1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/tick.h> 43 #include <linux/seq_file.h> 44 #include <linux/err.h> 45 #include <linux/debugobjects.h> 46 #include <linux/sched.h> 47 #include <linux/sched/sysctl.h> 48 #include <linux/sched/rt.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/timer.h> 51 #include <linux/freezer.h> 52 53 #include <asm/uaccess.h> 54 55 #include <trace/events/timer.h> 56 57 #include "timekeeping.h" 58 59 /* 60 * The timer bases: 61 * 62 * There are more clockids then hrtimer bases. Thus, we index 63 * into the timer bases by the hrtimer_base_type enum. When trying 64 * to reach a base using a clockid, hrtimer_clockid_to_base() 65 * is used to convert from clockid to the proper hrtimer_base_type. 66 */ 67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 68 { 69 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 .resolution = KTIME_LOW_RES, 78 }, 79 { 80 .index = HRTIMER_BASE_REALTIME, 81 .clockid = CLOCK_REALTIME, 82 .get_time = &ktime_get_real, 83 .resolution = KTIME_LOW_RES, 84 }, 85 { 86 .index = HRTIMER_BASE_BOOTTIME, 87 .clockid = CLOCK_BOOTTIME, 88 .get_time = &ktime_get_boottime, 89 .resolution = KTIME_LOW_RES, 90 }, 91 { 92 .index = HRTIMER_BASE_TAI, 93 .clockid = CLOCK_TAI, 94 .get_time = &ktime_get_clocktai, 95 .resolution = KTIME_LOW_RES, 96 }, 97 } 98 }; 99 100 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 101 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 102 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 103 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 104 [CLOCK_TAI] = HRTIMER_BASE_TAI, 105 }; 106 107 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 108 { 109 return hrtimer_clock_to_base_table[clock_id]; 110 } 111 112 113 /* 114 * Get the coarse grained time at the softirq based on xtime and 115 * wall_to_monotonic. 116 */ 117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) 118 { 119 ktime_t xtim, mono, boot, tai; 120 ktime_t off_real, off_boot, off_tai; 121 122 mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai); 123 boot = ktime_add(mono, off_boot); 124 xtim = ktime_add(mono, off_real); 125 tai = ktime_add(mono, off_tai); 126 127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim; 128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono; 129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot; 130 base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai; 131 } 132 133 /* 134 * Functions and macros which are different for UP/SMP systems are kept in a 135 * single place 136 */ 137 #ifdef CONFIG_SMP 138 139 /* 140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 141 * means that all timers which are tied to this base via timer->base are 142 * locked, and the base itself is locked too. 143 * 144 * So __run_timers/migrate_timers can safely modify all timers which could 145 * be found on the lists/queues. 146 * 147 * When the timer's base is locked, and the timer removed from list, it is 148 * possible to set timer->base = NULL and drop the lock: the timer remains 149 * locked. 150 */ 151 static 152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 153 unsigned long *flags) 154 { 155 struct hrtimer_clock_base *base; 156 157 for (;;) { 158 base = timer->base; 159 if (likely(base != NULL)) { 160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 161 if (likely(base == timer->base)) 162 return base; 163 /* The timer has migrated to another CPU: */ 164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 165 } 166 cpu_relax(); 167 } 168 } 169 170 /* 171 * With HIGHRES=y we do not migrate the timer when it is expiring 172 * before the next event on the target cpu because we cannot reprogram 173 * the target cpu hardware and we would cause it to fire late. 174 * 175 * Called with cpu_base->lock of target cpu held. 176 */ 177 static int 178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 179 { 180 #ifdef CONFIG_HIGH_RES_TIMERS 181 ktime_t expires; 182 183 if (!new_base->cpu_base->hres_active) 184 return 0; 185 186 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 187 return expires.tv64 <= new_base->cpu_base->expires_next.tv64; 188 #else 189 return 0; 190 #endif 191 } 192 193 /* 194 * Switch the timer base to the current CPU when possible. 195 */ 196 static inline struct hrtimer_clock_base * 197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 198 int pinned) 199 { 200 struct hrtimer_clock_base *new_base; 201 struct hrtimer_cpu_base *new_cpu_base; 202 int this_cpu = smp_processor_id(); 203 int cpu = get_nohz_timer_target(pinned); 204 int basenum = base->index; 205 206 again: 207 new_cpu_base = &per_cpu(hrtimer_bases, cpu); 208 new_base = &new_cpu_base->clock_base[basenum]; 209 210 if (base != new_base) { 211 /* 212 * We are trying to move timer to new_base. 213 * However we can't change timer's base while it is running, 214 * so we keep it on the same CPU. No hassle vs. reprogramming 215 * the event source in the high resolution case. The softirq 216 * code will take care of this when the timer function has 217 * completed. There is no conflict as we hold the lock until 218 * the timer is enqueued. 219 */ 220 if (unlikely(hrtimer_callback_running(timer))) 221 return base; 222 223 /* See the comment in lock_timer_base() */ 224 timer->base = NULL; 225 raw_spin_unlock(&base->cpu_base->lock); 226 raw_spin_lock(&new_base->cpu_base->lock); 227 228 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { 229 cpu = this_cpu; 230 raw_spin_unlock(&new_base->cpu_base->lock); 231 raw_spin_lock(&base->cpu_base->lock); 232 timer->base = base; 233 goto again; 234 } 235 timer->base = new_base; 236 } else { 237 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { 238 cpu = this_cpu; 239 goto again; 240 } 241 } 242 return new_base; 243 } 244 245 #else /* CONFIG_SMP */ 246 247 static inline struct hrtimer_clock_base * 248 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 249 { 250 struct hrtimer_clock_base *base = timer->base; 251 252 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 253 254 return base; 255 } 256 257 # define switch_hrtimer_base(t, b, p) (b) 258 259 #endif /* !CONFIG_SMP */ 260 261 /* 262 * Functions for the union type storage format of ktime_t which are 263 * too large for inlining: 264 */ 265 #if BITS_PER_LONG < 64 266 /* 267 * Divide a ktime value by a nanosecond value 268 */ 269 u64 __ktime_divns(const ktime_t kt, s64 div) 270 { 271 u64 dclc; 272 int sft = 0; 273 274 dclc = ktime_to_ns(kt); 275 /* Make sure the divisor is less than 2^32: */ 276 while (div >> 32) { 277 sft++; 278 div >>= 1; 279 } 280 dclc >>= sft; 281 do_div(dclc, (unsigned long) div); 282 283 return dclc; 284 } 285 EXPORT_SYMBOL_GPL(__ktime_divns); 286 #endif /* BITS_PER_LONG >= 64 */ 287 288 /* 289 * Add two ktime values and do a safety check for overflow: 290 */ 291 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 292 { 293 ktime_t res = ktime_add(lhs, rhs); 294 295 /* 296 * We use KTIME_SEC_MAX here, the maximum timeout which we can 297 * return to user space in a timespec: 298 */ 299 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) 300 res = ktime_set(KTIME_SEC_MAX, 0); 301 302 return res; 303 } 304 305 EXPORT_SYMBOL_GPL(ktime_add_safe); 306 307 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 308 309 static struct debug_obj_descr hrtimer_debug_descr; 310 311 static void *hrtimer_debug_hint(void *addr) 312 { 313 return ((struct hrtimer *) addr)->function; 314 } 315 316 /* 317 * fixup_init is called when: 318 * - an active object is initialized 319 */ 320 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) 321 { 322 struct hrtimer *timer = addr; 323 324 switch (state) { 325 case ODEBUG_STATE_ACTIVE: 326 hrtimer_cancel(timer); 327 debug_object_init(timer, &hrtimer_debug_descr); 328 return 1; 329 default: 330 return 0; 331 } 332 } 333 334 /* 335 * fixup_activate is called when: 336 * - an active object is activated 337 * - an unknown object is activated (might be a statically initialized object) 338 */ 339 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 340 { 341 switch (state) { 342 343 case ODEBUG_STATE_NOTAVAILABLE: 344 WARN_ON_ONCE(1); 345 return 0; 346 347 case ODEBUG_STATE_ACTIVE: 348 WARN_ON(1); 349 350 default: 351 return 0; 352 } 353 } 354 355 /* 356 * fixup_free is called when: 357 * - an active object is freed 358 */ 359 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) 360 { 361 struct hrtimer *timer = addr; 362 363 switch (state) { 364 case ODEBUG_STATE_ACTIVE: 365 hrtimer_cancel(timer); 366 debug_object_free(timer, &hrtimer_debug_descr); 367 return 1; 368 default: 369 return 0; 370 } 371 } 372 373 static struct debug_obj_descr hrtimer_debug_descr = { 374 .name = "hrtimer", 375 .debug_hint = hrtimer_debug_hint, 376 .fixup_init = hrtimer_fixup_init, 377 .fixup_activate = hrtimer_fixup_activate, 378 .fixup_free = hrtimer_fixup_free, 379 }; 380 381 static inline void debug_hrtimer_init(struct hrtimer *timer) 382 { 383 debug_object_init(timer, &hrtimer_debug_descr); 384 } 385 386 static inline void debug_hrtimer_activate(struct hrtimer *timer) 387 { 388 debug_object_activate(timer, &hrtimer_debug_descr); 389 } 390 391 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 392 { 393 debug_object_deactivate(timer, &hrtimer_debug_descr); 394 } 395 396 static inline void debug_hrtimer_free(struct hrtimer *timer) 397 { 398 debug_object_free(timer, &hrtimer_debug_descr); 399 } 400 401 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 402 enum hrtimer_mode mode); 403 404 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 405 enum hrtimer_mode mode) 406 { 407 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 408 __hrtimer_init(timer, clock_id, mode); 409 } 410 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 411 412 void destroy_hrtimer_on_stack(struct hrtimer *timer) 413 { 414 debug_object_free(timer, &hrtimer_debug_descr); 415 } 416 417 #else 418 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 419 static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 420 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 421 #endif 422 423 static inline void 424 debug_init(struct hrtimer *timer, clockid_t clockid, 425 enum hrtimer_mode mode) 426 { 427 debug_hrtimer_init(timer); 428 trace_hrtimer_init(timer, clockid, mode); 429 } 430 431 static inline void debug_activate(struct hrtimer *timer) 432 { 433 debug_hrtimer_activate(timer); 434 trace_hrtimer_start(timer); 435 } 436 437 static inline void debug_deactivate(struct hrtimer *timer) 438 { 439 debug_hrtimer_deactivate(timer); 440 trace_hrtimer_cancel(timer); 441 } 442 443 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 444 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base) 445 { 446 struct hrtimer_clock_base *base = cpu_base->clock_base; 447 ktime_t expires, expires_next = { .tv64 = KTIME_MAX }; 448 int i; 449 450 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { 451 struct timerqueue_node *next; 452 struct hrtimer *timer; 453 454 next = timerqueue_getnext(&base->active); 455 if (!next) 456 continue; 457 458 timer = container_of(next, struct hrtimer, node); 459 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 460 if (expires.tv64 < expires_next.tv64) 461 expires_next = expires; 462 } 463 /* 464 * clock_was_set() might have changed base->offset of any of 465 * the clock bases so the result might be negative. Fix it up 466 * to prevent a false positive in clockevents_program_event(). 467 */ 468 if (expires_next.tv64 < 0) 469 expires_next.tv64 = 0; 470 return expires_next; 471 } 472 #endif 473 474 /* High resolution timer related functions */ 475 #ifdef CONFIG_HIGH_RES_TIMERS 476 477 /* 478 * High resolution timer enabled ? 479 */ 480 static int hrtimer_hres_enabled __read_mostly = 1; 481 482 /* 483 * Enable / Disable high resolution mode 484 */ 485 static int __init setup_hrtimer_hres(char *str) 486 { 487 if (!strcmp(str, "off")) 488 hrtimer_hres_enabled = 0; 489 else if (!strcmp(str, "on")) 490 hrtimer_hres_enabled = 1; 491 else 492 return 0; 493 return 1; 494 } 495 496 __setup("highres=", setup_hrtimer_hres); 497 498 /* 499 * hrtimer_high_res_enabled - query, if the highres mode is enabled 500 */ 501 static inline int hrtimer_is_hres_enabled(void) 502 { 503 return hrtimer_hres_enabled; 504 } 505 506 /* 507 * Is the high resolution mode active ? 508 */ 509 static inline int hrtimer_hres_active(void) 510 { 511 return __this_cpu_read(hrtimer_bases.hres_active); 512 } 513 514 /* 515 * Reprogram the event source with checking both queues for the 516 * next event 517 * Called with interrupts disabled and base->lock held 518 */ 519 static void 520 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 521 { 522 ktime_t expires_next = __hrtimer_get_next_event(cpu_base); 523 524 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) 525 return; 526 527 cpu_base->expires_next.tv64 = expires_next.tv64; 528 529 /* 530 * If a hang was detected in the last timer interrupt then we 531 * leave the hang delay active in the hardware. We want the 532 * system to make progress. That also prevents the following 533 * scenario: 534 * T1 expires 50ms from now 535 * T2 expires 5s from now 536 * 537 * T1 is removed, so this code is called and would reprogram 538 * the hardware to 5s from now. Any hrtimer_start after that 539 * will not reprogram the hardware due to hang_detected being 540 * set. So we'd effectivly block all timers until the T2 event 541 * fires. 542 */ 543 if (cpu_base->hang_detected) 544 return; 545 546 if (cpu_base->expires_next.tv64 != KTIME_MAX) 547 tick_program_event(cpu_base->expires_next, 1); 548 } 549 550 /* 551 * Shared reprogramming for clock_realtime and clock_monotonic 552 * 553 * When a timer is enqueued and expires earlier than the already enqueued 554 * timers, we have to check, whether it expires earlier than the timer for 555 * which the clock event device was armed. 556 * 557 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming 558 * and no expiry check happens. The timer gets enqueued into the rbtree. The 559 * reprogramming and expiry check is done in the hrtimer_interrupt or in the 560 * softirq. 561 * 562 * Called with interrupts disabled and base->cpu_base.lock held 563 */ 564 static int hrtimer_reprogram(struct hrtimer *timer, 565 struct hrtimer_clock_base *base) 566 { 567 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 568 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 569 int res; 570 571 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 572 573 /* 574 * When the callback is running, we do not reprogram the clock event 575 * device. The timer callback is either running on a different CPU or 576 * the callback is executed in the hrtimer_interrupt context. The 577 * reprogramming is handled either by the softirq, which called the 578 * callback or at the end of the hrtimer_interrupt. 579 */ 580 if (hrtimer_callback_running(timer)) 581 return 0; 582 583 /* 584 * CLOCK_REALTIME timer might be requested with an absolute 585 * expiry time which is less than base->offset. Nothing wrong 586 * about that, just avoid to call into the tick code, which 587 * has now objections against negative expiry values. 588 */ 589 if (expires.tv64 < 0) 590 return -ETIME; 591 592 if (expires.tv64 >= cpu_base->expires_next.tv64) 593 return 0; 594 595 /* 596 * When the target cpu of the timer is currently executing 597 * hrtimer_interrupt(), then we do not touch the clock event 598 * device. hrtimer_interrupt() will reevaluate all clock bases 599 * before reprogramming the device. 600 */ 601 if (cpu_base->in_hrtirq) 602 return 0; 603 604 /* 605 * If a hang was detected in the last timer interrupt then we 606 * do not schedule a timer which is earlier than the expiry 607 * which we enforced in the hang detection. We want the system 608 * to make progress. 609 */ 610 if (cpu_base->hang_detected) 611 return 0; 612 613 /* 614 * Clockevents returns -ETIME, when the event was in the past. 615 */ 616 res = tick_program_event(expires, 0); 617 if (!IS_ERR_VALUE(res)) 618 cpu_base->expires_next = expires; 619 return res; 620 } 621 622 /* 623 * Initialize the high resolution related parts of cpu_base 624 */ 625 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 626 { 627 base->expires_next.tv64 = KTIME_MAX; 628 base->hres_active = 0; 629 } 630 631 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 632 { 633 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 634 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 635 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 636 637 return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai); 638 } 639 640 /* 641 * Retrigger next event is called after clock was set 642 * 643 * Called with interrupts disabled via on_each_cpu() 644 */ 645 static void retrigger_next_event(void *arg) 646 { 647 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 648 649 if (!hrtimer_hres_active()) 650 return; 651 652 raw_spin_lock(&base->lock); 653 hrtimer_update_base(base); 654 hrtimer_force_reprogram(base, 0); 655 raw_spin_unlock(&base->lock); 656 } 657 658 /* 659 * Switch to high resolution mode 660 */ 661 static int hrtimer_switch_to_hres(void) 662 { 663 int i, cpu = smp_processor_id(); 664 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); 665 unsigned long flags; 666 667 if (base->hres_active) 668 return 1; 669 670 local_irq_save(flags); 671 672 if (tick_init_highres()) { 673 local_irq_restore(flags); 674 printk(KERN_WARNING "Could not switch to high resolution " 675 "mode on CPU %d\n", cpu); 676 return 0; 677 } 678 base->hres_active = 1; 679 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) 680 base->clock_base[i].resolution = KTIME_HIGH_RES; 681 682 tick_setup_sched_timer(); 683 /* "Retrigger" the interrupt to get things going */ 684 retrigger_next_event(NULL); 685 local_irq_restore(flags); 686 return 1; 687 } 688 689 static void clock_was_set_work(struct work_struct *work) 690 { 691 clock_was_set(); 692 } 693 694 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 695 696 /* 697 * Called from timekeeping and resume code to reprogramm the hrtimer 698 * interrupt device on all cpus. 699 */ 700 void clock_was_set_delayed(void) 701 { 702 schedule_work(&hrtimer_work); 703 } 704 705 #else 706 707 static inline int hrtimer_hres_active(void) { return 0; } 708 static inline int hrtimer_is_hres_enabled(void) { return 0; } 709 static inline int hrtimer_switch_to_hres(void) { return 0; } 710 static inline void 711 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } 712 static inline int hrtimer_reprogram(struct hrtimer *timer, 713 struct hrtimer_clock_base *base) 714 { 715 return 0; 716 } 717 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 718 static inline void retrigger_next_event(void *arg) { } 719 720 #endif /* CONFIG_HIGH_RES_TIMERS */ 721 722 /* 723 * Clock realtime was set 724 * 725 * Change the offset of the realtime clock vs. the monotonic 726 * clock. 727 * 728 * We might have to reprogram the high resolution timer interrupt. On 729 * SMP we call the architecture specific code to retrigger _all_ high 730 * resolution timer interrupts. On UP we just disable interrupts and 731 * call the high resolution interrupt code. 732 */ 733 void clock_was_set(void) 734 { 735 #ifdef CONFIG_HIGH_RES_TIMERS 736 /* Retrigger the CPU local events everywhere */ 737 on_each_cpu(retrigger_next_event, NULL, 1); 738 #endif 739 timerfd_clock_was_set(); 740 } 741 742 /* 743 * During resume we might have to reprogram the high resolution timer 744 * interrupt on all online CPUs. However, all other CPUs will be 745 * stopped with IRQs interrupts disabled so the clock_was_set() call 746 * must be deferred. 747 */ 748 void hrtimers_resume(void) 749 { 750 WARN_ONCE(!irqs_disabled(), 751 KERN_INFO "hrtimers_resume() called with IRQs enabled!"); 752 753 /* Retrigger on the local CPU */ 754 retrigger_next_event(NULL); 755 /* And schedule a retrigger for all others */ 756 clock_was_set_delayed(); 757 } 758 759 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) 760 { 761 #ifdef CONFIG_TIMER_STATS 762 if (timer->start_site) 763 return; 764 timer->start_site = __builtin_return_address(0); 765 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 766 timer->start_pid = current->pid; 767 #endif 768 } 769 770 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) 771 { 772 #ifdef CONFIG_TIMER_STATS 773 timer->start_site = NULL; 774 #endif 775 } 776 777 static inline void timer_stats_account_hrtimer(struct hrtimer *timer) 778 { 779 #ifdef CONFIG_TIMER_STATS 780 if (likely(!timer_stats_active)) 781 return; 782 timer_stats_update_stats(timer, timer->start_pid, timer->start_site, 783 timer->function, timer->start_comm, 0); 784 #endif 785 } 786 787 /* 788 * Counterpart to lock_hrtimer_base above: 789 */ 790 static inline 791 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 792 { 793 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 794 } 795 796 /** 797 * hrtimer_forward - forward the timer expiry 798 * @timer: hrtimer to forward 799 * @now: forward past this time 800 * @interval: the interval to forward 801 * 802 * Forward the timer expiry so it will expire in the future. 803 * Returns the number of overruns. 804 */ 805 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 806 { 807 u64 orun = 1; 808 ktime_t delta; 809 810 delta = ktime_sub(now, hrtimer_get_expires(timer)); 811 812 if (delta.tv64 < 0) 813 return 0; 814 815 if (interval.tv64 < timer->base->resolution.tv64) 816 interval.tv64 = timer->base->resolution.tv64; 817 818 if (unlikely(delta.tv64 >= interval.tv64)) { 819 s64 incr = ktime_to_ns(interval); 820 821 orun = ktime_divns(delta, incr); 822 hrtimer_add_expires_ns(timer, incr * orun); 823 if (hrtimer_get_expires_tv64(timer) > now.tv64) 824 return orun; 825 /* 826 * This (and the ktime_add() below) is the 827 * correction for exact: 828 */ 829 orun++; 830 } 831 hrtimer_add_expires(timer, interval); 832 833 return orun; 834 } 835 EXPORT_SYMBOL_GPL(hrtimer_forward); 836 837 /* 838 * enqueue_hrtimer - internal function to (re)start a timer 839 * 840 * The timer is inserted in expiry order. Insertion into the 841 * red black tree is O(log(n)). Must hold the base lock. 842 * 843 * Returns 1 when the new timer is the leftmost timer in the tree. 844 */ 845 static int enqueue_hrtimer(struct hrtimer *timer, 846 struct hrtimer_clock_base *base) 847 { 848 debug_activate(timer); 849 850 timerqueue_add(&base->active, &timer->node); 851 base->cpu_base->active_bases |= 1 << base->index; 852 853 /* 854 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the 855 * state of a possibly running callback. 856 */ 857 timer->state |= HRTIMER_STATE_ENQUEUED; 858 859 return (&timer->node == base->active.next); 860 } 861 862 /* 863 * __remove_hrtimer - internal function to remove a timer 864 * 865 * Caller must hold the base lock. 866 * 867 * High resolution timer mode reprograms the clock event device when the 868 * timer is the one which expires next. The caller can disable this by setting 869 * reprogram to zero. This is useful, when the context does a reprogramming 870 * anyway (e.g. timer interrupt) 871 */ 872 static void __remove_hrtimer(struct hrtimer *timer, 873 struct hrtimer_clock_base *base, 874 unsigned long newstate, int reprogram) 875 { 876 struct timerqueue_node *next_timer; 877 if (!(timer->state & HRTIMER_STATE_ENQUEUED)) 878 goto out; 879 880 next_timer = timerqueue_getnext(&base->active); 881 timerqueue_del(&base->active, &timer->node); 882 if (&timer->node == next_timer) { 883 #ifdef CONFIG_HIGH_RES_TIMERS 884 /* Reprogram the clock event device. if enabled */ 885 if (reprogram && hrtimer_hres_active()) { 886 ktime_t expires; 887 888 expires = ktime_sub(hrtimer_get_expires(timer), 889 base->offset); 890 if (base->cpu_base->expires_next.tv64 == expires.tv64) 891 hrtimer_force_reprogram(base->cpu_base, 1); 892 } 893 #endif 894 } 895 if (!timerqueue_getnext(&base->active)) 896 base->cpu_base->active_bases &= ~(1 << base->index); 897 out: 898 timer->state = newstate; 899 } 900 901 /* 902 * remove hrtimer, called with base lock held 903 */ 904 static inline int 905 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) 906 { 907 if (hrtimer_is_queued(timer)) { 908 unsigned long state; 909 int reprogram; 910 911 /* 912 * Remove the timer and force reprogramming when high 913 * resolution mode is active and the timer is on the current 914 * CPU. If we remove a timer on another CPU, reprogramming is 915 * skipped. The interrupt event on this CPU is fired and 916 * reprogramming happens in the interrupt handler. This is a 917 * rare case and less expensive than a smp call. 918 */ 919 debug_deactivate(timer); 920 timer_stats_hrtimer_clear_start_info(timer); 921 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 922 /* 923 * We must preserve the CALLBACK state flag here, 924 * otherwise we could move the timer base in 925 * switch_hrtimer_base. 926 */ 927 state = timer->state & HRTIMER_STATE_CALLBACK; 928 __remove_hrtimer(timer, base, state, reprogram); 929 return 1; 930 } 931 return 0; 932 } 933 934 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 935 unsigned long delta_ns, const enum hrtimer_mode mode, 936 int wakeup) 937 { 938 struct hrtimer_clock_base *base, *new_base; 939 unsigned long flags; 940 int ret, leftmost; 941 942 base = lock_hrtimer_base(timer, &flags); 943 944 /* Remove an active timer from the queue: */ 945 ret = remove_hrtimer(timer, base); 946 947 if (mode & HRTIMER_MODE_REL) { 948 tim = ktime_add_safe(tim, base->get_time()); 949 /* 950 * CONFIG_TIME_LOW_RES is a temporary way for architectures 951 * to signal that they simply return xtime in 952 * do_gettimeoffset(). In this case we want to round up by 953 * resolution when starting a relative timer, to avoid short 954 * timeouts. This will go away with the GTOD framework. 955 */ 956 #ifdef CONFIG_TIME_LOW_RES 957 tim = ktime_add_safe(tim, base->resolution); 958 #endif 959 } 960 961 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 962 963 /* Switch the timer base, if necessary: */ 964 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 965 966 timer_stats_hrtimer_set_start_info(timer); 967 968 leftmost = enqueue_hrtimer(timer, new_base); 969 970 if (!leftmost) { 971 unlock_hrtimer_base(timer, &flags); 972 return ret; 973 } 974 975 if (!hrtimer_is_hres_active(timer)) { 976 /* 977 * Kick to reschedule the next tick to handle the new timer 978 * on dynticks target. 979 */ 980 wake_up_nohz_cpu(new_base->cpu_base->cpu); 981 } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) && 982 hrtimer_reprogram(timer, new_base)) { 983 /* 984 * Only allow reprogramming if the new base is on this CPU. 985 * (it might still be on another CPU if the timer was pending) 986 * 987 * XXX send_remote_softirq() ? 988 */ 989 if (wakeup) { 990 /* 991 * We need to drop cpu_base->lock to avoid a 992 * lock ordering issue vs. rq->lock. 993 */ 994 raw_spin_unlock(&new_base->cpu_base->lock); 995 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 996 local_irq_restore(flags); 997 return ret; 998 } else { 999 __raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1000 } 1001 } 1002 1003 unlock_hrtimer_base(timer, &flags); 1004 1005 return ret; 1006 } 1007 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns); 1008 1009 /** 1010 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 1011 * @timer: the timer to be added 1012 * @tim: expiry time 1013 * @delta_ns: "slack" range for the timer 1014 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 1015 * relative (HRTIMER_MODE_REL) 1016 * 1017 * Returns: 1018 * 0 on success 1019 * 1 when the timer was active 1020 */ 1021 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1022 unsigned long delta_ns, const enum hrtimer_mode mode) 1023 { 1024 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1); 1025 } 1026 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1027 1028 /** 1029 * hrtimer_start - (re)start an hrtimer on the current CPU 1030 * @timer: the timer to be added 1031 * @tim: expiry time 1032 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 1033 * relative (HRTIMER_MODE_REL) 1034 * 1035 * Returns: 1036 * 0 on success 1037 * 1 when the timer was active 1038 */ 1039 int 1040 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) 1041 { 1042 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); 1043 } 1044 EXPORT_SYMBOL_GPL(hrtimer_start); 1045 1046 1047 /** 1048 * hrtimer_try_to_cancel - try to deactivate a timer 1049 * @timer: hrtimer to stop 1050 * 1051 * Returns: 1052 * 0 when the timer was not active 1053 * 1 when the timer was active 1054 * -1 when the timer is currently excuting the callback function and 1055 * cannot be stopped 1056 */ 1057 int hrtimer_try_to_cancel(struct hrtimer *timer) 1058 { 1059 struct hrtimer_clock_base *base; 1060 unsigned long flags; 1061 int ret = -1; 1062 1063 base = lock_hrtimer_base(timer, &flags); 1064 1065 if (!hrtimer_callback_running(timer)) 1066 ret = remove_hrtimer(timer, base); 1067 1068 unlock_hrtimer_base(timer, &flags); 1069 1070 return ret; 1071 1072 } 1073 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1074 1075 /** 1076 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1077 * @timer: the timer to be cancelled 1078 * 1079 * Returns: 1080 * 0 when the timer was not active 1081 * 1 when the timer was active 1082 */ 1083 int hrtimer_cancel(struct hrtimer *timer) 1084 { 1085 for (;;) { 1086 int ret = hrtimer_try_to_cancel(timer); 1087 1088 if (ret >= 0) 1089 return ret; 1090 cpu_relax(); 1091 } 1092 } 1093 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1094 1095 /** 1096 * hrtimer_get_remaining - get remaining time for the timer 1097 * @timer: the timer to read 1098 */ 1099 ktime_t hrtimer_get_remaining(const struct hrtimer *timer) 1100 { 1101 unsigned long flags; 1102 ktime_t rem; 1103 1104 lock_hrtimer_base(timer, &flags); 1105 rem = hrtimer_expires_remaining(timer); 1106 unlock_hrtimer_base(timer, &flags); 1107 1108 return rem; 1109 } 1110 EXPORT_SYMBOL_GPL(hrtimer_get_remaining); 1111 1112 #ifdef CONFIG_NO_HZ_COMMON 1113 /** 1114 * hrtimer_get_next_event - get the time until next expiry event 1115 * 1116 * Returns the delta to the next expiry event or KTIME_MAX if no timer 1117 * is pending. 1118 */ 1119 ktime_t hrtimer_get_next_event(void) 1120 { 1121 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1122 ktime_t mindelta = { .tv64 = KTIME_MAX }; 1123 unsigned long flags; 1124 1125 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1126 1127 if (!hrtimer_hres_active()) 1128 mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base), 1129 ktime_get()); 1130 1131 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1132 1133 if (mindelta.tv64 < 0) 1134 mindelta.tv64 = 0; 1135 return mindelta; 1136 } 1137 #endif 1138 1139 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1140 enum hrtimer_mode mode) 1141 { 1142 struct hrtimer_cpu_base *cpu_base; 1143 int base; 1144 1145 memset(timer, 0, sizeof(struct hrtimer)); 1146 1147 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1148 1149 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1150 clock_id = CLOCK_MONOTONIC; 1151 1152 base = hrtimer_clockid_to_base(clock_id); 1153 timer->base = &cpu_base->clock_base[base]; 1154 timerqueue_init(&timer->node); 1155 1156 #ifdef CONFIG_TIMER_STATS 1157 timer->start_site = NULL; 1158 timer->start_pid = -1; 1159 memset(timer->start_comm, 0, TASK_COMM_LEN); 1160 #endif 1161 } 1162 1163 /** 1164 * hrtimer_init - initialize a timer to the given clock 1165 * @timer: the timer to be initialized 1166 * @clock_id: the clock to be used 1167 * @mode: timer mode abs/rel 1168 */ 1169 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1170 enum hrtimer_mode mode) 1171 { 1172 debug_init(timer, clock_id, mode); 1173 __hrtimer_init(timer, clock_id, mode); 1174 } 1175 EXPORT_SYMBOL_GPL(hrtimer_init); 1176 1177 /** 1178 * hrtimer_get_res - get the timer resolution for a clock 1179 * @which_clock: which clock to query 1180 * @tp: pointer to timespec variable to store the resolution 1181 * 1182 * Store the resolution of the clock selected by @which_clock in the 1183 * variable pointed to by @tp. 1184 */ 1185 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) 1186 { 1187 struct hrtimer_cpu_base *cpu_base; 1188 int base = hrtimer_clockid_to_base(which_clock); 1189 1190 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1191 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution); 1192 1193 return 0; 1194 } 1195 EXPORT_SYMBOL_GPL(hrtimer_get_res); 1196 1197 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) 1198 { 1199 struct hrtimer_clock_base *base = timer->base; 1200 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1201 enum hrtimer_restart (*fn)(struct hrtimer *); 1202 int restart; 1203 1204 WARN_ON(!irqs_disabled()); 1205 1206 debug_deactivate(timer); 1207 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); 1208 timer_stats_account_hrtimer(timer); 1209 fn = timer->function; 1210 1211 /* 1212 * Because we run timers from hardirq context, there is no chance 1213 * they get migrated to another cpu, therefore its safe to unlock 1214 * the timer base. 1215 */ 1216 raw_spin_unlock(&cpu_base->lock); 1217 trace_hrtimer_expire_entry(timer, now); 1218 restart = fn(timer); 1219 trace_hrtimer_expire_exit(timer); 1220 raw_spin_lock(&cpu_base->lock); 1221 1222 /* 1223 * Note: We clear the CALLBACK bit after enqueue_hrtimer and 1224 * we do not reprogramm the event hardware. Happens either in 1225 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1226 */ 1227 if (restart != HRTIMER_NORESTART) { 1228 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 1229 enqueue_hrtimer(timer, base); 1230 } 1231 1232 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); 1233 1234 timer->state &= ~HRTIMER_STATE_CALLBACK; 1235 } 1236 1237 #ifdef CONFIG_HIGH_RES_TIMERS 1238 1239 /* 1240 * High resolution timer interrupt 1241 * Called with interrupts disabled 1242 */ 1243 void hrtimer_interrupt(struct clock_event_device *dev) 1244 { 1245 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1246 ktime_t expires_next, now, entry_time, delta; 1247 int i, retries = 0; 1248 1249 BUG_ON(!cpu_base->hres_active); 1250 cpu_base->nr_events++; 1251 dev->next_event.tv64 = KTIME_MAX; 1252 1253 raw_spin_lock(&cpu_base->lock); 1254 entry_time = now = hrtimer_update_base(cpu_base); 1255 retry: 1256 cpu_base->in_hrtirq = 1; 1257 /* 1258 * We set expires_next to KTIME_MAX here with cpu_base->lock 1259 * held to prevent that a timer is enqueued in our queue via 1260 * the migration code. This does not affect enqueueing of 1261 * timers which run their callback and need to be requeued on 1262 * this CPU. 1263 */ 1264 cpu_base->expires_next.tv64 = KTIME_MAX; 1265 1266 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1267 struct hrtimer_clock_base *base; 1268 struct timerqueue_node *node; 1269 ktime_t basenow; 1270 1271 if (!(cpu_base->active_bases & (1 << i))) 1272 continue; 1273 1274 base = cpu_base->clock_base + i; 1275 basenow = ktime_add(now, base->offset); 1276 1277 while ((node = timerqueue_getnext(&base->active))) { 1278 struct hrtimer *timer; 1279 1280 timer = container_of(node, struct hrtimer, node); 1281 1282 /* 1283 * The immediate goal for using the softexpires is 1284 * minimizing wakeups, not running timers at the 1285 * earliest interrupt after their soft expiration. 1286 * This allows us to avoid using a Priority Search 1287 * Tree, which can answer a stabbing querry for 1288 * overlapping intervals and instead use the simple 1289 * BST we already have. 1290 * We don't add extra wakeups by delaying timers that 1291 * are right-of a not yet expired timer, because that 1292 * timer will have to trigger a wakeup anyway. 1293 */ 1294 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) 1295 break; 1296 1297 __run_hrtimer(timer, &basenow); 1298 } 1299 } 1300 /* Reevaluate the clock bases for the next expiry */ 1301 expires_next = __hrtimer_get_next_event(cpu_base); 1302 /* 1303 * Store the new expiry value so the migration code can verify 1304 * against it. 1305 */ 1306 cpu_base->expires_next = expires_next; 1307 cpu_base->in_hrtirq = 0; 1308 raw_spin_unlock(&cpu_base->lock); 1309 1310 /* Reprogramming necessary ? */ 1311 if (expires_next.tv64 == KTIME_MAX || 1312 !tick_program_event(expires_next, 0)) { 1313 cpu_base->hang_detected = 0; 1314 return; 1315 } 1316 1317 /* 1318 * The next timer was already expired due to: 1319 * - tracing 1320 * - long lasting callbacks 1321 * - being scheduled away when running in a VM 1322 * 1323 * We need to prevent that we loop forever in the hrtimer 1324 * interrupt routine. We give it 3 attempts to avoid 1325 * overreacting on some spurious event. 1326 * 1327 * Acquire base lock for updating the offsets and retrieving 1328 * the current time. 1329 */ 1330 raw_spin_lock(&cpu_base->lock); 1331 now = hrtimer_update_base(cpu_base); 1332 cpu_base->nr_retries++; 1333 if (++retries < 3) 1334 goto retry; 1335 /* 1336 * Give the system a chance to do something else than looping 1337 * here. We stored the entry time, so we know exactly how long 1338 * we spent here. We schedule the next event this amount of 1339 * time away. 1340 */ 1341 cpu_base->nr_hangs++; 1342 cpu_base->hang_detected = 1; 1343 raw_spin_unlock(&cpu_base->lock); 1344 delta = ktime_sub(now, entry_time); 1345 if (delta.tv64 > cpu_base->max_hang_time.tv64) 1346 cpu_base->max_hang_time = delta; 1347 /* 1348 * Limit it to a sensible value as we enforce a longer 1349 * delay. Give the CPU at least 100ms to catch up. 1350 */ 1351 if (delta.tv64 > 100 * NSEC_PER_MSEC) 1352 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1353 else 1354 expires_next = ktime_add(now, delta); 1355 tick_program_event(expires_next, 1); 1356 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1357 ktime_to_ns(delta)); 1358 } 1359 1360 /* 1361 * local version of hrtimer_peek_ahead_timers() called with interrupts 1362 * disabled. 1363 */ 1364 static void __hrtimer_peek_ahead_timers(void) 1365 { 1366 struct tick_device *td; 1367 1368 if (!hrtimer_hres_active()) 1369 return; 1370 1371 td = this_cpu_ptr(&tick_cpu_device); 1372 if (td && td->evtdev) 1373 hrtimer_interrupt(td->evtdev); 1374 } 1375 1376 /** 1377 * hrtimer_peek_ahead_timers -- run soft-expired timers now 1378 * 1379 * hrtimer_peek_ahead_timers will peek at the timer queue of 1380 * the current cpu and check if there are any timers for which 1381 * the soft expires time has passed. If any such timers exist, 1382 * they are run immediately and then removed from the timer queue. 1383 * 1384 */ 1385 void hrtimer_peek_ahead_timers(void) 1386 { 1387 unsigned long flags; 1388 1389 local_irq_save(flags); 1390 __hrtimer_peek_ahead_timers(); 1391 local_irq_restore(flags); 1392 } 1393 1394 static void run_hrtimer_softirq(struct softirq_action *h) 1395 { 1396 hrtimer_peek_ahead_timers(); 1397 } 1398 1399 #else /* CONFIG_HIGH_RES_TIMERS */ 1400 1401 static inline void __hrtimer_peek_ahead_timers(void) { } 1402 1403 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1404 1405 /* 1406 * Called from timer softirq every jiffy, expire hrtimers: 1407 * 1408 * For HRT its the fall back code to run the softirq in the timer 1409 * softirq context in case the hrtimer initialization failed or has 1410 * not been done yet. 1411 */ 1412 void hrtimer_run_pending(void) 1413 { 1414 if (hrtimer_hres_active()) 1415 return; 1416 1417 /* 1418 * This _is_ ugly: We have to check in the softirq context, 1419 * whether we can switch to highres and / or nohz mode. The 1420 * clocksource switch happens in the timer interrupt with 1421 * xtime_lock held. Notification from there only sets the 1422 * check bit in the tick_oneshot code, otherwise we might 1423 * deadlock vs. xtime_lock. 1424 */ 1425 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) 1426 hrtimer_switch_to_hres(); 1427 } 1428 1429 /* 1430 * Called from hardirq context every jiffy 1431 */ 1432 void hrtimer_run_queues(void) 1433 { 1434 struct timerqueue_node *node; 1435 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1436 struct hrtimer_clock_base *base; 1437 int index, gettime = 1; 1438 1439 if (hrtimer_hres_active()) 1440 return; 1441 1442 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { 1443 base = &cpu_base->clock_base[index]; 1444 if (!timerqueue_getnext(&base->active)) 1445 continue; 1446 1447 if (gettime) { 1448 hrtimer_get_softirq_time(cpu_base); 1449 gettime = 0; 1450 } 1451 1452 raw_spin_lock(&cpu_base->lock); 1453 1454 while ((node = timerqueue_getnext(&base->active))) { 1455 struct hrtimer *timer; 1456 1457 timer = container_of(node, struct hrtimer, node); 1458 if (base->softirq_time.tv64 <= 1459 hrtimer_get_expires_tv64(timer)) 1460 break; 1461 1462 __run_hrtimer(timer, &base->softirq_time); 1463 } 1464 raw_spin_unlock(&cpu_base->lock); 1465 } 1466 } 1467 1468 /* 1469 * Sleep related functions: 1470 */ 1471 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1472 { 1473 struct hrtimer_sleeper *t = 1474 container_of(timer, struct hrtimer_sleeper, timer); 1475 struct task_struct *task = t->task; 1476 1477 t->task = NULL; 1478 if (task) 1479 wake_up_process(task); 1480 1481 return HRTIMER_NORESTART; 1482 } 1483 1484 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1485 { 1486 sl->timer.function = hrtimer_wakeup; 1487 sl->task = task; 1488 } 1489 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1490 1491 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1492 { 1493 hrtimer_init_sleeper(t, current); 1494 1495 do { 1496 set_current_state(TASK_INTERRUPTIBLE); 1497 hrtimer_start_expires(&t->timer, mode); 1498 if (!hrtimer_active(&t->timer)) 1499 t->task = NULL; 1500 1501 if (likely(t->task)) 1502 freezable_schedule(); 1503 1504 hrtimer_cancel(&t->timer); 1505 mode = HRTIMER_MODE_ABS; 1506 1507 } while (t->task && !signal_pending(current)); 1508 1509 __set_current_state(TASK_RUNNING); 1510 1511 return t->task == NULL; 1512 } 1513 1514 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1515 { 1516 struct timespec rmt; 1517 ktime_t rem; 1518 1519 rem = hrtimer_expires_remaining(timer); 1520 if (rem.tv64 <= 0) 1521 return 0; 1522 rmt = ktime_to_timespec(rem); 1523 1524 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1525 return -EFAULT; 1526 1527 return 1; 1528 } 1529 1530 long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1531 { 1532 struct hrtimer_sleeper t; 1533 struct timespec __user *rmtp; 1534 int ret = 0; 1535 1536 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1537 HRTIMER_MODE_ABS); 1538 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1539 1540 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1541 goto out; 1542 1543 rmtp = restart->nanosleep.rmtp; 1544 if (rmtp) { 1545 ret = update_rmtp(&t.timer, rmtp); 1546 if (ret <= 0) 1547 goto out; 1548 } 1549 1550 /* The other values in restart are already filled in */ 1551 ret = -ERESTART_RESTARTBLOCK; 1552 out: 1553 destroy_hrtimer_on_stack(&t.timer); 1554 return ret; 1555 } 1556 1557 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1558 const enum hrtimer_mode mode, const clockid_t clockid) 1559 { 1560 struct restart_block *restart; 1561 struct hrtimer_sleeper t; 1562 int ret = 0; 1563 unsigned long slack; 1564 1565 slack = current->timer_slack_ns; 1566 if (dl_task(current) || rt_task(current)) 1567 slack = 0; 1568 1569 hrtimer_init_on_stack(&t.timer, clockid, mode); 1570 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); 1571 if (do_nanosleep(&t, mode)) 1572 goto out; 1573 1574 /* Absolute timers do not update the rmtp value and restart: */ 1575 if (mode == HRTIMER_MODE_ABS) { 1576 ret = -ERESTARTNOHAND; 1577 goto out; 1578 } 1579 1580 if (rmtp) { 1581 ret = update_rmtp(&t.timer, rmtp); 1582 if (ret <= 0) 1583 goto out; 1584 } 1585 1586 restart = ¤t->restart_block; 1587 restart->fn = hrtimer_nanosleep_restart; 1588 restart->nanosleep.clockid = t.timer.base->clockid; 1589 restart->nanosleep.rmtp = rmtp; 1590 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1591 1592 ret = -ERESTART_RESTARTBLOCK; 1593 out: 1594 destroy_hrtimer_on_stack(&t.timer); 1595 return ret; 1596 } 1597 1598 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1599 struct timespec __user *, rmtp) 1600 { 1601 struct timespec tu; 1602 1603 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1604 return -EFAULT; 1605 1606 if (!timespec_valid(&tu)) 1607 return -EINVAL; 1608 1609 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1610 } 1611 1612 /* 1613 * Functions related to boot-time initialization: 1614 */ 1615 static void init_hrtimers_cpu(int cpu) 1616 { 1617 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1618 int i; 1619 1620 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1621 cpu_base->clock_base[i].cpu_base = cpu_base; 1622 timerqueue_init_head(&cpu_base->clock_base[i].active); 1623 } 1624 1625 cpu_base->cpu = cpu; 1626 hrtimer_init_hres(cpu_base); 1627 } 1628 1629 #ifdef CONFIG_HOTPLUG_CPU 1630 1631 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1632 struct hrtimer_clock_base *new_base) 1633 { 1634 struct hrtimer *timer; 1635 struct timerqueue_node *node; 1636 1637 while ((node = timerqueue_getnext(&old_base->active))) { 1638 timer = container_of(node, struct hrtimer, node); 1639 BUG_ON(hrtimer_callback_running(timer)); 1640 debug_deactivate(timer); 1641 1642 /* 1643 * Mark it as STATE_MIGRATE not INACTIVE otherwise the 1644 * timer could be seen as !active and just vanish away 1645 * under us on another CPU 1646 */ 1647 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); 1648 timer->base = new_base; 1649 /* 1650 * Enqueue the timers on the new cpu. This does not 1651 * reprogram the event device in case the timer 1652 * expires before the earliest on this CPU, but we run 1653 * hrtimer_interrupt after we migrated everything to 1654 * sort out already expired timers and reprogram the 1655 * event device. 1656 */ 1657 enqueue_hrtimer(timer, new_base); 1658 1659 /* Clear the migration state bit */ 1660 timer->state &= ~HRTIMER_STATE_MIGRATE; 1661 } 1662 } 1663 1664 static void migrate_hrtimers(int scpu) 1665 { 1666 struct hrtimer_cpu_base *old_base, *new_base; 1667 int i; 1668 1669 BUG_ON(cpu_online(scpu)); 1670 tick_cancel_sched_timer(scpu); 1671 1672 local_irq_disable(); 1673 old_base = &per_cpu(hrtimer_bases, scpu); 1674 new_base = this_cpu_ptr(&hrtimer_bases); 1675 /* 1676 * The caller is globally serialized and nobody else 1677 * takes two locks at once, deadlock is not possible. 1678 */ 1679 raw_spin_lock(&new_base->lock); 1680 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1681 1682 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1683 migrate_hrtimer_list(&old_base->clock_base[i], 1684 &new_base->clock_base[i]); 1685 } 1686 1687 raw_spin_unlock(&old_base->lock); 1688 raw_spin_unlock(&new_base->lock); 1689 1690 /* Check, if we got expired work to do */ 1691 __hrtimer_peek_ahead_timers(); 1692 local_irq_enable(); 1693 } 1694 1695 #endif /* CONFIG_HOTPLUG_CPU */ 1696 1697 static int hrtimer_cpu_notify(struct notifier_block *self, 1698 unsigned long action, void *hcpu) 1699 { 1700 int scpu = (long)hcpu; 1701 1702 switch (action) { 1703 1704 case CPU_UP_PREPARE: 1705 case CPU_UP_PREPARE_FROZEN: 1706 init_hrtimers_cpu(scpu); 1707 break; 1708 1709 #ifdef CONFIG_HOTPLUG_CPU 1710 case CPU_DYING: 1711 case CPU_DYING_FROZEN: 1712 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu); 1713 break; 1714 case CPU_DEAD: 1715 case CPU_DEAD_FROZEN: 1716 { 1717 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); 1718 migrate_hrtimers(scpu); 1719 break; 1720 } 1721 #endif 1722 1723 default: 1724 break; 1725 } 1726 1727 return NOTIFY_OK; 1728 } 1729 1730 static struct notifier_block hrtimers_nb = { 1731 .notifier_call = hrtimer_cpu_notify, 1732 }; 1733 1734 void __init hrtimers_init(void) 1735 { 1736 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1737 (void *)(long)smp_processor_id()); 1738 register_cpu_notifier(&hrtimers_nb); 1739 #ifdef CONFIG_HIGH_RES_TIMERS 1740 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); 1741 #endif 1742 } 1743 1744 /** 1745 * schedule_hrtimeout_range_clock - sleep until timeout 1746 * @expires: timeout value (ktime_t) 1747 * @delta: slack in expires timeout (ktime_t) 1748 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1749 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME 1750 */ 1751 int __sched 1752 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, 1753 const enum hrtimer_mode mode, int clock) 1754 { 1755 struct hrtimer_sleeper t; 1756 1757 /* 1758 * Optimize when a zero timeout value is given. It does not 1759 * matter whether this is an absolute or a relative time. 1760 */ 1761 if (expires && !expires->tv64) { 1762 __set_current_state(TASK_RUNNING); 1763 return 0; 1764 } 1765 1766 /* 1767 * A NULL parameter means "infinite" 1768 */ 1769 if (!expires) { 1770 schedule(); 1771 return -EINTR; 1772 } 1773 1774 hrtimer_init_on_stack(&t.timer, clock, mode); 1775 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1776 1777 hrtimer_init_sleeper(&t, current); 1778 1779 hrtimer_start_expires(&t.timer, mode); 1780 if (!hrtimer_active(&t.timer)) 1781 t.task = NULL; 1782 1783 if (likely(t.task)) 1784 schedule(); 1785 1786 hrtimer_cancel(&t.timer); 1787 destroy_hrtimer_on_stack(&t.timer); 1788 1789 __set_current_state(TASK_RUNNING); 1790 1791 return !t.task ? 0 : -EINTR; 1792 } 1793 1794 /** 1795 * schedule_hrtimeout_range - sleep until timeout 1796 * @expires: timeout value (ktime_t) 1797 * @delta: slack in expires timeout (ktime_t) 1798 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1799 * 1800 * Make the current task sleep until the given expiry time has 1801 * elapsed. The routine will return immediately unless 1802 * the current task state has been set (see set_current_state()). 1803 * 1804 * The @delta argument gives the kernel the freedom to schedule the 1805 * actual wakeup to a time that is both power and performance friendly. 1806 * The kernel give the normal best effort behavior for "@expires+@delta", 1807 * but may decide to fire the timer earlier, but no earlier than @expires. 1808 * 1809 * You can set the task state as follows - 1810 * 1811 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1812 * pass before the routine returns. 1813 * 1814 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1815 * delivered to the current task. 1816 * 1817 * The current task state is guaranteed to be TASK_RUNNING when this 1818 * routine returns. 1819 * 1820 * Returns 0 when the timer has expired otherwise -EINTR 1821 */ 1822 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, 1823 const enum hrtimer_mode mode) 1824 { 1825 return schedule_hrtimeout_range_clock(expires, delta, mode, 1826 CLOCK_MONOTONIC); 1827 } 1828 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1829 1830 /** 1831 * schedule_hrtimeout - sleep until timeout 1832 * @expires: timeout value (ktime_t) 1833 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1834 * 1835 * Make the current task sleep until the given expiry time has 1836 * elapsed. The routine will return immediately unless 1837 * the current task state has been set (see set_current_state()). 1838 * 1839 * You can set the task state as follows - 1840 * 1841 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1842 * pass before the routine returns. 1843 * 1844 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1845 * delivered to the current task. 1846 * 1847 * The current task state is guaranteed to be TASK_RUNNING when this 1848 * routine returns. 1849 * 1850 * Returns 0 when the timer has expired otherwise -EINTR 1851 */ 1852 int __sched schedule_hrtimeout(ktime_t *expires, 1853 const enum hrtimer_mode mode) 1854 { 1855 return schedule_hrtimeout_range(expires, 0, mode); 1856 } 1857 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1858