep it simple, we handle the high resolution enabled and
190  * disabled case similar.
191  *
192  * Called with cpu_base->lock of target cpu held.
193  */
194 static int
195 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
196 {
197 	ktime_t expires;
198 
199 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
200 	return expires < new_base->cpu_base->expires_next;
201 }
202 
203 static inline
204 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
205 					 int pinned)
206 {
207 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
208 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
209 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
210 #endif
211 	return base;
212 }
213 
214 /*
215  * We switch the timer base to a power-optimized selected CPU target,
216  * if:
217  *	- NO_HZ_COMMON is enabled
218  *	- timer migration is enabled
219  *	- the timer callback is not running
220  *	- the timer is not the first expiring timer on the new target
221  *
222  * If one of the above requirements is not fulfilled we move the timer
223  * to the current CPU or leave it on the previously assigned CPU if
224  * the timer callback is currently running.
225  */
226 static inline struct hrtimer_clock_base *
227 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
228 		    int pinned)
229 {
230 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
231 	struct hrtimer_clock_base *new_base;
232 	int basenum = base->index;
233 
234 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
235 	new_cpu_base = get_target_base(this_cpu_base, pinned);
236 again:
237 	new_base = &new_cpu_base->clock_base[basenum];
238 
239 	if (base != new_base) {
240 		/*
241 		 * We are trying to move timer to new_base.
242 		 * However we can't change timer's base while it is running,
243 		 * so we keep it on the same CPU. No hassle vs. reprogramming
244 		 * the event source in the high resolution case. The softirq
245 		 * code will take care of this when the timer function has
246 		 * completed. There is no conflict as we hold the lock until
247 		 * the timer is enqueued.
248 		 */
249 		if (unlikely(hrtimer_callback_running(timer)))
250 			return base;
251 
252 		/* See the comment in lock_hrtimer_base() */
253 		timer->base = &migration_base;
254 		raw_spin_unlock(&base->cpu_base->lock);
255 		raw_spin_lock(&new_base->cpu_base->lock);
256 
257 		if (new_cpu_base != this_cpu_base &&
258 		    hrtimer_check_target(timer, new_base)) {
259 			raw_spin_unlock(&new_base->cpu_base->lock);
260 			raw_spin_lock(&base->cpu_base->lock);
261 			new_cpu_base = this_cpu_base;
262 			timer->base = base;
263 			goto again;
264 		}
265 		timer->base = new_base;
266 	} else {
267 		if (new_cpu_base != this_cpu_base &&
268 		    hrtimer_check_target(timer, new_base)) {
269 			new_cpu_base = this_cpu_base;
270 			goto again;
271 		}
272 	}
273 	return new_base;
274 }
275 
276 #else /* CONFIG_SMP */
277 
278 static inline struct hrtimer_clock_base *
279 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
280 {
281 	struct hrtimer_clock_base *base = timer->base;
282 
283 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
284 
285 	return base;
286 }
287 
288 # define switch_hrtimer_base(t, b, p)	(b)
289 
290 #endif	/* !CONFIG_SMP */
291 
292 /*
293  * Functions for the union type storage format of ktime_t which are
294  * too large for inlining:
295  */
296 #if BITS_PER_LONG < 64
297 /*
298  * Divide a ktime value by a nanosecond value
299  */
300 s64 __ktime_divns(const ktime_t kt, s64 div)
301 {
302 	int sft = 0;
303 	s64 dclc;
304 	u64 tmp;
305 
306 	dclc = ktime_to_ns(kt);
307 	tmp = dclc < 0 ? -dclc : dclc;
308 
309 	/* Make sure the divisor is less than 2^32: */
310 	while (div >> 32) {
311 		sft++;
312 		div >>= 1;
313 	}
314 	tmp >>= sft;
315 	do_div(tmp, (unsigned long) div);
316 	return dclc < 0 ? -tmp : tmp;
317 }
318 EXPORT_SYMBOL_GPL(__ktime_divns);
319 #endif /* BITS_PER_LONG >= 64 */
320 
321 /*
322  * Add two ktime values and do a safety check for overflow:
323  */
324 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
325 {
326 	ktime_t res = ktime_add_unsafe(lhs, rhs);
327 
328 	/*
329 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
330 	 * return to user space in a timespec:
331 	 */
332 	if (res < 0 || res < lhs || res < rhs)
333 		res = ktime_set(KTIME_SEC_MAX, 0);
334 
335 	return res;
336 }
337 
338 EXPORT_SYMBOL_GPL(ktime_add_safe);
339 
340 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
341 
342 static struct debug_obj_descr hrtimer_debug_descr;
343 
344 static void *hrtimer_debug_hint(void *addr)
345 {
346 	return ((struct hrtimer *) addr)->function;
347 }
348 
349 /*
350  * fixup_init is called when:
351  * - an active object is initialized
352  */
353 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
354 {
355 	struct hrtimer *timer = addr;
356 
357 	switch (state) {
358 	case ODEBUG_STATE_ACTIVE:
359 		hrtimer_cancel(timer);
360 		debug_object_init(timer, &hrtimer_debug_descr);
361 		return true;
362 	default:
363 		return false;
364 	}
365 }
366 
367 /*
368  * fixup_activate is called when:
369  * - an active object is activated
370  * - an unknown non-static object is activated
371  */
372 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
373 {
374 	switch (state) {
375 	case ODEBUG_STATE_ACTIVE:
376 		WARN_ON(1);
377 
378 	default:
379 		return false;
380 	}
381 }
382 
383 /*
384  * fixup_free is called when:
385  * - an active object is freed
386  */
387 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
388 {
389 	struct hrtimer *timer = addr;
390 
391 	switch (state) {
392 	case ODEBUG_STATE_ACTIVE:
393 		hrtimer_cancel(timer);
394 		debug_object_free(timer, &hrtimer_debug_descr);
395 		return true;
396 	default:
397 		return false;
398 	}
399 }
400 
401 static struct debug_obj_descr hrtimer_debug_descr = {
402 	.name		= "hrtimer",
403 	.debug_hint	= hrtimer_debug_hint,
404 	.fixup_init	= hrtimer_fixup_init,
405 	.fixup_activate	= hrtimer_fixup_activate,
406 	.fixup_free	= hrtimer_fixup_free,
407 };
408 
409 static inline void debug_hrtimer_init(struct hrtimer *timer)
410 {
411 	debug_object_init(timer, &hrtimer_debug_descr);
412 }
413 
414 static inline void debug_hrtimer_activate(struct hrtimer *timer,
415 					  enum hrtimer_mode mode)
416 {
417 	debug_object_activate(timer, &hrtimer_debug_descr);
418 }
419 
420 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
421 {
422 	debug_object_deactivate(timer, &hrtimer_debug_descr);
423 }
424 
425 static inline void debug_hrtimer_free(struct hrtimer *timer)
426 {
427 	debug_object_free(timer, &hrtimer_debug_descr);
428 }
429 
430 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
431 			   enum hrtimer_mode mode);
432 
433 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
434 			   enum hrtimer_mode mode)
435 {
436 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
437 	__hrtimer_init(timer, clock_id, mode);
438 }
439 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
440 
441 void destroy_hrtimer_on_stack(struct hrtimer *timer)
442 {
443 	debug_object_free(timer, &hrtimer_debug_descr);
444 }
445 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
446 
447 #else
448 
449 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
450 static inline void debug_hrtimer_activate(struct hrtimer *timer,
451 					  enum hrtimer_mode mode) { }
452 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
453 #endif
454 
455 static inline void
456 debug_init(struct hrtimer *timer, clockid_t clockid,
457 	   enum hrtimer_mode mode)
458 {
459 	debug_hrtimer_init(timer);
460 	trace_hrtimer_init(timer, clockid, mode);
461 }
462 
463 static inline void debug_activate(struct hrtimer *timer,
464 				  enum hrtimer_mode mode)
465 {
466 	debug_hrtimer_activate(timer, mode);
467 	trace_hrtimer_start(timer, mode);
468 }
469 
470 static inline void debug_deactivate(struct hrtimer *timer)
471 {
472 	debug_hrtimer_deactivate(timer);
473 	trace_hrtimer_cancel(timer);
474 }
475 
476 static struct hrtimer_clock_base *
477 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
478 {
479 	unsigned int idx;
480 
481 	if (!*active)
482 		return NULL;
483 
484 	idx = __ffs(*active);
485 	*active &= ~(1U << idx);
486 
487 	return &cpu_base->clock_base[idx];
488 }
489 
490 #define for_each_active_base(base, cpu_base, active)	\
491 	while ((base = __next_base((cpu_base), &(active))))
492 
493 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
494 					 unsigned int active,
495 					 ktime_t expires_next)
496 {
497 	struct hrtimer_clock_base *base;
498 	ktime_t expires;
499 
500 	for_each_active_base(base, cpu_base, active) {
501 		struct timerqueue_node *next;
502 		struct hrtimer *timer;
503 
504 		next = timerqueue_getnext(&base->active);
505 		timer = container_of(next, struct hrtimer, node);
506 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
507 		if (expires < expires_next) {
508 			expires_next = expires;
509 			if (timer->is_soft)
510 				cpu_base->softirq_next_timer = timer;
511 			else
512 				cpu_base->next_timer = timer;
513 		}
514 	}
515 	/*
516 	 * clock_was_set() might have changed base->offset of any of
517 	 * the clock bases so the result might be negative. Fix it up
518 	 * to prevent a false positive in clockevents_program_event().
519 	 */
520 	if (expires_next < 0)
521 		expires_next = 0;
522 	return expires_next;
523 }
524 
525 /*
526  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
527  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
528  *
529  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
530  * those timers will get run whenever the softirq gets handled, at the end of
531  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
532  *
533  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
534  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
535  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
536  *
537  * @active_mask must be one of:
538  *  - HRTIMER_ACTIVE_ALL,
539  *  - HRTIMER_ACTIVE_SOFT, or
540  *  - HRTIMER_ACTIVE_HARD.
541  */
542 static ktime_t
543 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
544 {
545 	unsigned int active;
546 	struct hrtimer *next_timer = NULL;
547 	ktime_t expires_next = KTIME_MAX;
548 
549 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
550 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
551 		cpu_base->softirq_next_timer = NULL;
552 		expires_next = __hrtimer_next_event_base(cpu_base, active, KTIME_MAX);
553 
554 		next_timer = cpu_base->softirq_next_timer;
555 	}
556 
557 	if (active_mask & HRTIMER_ACTIVE_HARD) {
558 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
559 		cpu_base->next_timer = next_timer;
560 		expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next);
561 	}
562 
563 	return expires_next;
564 }
565 
566 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
567 {
568 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
569 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
570 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
571 
572 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
573 					    offs_real, offs_boot, offs_tai);
574 
575 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
576 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
577 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
578 
579 	return now;
580 }
581 
582 /*
583  * Is the high resolution mode active ?
584  */
585 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
586 {
587 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
588 		cpu_base->hres_active : 0;
589 }
590 
591 static inline int hrtimer_hres_active(void)
592 {
593 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
594 }
595 
596 /*
597  * Reprogram the event source with checking both queues for the
598  * next event
599  * Called with interrupts disabled and base->lock held
600  */
601 static void
602 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
603 {
604 	ktime_t expires_next;
605 
606 	/*
607 	 * Find the current next expiration time.
608 	 */
609 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
610 
611 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
612 		/*
613 		 * When the softirq is activated, hrtimer has to be
614 		 * programmed with the first hard hrtimer because soft
615 		 * timer interrupt could occur too late.
616 		 */
617 		if (cpu_base->softirq_activated)
618 			expires_next = __hrtimer_get_next_event(cpu_base,
619 								HRTIMER_ACTIVE_HARD);
620 		else
621 			cpu_base->softirq_expires_next = expires_next;
622 	}
623 
624 	if (skip_equal && expires_next == cpu_base->expires_next)
625 		return;
626 
627 	cpu_base->expires_next = expires_next;
628 
629 	/*
630 	 * If hres is not active, hardware does not have to be
631 	 * reprogrammed yet.
632 	 *
633 	 * If a hang was detected in the last timer interrupt then we
634 	 * leave the hang delay active in the hardware. We want the
635 	 * system to make progress. That also prevents the following
636 	 * scenario:
637 	 * T1 expires 50ms from now
638 	 * T2 expires 5s from now
639 	 *
640 	 * T1 is removed, so this code is called and would reprogram
641 	 * the hardware to 5s from now. Any hrtimer_start after that
642 	 * will not reprogram the hardware due to hang_detected being
643 	 * set. So we'd effectivly block all timers until the T2 event
644 	 * fires.
645 	 */
646 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
647 		return;
648 
649 	tick_program_event(cpu_base->expires_next, 1);
650 }
651 
652 /* High resolution timer related functions */
653 #ifdef CONFIG_HIGH_RES_TIMERS
654 
655 /*
656  * High resolution timer enabled ?
657  */
658 static bool hrtimer_hres_enabled __read_mostly  = true;
659 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
660 EXPORT_SYMBOL_GPL(hrtimer_resolution);
661 
662 /*
663  * Enable / Disable high resolution mode
664  */
665 static int __init setup_hrtimer_hres(char *str)
666 {
667 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
668 }
669 
670 __setup("highres=", setup_hrtimer_hres);
671 
672 /*
673  * hrtimer_high_res_enabled - query, if the highres mode is enabled
674  */
675 static inline int hrtimer_is_hres_enabled(void)
676 {
677 	return hrtimer_hres_enabled;
678 }
679 
680 /*
681  * Retrigger next event is called after clock was set
682  *
683  * Called with interrupts disabled via on_each_cpu()
684  */
685 static void retrigger_next_event(void *arg)
686 {
687 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
688 
689 	if (!__hrtimer_hres_active(base))
690 		return;
691 
692 	raw_spin_lock(&base->lock);
693 	hrtimer_update_base(base);
694 	hrtimer_force_reprogram(base, 0);
695 	raw_spin_unlock(&base->lock);
696 }
697 
698 /*
699  * Switch to high resolution mode
700  */
701 static void hrtimer_switch_to_hres(void)
702 {
703 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
704 
705 	if (tick_init_highres()) {
706 		printk(KERN_WARNING "Could not switch to high resolution "
707 				    "mode on CPU %d\n", base->cpu);
708 		return;
709 	}
710 	base->hres_active = 1;
711 	hrtimer_resolution = HIGH_RES_NSEC;
712 
713 	tick_setup_sched_timer();
714 	/* "Retrigger" the interrupt to get things going */
715 	retrigger_next_event(NULL);
716 }
717 
718 static void clock_was_set_work(struct work_struct *work)
719 {
720 	clock_was_set();
721 }
722 
723 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
724 
725 /*
726  * Called from timekeeping and resume code to reprogram the hrtimer
727  * interrupt device on all cpus.
728  */
729 void clock_was_set_delayed(void)
730 {
731 	schedule_work(&hrtimer_work);
732 }
733 
734 #else
735 
736 static inline int hrtimer_is_hres_enabled(void) { return 0; }
737 static inline void hrtimer_switch_to_hres(void) { }
738 static inline void retrigger_next_event(void *arg) { }
739 
740 #endif /* CONFIG_HIGH_RES_TIMERS */
741 
742 /*
743  * When a timer is enqueued and expires earlier than the already enqueued
744  * timers, we have to check, whether it expires earlier than the timer for
745  * which the clock event device was armed.
746  *
747  * Called with interrupts disabled and base->cpu_base.lock held
748  */
749 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
750 {
751 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
752 	struct hrtimer_clock_base *base = timer->base;
753 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
754 
755 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
756 
757 	/*
758 	 * CLOCK_REALTIME timer might be requested with an absolute
759 	 * expiry time which is less than base->offset. Set it to 0.
760 	 */
761 	if (expires < 0)
762 		expires = 0;
763 
764 	if (timer->is_soft) {
765 		/*
766 		 * soft hrtimer could be started on a remote CPU. In this
767 		 * case softirq_expires_next needs to be updated on the
768 		 * remote CPU. The soft hrtimer will not expire before the
769 		 * first hard hrtimer on the remote CPU -
770 		 * hrtimer_check_target() prevents this case.
771 		 */
772 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
773 
774 		if (timer_cpu_base->softirq_activated)
775 			return;
776 
777 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
778 			return;
779 
780 		timer_cpu_base->softirq_next_timer = timer;
781 		timer_cpu_base->softirq_expires_next = expires;
782 
783 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
784 		    !reprogram)
785 			return;
786 	}
787 
788 	/*
789 	 * If the timer is not on the current cpu, we cannot reprogram
790 	 * the other cpus clock event device.
791 	 */
792 	if (base->cpu_base != cpu_base)
793 		return;
794 
795 	/*
796 	 * If the hrtimer interrupt is running, then it will
797 	 * reevaluate the clock bases and reprogram the clock event
798 	 * device. The callbacks are always executed in hard interrupt
799 	 * context so we don't need an extra check for a running
800 	 * callback.
801 	 */
802 	if (cpu_base->in_hrtirq)
803 		return;
804 
805 	if (expires >= cpu_base->expires_next)
806 		return;
807 
808 	/* Update the pointer to the next expiring timer */
809 	cpu_base->next_timer = timer;
810 	cpu_base->expires_next = expires;
811 
812 	/*
813 	 * If hres is not active, hardware does not have to be
814 	 * programmed yet.
815 	 *
816 	 * If a hang was detected in the last timer interrupt then we
817 	 * do not schedule a timer which is earlier than the expiry
818 	 * which we enforced in the hang detection. We want the system
819 	 * to make progress.
820 	 */
821 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
822 		return;
823 
824 	/*
825 	 * Program the timer hardware. We enforce the expiry for
826 	 * events which are already in the past.
827 	 */
828 	tick_program_event(expires, 1);
829 }
830 
831 /*
832  * Clock realtime was set
833  *
834  * Change the offset of the realtime clock vs. the monotonic
835  * clock.
836  *
837  * We might have to reprogram the high resolution timer interrupt. On
838  * SMP we call the architecture specific code to retrigger _all_ high
839  * resolution timer interrupts. On UP we just disable interrupts and
840  * call the high resolution interrupt code.
841  */
842 void clock_was_set(void)
843 {
844 #ifdef CONFIG_HIGH_RES_TIMERS
845 	/* Retrigger the CPU local events everywhere */
846 	on_each_cpu(retrigger_next_event, NULL, 1);
847 #endif
848 	timerfd_clock_was_set();
849 }
850 
851 /*
852  * During resume we might have to reprogram the high resolution timer
853  * interrupt on all online CPUs.  However, all other CPUs will be
854  * stopped with IRQs interrupts disabled so the clock_was_set() call
855  * must be deferred.
856  */
857 void hrtimers_resume(void)
858 {
859 	lockdep_assert_irqs_disabled();
860 	/* Retrigger on the local CPU */
861 	retrigger_next_event(NULL);
862 	/* And schedule a retrigger for all others */
863 	clock_was_set_delayed();
864 }
865 
866 /*
867  * Counterpart to lock_hrtimer_base above:
868  */
869 static inline
870 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
871 {
872 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
873 }
874 
875 /**
876  * hrtimer_forward - forward the timer expiry
877  * @timer:	hrtimer to forward
878  * @now:	forward past this time
879  * @interval:	the interval to forward
880  *
881  * Forward the timer expiry so it will expire in the future.
882  * Returns the number of overruns.
883  *
884  * Can be safely called from the callback function of @timer. If
885  * called from other contexts @timer must neither be enqueued nor
886  * running the callback and the caller needs to take care of
887  * serialization.
888  *
889  * Note: This only updates the timer expiry value and does not requeue
890  * the timer.
891  */
892 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
893 {
894 	u64 orun = 1;
895 	ktime_t delta;
896 
897 	delta = ktime_sub(now, hrtimer_get_expires(timer));
898 
899 	if (delta < 0)
900 		return 0;
901 
902 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
903 		return 0;
904 
905 	if (interval < hrtimer_resolution)
906 		interval = hrtimer_resolution;
907 
908 	if (unlikely(delta >= interval)) {
909 		s64 incr = ktime_to_ns(interval);
910 
911 		orun = ktime_divns(delta, incr);
912 		hrtimer_add_expires_ns(timer, incr * orun);
913 		if (hrtimer_get_expires_tv64(timer) > now)
914 			return orun;
915 		/*
916 		 * This (and the ktime_add() below) is the
917 		 * correction for exact:
918 		 */
919 		orun++;
920 	}
921 	hrtimer_add_expires(timer, interval);
922 
923 	return orun;
924 }
925 EXPORT_SYMBOL_GPL(hrtimer_forward);
926 
927 /*
928  * enqueue_hrtimer - internal function to (re)start a timer
929  *
930  * The timer is inserted in expiry order. Insertion into the
931  * red black tree is O(log(n)). Must hold the base lock.
932  *
933  * Returns 1 when the new timer is the leftmost timer in the tree.
934  */
935 static int enqueue_hrtimer(struct hrtimer *timer,
936 			   struct hrtimer_clock_base *base,
937 			   enum hrtimer_mode mode)
938 {
939 	debug_activate(timer, mode);
940 
941 	base->cpu_base->active_bases |= 1 << base->index;
942 
943 	timer->state = HRTIMER_STATE_ENQUEUED;
944 
945 	return timerqueue_add(&base->active, &timer->node);
946 }
947 
948 /*
949  * __remove_hrtimer - internal function to remove a timer
950  *
951  * Caller must hold the base lock.
952  *
953  * High resolution timer mode reprograms the clock event device when the
954  * timer is the one which expires next. The caller can disable this by setting
955  * reprogram to zero. This is useful, when the context does a reprogramming
956  * anyway (e.g. timer interrupt)
957  */
958 static void __remove_hrtimer(struct hrtimer *timer,
959 			     struct hrtimer_clock_base *base,
960 			     u8 newstate, int reprogram)
961 {
962 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
963 	u8 state = timer->state;
964 
965 	timer->state = newstate;
966 	if (!(state & HRTIMER_STATE_ENQUEUED))
967 		return;
968 
969 	if (!timerqueue_del(&base->active, &timer->node))
970 		cpu_base->active_bases &= ~(1 << base->index);
971 
972 	/*
973 	 * Note: If reprogram is false we do not update
974 	 * cpu_base->next_timer. This happens when we remove the first
975 	 * timer on a remote cpu. No harm as we never dereference
976 	 * cpu_base->next_timer. So the worst thing what can happen is
977 	 * an superflous call to hrtimer_force_reprogram() on the
978 	 * remote cpu later on if the same timer gets enqueued again.
979 	 */
980 	if (reprogram && timer == cpu_base->next_timer)
981 		hrtimer_force_reprogram(cpu_base, 1);
982 }
983 
984 /*
985  * remove hrtimer, called with base lock held
986  */
987 static inline int
988 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
989 {
990 	if (hrtimer_is_queued(timer)) {
991 		u8 state = timer->state;
992 		int reprogram;
993 
994 		/*
995 		 * Remove the timer and force reprogramming when high
996 		 * resolution mode is active and the timer is on the current
997 		 * CPU. If we remove a timer on another CPU, reprogramming is
998 		 * skipped. The interrupt event on this CPU is fired and
999 		 * reprogramming happens in the interrupt handler. This is a
1000 		 * rare case and less expensive than a smp call.
1001 		 */
1002 		debug_deactivate(timer);
1003 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1004 
1005 		if (!restart)
1006 			state = HRTIMER_STATE_INACTIVE;
1007 
1008 		__remove_hrtimer(timer, base, state, reprogram);
1009 		return 1;
1010 	}
1011 	return 0;
1012 }
1013 
1014 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1015 					    const enum hrtimer_mode mode)
1016 {
1017 #ifdef CONFIG_TIME_LOW_RES
1018 	/*
1019 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1020 	 * granular time values. For relative timers we add hrtimer_resolution
1021 	 * (i.e. one jiffie) to prevent short timeouts.
1022 	 */
1023 	timer->is_rel = mode & HRTIMER_MODE_REL;
1024 	if (timer->is_rel)
1025 		tim = ktime_add_safe(tim, hrtimer_resolution);
1026 #endif
1027 	return tim;
1028 }
1029 
1030 static void
1031 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1032 {
1033 	ktime_t expires;
1034 
1035 	/*
1036 	 * Find the next SOFT expiration.
1037 	 */
1038 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1039 
1040 	/*
1041 	 * reprogramming needs to be triggered, even if the next soft
1042 	 * hrtimer expires at the same time than the next hard
1043 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1044 	 */
1045 	if (expires == KTIME_MAX)
1046 		return;
1047 
1048 	/*
1049 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1050 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1051 	 */
1052 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1053 }
1054 
1055 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1056 				    u64 delta_ns, const enum hrtimer_mode mode,
1057 				    struct hrtimer_clock_base *base)
1058 {
1059 	struct hrtimer_clock_base *new_base;
1060 
1061 	/* Remove an active timer from the queue: */
1062 	remove_hrtimer(timer, base, true);
1063 
1064 	if (mode & HRTIMER_MODE_REL)
1065 		tim = ktime_add_safe(tim, base->get_time());
1066 
1067 	tim = hrtimer_update_lowres(timer, tim, mode);
1068 
1069 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1070 
1071 	/* Switch the timer base, if necessary: */
1072 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1073 
1074 	return enqueue_hrtimer(timer, new_base, mode);
1075 }
1076 
1077 /**
1078  * hrtimer_start_range_ns - (re)start an hrtimer
1079  * @timer:	the timer to be added
1080  * @tim:	expiry time
1081  * @delta_ns:	"slack" range for the timer
1082  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1083  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1084  *		softirq based mode is considered for debug purpose only!
1085  */
1086 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1087 			    u64 delta_ns, const enum hrtimer_mode mode)
1088 {
1089 	struct hrtimer_clock_base *base;
1090 	unsigned long flags;
1091 
1092 	/*
1093 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1094 	 * match.
1095 	 */
1096 	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1097 
1098 	base = lock_hrtimer_base(timer, &flags);
1099 
1100 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1101 		hrtimer_reprogram(timer, true);
1102 
1103 	unlock_hrtimer_base(timer, &flags);
1104 }
1105 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1106 
1107 /**
1108  * hrtimer_try_to_cancel - try to deactivate a timer
1109  * @timer:	hrtimer to stop
1110  *
1111  * Returns:
1112  *  0 when the timer was not active
1113  *  1 when the timer was active
1114  * -1 when the timer is currently executing the callback function and
1115  *    cannot be stopped
1116  */
1117 int hrtimer_try_to_cancel(struct hrtimer *timer)
1118 {
1119 	struct hrtimer_clock_base *base;
1120 	unsigned long flags;
1121 	int ret = -1;
1122 
1123 	/*
1124 	 * Check lockless first. If the timer is not active (neither
1125 	 * enqueued nor running the callback, nothing to do here.  The
1126 	 * base lock does not serialize against a concurrent enqueue,
1127 	 * so we can avoid taking it.
1128 	 */
1129 	if (!hrtimer_active(timer))
1130 		return 0;
1131 
1132 	base = lock_hrtimer_base(timer, &flags);
1133 
1134 	if (!hrtimer_callback_running(timer))
1135 		ret = remove_hrtimer(timer, base, false);
1136 
1137 	unlock_hrtimer_base(timer, &flags);
1138 
1139 	return ret;
1140 
1141 }
1142 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1143 
1144 /**
1145  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1146  * @timer:	the timer to be cancelled
1147  *
1148  * Returns:
1149  *  0 when the timer was not active
1150  *  1 when the timer was active
1151  */
1152 int hrtimer_cancel(struct hrtimer *timer)
1153 {
1154 	for (;;) {
1155 		int ret = hrtimer_try_to_cancel(timer);
1156 
1157 		if (ret >= 0)
1158 			return ret;
1159 		cpu_relax();
1160 	}
1161 }
1162 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1163 
1164 /**
1165  * hrtimer_get_remaining - get remaining time for the timer
1166  * @timer:	the timer to read
1167  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1168  */
1169 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1170 {
1171 	unsigned long flags;
1172 	ktime_t rem;
1173 
1174 	lock_hrtimer_base(timer, &flags);
1175 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1176 		rem = hrtimer_expires_remaining_adjusted(timer);
1177 	else
1178 		rem = hrtimer_expires_remaining(timer);
1179 	unlock_hrtimer_base(timer, &flags);
1180 
1181 	return rem;
1182 }
1183 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1184 
1185 #ifdef CONFIG_NO_HZ_COMMON
1186 /**
1187  * hrtimer_get_next_event - get the time until next expiry event
1188  *
1189  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1190  */
1191 u64 hrtimer_get_next_event(void)
1192 {
1193 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1194 	u64 expires = KTIME_MAX;
1195 	unsigned long flags;
1196 
1197 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1198 
1199 	if (!__hrtimer_hres_active(cpu_base))
1200 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1201 
1202 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1203 
1204 	return expires;
1205 }
1206 #endif
1207 
1208 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1209 {
1210 	if (likely(clock_id < MAX_CLOCKS)) {
1211 		int base = hrtimer_clock_to_base_table[clock_id];
1212 
1213 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1214 			return base;
1215 	}
1216 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1217 	return HRTIMER_BASE_MONOTONIC;
1218 }
1219 
1220 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1221 			   enum hrtimer_mode mode)
1222 {
1223 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1224 	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1225 	struct hrtimer_cpu_base *cpu_base;
1226 
1227 	memset(timer, 0, sizeof(struct hrtimer));
1228 
1229 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1230 
1231 	/*
1232 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1233 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1234 	 * ensure POSIX compliance.
1235 	 */
1236 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1237 		clock_id = CLOCK_MONOTONIC;
1238 
1239 	base += hrtimer_clockid_to_base(clock_id);
1240 	timer->is_soft = softtimer;
1241 	timer->base = &cpu_base->clock_base[base];
1242 	timerqueue_init(&timer->node);
1243 }
1244 
1245 /**
1246  * hrtimer_init - initialize a timer to the given clock
1247  * @timer:	the timer to be initialized
1248  * @clock_id:	the clock to be used
1249  * @mode:       The modes which are relevant for intitialization:
1250  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1251  *              HRTIMER_MODE_REL_SOFT
1252  *
1253  *              The PINNED variants of the above can be handed in,
1254  *              but the PINNED bit is ignored as pinning happens
1255  *              when the hrtimer is started
1256  */
1257 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1258 		  enum hrtimer_mode mode)
1259 {
1260 	debug_init(timer, clock_id, mode);
1261 	__hrtimer_init(timer, clock_id, mode);
1262 }
1263 EXPORT_SYMBOL_GPL(hrtimer_init);
1264 
1265 /*
1266  * A timer is active, when it is enqueued into the rbtree or the
1267  * callback function is running or it's in the state of being migrated
1268  * to another cpu.
1269  *
1270  * It is important for this function to not return a false negative.
1271  */
1272 bool hrtimer_active(const struct hrtimer *timer)
1273 {
1274 	struct hrtimer_clock_base *base;
1275 	unsigned int seq;
1276 
1277 	do {
1278 		base = READ_ONCE(timer->base);
1279 		seq = raw_read_seqcount_begin(&base->seq);
1280 
1281 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1282 		    base->running == timer)
1283 			return true;
1284 
1285 	} while (read_seqcount_retry(&base->seq, seq) ||
1286 		 base != READ_ONCE(timer->base));
1287 
1288 	return false;
1289 }
1290 EXPORT_SYMBOL_GPL(hrtimer_active);
1291 
1292 /*
1293  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1294  * distinct sections:
1295  *
1296  *  - queued:	the timer is queued
1297  *  - callback:	the timer is being ran
1298  *  - post:	the timer is inactive or (re)queued
1299  *
1300  * On the read side we ensure we observe timer->state and cpu_base->running
1301  * from the same section, if anything changed while we looked at it, we retry.
1302  * This includes timer->base changing because sequence numbers alone are
1303  * insufficient for that.
1304  *
1305  * The sequence numbers are required because otherwise we could still observe
1306  * a false negative if the read side got smeared over multiple consequtive
1307  * __run_hrtimer() invocations.
1308  */
1309 
1310 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1311 			  struct hrtimer_clock_base *base,
1312 			  struct hrtimer *timer, ktime_t *now,
1313 			  unsigned long flags)
1314 {
1315 	enum hrtimer_restart (*fn)(struct hrtimer *);
1316 	int restart;
1317 
1318 	lockdep_assert_held(&cpu_base->lock);
1319 
1320 	debug_deactivate(timer);
1321 	base->running = timer;
1322 
1323 	/*
1324 	 * Separate the ->running assignment from the ->state assignment.
1325 	 *
1326 	 * As with a regular write barrier, this ensures the read side in
1327 	 * hrtimer_active() cannot observe base->running == NULL &&
1328 	 * timer->state == INACTIVE.
1329 	 */
1330 	raw_write_seqcount_barrier(&base->seq);
1331 
1332 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1333 	fn = timer->function;
1334 
1335 	/*
1336 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1337 	 * timer is restarted with a period then it becomes an absolute
1338 	 * timer. If its not restarted it does not matter.
1339 	 */
1340 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1341 		timer->is_rel = false;
1342 
1343 	/*
1344 	 * The timer is marked as running in the CPU base, so it is
1345 	 * protected against migration to a different CPU even if the lock
1346 	 * is dropped.
1347 	 */
1348 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1349 	trace_hrtimer_expire_entry(timer, now);
1350 	restart = fn(timer);
1351 	trace_hrtimer_expire_exit(timer);
1352 	raw_spin_lock_irq(&cpu_base->lock);
1353 
1354 	/*
1355 	 * Note: We clear the running state after enqueue_hrtimer and
1356 	 * we do not reprogram the event hardware. Happens either in
1357 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1358 	 *
1359 	 * Note: Because we dropped the cpu_base->lock above,
1360 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1361 	 * for us already.
1362 	 */
1363 	if (restart != HRTIMER_NORESTART &&
1364 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1365 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1366 
1367 	/*
1368 	 * Separate the ->running assignment from the ->state assignment.
1369 	 *
1370 	 * As with a regular write barrier, this ensures the read side in
1371 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1372 	 * timer->state == INACTIVE.
1373 	 */
1374 	raw_write_seqcount_barrier(&base->seq);
1375 
1376 	WARN_ON_ONCE(base->running != timer);
1377 	base->running = NULL;
1378 }
1379 
1380 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1381 				 unsigned long flags, unsigned int active_mask)
1382 {
1383 	struct hrtimer_clock_base *base;
1384 	unsigned int active = cpu_base->active_bases & active_mask;
1385 
1386 	for_each_active_base(base, cpu_base, active) {
1387 		struct timerqueue_node *node;
1388 		ktime_t basenow;
1389 
1390 		basenow = ktime_add(now, base->offset);
1391 
1392 		while ((node = timerqueue_getnext(&base->active))) {
1393 			struct hrtimer *timer;
1394 
1395 			timer = container_of(node, struct hrtimer, node);
1396 
1397 			/*
1398 			 * The immediate goal for using the softexpires is
1399 			 * minimizing wakeups, not running timers at the
1400 			 * earliest interrupt after their soft expiration.
1401 			 * This allows us to avoid using a Priority Search
1402 			 * Tree, which can answer a stabbing querry for
1403 			 * overlapping intervals and instead use the simple
1404 			 * BST we already have.
1405 			 * We don't add extra wakeups by delaying timers that
1406 			 * are right-of a not yet expired timer, because that
1407 			 * timer will have to trigger a wakeup anyway.
1408 			 */
1409 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1410 				break;
1411 
1412 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1413 		}
1414 	}
1415 }
1416 
1417 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1418 {
1419 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1420 	unsigned long flags;
1421 	ktime_t now;
1422 
1423 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1424 
1425 	now = hrtimer_update_base(cpu_base);
1426 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1427 
1428 	cpu_base->softirq_activated = 0;
1429 	hrtimer_update_softirq_timer(cpu_base, true);
1430 
1431 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1432 }
1433 
1434 #ifdef CONFIG_HIGH_RES_TIMERS
1435 
1436 /*
1437  * High resolution timer interrupt
1438  * Called with interrupts disabled
1439  */
1440 void hrtimer_interrupt(struct clock_event_device *dev)
1441 {
1442 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1443 	ktime_t expires_next, now, entry_time, delta;
1444 	unsigned long flags;
1445 	int retries = 0;
1446 
1447 	BUG_ON(!cpu_base->hres_active);
1448 	cpu_base->nr_events++;
1449 	dev->next_event = KTIME_MAX;
1450 
1451 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1452 	entry_time = now = hrtimer_update_base(cpu_base);
1453 retry:
1454 	cpu_base->in_hrtirq = 1;
1455 	/*
1456 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1457 	 * held to prevent that a timer is enqueued in our queue via
1458 	 * the migration code. This does not affect enqueueing of
1459 	 * timers which run their callback and need to be requeued on
1460 	 * this CPU.
1461 	 */
1462 	cpu_base->expires_next = KTIME_MAX;
1463 
1464 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1465 		cpu_base->softirq_expires_next = KTIME_MAX;
1466 		cpu_base->softirq_activated = 1;
1467 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1468 	}
1469 
1470 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1471 
1472 	/* Reevaluate the clock bases for the next expiry */
1473 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1474 	/*
1475 	 * Store the new expiry value so the migration code can verify
1476 	 * against it.
1477 	 */
1478 	cpu_base->expires_next = expires_next;
1479 	cpu_base->in_hrtirq = 0;
1480 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1481 
1482 	/* Reprogramming necessary ? */
1483 	if (!tick_program_event(expires_next, 0)) {
1484 		cpu_base->hang_detected = 0;
1485 		return;
1486 	}
1487 
1488 	/*
1489 	 * The next timer was already expired due to:
1490 	 * - tracing
1491 	 * - long lasting callbacks
1492 	 * - being scheduled away when running in a VM
1493 	 *
1494 	 * We need to prevent that we loop forever in the hrtimer
1495 	 * interrupt routine. We give it 3 attempts to avoid
1496 	 * overreacting on some spurious event.
1497 	 *
1498 	 * Acquire base lock for updating the offsets and retrieving
1499 	 * the current time.
1500 	 */
1501 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1502 	now = hrtimer_update_base(cpu_base);
1503 	cpu_base->nr_retries++;
1504 	if (++retries < 3)
1505 		goto retry;
1506 	/*
1507 	 * Give the system a chance to do something else than looping
1508 	 * here. We stored the entry time, so we know exactly how long
1509 	 * we spent here. We schedule the next event this amount of
1510 	 * time away.
1511 	 */
1512 	cpu_base->nr_hangs++;
1513 	cpu_base->hang_detected = 1;
1514 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1515 
1516 	delta = ktime_sub(now, entry_time);
1517 	if ((unsigned int)delta > cpu_base->max_hang_time)
1518 		cpu_base->max_hang_time = (unsigned int) delta;
1519 	/*
1520 	 * Limit it to a sensible value as we enforce a longer
1521 	 * delay. Give the CPU at least 100ms to catch up.
1522 	 */
1523 	if (delta > 100 * NSEC_PER_MSEC)
1524 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1525 	else
1526 		expires_next = ktime_add(now, delta);
1527 	tick_program_event(expires_next, 1);
1528 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1529 		    ktime_to_ns(delta));
1530 }
1531 
1532 /* called with interrupts disabled */
1533 static inline void __hrtimer_peek_ahead_timers(void)
1534 {
1535 	struct tick_device *td;
1536 
1537 	if (!hrtimer_hres_active())
1538 		return;
1539 
1540 	td = this_cpu_ptr(&tick_cpu_device);
1541 	if (td && td->evtdev)
1542 		hrtimer_interrupt(td->evtdev);
1543 }
1544 
1545 #else /* CONFIG_HIGH_RES_TIMERS */
1546 
1547 static inline void __hrtimer_peek_ahead_timers(void) { }
1548 
1549 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1550 
1551 /*
1552  * Called from run_local_timers in hardirq context every jiffy
1553  */
1554 void hrtimer_run_queues(void)
1555 {
1556 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1557 	unsigned long flags;
1558 	ktime_t now;
1559 
1560 	if (__hrtimer_hres_active(cpu_base))
1561 		return;
1562 
1563 	/*
1564 	 * This _is_ ugly: We have to check periodically, whether we
1565 	 * can switch to highres and / or nohz mode. The clocksource
1566 	 * switch happens with xtime_lock held. Notification from
1567 	 * there only sets the check bit in the tick_oneshot code,
1568 	 * otherwise we might deadlock vs. xtime_lock.
1569 	 */
1570 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1571 		hrtimer_switch_to_hres();
1572 		return;
1573 	}
1574 
1575 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1576 	now = hrtimer_update_base(cpu_base);
1577 
1578 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1579 		cpu_base->softirq_expires_next = KTIME_MAX;
1580 		cpu_base->softirq_activated = 1;
1581 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1582 	}
1583 
1584 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1585 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1586 }
1587 
1588 /*
1589  * Sleep related functions:
1590  */
1591 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1592 {
1593 	struct hrtimer_sleeper *t =
1594 		container_of(timer, struct hrtimer_sleeper, timer);
1595 	struct task_struct *task = t->task;
1596 
1597 	t->task = NULL;
1598 	if (task)
1599 		wake_up_process(task);
1600 
1601 	return HRTIMER_NORESTART;
1602 }
1603 
1604 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1605 {
1606 	sl->timer.function = hrtimer_wakeup;
1607 	sl->task = task;
1608 }
1609 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1610 
1611 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1612 {
1613 	switch(restart->nanosleep.type) {
1614 #ifdef CONFIG_COMPAT
1615 	case TT_COMPAT:
1616 		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1617 			return -EFAULT;
1618 		break;
1619 #endif
1620 	case TT_NATIVE:
1621 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1622 			return -EFAULT;
1623 		break;
1624 	default:
1625 		BUG();
1626 	}
1627 	return -ERESTART_RESTARTBLOCK;
1628 }
1629 
1630 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1631 {
1632 	struct restart_block *restart;
1633 
1634 	hrtimer_init_sleeper(t, current);
1635 
1636 	do {
1637 		set_current_state(TASK_INTERRUPTIBLE);
1638 		hrtimer_start_expires(&t->timer, mode);
1639 
1640 		if (likely(t->task))
1641 			freezable_schedule();
1642 
1643 		hrtimer_cancel(&t->timer);
1644 		mode = HRTIMER_MODE_ABS;
1645 
1646 	} while (t->task && !signal_pending(current));
1647 
1648 	__set_current_state(TASK_RUNNING);
1649 
1650 	if (!t->task)
1651 		return 0;
1652 
1653 	restart = &current->restart_block;
1654 	if (restart->nanosleep.type != TT_NONE) {
1655 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1656 		struct timespec64 rmt;
1657 
1658 		if (rem <= 0)
1659 			return 0;
1660 		rmt = ktime_to_timespec64(rem);
1661 
1662 		return nanosleep_copyout(restart, &rmt);
1663 	}
1664 	return -ERESTART_RESTARTBLOCK;
1665 }
1666 
1667 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1668 {
1669 	struct hrtimer_sleeper t;
1670 	int ret;
1671 
1672 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1673 				HRTIMER_MODE_ABS);
1674 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1675 
1676 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1677 	destroy_hrtimer_on_stack(&t.timer);
1678 	return ret;
1679 }
1680 
1681 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1682 		       const enum hrtimer_mode mode, const clockid_t clockid)
1683 {
1684 	struct restart_block *restart;
1685 	struct hrtimer_sleeper t;
1686 	int ret = 0;
1687 	u64 slack;
1688 
1689 	slack = current->timer_slack_ns;
1690 	if (dl_task(current) || rt_task(current))
1691 		slack = 0;
1692 
1693 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1694 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1695 	ret = do_nanosleep(&t, mode);
1696 	if (ret != -ERESTART_RESTARTBLOCK)
1697 		goto out;
1698 
1699 	/* Absolute timers do not update the rmtp value and restart: */
1700 	if (mode == HRTIMER_MODE_ABS) {
1701 		ret = -ERESTARTNOHAND;
1702 		goto out;
1703 	}
1704 
1705 	restart = &current->restart_block;
1706 	restart->fn = hrtimer_nanosleep_restart;
1707 	restart->nanosleep.clockid = t.timer.base->clockid;
1708 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1709 out:
1710 	destroy_hrtimer_on_stack(&t.timer);
1711 	return ret;
1712 }
1713 
1714 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1715 		struct timespec __user *, rmtp)
1716 {
1717 	struct timespec64 tu;
1718 
1719 	if (get_timespec64(&tu, rqtp))
1720 		return -EFAULT;
1721 
1722 	if (!timespec64_valid(&tu))
1723 		return -EINVAL;
1724 
1725 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1726 	current->restart_block.nanosleep.rmtp = rmtp;
1727 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1728 }
1729 
1730 #ifdef CONFIG_COMPAT
1731 
1732 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1733 		       struct compat_timespec __user *, rmtp)
1734 {
1735 	struct timespec64 tu;
1736 
1737 	if (compat_get_timespec64(&tu, rqtp))
1738 		return -EFAULT;
1739 
1740 	if (!timespec64_valid(&tu))
1741 		return -EINVAL;
1742 
1743 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1744 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1745 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1746 }
1747 #endif
1748 
1749 /*
1750  * Functions related to boot-time initialization:
1751  */
1752 int hrtimers_prepare_cpu(unsigned int cpu)
1753 {
1754 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1755 	int i;
1756 
1757 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1758 		cpu_base->clock_base[i].cpu_base = cpu_base;
1759 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1760 	}
1761 
1762 	cpu_base->cpu = cpu;
1763 	cpu_base->active_bases = 0;
1764 	cpu_base->hres_active = 0;
1765 	cpu_base->hang_detected = 0;
1766 	cpu_base->next_timer = NULL;
1767 	cpu_base->softirq_next_timer = NULL;
1768 	cpu_base->expires_next = KTIME_MAX;
1769 	cpu_base->softirq_expires_next = KTIME_MAX;
1770 	return 0;
1771 }
1772 
1773 #ifdef CONFIG_HOTPLUG_CPU
1774 
1775 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1776 				struct hrtimer_clock_base *new_base)
1777 {
1778 	struct hrtimer *timer;
1779 	struct timerqueue_node *node;
1780 
1781 	while ((node = timerqueue_getnext(&old_base->active))) {
1782 		timer = container_of(node, struct hrtimer, node);
1783 		BUG_ON(hrtimer_callback_running(timer));
1784 		debug_deactivate(timer);
1785 
1786 		/*
1787 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1788 		 * timer could be seen as !active and just vanish away
1789 		 * under us on another CPU
1790 		 */
1791 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1792 		timer->base = new_base;
1793 		/*
1794 		 * Enqueue the timers on the new cpu. This does not
1795 		 * reprogram the event device in case the timer
1796 		 * expires before the earliest on this CPU, but we run
1797 		 * hrtimer_interrupt after we migrated everything to
1798 		 * sort out already expired timers and reprogram the
1799 		 * event device.
1800 		 */
1801 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1802 	}
1803 }
1804 
1805 int hrtimers_dead_cpu(unsigned int scpu)
1806 {
1807 	struct hrtimer_cpu_base *old_base, *new_base;
1808 	int i;
1809 
1810 	BUG_ON(cpu_online(scpu));
1811 	tick_cancel_sched_timer(scpu);
1812 
1813 	/*
1814 	 * this BH disable ensures that raise_softirq_irqoff() does
1815 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
1816 	 * holding the cpu_base lock
1817 	 */
1818 	local_bh_disable();
1819 	local_irq_disable();
1820 	old_base = &per_cpu(hrtimer_bases, scpu);
1821 	new_base = this_cpu_ptr(&hrtimer_bases);
1822 	/*
1823 	 * The caller is globally serialized and nobody else
1824 	 * takes two locks at once, deadlock is not possible.
1825 	 */
1826 	raw_spin_lock(&new_base->lock);
1827 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1828 
1829 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1830 		migrate_hrtimer_list(&old_base->clock_base[i],
1831 				     &new_base->clock_base[i]);
1832 	}
1833 
1834 	/*
1835 	 * The migration might have changed the first expiring softirq
1836 	 * timer on this CPU. Update it.
1837 	 */
1838 	hrtimer_update_softirq_timer(new_base, false);
1839 
1840 	raw_spin_unlock(&old_base->lock);
1841 	raw_spin_unlock(&new_base->lock);
1842 
1843 	/* Check, if we got expired work to do */
1844 	__hrtimer_peek_ahead_timers();
1845 	local_irq_enable();
1846 	local_bh_enable();
1847 	return 0;
1848 }
1849 
1850 #endif /* CONFIG_HOTPLUG_CPU */
1851 
1852 void __init hrtimers_init(void)
1853 {
1854 	hrtimers_prepare_cpu(smp_processor_id());
1855 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1856 }
1857 
1858 /**
1859  * schedule_hrtimeout_range_clock - sleep until timeout
1860  * @expires:	timeout value (ktime_t)
1861  * @delta:	slack in expires timeout (ktime_t)
1862  * @mode:	timer mode
1863  * @clock_id:	timer clock to be used
1864  */
1865 int __sched
1866 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1867 			       const enum hrtimer_mode mode, clockid_t clock_id)
1868 {
1869 	struct hrtimer_sleeper t;
1870 
1871 	/*
1872 	 * Optimize when a zero timeout value is given. It does not
1873 	 * matter whether this is an absolute or a relative time.
1874 	 */
1875 	if (expires && *expires == 0) {
1876 		__set_current_state(TASK_RUNNING);
1877 		return 0;
1878 	}
1879 
1880 	/*
1881 	 * A NULL parameter means "infinite"
1882 	 */
1883 	if (!expires) {
1884 		schedule();
1885 		return -EINTR;
1886 	}
1887 
1888 	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1889 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1890 
1891 	hrtimer_init_sleeper(&t, current);
1892 
1893 	hrtimer_start_expires(&t.timer, mode);
1894 
1895 	if (likely(t.task))
1896 		schedule();
1897 
1898 	hrtimer_cancel(&t.timer);
1899 	destroy_hrtimer_on_stack(&t.timer);
1900 
1901 	__set_current_state(TASK_RUNNING);
1902 
1903 	return !t.task ? 0 : -EINTR;
1904 }
1905 
1906 /**
1907  * schedule_hrtimeout_range - sleep until timeout
1908  * @expires:	timeout value (ktime_t)
1909  * @delta:	slack in expires timeout (ktime_t)
1910  * @mode:	timer mode
1911  *
1912  * Make the current task sleep until the given expiry time has
1913  * elapsed. The routine will return immediately unless
1914  * the current task state has been set (see set_current_state()).
1915  *
1916  * The @delta argument gives the kernel the freedom to schedule the
1917  * actual wakeup to a time that is both power and performance friendly.
1918  * The kernel give the normal best effort behavior for "@expires+@delta",
1919  * but may decide to fire the timer earlier, but no earlier than @expires.
1920  *
1921  * You can set the task state as follows -
1922  *
1923  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1924  * pass before the routine returns unless the current task is explicitly
1925  * woken up, (e.g. by wake_up_process()).
1926  *
1927  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1928  * delivered to the current task or the current task is explicitly woken
1929  * up.
1930  *
1931  * The current task state is guaranteed to be TASK_RUNNING when this
1932  * routine returns.
1933  *
1934  * Returns 0 when the timer has expired. If the task was woken before the
1935  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1936  * by an explicit wakeup, it returns -EINTR.
1937  */
1938 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1939 				     const enum hrtimer_mode mode)
1940 {
1941 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1942 					      CLOCK_MONOTONIC);
1943 }
1944 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1945 
1946 /**
1947  * schedule_hrtimeout - sleep until timeout
1948  * @expires:	timeout value (ktime_t)
1949  * @mode:	timer mode
1950  *
1951  * Make the current task sleep until the given expiry time has
1952  * elapsed. The routine will return immediately unless
1953  * the current task state has been set (see set_current_state()).
1954  *
1955  * You can set the task state as follows -
1956  *
1957  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1958  * pass before the routine returns unless the current task is explicitly
1959  * woken up, (e.g. by wake_up_process()).
1960  *
1961  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1962  * delivered to the current task or the current task is explicitly woken
1963  * up.
1964  *
1965  * The current task state is guaranteed to be TASK_RUNNING when this
1966  * routine returns.
1967  *
1968  * Returns 0 when the timer has expired. If the task was woken before the
1969  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1970  * by an explicit wakeup, it returns -EINTR.
1971  */
1972 int __sched schedule_hrtimeout(ktime_t *expires,
1973 			       const enum hrtimer_mode mode)
1974 {
1975 	return schedule_hrtimeout_range(expires, 0, mode);
1976 }
1977 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1978