xref: /linux/kernel/time/hrtimer.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
139 };
140 
141 #define migration_base	migration_cpu_base.clock_base[0]
142 
143 /*
144  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145  * means that all timers which are tied to this base via timer->base are
146  * locked, and the base itself is locked too.
147  *
148  * So __run_timers/migrate_timers can safely modify all timers which could
149  * be found on the lists/queues.
150  *
151  * When the timer's base is locked, and the timer removed from list, it is
152  * possible to set timer->base = &migration_base and drop the lock: the timer
153  * remains locked.
154  */
155 static
156 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
157 					     unsigned long *flags)
158 {
159 	struct hrtimer_clock_base *base;
160 
161 	for (;;) {
162 		base = timer->base;
163 		if (likely(base != &migration_base)) {
164 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
165 			if (likely(base == timer->base))
166 				return base;
167 			/* The timer has migrated to another CPU: */
168 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
169 		}
170 		cpu_relax();
171 	}
172 }
173 
174 /*
175  * We do not migrate the timer when it is expiring before the next
176  * event on the target cpu. When high resolution is enabled, we cannot
177  * reprogram the target cpu hardware and we would cause it to fire
178  * late. To keep it simple, we handle the high resolution enabled and
179  * disabled case similar.
180  *
181  * Called with cpu_base->lock of target cpu held.
182  */
183 static int
184 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
185 {
186 	ktime_t expires;
187 
188 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
189 	return expires < new_base->cpu_base->expires_next;
190 }
191 
192 static inline
193 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
194 					 int pinned)
195 {
196 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
197 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
198 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
199 #endif
200 	return base;
201 }
202 
203 /*
204  * We switch the timer base to a power-optimized selected CPU target,
205  * if:
206  *	- NO_HZ_COMMON is enabled
207  *	- timer migration is enabled
208  *	- the timer callback is not running
209  *	- the timer is not the first expiring timer on the new target
210  *
211  * If one of the above requirements is not fulfilled we move the timer
212  * to the current CPU or leave it on the previously assigned CPU if
213  * the timer callback is currently running.
214  */
215 static inline struct hrtimer_clock_base *
216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 		    int pinned)
218 {
219 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
220 	struct hrtimer_clock_base *new_base;
221 	int basenum = base->index;
222 
223 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 	new_cpu_base = get_target_base(this_cpu_base, pinned);
225 again:
226 	new_base = &new_cpu_base->clock_base[basenum];
227 
228 	if (base != new_base) {
229 		/*
230 		 * We are trying to move timer to new_base.
231 		 * However we can't change timer's base while it is running,
232 		 * so we keep it on the same CPU. No hassle vs. reprogramming
233 		 * the event source in the high resolution case. The softirq
234 		 * code will take care of this when the timer function has
235 		 * completed. There is no conflict as we hold the lock until
236 		 * the timer is enqueued.
237 		 */
238 		if (unlikely(hrtimer_callback_running(timer)))
239 			return base;
240 
241 		/* See the comment in lock_hrtimer_base() */
242 		timer->base = &migration_base;
243 		raw_spin_unlock(&base->cpu_base->lock);
244 		raw_spin_lock(&new_base->cpu_base->lock);
245 
246 		if (new_cpu_base != this_cpu_base &&
247 		    hrtimer_check_target(timer, new_base)) {
248 			raw_spin_unlock(&new_base->cpu_base->lock);
249 			raw_spin_lock(&base->cpu_base->lock);
250 			new_cpu_base = this_cpu_base;
251 			timer->base = base;
252 			goto again;
253 		}
254 		timer->base = new_base;
255 	} else {
256 		if (new_cpu_base != this_cpu_base &&
257 		    hrtimer_check_target(timer, new_base)) {
258 			new_cpu_base = this_cpu_base;
259 			goto again;
260 		}
261 	}
262 	return new_base;
263 }
264 
265 #else /* CONFIG_SMP */
266 
267 static inline struct hrtimer_clock_base *
268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269 {
270 	struct hrtimer_clock_base *base = timer->base;
271 
272 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
273 
274 	return base;
275 }
276 
277 # define switch_hrtimer_base(t, b, p)	(b)
278 
279 #endif	/* !CONFIG_SMP */
280 
281 /*
282  * Functions for the union type storage format of ktime_t which are
283  * too large for inlining:
284  */
285 #if BITS_PER_LONG < 64
286 /*
287  * Divide a ktime value by a nanosecond value
288  */
289 s64 __ktime_divns(const ktime_t kt, s64 div)
290 {
291 	int sft = 0;
292 	s64 dclc;
293 	u64 tmp;
294 
295 	dclc = ktime_to_ns(kt);
296 	tmp = dclc < 0 ? -dclc : dclc;
297 
298 	/* Make sure the divisor is less than 2^32: */
299 	while (div >> 32) {
300 		sft++;
301 		div >>= 1;
302 	}
303 	tmp >>= sft;
304 	do_div(tmp, (unsigned long) div);
305 	return dclc < 0 ? -tmp : tmp;
306 }
307 EXPORT_SYMBOL_GPL(__ktime_divns);
308 #endif /* BITS_PER_LONG >= 64 */
309 
310 /*
311  * Add two ktime values and do a safety check for overflow:
312  */
313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314 {
315 	ktime_t res = ktime_add_unsafe(lhs, rhs);
316 
317 	/*
318 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 	 * return to user space in a timespec:
320 	 */
321 	if (res < 0 || res < lhs || res < rhs)
322 		res = ktime_set(KTIME_SEC_MAX, 0);
323 
324 	return res;
325 }
326 
327 EXPORT_SYMBOL_GPL(ktime_add_safe);
328 
329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330 
331 static struct debug_obj_descr hrtimer_debug_descr;
332 
333 static void *hrtimer_debug_hint(void *addr)
334 {
335 	return ((struct hrtimer *) addr)->function;
336 }
337 
338 /*
339  * fixup_init is called when:
340  * - an active object is initialized
341  */
342 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343 {
344 	struct hrtimer *timer = addr;
345 
346 	switch (state) {
347 	case ODEBUG_STATE_ACTIVE:
348 		hrtimer_cancel(timer);
349 		debug_object_init(timer, &hrtimer_debug_descr);
350 		return true;
351 	default:
352 		return false;
353 	}
354 }
355 
356 /*
357  * fixup_activate is called when:
358  * - an active object is activated
359  * - an unknown non-static object is activated
360  */
361 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362 {
363 	switch (state) {
364 	case ODEBUG_STATE_ACTIVE:
365 		WARN_ON(1);
366 		/* fall through */
367 	default:
368 		return false;
369 	}
370 }
371 
372 /*
373  * fixup_free is called when:
374  * - an active object is freed
375  */
376 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 	struct hrtimer *timer = addr;
379 
380 	switch (state) {
381 	case ODEBUG_STATE_ACTIVE:
382 		hrtimer_cancel(timer);
383 		debug_object_free(timer, &hrtimer_debug_descr);
384 		return true;
385 	default:
386 		return false;
387 	}
388 }
389 
390 static struct debug_obj_descr hrtimer_debug_descr = {
391 	.name		= "hrtimer",
392 	.debug_hint	= hrtimer_debug_hint,
393 	.fixup_init	= hrtimer_fixup_init,
394 	.fixup_activate	= hrtimer_fixup_activate,
395 	.fixup_free	= hrtimer_fixup_free,
396 };
397 
398 static inline void debug_hrtimer_init(struct hrtimer *timer)
399 {
400 	debug_object_init(timer, &hrtimer_debug_descr);
401 }
402 
403 static inline void debug_hrtimer_activate(struct hrtimer *timer,
404 					  enum hrtimer_mode mode)
405 {
406 	debug_object_activate(timer, &hrtimer_debug_descr);
407 }
408 
409 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
410 {
411 	debug_object_deactivate(timer, &hrtimer_debug_descr);
412 }
413 
414 static inline void debug_hrtimer_free(struct hrtimer *timer)
415 {
416 	debug_object_free(timer, &hrtimer_debug_descr);
417 }
418 
419 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
420 			   enum hrtimer_mode mode);
421 
422 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
423 			   enum hrtimer_mode mode)
424 {
425 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
426 	__hrtimer_init(timer, clock_id, mode);
427 }
428 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
429 
430 void destroy_hrtimer_on_stack(struct hrtimer *timer)
431 {
432 	debug_object_free(timer, &hrtimer_debug_descr);
433 }
434 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
435 
436 #else
437 
438 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439 static inline void debug_hrtimer_activate(struct hrtimer *timer,
440 					  enum hrtimer_mode mode) { }
441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442 #endif
443 
444 static inline void
445 debug_init(struct hrtimer *timer, clockid_t clockid,
446 	   enum hrtimer_mode mode)
447 {
448 	debug_hrtimer_init(timer);
449 	trace_hrtimer_init(timer, clockid, mode);
450 }
451 
452 static inline void debug_activate(struct hrtimer *timer,
453 				  enum hrtimer_mode mode)
454 {
455 	debug_hrtimer_activate(timer, mode);
456 	trace_hrtimer_start(timer, mode);
457 }
458 
459 static inline void debug_deactivate(struct hrtimer *timer)
460 {
461 	debug_hrtimer_deactivate(timer);
462 	trace_hrtimer_cancel(timer);
463 }
464 
465 static struct hrtimer_clock_base *
466 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
467 {
468 	unsigned int idx;
469 
470 	if (!*active)
471 		return NULL;
472 
473 	idx = __ffs(*active);
474 	*active &= ~(1U << idx);
475 
476 	return &cpu_base->clock_base[idx];
477 }
478 
479 #define for_each_active_base(base, cpu_base, active)	\
480 	while ((base = __next_base((cpu_base), &(active))))
481 
482 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
483 					 const struct hrtimer *exclude,
484 					 unsigned int active,
485 					 ktime_t expires_next)
486 {
487 	struct hrtimer_clock_base *base;
488 	ktime_t expires;
489 
490 	for_each_active_base(base, cpu_base, active) {
491 		struct timerqueue_node *next;
492 		struct hrtimer *timer;
493 
494 		next = timerqueue_getnext(&base->active);
495 		timer = container_of(next, struct hrtimer, node);
496 		if (timer == exclude) {
497 			/* Get to the next timer in the queue. */
498 			next = timerqueue_iterate_next(next);
499 			if (!next)
500 				continue;
501 
502 			timer = container_of(next, struct hrtimer, node);
503 		}
504 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
505 		if (expires < expires_next) {
506 			expires_next = expires;
507 
508 			/* Skip cpu_base update if a timer is being excluded. */
509 			if (exclude)
510 				continue;
511 
512 			if (timer->is_soft)
513 				cpu_base->softirq_next_timer = timer;
514 			else
515 				cpu_base->next_timer = timer;
516 		}
517 	}
518 	/*
519 	 * clock_was_set() might have changed base->offset of any of
520 	 * the clock bases so the result might be negative. Fix it up
521 	 * to prevent a false positive in clockevents_program_event().
522 	 */
523 	if (expires_next < 0)
524 		expires_next = 0;
525 	return expires_next;
526 }
527 
528 /*
529  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
530  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
531  *
532  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
533  * those timers will get run whenever the softirq gets handled, at the end of
534  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
535  *
536  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
537  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
538  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
539  *
540  * @active_mask must be one of:
541  *  - HRTIMER_ACTIVE_ALL,
542  *  - HRTIMER_ACTIVE_SOFT, or
543  *  - HRTIMER_ACTIVE_HARD.
544  */
545 static ktime_t
546 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
547 {
548 	unsigned int active;
549 	struct hrtimer *next_timer = NULL;
550 	ktime_t expires_next = KTIME_MAX;
551 
552 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
553 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
554 		cpu_base->softirq_next_timer = NULL;
555 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
556 							 active, KTIME_MAX);
557 
558 		next_timer = cpu_base->softirq_next_timer;
559 	}
560 
561 	if (active_mask & HRTIMER_ACTIVE_HARD) {
562 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
563 		cpu_base->next_timer = next_timer;
564 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
565 							 expires_next);
566 	}
567 
568 	return expires_next;
569 }
570 
571 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
572 {
573 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
574 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
575 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
576 
577 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
578 					    offs_real, offs_boot, offs_tai);
579 
580 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
581 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
582 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
583 
584 	return now;
585 }
586 
587 /*
588  * Is the high resolution mode active ?
589  */
590 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
591 {
592 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
593 		cpu_base->hres_active : 0;
594 }
595 
596 static inline int hrtimer_hres_active(void)
597 {
598 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
599 }
600 
601 /*
602  * Reprogram the event source with checking both queues for the
603  * next event
604  * Called with interrupts disabled and base->lock held
605  */
606 static void
607 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
608 {
609 	ktime_t expires_next;
610 
611 	/*
612 	 * Find the current next expiration time.
613 	 */
614 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
615 
616 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
617 		/*
618 		 * When the softirq is activated, hrtimer has to be
619 		 * programmed with the first hard hrtimer because soft
620 		 * timer interrupt could occur too late.
621 		 */
622 		if (cpu_base->softirq_activated)
623 			expires_next = __hrtimer_get_next_event(cpu_base,
624 								HRTIMER_ACTIVE_HARD);
625 		else
626 			cpu_base->softirq_expires_next = expires_next;
627 	}
628 
629 	if (skip_equal && expires_next == cpu_base->expires_next)
630 		return;
631 
632 	cpu_base->expires_next = expires_next;
633 
634 	/*
635 	 * If hres is not active, hardware does not have to be
636 	 * reprogrammed yet.
637 	 *
638 	 * If a hang was detected in the last timer interrupt then we
639 	 * leave the hang delay active in the hardware. We want the
640 	 * system to make progress. That also prevents the following
641 	 * scenario:
642 	 * T1 expires 50ms from now
643 	 * T2 expires 5s from now
644 	 *
645 	 * T1 is removed, so this code is called and would reprogram
646 	 * the hardware to 5s from now. Any hrtimer_start after that
647 	 * will not reprogram the hardware due to hang_detected being
648 	 * set. So we'd effectivly block all timers until the T2 event
649 	 * fires.
650 	 */
651 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
652 		return;
653 
654 	tick_program_event(cpu_base->expires_next, 1);
655 }
656 
657 /* High resolution timer related functions */
658 #ifdef CONFIG_HIGH_RES_TIMERS
659 
660 /*
661  * High resolution timer enabled ?
662  */
663 static bool hrtimer_hres_enabled __read_mostly  = true;
664 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
665 EXPORT_SYMBOL_GPL(hrtimer_resolution);
666 
667 /*
668  * Enable / Disable high resolution mode
669  */
670 static int __init setup_hrtimer_hres(char *str)
671 {
672 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
673 }
674 
675 __setup("highres=", setup_hrtimer_hres);
676 
677 /*
678  * hrtimer_high_res_enabled - query, if the highres mode is enabled
679  */
680 static inline int hrtimer_is_hres_enabled(void)
681 {
682 	return hrtimer_hres_enabled;
683 }
684 
685 /*
686  * Retrigger next event is called after clock was set
687  *
688  * Called with interrupts disabled via on_each_cpu()
689  */
690 static void retrigger_next_event(void *arg)
691 {
692 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
693 
694 	if (!__hrtimer_hres_active(base))
695 		return;
696 
697 	raw_spin_lock(&base->lock);
698 	hrtimer_update_base(base);
699 	hrtimer_force_reprogram(base, 0);
700 	raw_spin_unlock(&base->lock);
701 }
702 
703 /*
704  * Switch to high resolution mode
705  */
706 static void hrtimer_switch_to_hres(void)
707 {
708 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
709 
710 	if (tick_init_highres()) {
711 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
712 			base->cpu);
713 		return;
714 	}
715 	base->hres_active = 1;
716 	hrtimer_resolution = HIGH_RES_NSEC;
717 
718 	tick_setup_sched_timer();
719 	/* "Retrigger" the interrupt to get things going */
720 	retrigger_next_event(NULL);
721 }
722 
723 static void clock_was_set_work(struct work_struct *work)
724 {
725 	clock_was_set();
726 }
727 
728 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
729 
730 /*
731  * Called from timekeeping and resume code to reprogram the hrtimer
732  * interrupt device on all cpus.
733  */
734 void clock_was_set_delayed(void)
735 {
736 	schedule_work(&hrtimer_work);
737 }
738 
739 #else
740 
741 static inline int hrtimer_is_hres_enabled(void) { return 0; }
742 static inline void hrtimer_switch_to_hres(void) { }
743 static inline void retrigger_next_event(void *arg) { }
744 
745 #endif /* CONFIG_HIGH_RES_TIMERS */
746 
747 /*
748  * When a timer is enqueued and expires earlier than the already enqueued
749  * timers, we have to check, whether it expires earlier than the timer for
750  * which the clock event device was armed.
751  *
752  * Called with interrupts disabled and base->cpu_base.lock held
753  */
754 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
755 {
756 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
757 	struct hrtimer_clock_base *base = timer->base;
758 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
759 
760 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
761 
762 	/*
763 	 * CLOCK_REALTIME timer might be requested with an absolute
764 	 * expiry time which is less than base->offset. Set it to 0.
765 	 */
766 	if (expires < 0)
767 		expires = 0;
768 
769 	if (timer->is_soft) {
770 		/*
771 		 * soft hrtimer could be started on a remote CPU. In this
772 		 * case softirq_expires_next needs to be updated on the
773 		 * remote CPU. The soft hrtimer will not expire before the
774 		 * first hard hrtimer on the remote CPU -
775 		 * hrtimer_check_target() prevents this case.
776 		 */
777 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
778 
779 		if (timer_cpu_base->softirq_activated)
780 			return;
781 
782 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
783 			return;
784 
785 		timer_cpu_base->softirq_next_timer = timer;
786 		timer_cpu_base->softirq_expires_next = expires;
787 
788 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
789 		    !reprogram)
790 			return;
791 	}
792 
793 	/*
794 	 * If the timer is not on the current cpu, we cannot reprogram
795 	 * the other cpus clock event device.
796 	 */
797 	if (base->cpu_base != cpu_base)
798 		return;
799 
800 	/*
801 	 * If the hrtimer interrupt is running, then it will
802 	 * reevaluate the clock bases and reprogram the clock event
803 	 * device. The callbacks are always executed in hard interrupt
804 	 * context so we don't need an extra check for a running
805 	 * callback.
806 	 */
807 	if (cpu_base->in_hrtirq)
808 		return;
809 
810 	if (expires >= cpu_base->expires_next)
811 		return;
812 
813 	/* Update the pointer to the next expiring timer */
814 	cpu_base->next_timer = timer;
815 	cpu_base->expires_next = expires;
816 
817 	/*
818 	 * If hres is not active, hardware does not have to be
819 	 * programmed yet.
820 	 *
821 	 * If a hang was detected in the last timer interrupt then we
822 	 * do not schedule a timer which is earlier than the expiry
823 	 * which we enforced in the hang detection. We want the system
824 	 * to make progress.
825 	 */
826 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
827 		return;
828 
829 	/*
830 	 * Program the timer hardware. We enforce the expiry for
831 	 * events which are already in the past.
832 	 */
833 	tick_program_event(expires, 1);
834 }
835 
836 /*
837  * Clock realtime was set
838  *
839  * Change the offset of the realtime clock vs. the monotonic
840  * clock.
841  *
842  * We might have to reprogram the high resolution timer interrupt. On
843  * SMP we call the architecture specific code to retrigger _all_ high
844  * resolution timer interrupts. On UP we just disable interrupts and
845  * call the high resolution interrupt code.
846  */
847 void clock_was_set(void)
848 {
849 #ifdef CONFIG_HIGH_RES_TIMERS
850 	/* Retrigger the CPU local events everywhere */
851 	on_each_cpu(retrigger_next_event, NULL, 1);
852 #endif
853 	timerfd_clock_was_set();
854 }
855 
856 /*
857  * During resume we might have to reprogram the high resolution timer
858  * interrupt on all online CPUs.  However, all other CPUs will be
859  * stopped with IRQs interrupts disabled so the clock_was_set() call
860  * must be deferred.
861  */
862 void hrtimers_resume(void)
863 {
864 	lockdep_assert_irqs_disabled();
865 	/* Retrigger on the local CPU */
866 	retrigger_next_event(NULL);
867 	/* And schedule a retrigger for all others */
868 	clock_was_set_delayed();
869 }
870 
871 /*
872  * Counterpart to lock_hrtimer_base above:
873  */
874 static inline
875 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
876 {
877 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
878 }
879 
880 /**
881  * hrtimer_forward - forward the timer expiry
882  * @timer:	hrtimer to forward
883  * @now:	forward past this time
884  * @interval:	the interval to forward
885  *
886  * Forward the timer expiry so it will expire in the future.
887  * Returns the number of overruns.
888  *
889  * Can be safely called from the callback function of @timer. If
890  * called from other contexts @timer must neither be enqueued nor
891  * running the callback and the caller needs to take care of
892  * serialization.
893  *
894  * Note: This only updates the timer expiry value and does not requeue
895  * the timer.
896  */
897 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
898 {
899 	u64 orun = 1;
900 	ktime_t delta;
901 
902 	delta = ktime_sub(now, hrtimer_get_expires(timer));
903 
904 	if (delta < 0)
905 		return 0;
906 
907 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
908 		return 0;
909 
910 	if (interval < hrtimer_resolution)
911 		interval = hrtimer_resolution;
912 
913 	if (unlikely(delta >= interval)) {
914 		s64 incr = ktime_to_ns(interval);
915 
916 		orun = ktime_divns(delta, incr);
917 		hrtimer_add_expires_ns(timer, incr * orun);
918 		if (hrtimer_get_expires_tv64(timer) > now)
919 			return orun;
920 		/*
921 		 * This (and the ktime_add() below) is the
922 		 * correction for exact:
923 		 */
924 		orun++;
925 	}
926 	hrtimer_add_expires(timer, interval);
927 
928 	return orun;
929 }
930 EXPORT_SYMBOL_GPL(hrtimer_forward);
931 
932 /*
933  * enqueue_hrtimer - internal function to (re)start a timer
934  *
935  * The timer is inserted in expiry order. Insertion into the
936  * red black tree is O(log(n)). Must hold the base lock.
937  *
938  * Returns 1 when the new timer is the leftmost timer in the tree.
939  */
940 static int enqueue_hrtimer(struct hrtimer *timer,
941 			   struct hrtimer_clock_base *base,
942 			   enum hrtimer_mode mode)
943 {
944 	debug_activate(timer, mode);
945 
946 	base->cpu_base->active_bases |= 1 << base->index;
947 
948 	timer->state = HRTIMER_STATE_ENQUEUED;
949 
950 	return timerqueue_add(&base->active, &timer->node);
951 }
952 
953 /*
954  * __remove_hrtimer - internal function to remove a timer
955  *
956  * Caller must hold the base lock.
957  *
958  * High resolution timer mode reprograms the clock event device when the
959  * timer is the one which expires next. The caller can disable this by setting
960  * reprogram to zero. This is useful, when the context does a reprogramming
961  * anyway (e.g. timer interrupt)
962  */
963 static void __remove_hrtimer(struct hrtimer *timer,
964 			     struct hrtimer_clock_base *base,
965 			     u8 newstate, int reprogram)
966 {
967 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
968 	u8 state = timer->state;
969 
970 	timer->state = newstate;
971 	if (!(state & HRTIMER_STATE_ENQUEUED))
972 		return;
973 
974 	if (!timerqueue_del(&base->active, &timer->node))
975 		cpu_base->active_bases &= ~(1 << base->index);
976 
977 	/*
978 	 * Note: If reprogram is false we do not update
979 	 * cpu_base->next_timer. This happens when we remove the first
980 	 * timer on a remote cpu. No harm as we never dereference
981 	 * cpu_base->next_timer. So the worst thing what can happen is
982 	 * an superflous call to hrtimer_force_reprogram() on the
983 	 * remote cpu later on if the same timer gets enqueued again.
984 	 */
985 	if (reprogram && timer == cpu_base->next_timer)
986 		hrtimer_force_reprogram(cpu_base, 1);
987 }
988 
989 /*
990  * remove hrtimer, called with base lock held
991  */
992 static inline int
993 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
994 {
995 	if (hrtimer_is_queued(timer)) {
996 		u8 state = timer->state;
997 		int reprogram;
998 
999 		/*
1000 		 * Remove the timer and force reprogramming when high
1001 		 * resolution mode is active and the timer is on the current
1002 		 * CPU. If we remove a timer on another CPU, reprogramming is
1003 		 * skipped. The interrupt event on this CPU is fired and
1004 		 * reprogramming happens in the interrupt handler. This is a
1005 		 * rare case and less expensive than a smp call.
1006 		 */
1007 		debug_deactivate(timer);
1008 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1009 
1010 		if (!restart)
1011 			state = HRTIMER_STATE_INACTIVE;
1012 
1013 		__remove_hrtimer(timer, base, state, reprogram);
1014 		return 1;
1015 	}
1016 	return 0;
1017 }
1018 
1019 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1020 					    const enum hrtimer_mode mode)
1021 {
1022 #ifdef CONFIG_TIME_LOW_RES
1023 	/*
1024 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1025 	 * granular time values. For relative timers we add hrtimer_resolution
1026 	 * (i.e. one jiffie) to prevent short timeouts.
1027 	 */
1028 	timer->is_rel = mode & HRTIMER_MODE_REL;
1029 	if (timer->is_rel)
1030 		tim = ktime_add_safe(tim, hrtimer_resolution);
1031 #endif
1032 	return tim;
1033 }
1034 
1035 static void
1036 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1037 {
1038 	ktime_t expires;
1039 
1040 	/*
1041 	 * Find the next SOFT expiration.
1042 	 */
1043 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1044 
1045 	/*
1046 	 * reprogramming needs to be triggered, even if the next soft
1047 	 * hrtimer expires at the same time than the next hard
1048 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1049 	 */
1050 	if (expires == KTIME_MAX)
1051 		return;
1052 
1053 	/*
1054 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1055 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1056 	 */
1057 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1058 }
1059 
1060 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1061 				    u64 delta_ns, const enum hrtimer_mode mode,
1062 				    struct hrtimer_clock_base *base)
1063 {
1064 	struct hrtimer_clock_base *new_base;
1065 
1066 	/* Remove an active timer from the queue: */
1067 	remove_hrtimer(timer, base, true);
1068 
1069 	if (mode & HRTIMER_MODE_REL)
1070 		tim = ktime_add_safe(tim, base->get_time());
1071 
1072 	tim = hrtimer_update_lowres(timer, tim, mode);
1073 
1074 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1075 
1076 	/* Switch the timer base, if necessary: */
1077 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1078 
1079 	return enqueue_hrtimer(timer, new_base, mode);
1080 }
1081 
1082 /**
1083  * hrtimer_start_range_ns - (re)start an hrtimer
1084  * @timer:	the timer to be added
1085  * @tim:	expiry time
1086  * @delta_ns:	"slack" range for the timer
1087  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1088  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1089  *		softirq based mode is considered for debug purpose only!
1090  */
1091 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1092 			    u64 delta_ns, const enum hrtimer_mode mode)
1093 {
1094 	struct hrtimer_clock_base *base;
1095 	unsigned long flags;
1096 
1097 	/*
1098 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1099 	 * match.
1100 	 */
1101 	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1102 
1103 	base = lock_hrtimer_base(timer, &flags);
1104 
1105 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1106 		hrtimer_reprogram(timer, true);
1107 
1108 	unlock_hrtimer_base(timer, &flags);
1109 }
1110 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1111 
1112 /**
1113  * hrtimer_try_to_cancel - try to deactivate a timer
1114  * @timer:	hrtimer to stop
1115  *
1116  * Returns:
1117  *
1118  *  *  0 when the timer was not active
1119  *  *  1 when the timer was active
1120  *  * -1 when the timer is currently executing the callback function and
1121  *    cannot be stopped
1122  */
1123 int hrtimer_try_to_cancel(struct hrtimer *timer)
1124 {
1125 	struct hrtimer_clock_base *base;
1126 	unsigned long flags;
1127 	int ret = -1;
1128 
1129 	/*
1130 	 * Check lockless first. If the timer is not active (neither
1131 	 * enqueued nor running the callback, nothing to do here.  The
1132 	 * base lock does not serialize against a concurrent enqueue,
1133 	 * so we can avoid taking it.
1134 	 */
1135 	if (!hrtimer_active(timer))
1136 		return 0;
1137 
1138 	base = lock_hrtimer_base(timer, &flags);
1139 
1140 	if (!hrtimer_callback_running(timer))
1141 		ret = remove_hrtimer(timer, base, false);
1142 
1143 	unlock_hrtimer_base(timer, &flags);
1144 
1145 	return ret;
1146 
1147 }
1148 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1149 
1150 /**
1151  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1152  * @timer:	the timer to be cancelled
1153  *
1154  * Returns:
1155  *  0 when the timer was not active
1156  *  1 when the timer was active
1157  */
1158 int hrtimer_cancel(struct hrtimer *timer)
1159 {
1160 	for (;;) {
1161 		int ret = hrtimer_try_to_cancel(timer);
1162 
1163 		if (ret >= 0)
1164 			return ret;
1165 		cpu_relax();
1166 	}
1167 }
1168 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1169 
1170 /**
1171  * hrtimer_get_remaining - get remaining time for the timer
1172  * @timer:	the timer to read
1173  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1174  */
1175 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1176 {
1177 	unsigned long flags;
1178 	ktime_t rem;
1179 
1180 	lock_hrtimer_base(timer, &flags);
1181 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1182 		rem = hrtimer_expires_remaining_adjusted(timer);
1183 	else
1184 		rem = hrtimer_expires_remaining(timer);
1185 	unlock_hrtimer_base(timer, &flags);
1186 
1187 	return rem;
1188 }
1189 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1190 
1191 #ifdef CONFIG_NO_HZ_COMMON
1192 /**
1193  * hrtimer_get_next_event - get the time until next expiry event
1194  *
1195  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1196  */
1197 u64 hrtimer_get_next_event(void)
1198 {
1199 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1200 	u64 expires = KTIME_MAX;
1201 	unsigned long flags;
1202 
1203 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1204 
1205 	if (!__hrtimer_hres_active(cpu_base))
1206 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1207 
1208 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1209 
1210 	return expires;
1211 }
1212 
1213 /**
1214  * hrtimer_next_event_without - time until next expiry event w/o one timer
1215  * @exclude:	timer to exclude
1216  *
1217  * Returns the next expiry time over all timers except for the @exclude one or
1218  * KTIME_MAX if none of them is pending.
1219  */
1220 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1221 {
1222 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1223 	u64 expires = KTIME_MAX;
1224 	unsigned long flags;
1225 
1226 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1227 
1228 	if (__hrtimer_hres_active(cpu_base)) {
1229 		unsigned int active;
1230 
1231 		if (!cpu_base->softirq_activated) {
1232 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1233 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1234 							    active, KTIME_MAX);
1235 		}
1236 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1237 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1238 						    expires);
1239 	}
1240 
1241 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1242 
1243 	return expires;
1244 }
1245 #endif
1246 
1247 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1248 {
1249 	if (likely(clock_id < MAX_CLOCKS)) {
1250 		int base = hrtimer_clock_to_base_table[clock_id];
1251 
1252 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1253 			return base;
1254 	}
1255 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1256 	return HRTIMER_BASE_MONOTONIC;
1257 }
1258 
1259 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1260 			   enum hrtimer_mode mode)
1261 {
1262 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1263 	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1264 	struct hrtimer_cpu_base *cpu_base;
1265 
1266 	memset(timer, 0, sizeof(struct hrtimer));
1267 
1268 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1269 
1270 	/*
1271 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1272 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1273 	 * ensure POSIX compliance.
1274 	 */
1275 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1276 		clock_id = CLOCK_MONOTONIC;
1277 
1278 	base += hrtimer_clockid_to_base(clock_id);
1279 	timer->is_soft = softtimer;
1280 	timer->base = &cpu_base->clock_base[base];
1281 	timerqueue_init(&timer->node);
1282 }
1283 
1284 /**
1285  * hrtimer_init - initialize a timer to the given clock
1286  * @timer:	the timer to be initialized
1287  * @clock_id:	the clock to be used
1288  * @mode:       The modes which are relevant for intitialization:
1289  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1290  *              HRTIMER_MODE_REL_SOFT
1291  *
1292  *              The PINNED variants of the above can be handed in,
1293  *              but the PINNED bit is ignored as pinning happens
1294  *              when the hrtimer is started
1295  */
1296 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1297 		  enum hrtimer_mode mode)
1298 {
1299 	debug_init(timer, clock_id, mode);
1300 	__hrtimer_init(timer, clock_id, mode);
1301 }
1302 EXPORT_SYMBOL_GPL(hrtimer_init);
1303 
1304 /*
1305  * A timer is active, when it is enqueued into the rbtree or the
1306  * callback function is running or it's in the state of being migrated
1307  * to another cpu.
1308  *
1309  * It is important for this function to not return a false negative.
1310  */
1311 bool hrtimer_active(const struct hrtimer *timer)
1312 {
1313 	struct hrtimer_clock_base *base;
1314 	unsigned int seq;
1315 
1316 	do {
1317 		base = READ_ONCE(timer->base);
1318 		seq = raw_read_seqcount_begin(&base->seq);
1319 
1320 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1321 		    base->running == timer)
1322 			return true;
1323 
1324 	} while (read_seqcount_retry(&base->seq, seq) ||
1325 		 base != READ_ONCE(timer->base));
1326 
1327 	return false;
1328 }
1329 EXPORT_SYMBOL_GPL(hrtimer_active);
1330 
1331 /*
1332  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1333  * distinct sections:
1334  *
1335  *  - queued:	the timer is queued
1336  *  - callback:	the timer is being ran
1337  *  - post:	the timer is inactive or (re)queued
1338  *
1339  * On the read side we ensure we observe timer->state and cpu_base->running
1340  * from the same section, if anything changed while we looked at it, we retry.
1341  * This includes timer->base changing because sequence numbers alone are
1342  * insufficient for that.
1343  *
1344  * The sequence numbers are required because otherwise we could still observe
1345  * a false negative if the read side got smeared over multiple consequtive
1346  * __run_hrtimer() invocations.
1347  */
1348 
1349 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1350 			  struct hrtimer_clock_base *base,
1351 			  struct hrtimer *timer, ktime_t *now,
1352 			  unsigned long flags)
1353 {
1354 	enum hrtimer_restart (*fn)(struct hrtimer *);
1355 	int restart;
1356 
1357 	lockdep_assert_held(&cpu_base->lock);
1358 
1359 	debug_deactivate(timer);
1360 	base->running = timer;
1361 
1362 	/*
1363 	 * Separate the ->running assignment from the ->state assignment.
1364 	 *
1365 	 * As with a regular write barrier, this ensures the read side in
1366 	 * hrtimer_active() cannot observe base->running == NULL &&
1367 	 * timer->state == INACTIVE.
1368 	 */
1369 	raw_write_seqcount_barrier(&base->seq);
1370 
1371 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1372 	fn = timer->function;
1373 
1374 	/*
1375 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1376 	 * timer is restarted with a period then it becomes an absolute
1377 	 * timer. If its not restarted it does not matter.
1378 	 */
1379 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1380 		timer->is_rel = false;
1381 
1382 	/*
1383 	 * The timer is marked as running in the CPU base, so it is
1384 	 * protected against migration to a different CPU even if the lock
1385 	 * is dropped.
1386 	 */
1387 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1388 	trace_hrtimer_expire_entry(timer, now);
1389 	restart = fn(timer);
1390 	trace_hrtimer_expire_exit(timer);
1391 	raw_spin_lock_irq(&cpu_base->lock);
1392 
1393 	/*
1394 	 * Note: We clear the running state after enqueue_hrtimer and
1395 	 * we do not reprogram the event hardware. Happens either in
1396 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1397 	 *
1398 	 * Note: Because we dropped the cpu_base->lock above,
1399 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1400 	 * for us already.
1401 	 */
1402 	if (restart != HRTIMER_NORESTART &&
1403 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1404 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1405 
1406 	/*
1407 	 * Separate the ->running assignment from the ->state assignment.
1408 	 *
1409 	 * As with a regular write barrier, this ensures the read side in
1410 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1411 	 * timer->state == INACTIVE.
1412 	 */
1413 	raw_write_seqcount_barrier(&base->seq);
1414 
1415 	WARN_ON_ONCE(base->running != timer);
1416 	base->running = NULL;
1417 }
1418 
1419 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1420 				 unsigned long flags, unsigned int active_mask)
1421 {
1422 	struct hrtimer_clock_base *base;
1423 	unsigned int active = cpu_base->active_bases & active_mask;
1424 
1425 	for_each_active_base(base, cpu_base, active) {
1426 		struct timerqueue_node *node;
1427 		ktime_t basenow;
1428 
1429 		basenow = ktime_add(now, base->offset);
1430 
1431 		while ((node = timerqueue_getnext(&base->active))) {
1432 			struct hrtimer *timer;
1433 
1434 			timer = container_of(node, struct hrtimer, node);
1435 
1436 			/*
1437 			 * The immediate goal for using the softexpires is
1438 			 * minimizing wakeups, not running timers at the
1439 			 * earliest interrupt after their soft expiration.
1440 			 * This allows us to avoid using a Priority Search
1441 			 * Tree, which can answer a stabbing querry for
1442 			 * overlapping intervals and instead use the simple
1443 			 * BST we already have.
1444 			 * We don't add extra wakeups by delaying timers that
1445 			 * are right-of a not yet expired timer, because that
1446 			 * timer will have to trigger a wakeup anyway.
1447 			 */
1448 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1449 				break;
1450 
1451 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1452 		}
1453 	}
1454 }
1455 
1456 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1457 {
1458 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1459 	unsigned long flags;
1460 	ktime_t now;
1461 
1462 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1463 
1464 	now = hrtimer_update_base(cpu_base);
1465 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1466 
1467 	cpu_base->softirq_activated = 0;
1468 	hrtimer_update_softirq_timer(cpu_base, true);
1469 
1470 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1471 }
1472 
1473 #ifdef CONFIG_HIGH_RES_TIMERS
1474 
1475 /*
1476  * High resolution timer interrupt
1477  * Called with interrupts disabled
1478  */
1479 void hrtimer_interrupt(struct clock_event_device *dev)
1480 {
1481 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1482 	ktime_t expires_next, now, entry_time, delta;
1483 	unsigned long flags;
1484 	int retries = 0;
1485 
1486 	BUG_ON(!cpu_base->hres_active);
1487 	cpu_base->nr_events++;
1488 	dev->next_event = KTIME_MAX;
1489 
1490 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1491 	entry_time = now = hrtimer_update_base(cpu_base);
1492 retry:
1493 	cpu_base->in_hrtirq = 1;
1494 	/*
1495 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1496 	 * held to prevent that a timer is enqueued in our queue via
1497 	 * the migration code. This does not affect enqueueing of
1498 	 * timers which run their callback and need to be requeued on
1499 	 * this CPU.
1500 	 */
1501 	cpu_base->expires_next = KTIME_MAX;
1502 
1503 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1504 		cpu_base->softirq_expires_next = KTIME_MAX;
1505 		cpu_base->softirq_activated = 1;
1506 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1507 	}
1508 
1509 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1510 
1511 	/* Reevaluate the clock bases for the next expiry */
1512 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1513 	/*
1514 	 * Store the new expiry value so the migration code can verify
1515 	 * against it.
1516 	 */
1517 	cpu_base->expires_next = expires_next;
1518 	cpu_base->in_hrtirq = 0;
1519 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1520 
1521 	/* Reprogramming necessary ? */
1522 	if (!tick_program_event(expires_next, 0)) {
1523 		cpu_base->hang_detected = 0;
1524 		return;
1525 	}
1526 
1527 	/*
1528 	 * The next timer was already expired due to:
1529 	 * - tracing
1530 	 * - long lasting callbacks
1531 	 * - being scheduled away when running in a VM
1532 	 *
1533 	 * We need to prevent that we loop forever in the hrtimer
1534 	 * interrupt routine. We give it 3 attempts to avoid
1535 	 * overreacting on some spurious event.
1536 	 *
1537 	 * Acquire base lock for updating the offsets and retrieving
1538 	 * the current time.
1539 	 */
1540 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1541 	now = hrtimer_update_base(cpu_base);
1542 	cpu_base->nr_retries++;
1543 	if (++retries < 3)
1544 		goto retry;
1545 	/*
1546 	 * Give the system a chance to do something else than looping
1547 	 * here. We stored the entry time, so we know exactly how long
1548 	 * we spent here. We schedule the next event this amount of
1549 	 * time away.
1550 	 */
1551 	cpu_base->nr_hangs++;
1552 	cpu_base->hang_detected = 1;
1553 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1554 
1555 	delta = ktime_sub(now, entry_time);
1556 	if ((unsigned int)delta > cpu_base->max_hang_time)
1557 		cpu_base->max_hang_time = (unsigned int) delta;
1558 	/*
1559 	 * Limit it to a sensible value as we enforce a longer
1560 	 * delay. Give the CPU at least 100ms to catch up.
1561 	 */
1562 	if (delta > 100 * NSEC_PER_MSEC)
1563 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1564 	else
1565 		expires_next = ktime_add(now, delta);
1566 	tick_program_event(expires_next, 1);
1567 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1568 }
1569 
1570 /* called with interrupts disabled */
1571 static inline void __hrtimer_peek_ahead_timers(void)
1572 {
1573 	struct tick_device *td;
1574 
1575 	if (!hrtimer_hres_active())
1576 		return;
1577 
1578 	td = this_cpu_ptr(&tick_cpu_device);
1579 	if (td && td->evtdev)
1580 		hrtimer_interrupt(td->evtdev);
1581 }
1582 
1583 #else /* CONFIG_HIGH_RES_TIMERS */
1584 
1585 static inline void __hrtimer_peek_ahead_timers(void) { }
1586 
1587 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1588 
1589 /*
1590  * Called from run_local_timers in hardirq context every jiffy
1591  */
1592 void hrtimer_run_queues(void)
1593 {
1594 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1595 	unsigned long flags;
1596 	ktime_t now;
1597 
1598 	if (__hrtimer_hres_active(cpu_base))
1599 		return;
1600 
1601 	/*
1602 	 * This _is_ ugly: We have to check periodically, whether we
1603 	 * can switch to highres and / or nohz mode. The clocksource
1604 	 * switch happens with xtime_lock held. Notification from
1605 	 * there only sets the check bit in the tick_oneshot code,
1606 	 * otherwise we might deadlock vs. xtime_lock.
1607 	 */
1608 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1609 		hrtimer_switch_to_hres();
1610 		return;
1611 	}
1612 
1613 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1614 	now = hrtimer_update_base(cpu_base);
1615 
1616 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1617 		cpu_base->softirq_expires_next = KTIME_MAX;
1618 		cpu_base->softirq_activated = 1;
1619 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1620 	}
1621 
1622 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1623 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1624 }
1625 
1626 /*
1627  * Sleep related functions:
1628  */
1629 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1630 {
1631 	struct hrtimer_sleeper *t =
1632 		container_of(timer, struct hrtimer_sleeper, timer);
1633 	struct task_struct *task = t->task;
1634 
1635 	t->task = NULL;
1636 	if (task)
1637 		wake_up_process(task);
1638 
1639 	return HRTIMER_NORESTART;
1640 }
1641 
1642 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1643 {
1644 	sl->timer.function = hrtimer_wakeup;
1645 	sl->task = task;
1646 }
1647 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1648 
1649 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1650 {
1651 	switch(restart->nanosleep.type) {
1652 #ifdef CONFIG_COMPAT_32BIT_TIME
1653 	case TT_COMPAT:
1654 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1655 			return -EFAULT;
1656 		break;
1657 #endif
1658 	case TT_NATIVE:
1659 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1660 			return -EFAULT;
1661 		break;
1662 	default:
1663 		BUG();
1664 	}
1665 	return -ERESTART_RESTARTBLOCK;
1666 }
1667 
1668 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1669 {
1670 	struct restart_block *restart;
1671 
1672 	hrtimer_init_sleeper(t, current);
1673 
1674 	do {
1675 		set_current_state(TASK_INTERRUPTIBLE);
1676 		hrtimer_start_expires(&t->timer, mode);
1677 
1678 		if (likely(t->task))
1679 			freezable_schedule();
1680 
1681 		hrtimer_cancel(&t->timer);
1682 		mode = HRTIMER_MODE_ABS;
1683 
1684 	} while (t->task && !signal_pending(current));
1685 
1686 	__set_current_state(TASK_RUNNING);
1687 
1688 	if (!t->task)
1689 		return 0;
1690 
1691 	restart = &current->restart_block;
1692 	if (restart->nanosleep.type != TT_NONE) {
1693 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1694 		struct timespec64 rmt;
1695 
1696 		if (rem <= 0)
1697 			return 0;
1698 		rmt = ktime_to_timespec64(rem);
1699 
1700 		return nanosleep_copyout(restart, &rmt);
1701 	}
1702 	return -ERESTART_RESTARTBLOCK;
1703 }
1704 
1705 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1706 {
1707 	struct hrtimer_sleeper t;
1708 	int ret;
1709 
1710 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1711 				HRTIMER_MODE_ABS);
1712 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1713 
1714 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1715 	destroy_hrtimer_on_stack(&t.timer);
1716 	return ret;
1717 }
1718 
1719 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1720 		       const enum hrtimer_mode mode, const clockid_t clockid)
1721 {
1722 	struct restart_block *restart;
1723 	struct hrtimer_sleeper t;
1724 	int ret = 0;
1725 	u64 slack;
1726 
1727 	slack = current->timer_slack_ns;
1728 	if (dl_task(current) || rt_task(current))
1729 		slack = 0;
1730 
1731 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1732 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1733 	ret = do_nanosleep(&t, mode);
1734 	if (ret != -ERESTART_RESTARTBLOCK)
1735 		goto out;
1736 
1737 	/* Absolute timers do not update the rmtp value and restart: */
1738 	if (mode == HRTIMER_MODE_ABS) {
1739 		ret = -ERESTARTNOHAND;
1740 		goto out;
1741 	}
1742 
1743 	restart = &current->restart_block;
1744 	restart->fn = hrtimer_nanosleep_restart;
1745 	restart->nanosleep.clockid = t.timer.base->clockid;
1746 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1747 out:
1748 	destroy_hrtimer_on_stack(&t.timer);
1749 	return ret;
1750 }
1751 
1752 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1753 
1754 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1755 		struct __kernel_timespec __user *, rmtp)
1756 {
1757 	struct timespec64 tu;
1758 
1759 	if (get_timespec64(&tu, rqtp))
1760 		return -EFAULT;
1761 
1762 	if (!timespec64_valid(&tu))
1763 		return -EINVAL;
1764 
1765 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1766 	current->restart_block.nanosleep.rmtp = rmtp;
1767 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1768 }
1769 
1770 #endif
1771 
1772 #ifdef CONFIG_COMPAT_32BIT_TIME
1773 
1774 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1775 		       struct old_timespec32 __user *, rmtp)
1776 {
1777 	struct timespec64 tu;
1778 
1779 	if (get_old_timespec32(&tu, rqtp))
1780 		return -EFAULT;
1781 
1782 	if (!timespec64_valid(&tu))
1783 		return -EINVAL;
1784 
1785 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1786 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1787 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1788 }
1789 #endif
1790 
1791 /*
1792  * Functions related to boot-time initialization:
1793  */
1794 int hrtimers_prepare_cpu(unsigned int cpu)
1795 {
1796 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1797 	int i;
1798 
1799 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1800 		cpu_base->clock_base[i].cpu_base = cpu_base;
1801 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1802 	}
1803 
1804 	cpu_base->cpu = cpu;
1805 	cpu_base->active_bases = 0;
1806 	cpu_base->hres_active = 0;
1807 	cpu_base->hang_detected = 0;
1808 	cpu_base->next_timer = NULL;
1809 	cpu_base->softirq_next_timer = NULL;
1810 	cpu_base->expires_next = KTIME_MAX;
1811 	cpu_base->softirq_expires_next = KTIME_MAX;
1812 	return 0;
1813 }
1814 
1815 #ifdef CONFIG_HOTPLUG_CPU
1816 
1817 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1818 				struct hrtimer_clock_base *new_base)
1819 {
1820 	struct hrtimer *timer;
1821 	struct timerqueue_node *node;
1822 
1823 	while ((node = timerqueue_getnext(&old_base->active))) {
1824 		timer = container_of(node, struct hrtimer, node);
1825 		BUG_ON(hrtimer_callback_running(timer));
1826 		debug_deactivate(timer);
1827 
1828 		/*
1829 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1830 		 * timer could be seen as !active and just vanish away
1831 		 * under us on another CPU
1832 		 */
1833 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1834 		timer->base = new_base;
1835 		/*
1836 		 * Enqueue the timers on the new cpu. This does not
1837 		 * reprogram the event device in case the timer
1838 		 * expires before the earliest on this CPU, but we run
1839 		 * hrtimer_interrupt after we migrated everything to
1840 		 * sort out already expired timers and reprogram the
1841 		 * event device.
1842 		 */
1843 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1844 	}
1845 }
1846 
1847 int hrtimers_dead_cpu(unsigned int scpu)
1848 {
1849 	struct hrtimer_cpu_base *old_base, *new_base;
1850 	int i;
1851 
1852 	BUG_ON(cpu_online(scpu));
1853 	tick_cancel_sched_timer(scpu);
1854 
1855 	/*
1856 	 * this BH disable ensures that raise_softirq_irqoff() does
1857 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
1858 	 * holding the cpu_base lock
1859 	 */
1860 	local_bh_disable();
1861 	local_irq_disable();
1862 	old_base = &per_cpu(hrtimer_bases, scpu);
1863 	new_base = this_cpu_ptr(&hrtimer_bases);
1864 	/*
1865 	 * The caller is globally serialized and nobody else
1866 	 * takes two locks at once, deadlock is not possible.
1867 	 */
1868 	raw_spin_lock(&new_base->lock);
1869 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1870 
1871 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1872 		migrate_hrtimer_list(&old_base->clock_base[i],
1873 				     &new_base->clock_base[i]);
1874 	}
1875 
1876 	/*
1877 	 * The migration might have changed the first expiring softirq
1878 	 * timer on this CPU. Update it.
1879 	 */
1880 	hrtimer_update_softirq_timer(new_base, false);
1881 
1882 	raw_spin_unlock(&old_base->lock);
1883 	raw_spin_unlock(&new_base->lock);
1884 
1885 	/* Check, if we got expired work to do */
1886 	__hrtimer_peek_ahead_timers();
1887 	local_irq_enable();
1888 	local_bh_enable();
1889 	return 0;
1890 }
1891 
1892 #endif /* CONFIG_HOTPLUG_CPU */
1893 
1894 void __init hrtimers_init(void)
1895 {
1896 	hrtimers_prepare_cpu(smp_processor_id());
1897 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1898 }
1899 
1900 /**
1901  * schedule_hrtimeout_range_clock - sleep until timeout
1902  * @expires:	timeout value (ktime_t)
1903  * @delta:	slack in expires timeout (ktime_t)
1904  * @mode:	timer mode
1905  * @clock_id:	timer clock to be used
1906  */
1907 int __sched
1908 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1909 			       const enum hrtimer_mode mode, clockid_t clock_id)
1910 {
1911 	struct hrtimer_sleeper t;
1912 
1913 	/*
1914 	 * Optimize when a zero timeout value is given. It does not
1915 	 * matter whether this is an absolute or a relative time.
1916 	 */
1917 	if (expires && *expires == 0) {
1918 		__set_current_state(TASK_RUNNING);
1919 		return 0;
1920 	}
1921 
1922 	/*
1923 	 * A NULL parameter means "infinite"
1924 	 */
1925 	if (!expires) {
1926 		schedule();
1927 		return -EINTR;
1928 	}
1929 
1930 	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1931 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1932 
1933 	hrtimer_init_sleeper(&t, current);
1934 
1935 	hrtimer_start_expires(&t.timer, mode);
1936 
1937 	if (likely(t.task))
1938 		schedule();
1939 
1940 	hrtimer_cancel(&t.timer);
1941 	destroy_hrtimer_on_stack(&t.timer);
1942 
1943 	__set_current_state(TASK_RUNNING);
1944 
1945 	return !t.task ? 0 : -EINTR;
1946 }
1947 
1948 /**
1949  * schedule_hrtimeout_range - sleep until timeout
1950  * @expires:	timeout value (ktime_t)
1951  * @delta:	slack in expires timeout (ktime_t)
1952  * @mode:	timer mode
1953  *
1954  * Make the current task sleep until the given expiry time has
1955  * elapsed. The routine will return immediately unless
1956  * the current task state has been set (see set_current_state()).
1957  *
1958  * The @delta argument gives the kernel the freedom to schedule the
1959  * actual wakeup to a time that is both power and performance friendly.
1960  * The kernel give the normal best effort behavior for "@expires+@delta",
1961  * but may decide to fire the timer earlier, but no earlier than @expires.
1962  *
1963  * You can set the task state as follows -
1964  *
1965  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1966  * pass before the routine returns unless the current task is explicitly
1967  * woken up, (e.g. by wake_up_process()).
1968  *
1969  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1970  * delivered to the current task or the current task is explicitly woken
1971  * up.
1972  *
1973  * The current task state is guaranteed to be TASK_RUNNING when this
1974  * routine returns.
1975  *
1976  * Returns 0 when the timer has expired. If the task was woken before the
1977  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1978  * by an explicit wakeup, it returns -EINTR.
1979  */
1980 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1981 				     const enum hrtimer_mode mode)
1982 {
1983 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1984 					      CLOCK_MONOTONIC);
1985 }
1986 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1987 
1988 /**
1989  * schedule_hrtimeout - sleep until timeout
1990  * @expires:	timeout value (ktime_t)
1991  * @mode:	timer mode
1992  *
1993  * Make the current task sleep until the given expiry time has
1994  * elapsed. The routine will return immediately unless
1995  * the current task state has been set (see set_current_state()).
1996  *
1997  * You can set the task state as follows -
1998  *
1999  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2000  * pass before the routine returns unless the current task is explicitly
2001  * woken up, (e.g. by wake_up_process()).
2002  *
2003  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2004  * delivered to the current task or the current task is explicitly woken
2005  * up.
2006  *
2007  * The current task state is guaranteed to be TASK_RUNNING when this
2008  * routine returns.
2009  *
2010  * Returns 0 when the timer has expired. If the task was woken before the
2011  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2012  * by an explicit wakeup, it returns -EINTR.
2013  */
2014 int __sched schedule_hrtimeout(ktime_t *expires,
2015 			       const enum hrtimer_mode mode)
2016 {
2017 	return schedule_hrtimeout_range(expires, 0, mode);
2018 }
2019 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2020