xref: /linux/kernel/time/hrtimer.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "timekeeping.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids then hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 			.resolution = KTIME_LOW_RES,
78 		},
79 		{
80 			.index = HRTIMER_BASE_REALTIME,
81 			.clockid = CLOCK_REALTIME,
82 			.get_time = &ktime_get_real,
83 			.resolution = KTIME_LOW_RES,
84 		},
85 		{
86 			.index = HRTIMER_BASE_BOOTTIME,
87 			.clockid = CLOCK_BOOTTIME,
88 			.get_time = &ktime_get_boottime,
89 			.resolution = KTIME_LOW_RES,
90 		},
91 		{
92 			.index = HRTIMER_BASE_TAI,
93 			.clockid = CLOCK_TAI,
94 			.get_time = &ktime_get_clocktai,
95 			.resolution = KTIME_LOW_RES,
96 		},
97 	}
98 };
99 
100 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
101 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
102 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
103 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
104 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
105 };
106 
107 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
108 {
109 	return hrtimer_clock_to_base_table[clock_id];
110 }
111 
112 
113 /*
114  * Get the coarse grained time at the softirq based on xtime and
115  * wall_to_monotonic.
116  */
117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
118 {
119 	ktime_t xtim, mono, boot, tai;
120 	ktime_t off_real, off_boot, off_tai;
121 
122 	mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
123 	boot = ktime_add(mono, off_boot);
124 	xtim = ktime_add(mono, off_real);
125 	tai = ktime_add(mono, off_tai);
126 
127 	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 	base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
131 }
132 
133 /*
134  * Functions and macros which are different for UP/SMP systems are kept in a
135  * single place
136  */
137 #ifdef CONFIG_SMP
138 
139 /*
140  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141  * means that all timers which are tied to this base via timer->base are
142  * locked, and the base itself is locked too.
143  *
144  * So __run_timers/migrate_timers can safely modify all timers which could
145  * be found on the lists/queues.
146  *
147  * When the timer's base is locked, and the timer removed from list, it is
148  * possible to set timer->base = NULL and drop the lock: the timer remains
149  * locked.
150  */
151 static
152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 					     unsigned long *flags)
154 {
155 	struct hrtimer_clock_base *base;
156 
157 	for (;;) {
158 		base = timer->base;
159 		if (likely(base != NULL)) {
160 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 			if (likely(base == timer->base))
162 				return base;
163 			/* The timer has migrated to another CPU: */
164 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 		}
166 		cpu_relax();
167 	}
168 }
169 
170 /*
171  * With HIGHRES=y we do not migrate the timer when it is expiring
172  * before the next event on the target cpu because we cannot reprogram
173  * the target cpu hardware and we would cause it to fire late.
174  *
175  * Called with cpu_base->lock of target cpu held.
176  */
177 static int
178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179 {
180 #ifdef CONFIG_HIGH_RES_TIMERS
181 	ktime_t expires;
182 
183 	if (!new_base->cpu_base->hres_active)
184 		return 0;
185 
186 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188 #else
189 	return 0;
190 #endif
191 }
192 
193 /*
194  * Switch the timer base to the current CPU when possible.
195  */
196 static inline struct hrtimer_clock_base *
197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198 		    int pinned)
199 {
200 	struct hrtimer_clock_base *new_base;
201 	struct hrtimer_cpu_base *new_cpu_base;
202 	int this_cpu = smp_processor_id();
203 	int cpu = get_nohz_timer_target(pinned);
204 	int basenum = base->index;
205 
206 again:
207 	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208 	new_base = &new_cpu_base->clock_base[basenum];
209 
210 	if (base != new_base) {
211 		/*
212 		 * We are trying to move timer to new_base.
213 		 * However we can't change timer's base while it is running,
214 		 * so we keep it on the same CPU. No hassle vs. reprogramming
215 		 * the event source in the high resolution case. The softirq
216 		 * code will take care of this when the timer function has
217 		 * completed. There is no conflict as we hold the lock until
218 		 * the timer is enqueued.
219 		 */
220 		if (unlikely(hrtimer_callback_running(timer)))
221 			return base;
222 
223 		/* See the comment in lock_timer_base() */
224 		timer->base = NULL;
225 		raw_spin_unlock(&base->cpu_base->lock);
226 		raw_spin_lock(&new_base->cpu_base->lock);
227 
228 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229 			cpu = this_cpu;
230 			raw_spin_unlock(&new_base->cpu_base->lock);
231 			raw_spin_lock(&base->cpu_base->lock);
232 			timer->base = base;
233 			goto again;
234 		}
235 		timer->base = new_base;
236 	} else {
237 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
238 			cpu = this_cpu;
239 			goto again;
240 		}
241 	}
242 	return new_base;
243 }
244 
245 #else /* CONFIG_SMP */
246 
247 static inline struct hrtimer_clock_base *
248 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249 {
250 	struct hrtimer_clock_base *base = timer->base;
251 
252 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253 
254 	return base;
255 }
256 
257 # define switch_hrtimer_base(t, b, p)	(b)
258 
259 #endif	/* !CONFIG_SMP */
260 
261 /*
262  * Functions for the union type storage format of ktime_t which are
263  * too large for inlining:
264  */
265 #if BITS_PER_LONG < 64
266 /*
267  * Divide a ktime value by a nanosecond value
268  */
269 u64 __ktime_divns(const ktime_t kt, s64 div)
270 {
271 	u64 dclc;
272 	int sft = 0;
273 
274 	dclc = ktime_to_ns(kt);
275 	/* Make sure the divisor is less than 2^32: */
276 	while (div >> 32) {
277 		sft++;
278 		div >>= 1;
279 	}
280 	dclc >>= sft;
281 	do_div(dclc, (unsigned long) div);
282 
283 	return dclc;
284 }
285 EXPORT_SYMBOL_GPL(__ktime_divns);
286 #endif /* BITS_PER_LONG >= 64 */
287 
288 /*
289  * Add two ktime values and do a safety check for overflow:
290  */
291 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
292 {
293 	ktime_t res = ktime_add(lhs, rhs);
294 
295 	/*
296 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
297 	 * return to user space in a timespec:
298 	 */
299 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
300 		res = ktime_set(KTIME_SEC_MAX, 0);
301 
302 	return res;
303 }
304 
305 EXPORT_SYMBOL_GPL(ktime_add_safe);
306 
307 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
308 
309 static struct debug_obj_descr hrtimer_debug_descr;
310 
311 static void *hrtimer_debug_hint(void *addr)
312 {
313 	return ((struct hrtimer *) addr)->function;
314 }
315 
316 /*
317  * fixup_init is called when:
318  * - an active object is initialized
319  */
320 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
321 {
322 	struct hrtimer *timer = addr;
323 
324 	switch (state) {
325 	case ODEBUG_STATE_ACTIVE:
326 		hrtimer_cancel(timer);
327 		debug_object_init(timer, &hrtimer_debug_descr);
328 		return 1;
329 	default:
330 		return 0;
331 	}
332 }
333 
334 /*
335  * fixup_activate is called when:
336  * - an active object is activated
337  * - an unknown object is activated (might be a statically initialized object)
338  */
339 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
340 {
341 	switch (state) {
342 
343 	case ODEBUG_STATE_NOTAVAILABLE:
344 		WARN_ON_ONCE(1);
345 		return 0;
346 
347 	case ODEBUG_STATE_ACTIVE:
348 		WARN_ON(1);
349 
350 	default:
351 		return 0;
352 	}
353 }
354 
355 /*
356  * fixup_free is called when:
357  * - an active object is freed
358  */
359 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
360 {
361 	struct hrtimer *timer = addr;
362 
363 	switch (state) {
364 	case ODEBUG_STATE_ACTIVE:
365 		hrtimer_cancel(timer);
366 		debug_object_free(timer, &hrtimer_debug_descr);
367 		return 1;
368 	default:
369 		return 0;
370 	}
371 }
372 
373 static struct debug_obj_descr hrtimer_debug_descr = {
374 	.name		= "hrtimer",
375 	.debug_hint	= hrtimer_debug_hint,
376 	.fixup_init	= hrtimer_fixup_init,
377 	.fixup_activate	= hrtimer_fixup_activate,
378 	.fixup_free	= hrtimer_fixup_free,
379 };
380 
381 static inline void debug_hrtimer_init(struct hrtimer *timer)
382 {
383 	debug_object_init(timer, &hrtimer_debug_descr);
384 }
385 
386 static inline void debug_hrtimer_activate(struct hrtimer *timer)
387 {
388 	debug_object_activate(timer, &hrtimer_debug_descr);
389 }
390 
391 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
392 {
393 	debug_object_deactivate(timer, &hrtimer_debug_descr);
394 }
395 
396 static inline void debug_hrtimer_free(struct hrtimer *timer)
397 {
398 	debug_object_free(timer, &hrtimer_debug_descr);
399 }
400 
401 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
402 			   enum hrtimer_mode mode);
403 
404 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
405 			   enum hrtimer_mode mode)
406 {
407 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
408 	__hrtimer_init(timer, clock_id, mode);
409 }
410 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
411 
412 void destroy_hrtimer_on_stack(struct hrtimer *timer)
413 {
414 	debug_object_free(timer, &hrtimer_debug_descr);
415 }
416 
417 #else
418 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
419 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
420 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
421 #endif
422 
423 static inline void
424 debug_init(struct hrtimer *timer, clockid_t clockid,
425 	   enum hrtimer_mode mode)
426 {
427 	debug_hrtimer_init(timer);
428 	trace_hrtimer_init(timer, clockid, mode);
429 }
430 
431 static inline void debug_activate(struct hrtimer *timer)
432 {
433 	debug_hrtimer_activate(timer);
434 	trace_hrtimer_start(timer);
435 }
436 
437 static inline void debug_deactivate(struct hrtimer *timer)
438 {
439 	debug_hrtimer_deactivate(timer);
440 	trace_hrtimer_cancel(timer);
441 }
442 
443 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
444 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
445 {
446 	struct hrtimer_clock_base *base = cpu_base->clock_base;
447 	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
448 	int i;
449 
450 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
451 		struct timerqueue_node *next;
452 		struct hrtimer *timer;
453 
454 		next = timerqueue_getnext(&base->active);
455 		if (!next)
456 			continue;
457 
458 		timer = container_of(next, struct hrtimer, node);
459 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
460 		if (expires.tv64 < expires_next.tv64)
461 			expires_next = expires;
462 	}
463 	/*
464 	 * clock_was_set() might have changed base->offset of any of
465 	 * the clock bases so the result might be negative. Fix it up
466 	 * to prevent a false positive in clockevents_program_event().
467 	 */
468 	if (expires_next.tv64 < 0)
469 		expires_next.tv64 = 0;
470 	return expires_next;
471 }
472 #endif
473 
474 /* High resolution timer related functions */
475 #ifdef CONFIG_HIGH_RES_TIMERS
476 
477 /*
478  * High resolution timer enabled ?
479  */
480 static int hrtimer_hres_enabled __read_mostly  = 1;
481 
482 /*
483  * Enable / Disable high resolution mode
484  */
485 static int __init setup_hrtimer_hres(char *str)
486 {
487 	if (!strcmp(str, "off"))
488 		hrtimer_hres_enabled = 0;
489 	else if (!strcmp(str, "on"))
490 		hrtimer_hres_enabled = 1;
491 	else
492 		return 0;
493 	return 1;
494 }
495 
496 __setup("highres=", setup_hrtimer_hres);
497 
498 /*
499  * hrtimer_high_res_enabled - query, if the highres mode is enabled
500  */
501 static inline int hrtimer_is_hres_enabled(void)
502 {
503 	return hrtimer_hres_enabled;
504 }
505 
506 /*
507  * Is the high resolution mode active ?
508  */
509 static inline int hrtimer_hres_active(void)
510 {
511 	return __this_cpu_read(hrtimer_bases.hres_active);
512 }
513 
514 /*
515  * Reprogram the event source with checking both queues for the
516  * next event
517  * Called with interrupts disabled and base->lock held
518  */
519 static void
520 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
521 {
522 	ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
523 
524 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
525 		return;
526 
527 	cpu_base->expires_next.tv64 = expires_next.tv64;
528 
529 	/*
530 	 * If a hang was detected in the last timer interrupt then we
531 	 * leave the hang delay active in the hardware. We want the
532 	 * system to make progress. That also prevents the following
533 	 * scenario:
534 	 * T1 expires 50ms from now
535 	 * T2 expires 5s from now
536 	 *
537 	 * T1 is removed, so this code is called and would reprogram
538 	 * the hardware to 5s from now. Any hrtimer_start after that
539 	 * will not reprogram the hardware due to hang_detected being
540 	 * set. So we'd effectivly block all timers until the T2 event
541 	 * fires.
542 	 */
543 	if (cpu_base->hang_detected)
544 		return;
545 
546 	if (cpu_base->expires_next.tv64 != KTIME_MAX)
547 		tick_program_event(cpu_base->expires_next, 1);
548 }
549 
550 /*
551  * Shared reprogramming for clock_realtime and clock_monotonic
552  *
553  * When a timer is enqueued and expires earlier than the already enqueued
554  * timers, we have to check, whether it expires earlier than the timer for
555  * which the clock event device was armed.
556  *
557  * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
558  * and no expiry check happens. The timer gets enqueued into the rbtree. The
559  * reprogramming and expiry check is done in the hrtimer_interrupt or in the
560  * softirq.
561  *
562  * Called with interrupts disabled and base->cpu_base.lock held
563  */
564 static int hrtimer_reprogram(struct hrtimer *timer,
565 			     struct hrtimer_clock_base *base)
566 {
567 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
568 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
569 	int res;
570 
571 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
572 
573 	/*
574 	 * When the callback is running, we do not reprogram the clock event
575 	 * device. The timer callback is either running on a different CPU or
576 	 * the callback is executed in the hrtimer_interrupt context. The
577 	 * reprogramming is handled either by the softirq, which called the
578 	 * callback or at the end of the hrtimer_interrupt.
579 	 */
580 	if (hrtimer_callback_running(timer))
581 		return 0;
582 
583 	/*
584 	 * CLOCK_REALTIME timer might be requested with an absolute
585 	 * expiry time which is less than base->offset. Nothing wrong
586 	 * about that, just avoid to call into the tick code, which
587 	 * has now objections against negative expiry values.
588 	 */
589 	if (expires.tv64 < 0)
590 		return -ETIME;
591 
592 	if (expires.tv64 >= cpu_base->expires_next.tv64)
593 		return 0;
594 
595 	/*
596 	 * When the target cpu of the timer is currently executing
597 	 * hrtimer_interrupt(), then we do not touch the clock event
598 	 * device. hrtimer_interrupt() will reevaluate all clock bases
599 	 * before reprogramming the device.
600 	 */
601 	if (cpu_base->in_hrtirq)
602 		return 0;
603 
604 	/*
605 	 * If a hang was detected in the last timer interrupt then we
606 	 * do not schedule a timer which is earlier than the expiry
607 	 * which we enforced in the hang detection. We want the system
608 	 * to make progress.
609 	 */
610 	if (cpu_base->hang_detected)
611 		return 0;
612 
613 	/*
614 	 * Clockevents returns -ETIME, when the event was in the past.
615 	 */
616 	res = tick_program_event(expires, 0);
617 	if (!IS_ERR_VALUE(res))
618 		cpu_base->expires_next = expires;
619 	return res;
620 }
621 
622 /*
623  * Initialize the high resolution related parts of cpu_base
624  */
625 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
626 {
627 	base->expires_next.tv64 = KTIME_MAX;
628 	base->hres_active = 0;
629 }
630 
631 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
632 {
633 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
634 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
635 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
636 
637 	return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
638 }
639 
640 /*
641  * Retrigger next event is called after clock was set
642  *
643  * Called with interrupts disabled via on_each_cpu()
644  */
645 static void retrigger_next_event(void *arg)
646 {
647 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
648 
649 	if (!hrtimer_hres_active())
650 		return;
651 
652 	raw_spin_lock(&base->lock);
653 	hrtimer_update_base(base);
654 	hrtimer_force_reprogram(base, 0);
655 	raw_spin_unlock(&base->lock);
656 }
657 
658 /*
659  * Switch to high resolution mode
660  */
661 static int hrtimer_switch_to_hres(void)
662 {
663 	int i, cpu = smp_processor_id();
664 	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
665 	unsigned long flags;
666 
667 	if (base->hres_active)
668 		return 1;
669 
670 	local_irq_save(flags);
671 
672 	if (tick_init_highres()) {
673 		local_irq_restore(flags);
674 		printk(KERN_WARNING "Could not switch to high resolution "
675 				    "mode on CPU %d\n", cpu);
676 		return 0;
677 	}
678 	base->hres_active = 1;
679 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
680 		base->clock_base[i].resolution = KTIME_HIGH_RES;
681 
682 	tick_setup_sched_timer();
683 	/* "Retrigger" the interrupt to get things going */
684 	retrigger_next_event(NULL);
685 	local_irq_restore(flags);
686 	return 1;
687 }
688 
689 static void clock_was_set_work(struct work_struct *work)
690 {
691 	clock_was_set();
692 }
693 
694 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
695 
696 /*
697  * Called from timekeeping and resume code to reprogramm the hrtimer
698  * interrupt device on all cpus.
699  */
700 void clock_was_set_delayed(void)
701 {
702 	schedule_work(&hrtimer_work);
703 }
704 
705 #else
706 
707 static inline int hrtimer_hres_active(void) { return 0; }
708 static inline int hrtimer_is_hres_enabled(void) { return 0; }
709 static inline int hrtimer_switch_to_hres(void) { return 0; }
710 static inline void
711 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
712 static inline int hrtimer_reprogram(struct hrtimer *timer,
713 				    struct hrtimer_clock_base *base)
714 {
715 	return 0;
716 }
717 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
718 static inline void retrigger_next_event(void *arg) { }
719 
720 #endif /* CONFIG_HIGH_RES_TIMERS */
721 
722 /*
723  * Clock realtime was set
724  *
725  * Change the offset of the realtime clock vs. the monotonic
726  * clock.
727  *
728  * We might have to reprogram the high resolution timer interrupt. On
729  * SMP we call the architecture specific code to retrigger _all_ high
730  * resolution timer interrupts. On UP we just disable interrupts and
731  * call the high resolution interrupt code.
732  */
733 void clock_was_set(void)
734 {
735 #ifdef CONFIG_HIGH_RES_TIMERS
736 	/* Retrigger the CPU local events everywhere */
737 	on_each_cpu(retrigger_next_event, NULL, 1);
738 #endif
739 	timerfd_clock_was_set();
740 }
741 
742 /*
743  * During resume we might have to reprogram the high resolution timer
744  * interrupt on all online CPUs.  However, all other CPUs will be
745  * stopped with IRQs interrupts disabled so the clock_was_set() call
746  * must be deferred.
747  */
748 void hrtimers_resume(void)
749 {
750 	WARN_ONCE(!irqs_disabled(),
751 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
752 
753 	/* Retrigger on the local CPU */
754 	retrigger_next_event(NULL);
755 	/* And schedule a retrigger for all others */
756 	clock_was_set_delayed();
757 }
758 
759 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
760 {
761 #ifdef CONFIG_TIMER_STATS
762 	if (timer->start_site)
763 		return;
764 	timer->start_site = __builtin_return_address(0);
765 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
766 	timer->start_pid = current->pid;
767 #endif
768 }
769 
770 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
771 {
772 #ifdef CONFIG_TIMER_STATS
773 	timer->start_site = NULL;
774 #endif
775 }
776 
777 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
778 {
779 #ifdef CONFIG_TIMER_STATS
780 	if (likely(!timer_stats_active))
781 		return;
782 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
783 				 timer->function, timer->start_comm, 0);
784 #endif
785 }
786 
787 /*
788  * Counterpart to lock_hrtimer_base above:
789  */
790 static inline
791 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
792 {
793 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
794 }
795 
796 /**
797  * hrtimer_forward - forward the timer expiry
798  * @timer:	hrtimer to forward
799  * @now:	forward past this time
800  * @interval:	the interval to forward
801  *
802  * Forward the timer expiry so it will expire in the future.
803  * Returns the number of overruns.
804  */
805 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
806 {
807 	u64 orun = 1;
808 	ktime_t delta;
809 
810 	delta = ktime_sub(now, hrtimer_get_expires(timer));
811 
812 	if (delta.tv64 < 0)
813 		return 0;
814 
815 	if (interval.tv64 < timer->base->resolution.tv64)
816 		interval.tv64 = timer->base->resolution.tv64;
817 
818 	if (unlikely(delta.tv64 >= interval.tv64)) {
819 		s64 incr = ktime_to_ns(interval);
820 
821 		orun = ktime_divns(delta, incr);
822 		hrtimer_add_expires_ns(timer, incr * orun);
823 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
824 			return orun;
825 		/*
826 		 * This (and the ktime_add() below) is the
827 		 * correction for exact:
828 		 */
829 		orun++;
830 	}
831 	hrtimer_add_expires(timer, interval);
832 
833 	return orun;
834 }
835 EXPORT_SYMBOL_GPL(hrtimer_forward);
836 
837 /*
838  * enqueue_hrtimer - internal function to (re)start a timer
839  *
840  * The timer is inserted in expiry order. Insertion into the
841  * red black tree is O(log(n)). Must hold the base lock.
842  *
843  * Returns 1 when the new timer is the leftmost timer in the tree.
844  */
845 static int enqueue_hrtimer(struct hrtimer *timer,
846 			   struct hrtimer_clock_base *base)
847 {
848 	debug_activate(timer);
849 
850 	timerqueue_add(&base->active, &timer->node);
851 	base->cpu_base->active_bases |= 1 << base->index;
852 
853 	/*
854 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
855 	 * state of a possibly running callback.
856 	 */
857 	timer->state |= HRTIMER_STATE_ENQUEUED;
858 
859 	return (&timer->node == base->active.next);
860 }
861 
862 /*
863  * __remove_hrtimer - internal function to remove a timer
864  *
865  * Caller must hold the base lock.
866  *
867  * High resolution timer mode reprograms the clock event device when the
868  * timer is the one which expires next. The caller can disable this by setting
869  * reprogram to zero. This is useful, when the context does a reprogramming
870  * anyway (e.g. timer interrupt)
871  */
872 static void __remove_hrtimer(struct hrtimer *timer,
873 			     struct hrtimer_clock_base *base,
874 			     unsigned long newstate, int reprogram)
875 {
876 	struct timerqueue_node *next_timer;
877 	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
878 		goto out;
879 
880 	next_timer = timerqueue_getnext(&base->active);
881 	timerqueue_del(&base->active, &timer->node);
882 	if (&timer->node == next_timer) {
883 #ifdef CONFIG_HIGH_RES_TIMERS
884 		/* Reprogram the clock event device. if enabled */
885 		if (reprogram && hrtimer_hres_active()) {
886 			ktime_t expires;
887 
888 			expires = ktime_sub(hrtimer_get_expires(timer),
889 					    base->offset);
890 			if (base->cpu_base->expires_next.tv64 == expires.tv64)
891 				hrtimer_force_reprogram(base->cpu_base, 1);
892 		}
893 #endif
894 	}
895 	if (!timerqueue_getnext(&base->active))
896 		base->cpu_base->active_bases &= ~(1 << base->index);
897 out:
898 	timer->state = newstate;
899 }
900 
901 /*
902  * remove hrtimer, called with base lock held
903  */
904 static inline int
905 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
906 {
907 	if (hrtimer_is_queued(timer)) {
908 		unsigned long state;
909 		int reprogram;
910 
911 		/*
912 		 * Remove the timer and force reprogramming when high
913 		 * resolution mode is active and the timer is on the current
914 		 * CPU. If we remove a timer on another CPU, reprogramming is
915 		 * skipped. The interrupt event on this CPU is fired and
916 		 * reprogramming happens in the interrupt handler. This is a
917 		 * rare case and less expensive than a smp call.
918 		 */
919 		debug_deactivate(timer);
920 		timer_stats_hrtimer_clear_start_info(timer);
921 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
922 		/*
923 		 * We must preserve the CALLBACK state flag here,
924 		 * otherwise we could move the timer base in
925 		 * switch_hrtimer_base.
926 		 */
927 		state = timer->state & HRTIMER_STATE_CALLBACK;
928 		__remove_hrtimer(timer, base, state, reprogram);
929 		return 1;
930 	}
931 	return 0;
932 }
933 
934 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
935 		unsigned long delta_ns, const enum hrtimer_mode mode,
936 		int wakeup)
937 {
938 	struct hrtimer_clock_base *base, *new_base;
939 	unsigned long flags;
940 	int ret, leftmost;
941 
942 	base = lock_hrtimer_base(timer, &flags);
943 
944 	/* Remove an active timer from the queue: */
945 	ret = remove_hrtimer(timer, base);
946 
947 	if (mode & HRTIMER_MODE_REL) {
948 		tim = ktime_add_safe(tim, base->get_time());
949 		/*
950 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
951 		 * to signal that they simply return xtime in
952 		 * do_gettimeoffset(). In this case we want to round up by
953 		 * resolution when starting a relative timer, to avoid short
954 		 * timeouts. This will go away with the GTOD framework.
955 		 */
956 #ifdef CONFIG_TIME_LOW_RES
957 		tim = ktime_add_safe(tim, base->resolution);
958 #endif
959 	}
960 
961 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
962 
963 	/* Switch the timer base, if necessary: */
964 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
965 
966 	timer_stats_hrtimer_set_start_info(timer);
967 
968 	leftmost = enqueue_hrtimer(timer, new_base);
969 
970 	if (!leftmost) {
971 		unlock_hrtimer_base(timer, &flags);
972 		return ret;
973 	}
974 
975 	if (!hrtimer_is_hres_active(timer)) {
976 		/*
977 		 * Kick to reschedule the next tick to handle the new timer
978 		 * on dynticks target.
979 		 */
980 		wake_up_nohz_cpu(new_base->cpu_base->cpu);
981 	} else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
982 			hrtimer_reprogram(timer, new_base)) {
983 		/*
984 		 * Only allow reprogramming if the new base is on this CPU.
985 		 * (it might still be on another CPU if the timer was pending)
986 		 *
987 		 * XXX send_remote_softirq() ?
988 		 */
989 		if (wakeup) {
990 			/*
991 			 * We need to drop cpu_base->lock to avoid a
992 			 * lock ordering issue vs. rq->lock.
993 			 */
994 			raw_spin_unlock(&new_base->cpu_base->lock);
995 			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
996 			local_irq_restore(flags);
997 			return ret;
998 		} else {
999 			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1000 		}
1001 	}
1002 
1003 	unlock_hrtimer_base(timer, &flags);
1004 
1005 	return ret;
1006 }
1007 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1008 
1009 /**
1010  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1011  * @timer:	the timer to be added
1012  * @tim:	expiry time
1013  * @delta_ns:	"slack" range for the timer
1014  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1015  *		relative (HRTIMER_MODE_REL)
1016  *
1017  * Returns:
1018  *  0 on success
1019  *  1 when the timer was active
1020  */
1021 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1022 		unsigned long delta_ns, const enum hrtimer_mode mode)
1023 {
1024 	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1025 }
1026 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1027 
1028 /**
1029  * hrtimer_start - (re)start an hrtimer on the current CPU
1030  * @timer:	the timer to be added
1031  * @tim:	expiry time
1032  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1033  *		relative (HRTIMER_MODE_REL)
1034  *
1035  * Returns:
1036  *  0 on success
1037  *  1 when the timer was active
1038  */
1039 int
1040 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1041 {
1042 	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1043 }
1044 EXPORT_SYMBOL_GPL(hrtimer_start);
1045 
1046 
1047 /**
1048  * hrtimer_try_to_cancel - try to deactivate a timer
1049  * @timer:	hrtimer to stop
1050  *
1051  * Returns:
1052  *  0 when the timer was not active
1053  *  1 when the timer was active
1054  * -1 when the timer is currently excuting the callback function and
1055  *    cannot be stopped
1056  */
1057 int hrtimer_try_to_cancel(struct hrtimer *timer)
1058 {
1059 	struct hrtimer_clock_base *base;
1060 	unsigned long flags;
1061 	int ret = -1;
1062 
1063 	base = lock_hrtimer_base(timer, &flags);
1064 
1065 	if (!hrtimer_callback_running(timer))
1066 		ret = remove_hrtimer(timer, base);
1067 
1068 	unlock_hrtimer_base(timer, &flags);
1069 
1070 	return ret;
1071 
1072 }
1073 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1074 
1075 /**
1076  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1077  * @timer:	the timer to be cancelled
1078  *
1079  * Returns:
1080  *  0 when the timer was not active
1081  *  1 when the timer was active
1082  */
1083 int hrtimer_cancel(struct hrtimer *timer)
1084 {
1085 	for (;;) {
1086 		int ret = hrtimer_try_to_cancel(timer);
1087 
1088 		if (ret >= 0)
1089 			return ret;
1090 		cpu_relax();
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1094 
1095 /**
1096  * hrtimer_get_remaining - get remaining time for the timer
1097  * @timer:	the timer to read
1098  */
1099 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1100 {
1101 	unsigned long flags;
1102 	ktime_t rem;
1103 
1104 	lock_hrtimer_base(timer, &flags);
1105 	rem = hrtimer_expires_remaining(timer);
1106 	unlock_hrtimer_base(timer, &flags);
1107 
1108 	return rem;
1109 }
1110 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1111 
1112 #ifdef CONFIG_NO_HZ_COMMON
1113 /**
1114  * hrtimer_get_next_event - get the time until next expiry event
1115  *
1116  * Returns the delta to the next expiry event or KTIME_MAX if no timer
1117  * is pending.
1118  */
1119 ktime_t hrtimer_get_next_event(void)
1120 {
1121 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1122 	ktime_t mindelta = { .tv64 = KTIME_MAX };
1123 	unsigned long flags;
1124 
1125 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1126 
1127 	if (!hrtimer_hres_active())
1128 		mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
1129 				     ktime_get());
1130 
1131 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1132 
1133 	if (mindelta.tv64 < 0)
1134 		mindelta.tv64 = 0;
1135 	return mindelta;
1136 }
1137 #endif
1138 
1139 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140 			   enum hrtimer_mode mode)
1141 {
1142 	struct hrtimer_cpu_base *cpu_base;
1143 	int base;
1144 
1145 	memset(timer, 0, sizeof(struct hrtimer));
1146 
1147 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1148 
1149 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150 		clock_id = CLOCK_MONOTONIC;
1151 
1152 	base = hrtimer_clockid_to_base(clock_id);
1153 	timer->base = &cpu_base->clock_base[base];
1154 	timerqueue_init(&timer->node);
1155 
1156 #ifdef CONFIG_TIMER_STATS
1157 	timer->start_site = NULL;
1158 	timer->start_pid = -1;
1159 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1160 #endif
1161 }
1162 
1163 /**
1164  * hrtimer_init - initialize a timer to the given clock
1165  * @timer:	the timer to be initialized
1166  * @clock_id:	the clock to be used
1167  * @mode:	timer mode abs/rel
1168  */
1169 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1170 		  enum hrtimer_mode mode)
1171 {
1172 	debug_init(timer, clock_id, mode);
1173 	__hrtimer_init(timer, clock_id, mode);
1174 }
1175 EXPORT_SYMBOL_GPL(hrtimer_init);
1176 
1177 /**
1178  * hrtimer_get_res - get the timer resolution for a clock
1179  * @which_clock: which clock to query
1180  * @tp:		 pointer to timespec variable to store the resolution
1181  *
1182  * Store the resolution of the clock selected by @which_clock in the
1183  * variable pointed to by @tp.
1184  */
1185 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1186 {
1187 	struct hrtimer_cpu_base *cpu_base;
1188 	int base = hrtimer_clockid_to_base(which_clock);
1189 
1190 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1191 	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1192 
1193 	return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1196 
1197 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1198 {
1199 	struct hrtimer_clock_base *base = timer->base;
1200 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1201 	enum hrtimer_restart (*fn)(struct hrtimer *);
1202 	int restart;
1203 
1204 	WARN_ON(!irqs_disabled());
1205 
1206 	debug_deactivate(timer);
1207 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1208 	timer_stats_account_hrtimer(timer);
1209 	fn = timer->function;
1210 
1211 	/*
1212 	 * Because we run timers from hardirq context, there is no chance
1213 	 * they get migrated to another cpu, therefore its safe to unlock
1214 	 * the timer base.
1215 	 */
1216 	raw_spin_unlock(&cpu_base->lock);
1217 	trace_hrtimer_expire_entry(timer, now);
1218 	restart = fn(timer);
1219 	trace_hrtimer_expire_exit(timer);
1220 	raw_spin_lock(&cpu_base->lock);
1221 
1222 	/*
1223 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1224 	 * we do not reprogramm the event hardware. Happens either in
1225 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226 	 */
1227 	if (restart != HRTIMER_NORESTART) {
1228 		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229 		enqueue_hrtimer(timer, base);
1230 	}
1231 
1232 	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1233 
1234 	timer->state &= ~HRTIMER_STATE_CALLBACK;
1235 }
1236 
1237 #ifdef CONFIG_HIGH_RES_TIMERS
1238 
1239 /*
1240  * High resolution timer interrupt
1241  * Called with interrupts disabled
1242  */
1243 void hrtimer_interrupt(struct clock_event_device *dev)
1244 {
1245 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1246 	ktime_t expires_next, now, entry_time, delta;
1247 	int i, retries = 0;
1248 
1249 	BUG_ON(!cpu_base->hres_active);
1250 	cpu_base->nr_events++;
1251 	dev->next_event.tv64 = KTIME_MAX;
1252 
1253 	raw_spin_lock(&cpu_base->lock);
1254 	entry_time = now = hrtimer_update_base(cpu_base);
1255 retry:
1256 	cpu_base->in_hrtirq = 1;
1257 	/*
1258 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1259 	 * held to prevent that a timer is enqueued in our queue via
1260 	 * the migration code. This does not affect enqueueing of
1261 	 * timers which run their callback and need to be requeued on
1262 	 * this CPU.
1263 	 */
1264 	cpu_base->expires_next.tv64 = KTIME_MAX;
1265 
1266 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1267 		struct hrtimer_clock_base *base;
1268 		struct timerqueue_node *node;
1269 		ktime_t basenow;
1270 
1271 		if (!(cpu_base->active_bases & (1 << i)))
1272 			continue;
1273 
1274 		base = cpu_base->clock_base + i;
1275 		basenow = ktime_add(now, base->offset);
1276 
1277 		while ((node = timerqueue_getnext(&base->active))) {
1278 			struct hrtimer *timer;
1279 
1280 			timer = container_of(node, struct hrtimer, node);
1281 
1282 			/*
1283 			 * The immediate goal for using the softexpires is
1284 			 * minimizing wakeups, not running timers at the
1285 			 * earliest interrupt after their soft expiration.
1286 			 * This allows us to avoid using a Priority Search
1287 			 * Tree, which can answer a stabbing querry for
1288 			 * overlapping intervals and instead use the simple
1289 			 * BST we already have.
1290 			 * We don't add extra wakeups by delaying timers that
1291 			 * are right-of a not yet expired timer, because that
1292 			 * timer will have to trigger a wakeup anyway.
1293 			 */
1294 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1295 				break;
1296 
1297 			__run_hrtimer(timer, &basenow);
1298 		}
1299 	}
1300 	/* Reevaluate the clock bases for the next expiry */
1301 	expires_next = __hrtimer_get_next_event(cpu_base);
1302 	/*
1303 	 * Store the new expiry value so the migration code can verify
1304 	 * against it.
1305 	 */
1306 	cpu_base->expires_next = expires_next;
1307 	cpu_base->in_hrtirq = 0;
1308 	raw_spin_unlock(&cpu_base->lock);
1309 
1310 	/* Reprogramming necessary ? */
1311 	if (expires_next.tv64 == KTIME_MAX ||
1312 	    !tick_program_event(expires_next, 0)) {
1313 		cpu_base->hang_detected = 0;
1314 		return;
1315 	}
1316 
1317 	/*
1318 	 * The next timer was already expired due to:
1319 	 * - tracing
1320 	 * - long lasting callbacks
1321 	 * - being scheduled away when running in a VM
1322 	 *
1323 	 * We need to prevent that we loop forever in the hrtimer
1324 	 * interrupt routine. We give it 3 attempts to avoid
1325 	 * overreacting on some spurious event.
1326 	 *
1327 	 * Acquire base lock for updating the offsets and retrieving
1328 	 * the current time.
1329 	 */
1330 	raw_spin_lock(&cpu_base->lock);
1331 	now = hrtimer_update_base(cpu_base);
1332 	cpu_base->nr_retries++;
1333 	if (++retries < 3)
1334 		goto retry;
1335 	/*
1336 	 * Give the system a chance to do something else than looping
1337 	 * here. We stored the entry time, so we know exactly how long
1338 	 * we spent here. We schedule the next event this amount of
1339 	 * time away.
1340 	 */
1341 	cpu_base->nr_hangs++;
1342 	cpu_base->hang_detected = 1;
1343 	raw_spin_unlock(&cpu_base->lock);
1344 	delta = ktime_sub(now, entry_time);
1345 	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1346 		cpu_base->max_hang_time = delta;
1347 	/*
1348 	 * Limit it to a sensible value as we enforce a longer
1349 	 * delay. Give the CPU at least 100ms to catch up.
1350 	 */
1351 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1352 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1353 	else
1354 		expires_next = ktime_add(now, delta);
1355 	tick_program_event(expires_next, 1);
1356 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1357 		    ktime_to_ns(delta));
1358 }
1359 
1360 /*
1361  * local version of hrtimer_peek_ahead_timers() called with interrupts
1362  * disabled.
1363  */
1364 static void __hrtimer_peek_ahead_timers(void)
1365 {
1366 	struct tick_device *td;
1367 
1368 	if (!hrtimer_hres_active())
1369 		return;
1370 
1371 	td = this_cpu_ptr(&tick_cpu_device);
1372 	if (td && td->evtdev)
1373 		hrtimer_interrupt(td->evtdev);
1374 }
1375 
1376 /**
1377  * hrtimer_peek_ahead_timers -- run soft-expired timers now
1378  *
1379  * hrtimer_peek_ahead_timers will peek at the timer queue of
1380  * the current cpu and check if there are any timers for which
1381  * the soft expires time has passed. If any such timers exist,
1382  * they are run immediately and then removed from the timer queue.
1383  *
1384  */
1385 void hrtimer_peek_ahead_timers(void)
1386 {
1387 	unsigned long flags;
1388 
1389 	local_irq_save(flags);
1390 	__hrtimer_peek_ahead_timers();
1391 	local_irq_restore(flags);
1392 }
1393 
1394 static void run_hrtimer_softirq(struct softirq_action *h)
1395 {
1396 	hrtimer_peek_ahead_timers();
1397 }
1398 
1399 #else /* CONFIG_HIGH_RES_TIMERS */
1400 
1401 static inline void __hrtimer_peek_ahead_timers(void) { }
1402 
1403 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1404 
1405 /*
1406  * Called from timer softirq every jiffy, expire hrtimers:
1407  *
1408  * For HRT its the fall back code to run the softirq in the timer
1409  * softirq context in case the hrtimer initialization failed or has
1410  * not been done yet.
1411  */
1412 void hrtimer_run_pending(void)
1413 {
1414 	if (hrtimer_hres_active())
1415 		return;
1416 
1417 	/*
1418 	 * This _is_ ugly: We have to check in the softirq context,
1419 	 * whether we can switch to highres and / or nohz mode. The
1420 	 * clocksource switch happens in the timer interrupt with
1421 	 * xtime_lock held. Notification from there only sets the
1422 	 * check bit in the tick_oneshot code, otherwise we might
1423 	 * deadlock vs. xtime_lock.
1424 	 */
1425 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1426 		hrtimer_switch_to_hres();
1427 }
1428 
1429 /*
1430  * Called from hardirq context every jiffy
1431  */
1432 void hrtimer_run_queues(void)
1433 {
1434 	struct timerqueue_node *node;
1435 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1436 	struct hrtimer_clock_base *base;
1437 	int index, gettime = 1;
1438 
1439 	if (hrtimer_hres_active())
1440 		return;
1441 
1442 	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1443 		base = &cpu_base->clock_base[index];
1444 		if (!timerqueue_getnext(&base->active))
1445 			continue;
1446 
1447 		if (gettime) {
1448 			hrtimer_get_softirq_time(cpu_base);
1449 			gettime = 0;
1450 		}
1451 
1452 		raw_spin_lock(&cpu_base->lock);
1453 
1454 		while ((node = timerqueue_getnext(&base->active))) {
1455 			struct hrtimer *timer;
1456 
1457 			timer = container_of(node, struct hrtimer, node);
1458 			if (base->softirq_time.tv64 <=
1459 					hrtimer_get_expires_tv64(timer))
1460 				break;
1461 
1462 			__run_hrtimer(timer, &base->softirq_time);
1463 		}
1464 		raw_spin_unlock(&cpu_base->lock);
1465 	}
1466 }
1467 
1468 /*
1469  * Sleep related functions:
1470  */
1471 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1472 {
1473 	struct hrtimer_sleeper *t =
1474 		container_of(timer, struct hrtimer_sleeper, timer);
1475 	struct task_struct *task = t->task;
1476 
1477 	t->task = NULL;
1478 	if (task)
1479 		wake_up_process(task);
1480 
1481 	return HRTIMER_NORESTART;
1482 }
1483 
1484 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1485 {
1486 	sl->timer.function = hrtimer_wakeup;
1487 	sl->task = task;
1488 }
1489 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1490 
1491 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1492 {
1493 	hrtimer_init_sleeper(t, current);
1494 
1495 	do {
1496 		set_current_state(TASK_INTERRUPTIBLE);
1497 		hrtimer_start_expires(&t->timer, mode);
1498 		if (!hrtimer_active(&t->timer))
1499 			t->task = NULL;
1500 
1501 		if (likely(t->task))
1502 			freezable_schedule();
1503 
1504 		hrtimer_cancel(&t->timer);
1505 		mode = HRTIMER_MODE_ABS;
1506 
1507 	} while (t->task && !signal_pending(current));
1508 
1509 	__set_current_state(TASK_RUNNING);
1510 
1511 	return t->task == NULL;
1512 }
1513 
1514 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1515 {
1516 	struct timespec rmt;
1517 	ktime_t rem;
1518 
1519 	rem = hrtimer_expires_remaining(timer);
1520 	if (rem.tv64 <= 0)
1521 		return 0;
1522 	rmt = ktime_to_timespec(rem);
1523 
1524 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1525 		return -EFAULT;
1526 
1527 	return 1;
1528 }
1529 
1530 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1531 {
1532 	struct hrtimer_sleeper t;
1533 	struct timespec __user  *rmtp;
1534 	int ret = 0;
1535 
1536 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1537 				HRTIMER_MODE_ABS);
1538 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1539 
1540 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1541 		goto out;
1542 
1543 	rmtp = restart->nanosleep.rmtp;
1544 	if (rmtp) {
1545 		ret = update_rmtp(&t.timer, rmtp);
1546 		if (ret <= 0)
1547 			goto out;
1548 	}
1549 
1550 	/* The other values in restart are already filled in */
1551 	ret = -ERESTART_RESTARTBLOCK;
1552 out:
1553 	destroy_hrtimer_on_stack(&t.timer);
1554 	return ret;
1555 }
1556 
1557 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1558 		       const enum hrtimer_mode mode, const clockid_t clockid)
1559 {
1560 	struct restart_block *restart;
1561 	struct hrtimer_sleeper t;
1562 	int ret = 0;
1563 	unsigned long slack;
1564 
1565 	slack = current->timer_slack_ns;
1566 	if (dl_task(current) || rt_task(current))
1567 		slack = 0;
1568 
1569 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1570 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1571 	if (do_nanosleep(&t, mode))
1572 		goto out;
1573 
1574 	/* Absolute timers do not update the rmtp value and restart: */
1575 	if (mode == HRTIMER_MODE_ABS) {
1576 		ret = -ERESTARTNOHAND;
1577 		goto out;
1578 	}
1579 
1580 	if (rmtp) {
1581 		ret = update_rmtp(&t.timer, rmtp);
1582 		if (ret <= 0)
1583 			goto out;
1584 	}
1585 
1586 	restart = &current->restart_block;
1587 	restart->fn = hrtimer_nanosleep_restart;
1588 	restart->nanosleep.clockid = t.timer.base->clockid;
1589 	restart->nanosleep.rmtp = rmtp;
1590 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1591 
1592 	ret = -ERESTART_RESTARTBLOCK;
1593 out:
1594 	destroy_hrtimer_on_stack(&t.timer);
1595 	return ret;
1596 }
1597 
1598 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1599 		struct timespec __user *, rmtp)
1600 {
1601 	struct timespec tu;
1602 
1603 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1604 		return -EFAULT;
1605 
1606 	if (!timespec_valid(&tu))
1607 		return -EINVAL;
1608 
1609 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1610 }
1611 
1612 /*
1613  * Functions related to boot-time initialization:
1614  */
1615 static void init_hrtimers_cpu(int cpu)
1616 {
1617 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1618 	int i;
1619 
1620 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1621 		cpu_base->clock_base[i].cpu_base = cpu_base;
1622 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1623 	}
1624 
1625 	cpu_base->cpu = cpu;
1626 	hrtimer_init_hres(cpu_base);
1627 }
1628 
1629 #ifdef CONFIG_HOTPLUG_CPU
1630 
1631 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1632 				struct hrtimer_clock_base *new_base)
1633 {
1634 	struct hrtimer *timer;
1635 	struct timerqueue_node *node;
1636 
1637 	while ((node = timerqueue_getnext(&old_base->active))) {
1638 		timer = container_of(node, struct hrtimer, node);
1639 		BUG_ON(hrtimer_callback_running(timer));
1640 		debug_deactivate(timer);
1641 
1642 		/*
1643 		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1644 		 * timer could be seen as !active and just vanish away
1645 		 * under us on another CPU
1646 		 */
1647 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1648 		timer->base = new_base;
1649 		/*
1650 		 * Enqueue the timers on the new cpu. This does not
1651 		 * reprogram the event device in case the timer
1652 		 * expires before the earliest on this CPU, but we run
1653 		 * hrtimer_interrupt after we migrated everything to
1654 		 * sort out already expired timers and reprogram the
1655 		 * event device.
1656 		 */
1657 		enqueue_hrtimer(timer, new_base);
1658 
1659 		/* Clear the migration state bit */
1660 		timer->state &= ~HRTIMER_STATE_MIGRATE;
1661 	}
1662 }
1663 
1664 static void migrate_hrtimers(int scpu)
1665 {
1666 	struct hrtimer_cpu_base *old_base, *new_base;
1667 	int i;
1668 
1669 	BUG_ON(cpu_online(scpu));
1670 	tick_cancel_sched_timer(scpu);
1671 
1672 	local_irq_disable();
1673 	old_base = &per_cpu(hrtimer_bases, scpu);
1674 	new_base = this_cpu_ptr(&hrtimer_bases);
1675 	/*
1676 	 * The caller is globally serialized and nobody else
1677 	 * takes two locks at once, deadlock is not possible.
1678 	 */
1679 	raw_spin_lock(&new_base->lock);
1680 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1681 
1682 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1683 		migrate_hrtimer_list(&old_base->clock_base[i],
1684 				     &new_base->clock_base[i]);
1685 	}
1686 
1687 	raw_spin_unlock(&old_base->lock);
1688 	raw_spin_unlock(&new_base->lock);
1689 
1690 	/* Check, if we got expired work to do */
1691 	__hrtimer_peek_ahead_timers();
1692 	local_irq_enable();
1693 }
1694 
1695 #endif /* CONFIG_HOTPLUG_CPU */
1696 
1697 static int hrtimer_cpu_notify(struct notifier_block *self,
1698 					unsigned long action, void *hcpu)
1699 {
1700 	int scpu = (long)hcpu;
1701 
1702 	switch (action) {
1703 
1704 	case CPU_UP_PREPARE:
1705 	case CPU_UP_PREPARE_FROZEN:
1706 		init_hrtimers_cpu(scpu);
1707 		break;
1708 
1709 #ifdef CONFIG_HOTPLUG_CPU
1710 	case CPU_DYING:
1711 	case CPU_DYING_FROZEN:
1712 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1713 		break;
1714 	case CPU_DEAD:
1715 	case CPU_DEAD_FROZEN:
1716 	{
1717 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1718 		migrate_hrtimers(scpu);
1719 		break;
1720 	}
1721 #endif
1722 
1723 	default:
1724 		break;
1725 	}
1726 
1727 	return NOTIFY_OK;
1728 }
1729 
1730 static struct notifier_block hrtimers_nb = {
1731 	.notifier_call = hrtimer_cpu_notify,
1732 };
1733 
1734 void __init hrtimers_init(void)
1735 {
1736 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1737 			  (void *)(long)smp_processor_id());
1738 	register_cpu_notifier(&hrtimers_nb);
1739 #ifdef CONFIG_HIGH_RES_TIMERS
1740 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1741 #endif
1742 }
1743 
1744 /**
1745  * schedule_hrtimeout_range_clock - sleep until timeout
1746  * @expires:	timeout value (ktime_t)
1747  * @delta:	slack in expires timeout (ktime_t)
1748  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1749  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1750  */
1751 int __sched
1752 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1753 			       const enum hrtimer_mode mode, int clock)
1754 {
1755 	struct hrtimer_sleeper t;
1756 
1757 	/*
1758 	 * Optimize when a zero timeout value is given. It does not
1759 	 * matter whether this is an absolute or a relative time.
1760 	 */
1761 	if (expires && !expires->tv64) {
1762 		__set_current_state(TASK_RUNNING);
1763 		return 0;
1764 	}
1765 
1766 	/*
1767 	 * A NULL parameter means "infinite"
1768 	 */
1769 	if (!expires) {
1770 		schedule();
1771 		return -EINTR;
1772 	}
1773 
1774 	hrtimer_init_on_stack(&t.timer, clock, mode);
1775 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1776 
1777 	hrtimer_init_sleeper(&t, current);
1778 
1779 	hrtimer_start_expires(&t.timer, mode);
1780 	if (!hrtimer_active(&t.timer))
1781 		t.task = NULL;
1782 
1783 	if (likely(t.task))
1784 		schedule();
1785 
1786 	hrtimer_cancel(&t.timer);
1787 	destroy_hrtimer_on_stack(&t.timer);
1788 
1789 	__set_current_state(TASK_RUNNING);
1790 
1791 	return !t.task ? 0 : -EINTR;
1792 }
1793 
1794 /**
1795  * schedule_hrtimeout_range - sleep until timeout
1796  * @expires:	timeout value (ktime_t)
1797  * @delta:	slack in expires timeout (ktime_t)
1798  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1799  *
1800  * Make the current task sleep until the given expiry time has
1801  * elapsed. The routine will return immediately unless
1802  * the current task state has been set (see set_current_state()).
1803  *
1804  * The @delta argument gives the kernel the freedom to schedule the
1805  * actual wakeup to a time that is both power and performance friendly.
1806  * The kernel give the normal best effort behavior for "@expires+@delta",
1807  * but may decide to fire the timer earlier, but no earlier than @expires.
1808  *
1809  * You can set the task state as follows -
1810  *
1811  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1812  * pass before the routine returns.
1813  *
1814  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1815  * delivered to the current task.
1816  *
1817  * The current task state is guaranteed to be TASK_RUNNING when this
1818  * routine returns.
1819  *
1820  * Returns 0 when the timer has expired otherwise -EINTR
1821  */
1822 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1823 				     const enum hrtimer_mode mode)
1824 {
1825 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1826 					      CLOCK_MONOTONIC);
1827 }
1828 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1829 
1830 /**
1831  * schedule_hrtimeout - sleep until timeout
1832  * @expires:	timeout value (ktime_t)
1833  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1834  *
1835  * Make the current task sleep until the given expiry time has
1836  * elapsed. The routine will return immediately unless
1837  * the current task state has been set (see set_current_state()).
1838  *
1839  * You can set the task state as follows -
1840  *
1841  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1842  * pass before the routine returns.
1843  *
1844  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1845  * delivered to the current task.
1846  *
1847  * The current task state is guaranteed to be TASK_RUNNING when this
1848  * routine returns.
1849  *
1850  * Returns 0 when the timer has expired otherwise -EINTR
1851  */
1852 int __sched schedule_hrtimeout(ktime_t *expires,
1853 			       const enum hrtimer_mode mode)
1854 {
1855 	return schedule_hrtimeout_range(expires, 0, mode);
1856 }
1857 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1858