xref: /linux/kernel/time/hrtimer.c (revision 507e190946297c34a27d9366b0661d5e506fdd03)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/nohz.h>
51 #include <linux/sched/debug.h>
52 #include <linux/timer.h>
53 #include <linux/freezer.h>
54 #include <linux/compat.h>
55 
56 #include <linux/uaccess.h>
57 
58 #include <trace/events/timer.h>
59 
60 #include "tick-internal.h"
61 
62 /*
63  * The timer bases:
64  *
65  * There are more clockids than hrtimer bases. Thus, we index
66  * into the timer bases by the hrtimer_base_type enum. When trying
67  * to reach a base using a clockid, hrtimer_clockid_to_base()
68  * is used to convert from clockid to the proper hrtimer_base_type.
69  */
70 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71 {
72 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
74 	.clock_base =
75 	{
76 		{
77 			.index = HRTIMER_BASE_MONOTONIC,
78 			.clockid = CLOCK_MONOTONIC,
79 			.get_time = &ktime_get,
80 		},
81 		{
82 			.index = HRTIMER_BASE_REALTIME,
83 			.clockid = CLOCK_REALTIME,
84 			.get_time = &ktime_get_real,
85 		},
86 		{
87 			.index = HRTIMER_BASE_BOOTTIME,
88 			.clockid = CLOCK_BOOTTIME,
89 			.get_time = &ktime_get_boottime,
90 		},
91 		{
92 			.index = HRTIMER_BASE_TAI,
93 			.clockid = CLOCK_TAI,
94 			.get_time = &ktime_get_clocktai,
95 		},
96 	}
97 };
98 
99 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 	/* Make sure we catch unsupported clockids */
101 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
102 
103 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
104 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
105 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
106 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
107 };
108 
109 /*
110  * Functions and macros which are different for UP/SMP systems are kept in a
111  * single place
112  */
113 #ifdef CONFIG_SMP
114 
115 /*
116  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
117  * such that hrtimer_callback_running() can unconditionally dereference
118  * timer->base->cpu_base
119  */
120 static struct hrtimer_cpu_base migration_cpu_base = {
121 	.seq = SEQCNT_ZERO(migration_cpu_base),
122 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
123 };
124 
125 #define migration_base	migration_cpu_base.clock_base[0]
126 
127 /*
128  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
129  * means that all timers which are tied to this base via timer->base are
130  * locked, and the base itself is locked too.
131  *
132  * So __run_timers/migrate_timers can safely modify all timers which could
133  * be found on the lists/queues.
134  *
135  * When the timer's base is locked, and the timer removed from list, it is
136  * possible to set timer->base = &migration_base and drop the lock: the timer
137  * remains locked.
138  */
139 static
140 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
141 					     unsigned long *flags)
142 {
143 	struct hrtimer_clock_base *base;
144 
145 	for (;;) {
146 		base = timer->base;
147 		if (likely(base != &migration_base)) {
148 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 			if (likely(base == timer->base))
150 				return base;
151 			/* The timer has migrated to another CPU: */
152 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 		}
154 		cpu_relax();
155 	}
156 }
157 
158 /*
159  * With HIGHRES=y we do not migrate the timer when it is expiring
160  * before the next event on the target cpu because we cannot reprogram
161  * the target cpu hardware and we would cause it to fire late.
162  *
163  * Called with cpu_base->lock of target cpu held.
164  */
165 static int
166 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167 {
168 #ifdef CONFIG_HIGH_RES_TIMERS
169 	ktime_t expires;
170 
171 	if (!new_base->cpu_base->hres_active)
172 		return 0;
173 
174 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
175 	return expires <= new_base->cpu_base->expires_next;
176 #else
177 	return 0;
178 #endif
179 }
180 
181 #ifdef CONFIG_NO_HZ_COMMON
182 static inline
183 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
184 					 int pinned)
185 {
186 	if (pinned || !base->migration_enabled)
187 		return base;
188 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
189 }
190 #else
191 static inline
192 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
193 					 int pinned)
194 {
195 	return base;
196 }
197 #endif
198 
199 /*
200  * We switch the timer base to a power-optimized selected CPU target,
201  * if:
202  *	- NO_HZ_COMMON is enabled
203  *	- timer migration is enabled
204  *	- the timer callback is not running
205  *	- the timer is not the first expiring timer on the new target
206  *
207  * If one of the above requirements is not fulfilled we move the timer
208  * to the current CPU or leave it on the previously assigned CPU if
209  * the timer callback is currently running.
210  */
211 static inline struct hrtimer_clock_base *
212 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
213 		    int pinned)
214 {
215 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
216 	struct hrtimer_clock_base *new_base;
217 	int basenum = base->index;
218 
219 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
220 	new_cpu_base = get_target_base(this_cpu_base, pinned);
221 again:
222 	new_base = &new_cpu_base->clock_base[basenum];
223 
224 	if (base != new_base) {
225 		/*
226 		 * We are trying to move timer to new_base.
227 		 * However we can't change timer's base while it is running,
228 		 * so we keep it on the same CPU. No hassle vs. reprogramming
229 		 * the event source in the high resolution case. The softirq
230 		 * code will take care of this when the timer function has
231 		 * completed. There is no conflict as we hold the lock until
232 		 * the timer is enqueued.
233 		 */
234 		if (unlikely(hrtimer_callback_running(timer)))
235 			return base;
236 
237 		/* See the comment in lock_hrtimer_base() */
238 		timer->base = &migration_base;
239 		raw_spin_unlock(&base->cpu_base->lock);
240 		raw_spin_lock(&new_base->cpu_base->lock);
241 
242 		if (new_cpu_base != this_cpu_base &&
243 		    hrtimer_check_target(timer, new_base)) {
244 			raw_spin_unlock(&new_base->cpu_base->lock);
245 			raw_spin_lock(&base->cpu_base->lock);
246 			new_cpu_base = this_cpu_base;
247 			timer->base = base;
248 			goto again;
249 		}
250 		timer->base = new_base;
251 	} else {
252 		if (new_cpu_base != this_cpu_base &&
253 		    hrtimer_check_target(timer, new_base)) {
254 			new_cpu_base = this_cpu_base;
255 			goto again;
256 		}
257 	}
258 	return new_base;
259 }
260 
261 #else /* CONFIG_SMP */
262 
263 static inline struct hrtimer_clock_base *
264 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
265 {
266 	struct hrtimer_clock_base *base = timer->base;
267 
268 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
269 
270 	return base;
271 }
272 
273 # define switch_hrtimer_base(t, b, p)	(b)
274 
275 #endif	/* !CONFIG_SMP */
276 
277 /*
278  * Functions for the union type storage format of ktime_t which are
279  * too large for inlining:
280  */
281 #if BITS_PER_LONG < 64
282 /*
283  * Divide a ktime value by a nanosecond value
284  */
285 s64 __ktime_divns(const ktime_t kt, s64 div)
286 {
287 	int sft = 0;
288 	s64 dclc;
289 	u64 tmp;
290 
291 	dclc = ktime_to_ns(kt);
292 	tmp = dclc < 0 ? -dclc : dclc;
293 
294 	/* Make sure the divisor is less than 2^32: */
295 	while (div >> 32) {
296 		sft++;
297 		div >>= 1;
298 	}
299 	tmp >>= sft;
300 	do_div(tmp, (unsigned long) div);
301 	return dclc < 0 ? -tmp : tmp;
302 }
303 EXPORT_SYMBOL_GPL(__ktime_divns);
304 #endif /* BITS_PER_LONG >= 64 */
305 
306 /*
307  * Add two ktime values and do a safety check for overflow:
308  */
309 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
310 {
311 	ktime_t res = ktime_add_unsafe(lhs, rhs);
312 
313 	/*
314 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
315 	 * return to user space in a timespec:
316 	 */
317 	if (res < 0 || res < lhs || res < rhs)
318 		res = ktime_set(KTIME_SEC_MAX, 0);
319 
320 	return res;
321 }
322 
323 EXPORT_SYMBOL_GPL(ktime_add_safe);
324 
325 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
326 
327 static struct debug_obj_descr hrtimer_debug_descr;
328 
329 static void *hrtimer_debug_hint(void *addr)
330 {
331 	return ((struct hrtimer *) addr)->function;
332 }
333 
334 /*
335  * fixup_init is called when:
336  * - an active object is initialized
337  */
338 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
339 {
340 	struct hrtimer *timer = addr;
341 
342 	switch (state) {
343 	case ODEBUG_STATE_ACTIVE:
344 		hrtimer_cancel(timer);
345 		debug_object_init(timer, &hrtimer_debug_descr);
346 		return true;
347 	default:
348 		return false;
349 	}
350 }
351 
352 /*
353  * fixup_activate is called when:
354  * - an active object is activated
355  * - an unknown non-static object is activated
356  */
357 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
358 {
359 	switch (state) {
360 	case ODEBUG_STATE_ACTIVE:
361 		WARN_ON(1);
362 
363 	default:
364 		return false;
365 	}
366 }
367 
368 /*
369  * fixup_free is called when:
370  * - an active object is freed
371  */
372 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
373 {
374 	struct hrtimer *timer = addr;
375 
376 	switch (state) {
377 	case ODEBUG_STATE_ACTIVE:
378 		hrtimer_cancel(timer);
379 		debug_object_free(timer, &hrtimer_debug_descr);
380 		return true;
381 	default:
382 		return false;
383 	}
384 }
385 
386 static struct debug_obj_descr hrtimer_debug_descr = {
387 	.name		= "hrtimer",
388 	.debug_hint	= hrtimer_debug_hint,
389 	.fixup_init	= hrtimer_fixup_init,
390 	.fixup_activate	= hrtimer_fixup_activate,
391 	.fixup_free	= hrtimer_fixup_free,
392 };
393 
394 static inline void debug_hrtimer_init(struct hrtimer *timer)
395 {
396 	debug_object_init(timer, &hrtimer_debug_descr);
397 }
398 
399 static inline void debug_hrtimer_activate(struct hrtimer *timer)
400 {
401 	debug_object_activate(timer, &hrtimer_debug_descr);
402 }
403 
404 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
405 {
406 	debug_object_deactivate(timer, &hrtimer_debug_descr);
407 }
408 
409 static inline void debug_hrtimer_free(struct hrtimer *timer)
410 {
411 	debug_object_free(timer, &hrtimer_debug_descr);
412 }
413 
414 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
415 			   enum hrtimer_mode mode);
416 
417 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
418 			   enum hrtimer_mode mode)
419 {
420 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
421 	__hrtimer_init(timer, clock_id, mode);
422 }
423 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
424 
425 void destroy_hrtimer_on_stack(struct hrtimer *timer)
426 {
427 	debug_object_free(timer, &hrtimer_debug_descr);
428 }
429 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
430 
431 #else
432 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
433 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
434 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
435 #endif
436 
437 static inline void
438 debug_init(struct hrtimer *timer, clockid_t clockid,
439 	   enum hrtimer_mode mode)
440 {
441 	debug_hrtimer_init(timer);
442 	trace_hrtimer_init(timer, clockid, mode);
443 }
444 
445 static inline void debug_activate(struct hrtimer *timer)
446 {
447 	debug_hrtimer_activate(timer);
448 	trace_hrtimer_start(timer);
449 }
450 
451 static inline void debug_deactivate(struct hrtimer *timer)
452 {
453 	debug_hrtimer_deactivate(timer);
454 	trace_hrtimer_cancel(timer);
455 }
456 
457 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
458 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
459 					     struct hrtimer *timer)
460 {
461 #ifdef CONFIG_HIGH_RES_TIMERS
462 	cpu_base->next_timer = timer;
463 #endif
464 }
465 
466 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
467 {
468 	struct hrtimer_clock_base *base = cpu_base->clock_base;
469 	unsigned int active = cpu_base->active_bases;
470 	ktime_t expires, expires_next = KTIME_MAX;
471 
472 	hrtimer_update_next_timer(cpu_base, NULL);
473 	for (; active; base++, active >>= 1) {
474 		struct timerqueue_node *next;
475 		struct hrtimer *timer;
476 
477 		if (!(active & 0x01))
478 			continue;
479 
480 		next = timerqueue_getnext(&base->active);
481 		timer = container_of(next, struct hrtimer, node);
482 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
483 		if (expires < expires_next) {
484 			expires_next = expires;
485 			hrtimer_update_next_timer(cpu_base, timer);
486 		}
487 	}
488 	/*
489 	 * clock_was_set() might have changed base->offset of any of
490 	 * the clock bases so the result might be negative. Fix it up
491 	 * to prevent a false positive in clockevents_program_event().
492 	 */
493 	if (expires_next < 0)
494 		expires_next = 0;
495 	return expires_next;
496 }
497 #endif
498 
499 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
500 {
501 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
502 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
503 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
504 
505 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
506 					    offs_real, offs_boot, offs_tai);
507 }
508 
509 /* High resolution timer related functions */
510 #ifdef CONFIG_HIGH_RES_TIMERS
511 
512 /*
513  * High resolution timer enabled ?
514  */
515 static bool hrtimer_hres_enabled __read_mostly  = true;
516 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
517 EXPORT_SYMBOL_GPL(hrtimer_resolution);
518 
519 /*
520  * Enable / Disable high resolution mode
521  */
522 static int __init setup_hrtimer_hres(char *str)
523 {
524 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
525 }
526 
527 __setup("highres=", setup_hrtimer_hres);
528 
529 /*
530  * hrtimer_high_res_enabled - query, if the highres mode is enabled
531  */
532 static inline int hrtimer_is_hres_enabled(void)
533 {
534 	return hrtimer_hres_enabled;
535 }
536 
537 /*
538  * Is the high resolution mode active ?
539  */
540 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
541 {
542 	return cpu_base->hres_active;
543 }
544 
545 static inline int hrtimer_hres_active(void)
546 {
547 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
548 }
549 
550 /*
551  * Reprogram the event source with checking both queues for the
552  * next event
553  * Called with interrupts disabled and base->lock held
554  */
555 static void
556 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557 {
558 	ktime_t expires_next;
559 
560 	if (!cpu_base->hres_active)
561 		return;
562 
563 	expires_next = __hrtimer_get_next_event(cpu_base);
564 
565 	if (skip_equal && expires_next == cpu_base->expires_next)
566 		return;
567 
568 	cpu_base->expires_next = expires_next;
569 
570 	/*
571 	 * If a hang was detected in the last timer interrupt then we
572 	 * leave the hang delay active in the hardware. We want the
573 	 * system to make progress. That also prevents the following
574 	 * scenario:
575 	 * T1 expires 50ms from now
576 	 * T2 expires 5s from now
577 	 *
578 	 * T1 is removed, so this code is called and would reprogram
579 	 * the hardware to 5s from now. Any hrtimer_start after that
580 	 * will not reprogram the hardware due to hang_detected being
581 	 * set. So we'd effectivly block all timers until the T2 event
582 	 * fires.
583 	 */
584 	if (cpu_base->hang_detected)
585 		return;
586 
587 	tick_program_event(cpu_base->expires_next, 1);
588 }
589 
590 /*
591  * When a timer is enqueued and expires earlier than the already enqueued
592  * timers, we have to check, whether it expires earlier than the timer for
593  * which the clock event device was armed.
594  *
595  * Called with interrupts disabled and base->cpu_base.lock held
596  */
597 static void hrtimer_reprogram(struct hrtimer *timer,
598 			      struct hrtimer_clock_base *base)
599 {
600 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
601 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602 
603 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604 
605 	/*
606 	 * If the timer is not on the current cpu, we cannot reprogram
607 	 * the other cpus clock event device.
608 	 */
609 	if (base->cpu_base != cpu_base)
610 		return;
611 
612 	/*
613 	 * If the hrtimer interrupt is running, then it will
614 	 * reevaluate the clock bases and reprogram the clock event
615 	 * device. The callbacks are always executed in hard interrupt
616 	 * context so we don't need an extra check for a running
617 	 * callback.
618 	 */
619 	if (cpu_base->in_hrtirq)
620 		return;
621 
622 	/*
623 	 * CLOCK_REALTIME timer might be requested with an absolute
624 	 * expiry time which is less than base->offset. Set it to 0.
625 	 */
626 	if (expires < 0)
627 		expires = 0;
628 
629 	if (expires >= cpu_base->expires_next)
630 		return;
631 
632 	/* Update the pointer to the next expiring timer */
633 	cpu_base->next_timer = timer;
634 
635 	/*
636 	 * If a hang was detected in the last timer interrupt then we
637 	 * do not schedule a timer which is earlier than the expiry
638 	 * which we enforced in the hang detection. We want the system
639 	 * to make progress.
640 	 */
641 	if (cpu_base->hang_detected)
642 		return;
643 
644 	/*
645 	 * Program the timer hardware. We enforce the expiry for
646 	 * events which are already in the past.
647 	 */
648 	cpu_base->expires_next = expires;
649 	tick_program_event(expires, 1);
650 }
651 
652 /*
653  * Initialize the high resolution related parts of cpu_base
654  */
655 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
656 {
657 	base->expires_next = KTIME_MAX;
658 	base->hres_active = 0;
659 }
660 
661 /*
662  * Retrigger next event is called after clock was set
663  *
664  * Called with interrupts disabled via on_each_cpu()
665  */
666 static void retrigger_next_event(void *arg)
667 {
668 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
669 
670 	if (!base->hres_active)
671 		return;
672 
673 	raw_spin_lock(&base->lock);
674 	hrtimer_update_base(base);
675 	hrtimer_force_reprogram(base, 0);
676 	raw_spin_unlock(&base->lock);
677 }
678 
679 /*
680  * Switch to high resolution mode
681  */
682 static void hrtimer_switch_to_hres(void)
683 {
684 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
685 
686 	if (tick_init_highres()) {
687 		printk(KERN_WARNING "Could not switch to high resolution "
688 				    "mode on CPU %d\n", base->cpu);
689 		return;
690 	}
691 	base->hres_active = 1;
692 	hrtimer_resolution = HIGH_RES_NSEC;
693 
694 	tick_setup_sched_timer();
695 	/* "Retrigger" the interrupt to get things going */
696 	retrigger_next_event(NULL);
697 }
698 
699 static void clock_was_set_work(struct work_struct *work)
700 {
701 	clock_was_set();
702 }
703 
704 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
705 
706 /*
707  * Called from timekeeping and resume code to reprogram the hrtimer
708  * interrupt device on all cpus.
709  */
710 void clock_was_set_delayed(void)
711 {
712 	schedule_work(&hrtimer_work);
713 }
714 
715 #else
716 
717 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
718 static inline int hrtimer_hres_active(void) { return 0; }
719 static inline int hrtimer_is_hres_enabled(void) { return 0; }
720 static inline void hrtimer_switch_to_hres(void) { }
721 static inline void
722 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
723 static inline int hrtimer_reprogram(struct hrtimer *timer,
724 				    struct hrtimer_clock_base *base)
725 {
726 	return 0;
727 }
728 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
729 static inline void retrigger_next_event(void *arg) { }
730 
731 #endif /* CONFIG_HIGH_RES_TIMERS */
732 
733 /*
734  * Clock realtime was set
735  *
736  * Change the offset of the realtime clock vs. the monotonic
737  * clock.
738  *
739  * We might have to reprogram the high resolution timer interrupt. On
740  * SMP we call the architecture specific code to retrigger _all_ high
741  * resolution timer interrupts. On UP we just disable interrupts and
742  * call the high resolution interrupt code.
743  */
744 void clock_was_set(void)
745 {
746 #ifdef CONFIG_HIGH_RES_TIMERS
747 	/* Retrigger the CPU local events everywhere */
748 	on_each_cpu(retrigger_next_event, NULL, 1);
749 #endif
750 	timerfd_clock_was_set();
751 }
752 
753 /*
754  * During resume we might have to reprogram the high resolution timer
755  * interrupt on all online CPUs.  However, all other CPUs will be
756  * stopped with IRQs interrupts disabled so the clock_was_set() call
757  * must be deferred.
758  */
759 void hrtimers_resume(void)
760 {
761 	WARN_ONCE(!irqs_disabled(),
762 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
763 
764 	/* Retrigger on the local CPU */
765 	retrigger_next_event(NULL);
766 	/* And schedule a retrigger for all others */
767 	clock_was_set_delayed();
768 }
769 
770 /*
771  * Counterpart to lock_hrtimer_base above:
772  */
773 static inline
774 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
775 {
776 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
777 }
778 
779 /**
780  * hrtimer_forward - forward the timer expiry
781  * @timer:	hrtimer to forward
782  * @now:	forward past this time
783  * @interval:	the interval to forward
784  *
785  * Forward the timer expiry so it will expire in the future.
786  * Returns the number of overruns.
787  *
788  * Can be safely called from the callback function of @timer. If
789  * called from other contexts @timer must neither be enqueued nor
790  * running the callback and the caller needs to take care of
791  * serialization.
792  *
793  * Note: This only updates the timer expiry value and does not requeue
794  * the timer.
795  */
796 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
797 {
798 	u64 orun = 1;
799 	ktime_t delta;
800 
801 	delta = ktime_sub(now, hrtimer_get_expires(timer));
802 
803 	if (delta < 0)
804 		return 0;
805 
806 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
807 		return 0;
808 
809 	if (interval < hrtimer_resolution)
810 		interval = hrtimer_resolution;
811 
812 	if (unlikely(delta >= interval)) {
813 		s64 incr = ktime_to_ns(interval);
814 
815 		orun = ktime_divns(delta, incr);
816 		hrtimer_add_expires_ns(timer, incr * orun);
817 		if (hrtimer_get_expires_tv64(timer) > now)
818 			return orun;
819 		/*
820 		 * This (and the ktime_add() below) is the
821 		 * correction for exact:
822 		 */
823 		orun++;
824 	}
825 	hrtimer_add_expires(timer, interval);
826 
827 	return orun;
828 }
829 EXPORT_SYMBOL_GPL(hrtimer_forward);
830 
831 /*
832  * enqueue_hrtimer - internal function to (re)start a timer
833  *
834  * The timer is inserted in expiry order. Insertion into the
835  * red black tree is O(log(n)). Must hold the base lock.
836  *
837  * Returns 1 when the new timer is the leftmost timer in the tree.
838  */
839 static int enqueue_hrtimer(struct hrtimer *timer,
840 			   struct hrtimer_clock_base *base)
841 {
842 	debug_activate(timer);
843 
844 	base->cpu_base->active_bases |= 1 << base->index;
845 
846 	timer->state = HRTIMER_STATE_ENQUEUED;
847 
848 	return timerqueue_add(&base->active, &timer->node);
849 }
850 
851 /*
852  * __remove_hrtimer - internal function to remove a timer
853  *
854  * Caller must hold the base lock.
855  *
856  * High resolution timer mode reprograms the clock event device when the
857  * timer is the one which expires next. The caller can disable this by setting
858  * reprogram to zero. This is useful, when the context does a reprogramming
859  * anyway (e.g. timer interrupt)
860  */
861 static void __remove_hrtimer(struct hrtimer *timer,
862 			     struct hrtimer_clock_base *base,
863 			     u8 newstate, int reprogram)
864 {
865 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
866 	u8 state = timer->state;
867 
868 	timer->state = newstate;
869 	if (!(state & HRTIMER_STATE_ENQUEUED))
870 		return;
871 
872 	if (!timerqueue_del(&base->active, &timer->node))
873 		cpu_base->active_bases &= ~(1 << base->index);
874 
875 #ifdef CONFIG_HIGH_RES_TIMERS
876 	/*
877 	 * Note: If reprogram is false we do not update
878 	 * cpu_base->next_timer. This happens when we remove the first
879 	 * timer on a remote cpu. No harm as we never dereference
880 	 * cpu_base->next_timer. So the worst thing what can happen is
881 	 * an superflous call to hrtimer_force_reprogram() on the
882 	 * remote cpu later on if the same timer gets enqueued again.
883 	 */
884 	if (reprogram && timer == cpu_base->next_timer)
885 		hrtimer_force_reprogram(cpu_base, 1);
886 #endif
887 }
888 
889 /*
890  * remove hrtimer, called with base lock held
891  */
892 static inline int
893 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
894 {
895 	if (hrtimer_is_queued(timer)) {
896 		u8 state = timer->state;
897 		int reprogram;
898 
899 		/*
900 		 * Remove the timer and force reprogramming when high
901 		 * resolution mode is active and the timer is on the current
902 		 * CPU. If we remove a timer on another CPU, reprogramming is
903 		 * skipped. The interrupt event on this CPU is fired and
904 		 * reprogramming happens in the interrupt handler. This is a
905 		 * rare case and less expensive than a smp call.
906 		 */
907 		debug_deactivate(timer);
908 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
909 
910 		if (!restart)
911 			state = HRTIMER_STATE_INACTIVE;
912 
913 		__remove_hrtimer(timer, base, state, reprogram);
914 		return 1;
915 	}
916 	return 0;
917 }
918 
919 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
920 					    const enum hrtimer_mode mode)
921 {
922 #ifdef CONFIG_TIME_LOW_RES
923 	/*
924 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
925 	 * granular time values. For relative timers we add hrtimer_resolution
926 	 * (i.e. one jiffie) to prevent short timeouts.
927 	 */
928 	timer->is_rel = mode & HRTIMER_MODE_REL;
929 	if (timer->is_rel)
930 		tim = ktime_add_safe(tim, hrtimer_resolution);
931 #endif
932 	return tim;
933 }
934 
935 /**
936  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
937  * @timer:	the timer to be added
938  * @tim:	expiry time
939  * @delta_ns:	"slack" range for the timer
940  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
941  *		relative (HRTIMER_MODE_REL)
942  */
943 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
944 			    u64 delta_ns, const enum hrtimer_mode mode)
945 {
946 	struct hrtimer_clock_base *base, *new_base;
947 	unsigned long flags;
948 	int leftmost;
949 
950 	base = lock_hrtimer_base(timer, &flags);
951 
952 	/* Remove an active timer from the queue: */
953 	remove_hrtimer(timer, base, true);
954 
955 	if (mode & HRTIMER_MODE_REL)
956 		tim = ktime_add_safe(tim, base->get_time());
957 
958 	tim = hrtimer_update_lowres(timer, tim, mode);
959 
960 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
961 
962 	/* Switch the timer base, if necessary: */
963 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
964 
965 	leftmost = enqueue_hrtimer(timer, new_base);
966 	if (!leftmost)
967 		goto unlock;
968 
969 	if (!hrtimer_is_hres_active(timer)) {
970 		/*
971 		 * Kick to reschedule the next tick to handle the new timer
972 		 * on dynticks target.
973 		 */
974 		if (new_base->cpu_base->nohz_active)
975 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
976 	} else {
977 		hrtimer_reprogram(timer, new_base);
978 	}
979 unlock:
980 	unlock_hrtimer_base(timer, &flags);
981 }
982 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
983 
984 /**
985  * hrtimer_try_to_cancel - try to deactivate a timer
986  * @timer:	hrtimer to stop
987  *
988  * Returns:
989  *  0 when the timer was not active
990  *  1 when the timer was active
991  * -1 when the timer is currently executing the callback function and
992  *    cannot be stopped
993  */
994 int hrtimer_try_to_cancel(struct hrtimer *timer)
995 {
996 	struct hrtimer_clock_base *base;
997 	unsigned long flags;
998 	int ret = -1;
999 
1000 	/*
1001 	 * Check lockless first. If the timer is not active (neither
1002 	 * enqueued nor running the callback, nothing to do here.  The
1003 	 * base lock does not serialize against a concurrent enqueue,
1004 	 * so we can avoid taking it.
1005 	 */
1006 	if (!hrtimer_active(timer))
1007 		return 0;
1008 
1009 	base = lock_hrtimer_base(timer, &flags);
1010 
1011 	if (!hrtimer_callback_running(timer))
1012 		ret = remove_hrtimer(timer, base, false);
1013 
1014 	unlock_hrtimer_base(timer, &flags);
1015 
1016 	return ret;
1017 
1018 }
1019 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1020 
1021 /**
1022  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1023  * @timer:	the timer to be cancelled
1024  *
1025  * Returns:
1026  *  0 when the timer was not active
1027  *  1 when the timer was active
1028  */
1029 int hrtimer_cancel(struct hrtimer *timer)
1030 {
1031 	for (;;) {
1032 		int ret = hrtimer_try_to_cancel(timer);
1033 
1034 		if (ret >= 0)
1035 			return ret;
1036 		cpu_relax();
1037 	}
1038 }
1039 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1040 
1041 /**
1042  * hrtimer_get_remaining - get remaining time for the timer
1043  * @timer:	the timer to read
1044  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1045  */
1046 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1047 {
1048 	unsigned long flags;
1049 	ktime_t rem;
1050 
1051 	lock_hrtimer_base(timer, &flags);
1052 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1053 		rem = hrtimer_expires_remaining_adjusted(timer);
1054 	else
1055 		rem = hrtimer_expires_remaining(timer);
1056 	unlock_hrtimer_base(timer, &flags);
1057 
1058 	return rem;
1059 }
1060 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1061 
1062 #ifdef CONFIG_NO_HZ_COMMON
1063 /**
1064  * hrtimer_get_next_event - get the time until next expiry event
1065  *
1066  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1067  */
1068 u64 hrtimer_get_next_event(void)
1069 {
1070 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1071 	u64 expires = KTIME_MAX;
1072 	unsigned long flags;
1073 
1074 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1075 
1076 	if (!__hrtimer_hres_active(cpu_base))
1077 		expires = __hrtimer_get_next_event(cpu_base);
1078 
1079 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1080 
1081 	return expires;
1082 }
1083 #endif
1084 
1085 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1086 {
1087 	if (likely(clock_id < MAX_CLOCKS)) {
1088 		int base = hrtimer_clock_to_base_table[clock_id];
1089 
1090 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1091 			return base;
1092 	}
1093 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1094 	return HRTIMER_BASE_MONOTONIC;
1095 }
1096 
1097 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1098 			   enum hrtimer_mode mode)
1099 {
1100 	struct hrtimer_cpu_base *cpu_base;
1101 	int base;
1102 
1103 	memset(timer, 0, sizeof(struct hrtimer));
1104 
1105 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1106 
1107 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1108 		clock_id = CLOCK_MONOTONIC;
1109 
1110 	base = hrtimer_clockid_to_base(clock_id);
1111 	timer->base = &cpu_base->clock_base[base];
1112 	timerqueue_init(&timer->node);
1113 }
1114 
1115 /**
1116  * hrtimer_init - initialize a timer to the given clock
1117  * @timer:	the timer to be initialized
1118  * @clock_id:	the clock to be used
1119  * @mode:	timer mode abs/rel
1120  */
1121 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1122 		  enum hrtimer_mode mode)
1123 {
1124 	debug_init(timer, clock_id, mode);
1125 	__hrtimer_init(timer, clock_id, mode);
1126 }
1127 EXPORT_SYMBOL_GPL(hrtimer_init);
1128 
1129 /*
1130  * A timer is active, when it is enqueued into the rbtree or the
1131  * callback function is running or it's in the state of being migrated
1132  * to another cpu.
1133  *
1134  * It is important for this function to not return a false negative.
1135  */
1136 bool hrtimer_active(const struct hrtimer *timer)
1137 {
1138 	struct hrtimer_cpu_base *cpu_base;
1139 	unsigned int seq;
1140 
1141 	do {
1142 		cpu_base = READ_ONCE(timer->base->cpu_base);
1143 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1144 
1145 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1146 		    cpu_base->running == timer)
1147 			return true;
1148 
1149 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1150 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1151 
1152 	return false;
1153 }
1154 EXPORT_SYMBOL_GPL(hrtimer_active);
1155 
1156 /*
1157  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1158  * distinct sections:
1159  *
1160  *  - queued:	the timer is queued
1161  *  - callback:	the timer is being ran
1162  *  - post:	the timer is inactive or (re)queued
1163  *
1164  * On the read side we ensure we observe timer->state and cpu_base->running
1165  * from the same section, if anything changed while we looked at it, we retry.
1166  * This includes timer->base changing because sequence numbers alone are
1167  * insufficient for that.
1168  *
1169  * The sequence numbers are required because otherwise we could still observe
1170  * a false negative if the read side got smeared over multiple consequtive
1171  * __run_hrtimer() invocations.
1172  */
1173 
1174 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1175 			  struct hrtimer_clock_base *base,
1176 			  struct hrtimer *timer, ktime_t *now)
1177 {
1178 	enum hrtimer_restart (*fn)(struct hrtimer *);
1179 	int restart;
1180 
1181 	lockdep_assert_held(&cpu_base->lock);
1182 
1183 	debug_deactivate(timer);
1184 	cpu_base->running = timer;
1185 
1186 	/*
1187 	 * Separate the ->running assignment from the ->state assignment.
1188 	 *
1189 	 * As with a regular write barrier, this ensures the read side in
1190 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1191 	 * timer->state == INACTIVE.
1192 	 */
1193 	raw_write_seqcount_barrier(&cpu_base->seq);
1194 
1195 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1196 	fn = timer->function;
1197 
1198 	/*
1199 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1200 	 * timer is restarted with a period then it becomes an absolute
1201 	 * timer. If its not restarted it does not matter.
1202 	 */
1203 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1204 		timer->is_rel = false;
1205 
1206 	/*
1207 	 * Because we run timers from hardirq context, there is no chance
1208 	 * they get migrated to another cpu, therefore its safe to unlock
1209 	 * the timer base.
1210 	 */
1211 	raw_spin_unlock(&cpu_base->lock);
1212 	trace_hrtimer_expire_entry(timer, now);
1213 	restart = fn(timer);
1214 	trace_hrtimer_expire_exit(timer);
1215 	raw_spin_lock(&cpu_base->lock);
1216 
1217 	/*
1218 	 * Note: We clear the running state after enqueue_hrtimer and
1219 	 * we do not reprogram the event hardware. Happens either in
1220 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1221 	 *
1222 	 * Note: Because we dropped the cpu_base->lock above,
1223 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1224 	 * for us already.
1225 	 */
1226 	if (restart != HRTIMER_NORESTART &&
1227 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1228 		enqueue_hrtimer(timer, base);
1229 
1230 	/*
1231 	 * Separate the ->running assignment from the ->state assignment.
1232 	 *
1233 	 * As with a regular write barrier, this ensures the read side in
1234 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1235 	 * timer->state == INACTIVE.
1236 	 */
1237 	raw_write_seqcount_barrier(&cpu_base->seq);
1238 
1239 	WARN_ON_ONCE(cpu_base->running != timer);
1240 	cpu_base->running = NULL;
1241 }
1242 
1243 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1244 {
1245 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1246 	unsigned int active = cpu_base->active_bases;
1247 
1248 	for (; active; base++, active >>= 1) {
1249 		struct timerqueue_node *node;
1250 		ktime_t basenow;
1251 
1252 		if (!(active & 0x01))
1253 			continue;
1254 
1255 		basenow = ktime_add(now, base->offset);
1256 
1257 		while ((node = timerqueue_getnext(&base->active))) {
1258 			struct hrtimer *timer;
1259 
1260 			timer = container_of(node, struct hrtimer, node);
1261 
1262 			/*
1263 			 * The immediate goal for using the softexpires is
1264 			 * minimizing wakeups, not running timers at the
1265 			 * earliest interrupt after their soft expiration.
1266 			 * This allows us to avoid using a Priority Search
1267 			 * Tree, which can answer a stabbing querry for
1268 			 * overlapping intervals and instead use the simple
1269 			 * BST we already have.
1270 			 * We don't add extra wakeups by delaying timers that
1271 			 * are right-of a not yet expired timer, because that
1272 			 * timer will have to trigger a wakeup anyway.
1273 			 */
1274 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1275 				break;
1276 
1277 			__run_hrtimer(cpu_base, base, timer, &basenow);
1278 		}
1279 	}
1280 }
1281 
1282 #ifdef CONFIG_HIGH_RES_TIMERS
1283 
1284 /*
1285  * High resolution timer interrupt
1286  * Called with interrupts disabled
1287  */
1288 void hrtimer_interrupt(struct clock_event_device *dev)
1289 {
1290 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1291 	ktime_t expires_next, now, entry_time, delta;
1292 	int retries = 0;
1293 
1294 	BUG_ON(!cpu_base->hres_active);
1295 	cpu_base->nr_events++;
1296 	dev->next_event = KTIME_MAX;
1297 
1298 	raw_spin_lock(&cpu_base->lock);
1299 	entry_time = now = hrtimer_update_base(cpu_base);
1300 retry:
1301 	cpu_base->in_hrtirq = 1;
1302 	/*
1303 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1304 	 * held to prevent that a timer is enqueued in our queue via
1305 	 * the migration code. This does not affect enqueueing of
1306 	 * timers which run their callback and need to be requeued on
1307 	 * this CPU.
1308 	 */
1309 	cpu_base->expires_next = KTIME_MAX;
1310 
1311 	__hrtimer_run_queues(cpu_base, now);
1312 
1313 	/* Reevaluate the clock bases for the next expiry */
1314 	expires_next = __hrtimer_get_next_event(cpu_base);
1315 	/*
1316 	 * Store the new expiry value so the migration code can verify
1317 	 * against it.
1318 	 */
1319 	cpu_base->expires_next = expires_next;
1320 	cpu_base->in_hrtirq = 0;
1321 	raw_spin_unlock(&cpu_base->lock);
1322 
1323 	/* Reprogramming necessary ? */
1324 	if (!tick_program_event(expires_next, 0)) {
1325 		cpu_base->hang_detected = 0;
1326 		return;
1327 	}
1328 
1329 	/*
1330 	 * The next timer was already expired due to:
1331 	 * - tracing
1332 	 * - long lasting callbacks
1333 	 * - being scheduled away when running in a VM
1334 	 *
1335 	 * We need to prevent that we loop forever in the hrtimer
1336 	 * interrupt routine. We give it 3 attempts to avoid
1337 	 * overreacting on some spurious event.
1338 	 *
1339 	 * Acquire base lock for updating the offsets and retrieving
1340 	 * the current time.
1341 	 */
1342 	raw_spin_lock(&cpu_base->lock);
1343 	now = hrtimer_update_base(cpu_base);
1344 	cpu_base->nr_retries++;
1345 	if (++retries < 3)
1346 		goto retry;
1347 	/*
1348 	 * Give the system a chance to do something else than looping
1349 	 * here. We stored the entry time, so we know exactly how long
1350 	 * we spent here. We schedule the next event this amount of
1351 	 * time away.
1352 	 */
1353 	cpu_base->nr_hangs++;
1354 	cpu_base->hang_detected = 1;
1355 	raw_spin_unlock(&cpu_base->lock);
1356 	delta = ktime_sub(now, entry_time);
1357 	if ((unsigned int)delta > cpu_base->max_hang_time)
1358 		cpu_base->max_hang_time = (unsigned int) delta;
1359 	/*
1360 	 * Limit it to a sensible value as we enforce a longer
1361 	 * delay. Give the CPU at least 100ms to catch up.
1362 	 */
1363 	if (delta > 100 * NSEC_PER_MSEC)
1364 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1365 	else
1366 		expires_next = ktime_add(now, delta);
1367 	tick_program_event(expires_next, 1);
1368 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1369 		    ktime_to_ns(delta));
1370 }
1371 
1372 /* called with interrupts disabled */
1373 static inline void __hrtimer_peek_ahead_timers(void)
1374 {
1375 	struct tick_device *td;
1376 
1377 	if (!hrtimer_hres_active())
1378 		return;
1379 
1380 	td = this_cpu_ptr(&tick_cpu_device);
1381 	if (td && td->evtdev)
1382 		hrtimer_interrupt(td->evtdev);
1383 }
1384 
1385 #else /* CONFIG_HIGH_RES_TIMERS */
1386 
1387 static inline void __hrtimer_peek_ahead_timers(void) { }
1388 
1389 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1390 
1391 /*
1392  * Called from run_local_timers in hardirq context every jiffy
1393  */
1394 void hrtimer_run_queues(void)
1395 {
1396 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1397 	ktime_t now;
1398 
1399 	if (__hrtimer_hres_active(cpu_base))
1400 		return;
1401 
1402 	/*
1403 	 * This _is_ ugly: We have to check periodically, whether we
1404 	 * can switch to highres and / or nohz mode. The clocksource
1405 	 * switch happens with xtime_lock held. Notification from
1406 	 * there only sets the check bit in the tick_oneshot code,
1407 	 * otherwise we might deadlock vs. xtime_lock.
1408 	 */
1409 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1410 		hrtimer_switch_to_hres();
1411 		return;
1412 	}
1413 
1414 	raw_spin_lock(&cpu_base->lock);
1415 	now = hrtimer_update_base(cpu_base);
1416 	__hrtimer_run_queues(cpu_base, now);
1417 	raw_spin_unlock(&cpu_base->lock);
1418 }
1419 
1420 /*
1421  * Sleep related functions:
1422  */
1423 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1424 {
1425 	struct hrtimer_sleeper *t =
1426 		container_of(timer, struct hrtimer_sleeper, timer);
1427 	struct task_struct *task = t->task;
1428 
1429 	t->task = NULL;
1430 	if (task)
1431 		wake_up_process(task);
1432 
1433 	return HRTIMER_NORESTART;
1434 }
1435 
1436 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1437 {
1438 	sl->timer.function = hrtimer_wakeup;
1439 	sl->task = task;
1440 }
1441 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1442 
1443 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1444 {
1445 	switch(restart->nanosleep.type) {
1446 #ifdef CONFIG_COMPAT
1447 	case TT_COMPAT:
1448 		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1449 			return -EFAULT;
1450 		break;
1451 #endif
1452 	case TT_NATIVE:
1453 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1454 			return -EFAULT;
1455 		break;
1456 	default:
1457 		BUG();
1458 	}
1459 	return -ERESTART_RESTARTBLOCK;
1460 }
1461 
1462 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1463 {
1464 	struct restart_block *restart;
1465 
1466 	hrtimer_init_sleeper(t, current);
1467 
1468 	do {
1469 		set_current_state(TASK_INTERRUPTIBLE);
1470 		hrtimer_start_expires(&t->timer, mode);
1471 
1472 		if (likely(t->task))
1473 			freezable_schedule();
1474 
1475 		hrtimer_cancel(&t->timer);
1476 		mode = HRTIMER_MODE_ABS;
1477 
1478 	} while (t->task && !signal_pending(current));
1479 
1480 	__set_current_state(TASK_RUNNING);
1481 
1482 	if (!t->task)
1483 		return 0;
1484 
1485 	restart = &current->restart_block;
1486 	if (restart->nanosleep.type != TT_NONE) {
1487 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1488 		struct timespec64 rmt;
1489 
1490 		if (rem <= 0)
1491 			return 0;
1492 		rmt = ktime_to_timespec64(rem);
1493 
1494 		return nanosleep_copyout(restart, &rmt);
1495 	}
1496 	return -ERESTART_RESTARTBLOCK;
1497 }
1498 
1499 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1500 {
1501 	struct hrtimer_sleeper t;
1502 	int ret;
1503 
1504 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1505 				HRTIMER_MODE_ABS);
1506 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1507 
1508 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1509 	destroy_hrtimer_on_stack(&t.timer);
1510 	return ret;
1511 }
1512 
1513 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1514 		       const enum hrtimer_mode mode, const clockid_t clockid)
1515 {
1516 	struct restart_block *restart;
1517 	struct hrtimer_sleeper t;
1518 	int ret = 0;
1519 	u64 slack;
1520 
1521 	slack = current->timer_slack_ns;
1522 	if (dl_task(current) || rt_task(current))
1523 		slack = 0;
1524 
1525 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1526 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1527 	ret = do_nanosleep(&t, mode);
1528 	if (ret != -ERESTART_RESTARTBLOCK)
1529 		goto out;
1530 
1531 	/* Absolute timers do not update the rmtp value and restart: */
1532 	if (mode == HRTIMER_MODE_ABS) {
1533 		ret = -ERESTARTNOHAND;
1534 		goto out;
1535 	}
1536 
1537 	restart = &current->restart_block;
1538 	restart->fn = hrtimer_nanosleep_restart;
1539 	restart->nanosleep.clockid = t.timer.base->clockid;
1540 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1541 out:
1542 	destroy_hrtimer_on_stack(&t.timer);
1543 	return ret;
1544 }
1545 
1546 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1547 		struct timespec __user *, rmtp)
1548 {
1549 	struct timespec64 tu;
1550 
1551 	if (get_timespec64(&tu, rqtp))
1552 		return -EFAULT;
1553 
1554 	if (!timespec64_valid(&tu))
1555 		return -EINVAL;
1556 
1557 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1558 	current->restart_block.nanosleep.rmtp = rmtp;
1559 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1560 }
1561 
1562 #ifdef CONFIG_COMPAT
1563 
1564 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1565 		       struct compat_timespec __user *, rmtp)
1566 {
1567 	struct timespec64 tu;
1568 
1569 	if (compat_get_timespec64(&tu, rqtp))
1570 		return -EFAULT;
1571 
1572 	if (!timespec64_valid(&tu))
1573 		return -EINVAL;
1574 
1575 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1576 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1577 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1578 }
1579 #endif
1580 
1581 /*
1582  * Functions related to boot-time initialization:
1583  */
1584 int hrtimers_prepare_cpu(unsigned int cpu)
1585 {
1586 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1587 	int i;
1588 
1589 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1590 		cpu_base->clock_base[i].cpu_base = cpu_base;
1591 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1592 	}
1593 
1594 	cpu_base->cpu = cpu;
1595 	hrtimer_init_hres(cpu_base);
1596 	return 0;
1597 }
1598 
1599 #ifdef CONFIG_HOTPLUG_CPU
1600 
1601 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1602 				struct hrtimer_clock_base *new_base)
1603 {
1604 	struct hrtimer *timer;
1605 	struct timerqueue_node *node;
1606 
1607 	while ((node = timerqueue_getnext(&old_base->active))) {
1608 		timer = container_of(node, struct hrtimer, node);
1609 		BUG_ON(hrtimer_callback_running(timer));
1610 		debug_deactivate(timer);
1611 
1612 		/*
1613 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1614 		 * timer could be seen as !active and just vanish away
1615 		 * under us on another CPU
1616 		 */
1617 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1618 		timer->base = new_base;
1619 		/*
1620 		 * Enqueue the timers on the new cpu. This does not
1621 		 * reprogram the event device in case the timer
1622 		 * expires before the earliest on this CPU, but we run
1623 		 * hrtimer_interrupt after we migrated everything to
1624 		 * sort out already expired timers and reprogram the
1625 		 * event device.
1626 		 */
1627 		enqueue_hrtimer(timer, new_base);
1628 	}
1629 }
1630 
1631 int hrtimers_dead_cpu(unsigned int scpu)
1632 {
1633 	struct hrtimer_cpu_base *old_base, *new_base;
1634 	int i;
1635 
1636 	BUG_ON(cpu_online(scpu));
1637 	tick_cancel_sched_timer(scpu);
1638 
1639 	local_irq_disable();
1640 	old_base = &per_cpu(hrtimer_bases, scpu);
1641 	new_base = this_cpu_ptr(&hrtimer_bases);
1642 	/*
1643 	 * The caller is globally serialized and nobody else
1644 	 * takes two locks at once, deadlock is not possible.
1645 	 */
1646 	raw_spin_lock(&new_base->lock);
1647 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1648 
1649 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1650 		migrate_hrtimer_list(&old_base->clock_base[i],
1651 				     &new_base->clock_base[i]);
1652 	}
1653 
1654 	raw_spin_unlock(&old_base->lock);
1655 	raw_spin_unlock(&new_base->lock);
1656 
1657 	/* Check, if we got expired work to do */
1658 	__hrtimer_peek_ahead_timers();
1659 	local_irq_enable();
1660 	return 0;
1661 }
1662 
1663 #endif /* CONFIG_HOTPLUG_CPU */
1664 
1665 void __init hrtimers_init(void)
1666 {
1667 	hrtimers_prepare_cpu(smp_processor_id());
1668 }
1669 
1670 /**
1671  * schedule_hrtimeout_range_clock - sleep until timeout
1672  * @expires:	timeout value (ktime_t)
1673  * @delta:	slack in expires timeout (ktime_t)
1674  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1675  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1676  */
1677 int __sched
1678 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1679 			       const enum hrtimer_mode mode, int clock)
1680 {
1681 	struct hrtimer_sleeper t;
1682 
1683 	/*
1684 	 * Optimize when a zero timeout value is given. It does not
1685 	 * matter whether this is an absolute or a relative time.
1686 	 */
1687 	if (expires && *expires == 0) {
1688 		__set_current_state(TASK_RUNNING);
1689 		return 0;
1690 	}
1691 
1692 	/*
1693 	 * A NULL parameter means "infinite"
1694 	 */
1695 	if (!expires) {
1696 		schedule();
1697 		return -EINTR;
1698 	}
1699 
1700 	hrtimer_init_on_stack(&t.timer, clock, mode);
1701 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1702 
1703 	hrtimer_init_sleeper(&t, current);
1704 
1705 	hrtimer_start_expires(&t.timer, mode);
1706 
1707 	if (likely(t.task))
1708 		schedule();
1709 
1710 	hrtimer_cancel(&t.timer);
1711 	destroy_hrtimer_on_stack(&t.timer);
1712 
1713 	__set_current_state(TASK_RUNNING);
1714 
1715 	return !t.task ? 0 : -EINTR;
1716 }
1717 
1718 /**
1719  * schedule_hrtimeout_range - sleep until timeout
1720  * @expires:	timeout value (ktime_t)
1721  * @delta:	slack in expires timeout (ktime_t)
1722  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1723  *
1724  * Make the current task sleep until the given expiry time has
1725  * elapsed. The routine will return immediately unless
1726  * the current task state has been set (see set_current_state()).
1727  *
1728  * The @delta argument gives the kernel the freedom to schedule the
1729  * actual wakeup to a time that is both power and performance friendly.
1730  * The kernel give the normal best effort behavior for "@expires+@delta",
1731  * but may decide to fire the timer earlier, but no earlier than @expires.
1732  *
1733  * You can set the task state as follows -
1734  *
1735  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1736  * pass before the routine returns unless the current task is explicitly
1737  * woken up, (e.g. by wake_up_process()).
1738  *
1739  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1740  * delivered to the current task or the current task is explicitly woken
1741  * up.
1742  *
1743  * The current task state is guaranteed to be TASK_RUNNING when this
1744  * routine returns.
1745  *
1746  * Returns 0 when the timer has expired. If the task was woken before the
1747  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1748  * by an explicit wakeup, it returns -EINTR.
1749  */
1750 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1751 				     const enum hrtimer_mode mode)
1752 {
1753 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1754 					      CLOCK_MONOTONIC);
1755 }
1756 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1757 
1758 /**
1759  * schedule_hrtimeout - sleep until timeout
1760  * @expires:	timeout value (ktime_t)
1761  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1762  *
1763  * Make the current task sleep until the given expiry time has
1764  * elapsed. The routine will return immediately unless
1765  * the current task state has been set (see set_current_state()).
1766  *
1767  * You can set the task state as follows -
1768  *
1769  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1770  * pass before the routine returns unless the current task is explicitly
1771  * woken up, (e.g. by wake_up_process()).
1772  *
1773  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1774  * delivered to the current task or the current task is explicitly woken
1775  * up.
1776  *
1777  * The current task state is guaranteed to be TASK_RUNNING when this
1778  * routine returns.
1779  *
1780  * Returns 0 when the timer has expired. If the task was woken before the
1781  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1782  * by an explicit wakeup, it returns -EINTR.
1783  */
1784 int __sched schedule_hrtimeout(ktime_t *expires,
1785 			       const enum hrtimer_mode mode)
1786 {
1787 	return schedule_hrtimeout_range(expires, 0, mode);
1788 }
1789 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1790