xref: /linux/kernel/time/clocksource.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * linux/kernel/time/clocksource.c
3  *
4  * This file contains the functions which manage clocksource drivers.
5  *
6  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  * TODO WishList:
23  *   o Allow clocksource drivers to be unregistered
24  */
25 
26 #include <linux/clocksource.h>
27 #include <linux/sysdev.h>
28 #include <linux/init.h>
29 #include <linux/module.h>
30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31 #include <linux/tick.h>
32 #include <linux/kthread.h>
33 
34 void timecounter_init(struct timecounter *tc,
35 		      const struct cyclecounter *cc,
36 		      u64 start_tstamp)
37 {
38 	tc->cc = cc;
39 	tc->cycle_last = cc->read(cc);
40 	tc->nsec = start_tstamp;
41 }
42 EXPORT_SYMBOL_GPL(timecounter_init);
43 
44 /**
45  * timecounter_read_delta - get nanoseconds since last call of this function
46  * @tc:         Pointer to time counter
47  *
48  * When the underlying cycle counter runs over, this will be handled
49  * correctly as long as it does not run over more than once between
50  * calls.
51  *
52  * The first call to this function for a new time counter initializes
53  * the time tracking and returns an undefined result.
54  */
55 static u64 timecounter_read_delta(struct timecounter *tc)
56 {
57 	cycle_t cycle_now, cycle_delta;
58 	u64 ns_offset;
59 
60 	/* read cycle counter: */
61 	cycle_now = tc->cc->read(tc->cc);
62 
63 	/* calculate the delta since the last timecounter_read_delta(): */
64 	cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
65 
66 	/* convert to nanoseconds: */
67 	ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
68 
69 	/* update time stamp of timecounter_read_delta() call: */
70 	tc->cycle_last = cycle_now;
71 
72 	return ns_offset;
73 }
74 
75 u64 timecounter_read(struct timecounter *tc)
76 {
77 	u64 nsec;
78 
79 	/* increment time by nanoseconds since last call */
80 	nsec = timecounter_read_delta(tc);
81 	nsec += tc->nsec;
82 	tc->nsec = nsec;
83 
84 	return nsec;
85 }
86 EXPORT_SYMBOL_GPL(timecounter_read);
87 
88 u64 timecounter_cyc2time(struct timecounter *tc,
89 			 cycle_t cycle_tstamp)
90 {
91 	u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
92 	u64 nsec;
93 
94 	/*
95 	 * Instead of always treating cycle_tstamp as more recent
96 	 * than tc->cycle_last, detect when it is too far in the
97 	 * future and treat it as old time stamp instead.
98 	 */
99 	if (cycle_delta > tc->cc->mask / 2) {
100 		cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
101 		nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
102 	} else {
103 		nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
104 	}
105 
106 	return nsec;
107 }
108 EXPORT_SYMBOL_GPL(timecounter_cyc2time);
109 
110 /**
111  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
112  * @mult:	pointer to mult variable
113  * @shift:	pointer to shift variable
114  * @from:	frequency to convert from
115  * @to:		frequency to convert to
116  * @minsec:	guaranteed runtime conversion range in seconds
117  *
118  * The function evaluates the shift/mult pair for the scaled math
119  * operations of clocksources and clockevents.
120  *
121  * @to and @from are frequency values in HZ. For clock sources @to is
122  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
123  * event @to is the counter frequency and @from is NSEC_PER_SEC.
124  *
125  * The @minsec conversion range argument controls the time frame in
126  * seconds which must be covered by the runtime conversion with the
127  * calculated mult and shift factors. This guarantees that no 64bit
128  * overflow happens when the input value of the conversion is
129  * multiplied with the calculated mult factor. Larger ranges may
130  * reduce the conversion accuracy by chosing smaller mult and shift
131  * factors.
132  */
133 void
134 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec)
135 {
136 	u64 tmp;
137 	u32 sft, sftacc= 32;
138 
139 	/*
140 	 * Calculate the shift factor which is limiting the conversion
141 	 * range:
142 	 */
143 	tmp = ((u64)minsec * from) >> 32;
144 	while (tmp) {
145 		tmp >>=1;
146 		sftacc--;
147 	}
148 
149 	/*
150 	 * Find the conversion shift/mult pair which has the best
151 	 * accuracy and fits the maxsec conversion range:
152 	 */
153 	for (sft = 32; sft > 0; sft--) {
154 		tmp = (u64) to << sft;
155 		do_div(tmp, from);
156 		if ((tmp >> sftacc) == 0)
157 			break;
158 	}
159 	*mult = tmp;
160 	*shift = sft;
161 }
162 
163 /*[Clocksource internal variables]---------
164  * curr_clocksource:
165  *	currently selected clocksource.
166  * clocksource_list:
167  *	linked list with the registered clocksources
168  * clocksource_mutex:
169  *	protects manipulations to curr_clocksource and the clocksource_list
170  * override_name:
171  *	Name of the user-specified clocksource.
172  */
173 static struct clocksource *curr_clocksource;
174 static LIST_HEAD(clocksource_list);
175 static DEFINE_MUTEX(clocksource_mutex);
176 static char override_name[32];
177 static int finished_booting;
178 
179 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
180 static void clocksource_watchdog_work(struct work_struct *work);
181 
182 static LIST_HEAD(watchdog_list);
183 static struct clocksource *watchdog;
184 static struct timer_list watchdog_timer;
185 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
186 static DEFINE_SPINLOCK(watchdog_lock);
187 static cycle_t watchdog_last;
188 static int watchdog_running;
189 
190 static int clocksource_watchdog_kthread(void *data);
191 static void __clocksource_change_rating(struct clocksource *cs, int rating);
192 
193 /*
194  * Interval: 0.5sec Threshold: 0.0625s
195  */
196 #define WATCHDOG_INTERVAL (HZ >> 1)
197 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
198 
199 static void clocksource_watchdog_work(struct work_struct *work)
200 {
201 	/*
202 	 * If kthread_run fails the next watchdog scan over the
203 	 * watchdog_list will find the unstable clock again.
204 	 */
205 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
206 }
207 
208 static void __clocksource_unstable(struct clocksource *cs)
209 {
210 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
211 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
212 	if (finished_booting)
213 		schedule_work(&watchdog_work);
214 }
215 
216 static void clocksource_unstable(struct clocksource *cs, int64_t delta)
217 {
218 	printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
219 	       cs->name, delta);
220 	__clocksource_unstable(cs);
221 }
222 
223 /**
224  * clocksource_mark_unstable - mark clocksource unstable via watchdog
225  * @cs:		clocksource to be marked unstable
226  *
227  * This function is called instead of clocksource_change_rating from
228  * cpu hotplug code to avoid a deadlock between the clocksource mutex
229  * and the cpu hotplug mutex. It defers the update of the clocksource
230  * to the watchdog thread.
231  */
232 void clocksource_mark_unstable(struct clocksource *cs)
233 {
234 	unsigned long flags;
235 
236 	spin_lock_irqsave(&watchdog_lock, flags);
237 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
238 		if (list_empty(&cs->wd_list))
239 			list_add(&cs->wd_list, &watchdog_list);
240 		__clocksource_unstable(cs);
241 	}
242 	spin_unlock_irqrestore(&watchdog_lock, flags);
243 }
244 
245 static void clocksource_watchdog(unsigned long data)
246 {
247 	struct clocksource *cs;
248 	cycle_t csnow, wdnow;
249 	int64_t wd_nsec, cs_nsec;
250 	int next_cpu;
251 
252 	spin_lock(&watchdog_lock);
253 	if (!watchdog_running)
254 		goto out;
255 
256 	wdnow = watchdog->read(watchdog);
257 	wd_nsec = clocksource_cyc2ns((wdnow - watchdog_last) & watchdog->mask,
258 				     watchdog->mult, watchdog->shift);
259 	watchdog_last = wdnow;
260 
261 	list_for_each_entry(cs, &watchdog_list, wd_list) {
262 
263 		/* Clocksource already marked unstable? */
264 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
265 			if (finished_booting)
266 				schedule_work(&watchdog_work);
267 			continue;
268 		}
269 
270 		csnow = cs->read(cs);
271 
272 		/* Clocksource initialized ? */
273 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) {
274 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
275 			cs->wd_last = csnow;
276 			continue;
277 		}
278 
279 		/* Check the deviation from the watchdog clocksource. */
280 		cs_nsec = clocksource_cyc2ns((csnow - cs->wd_last) &
281 					     cs->mask, cs->mult, cs->shift);
282 		cs->wd_last = csnow;
283 		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
284 			clocksource_unstable(cs, cs_nsec - wd_nsec);
285 			continue;
286 		}
287 
288 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
289 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
290 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
291 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
292 			/*
293 			 * We just marked the clocksource as highres-capable,
294 			 * notify the rest of the system as well so that we
295 			 * transition into high-res mode:
296 			 */
297 			tick_clock_notify();
298 		}
299 	}
300 
301 	/*
302 	 * Cycle through CPUs to check if the CPUs stay synchronized
303 	 * to each other.
304 	 */
305 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
306 	if (next_cpu >= nr_cpu_ids)
307 		next_cpu = cpumask_first(cpu_online_mask);
308 	watchdog_timer.expires += WATCHDOG_INTERVAL;
309 	add_timer_on(&watchdog_timer, next_cpu);
310 out:
311 	spin_unlock(&watchdog_lock);
312 }
313 
314 static inline void clocksource_start_watchdog(void)
315 {
316 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
317 		return;
318 	init_timer(&watchdog_timer);
319 	watchdog_timer.function = clocksource_watchdog;
320 	watchdog_last = watchdog->read(watchdog);
321 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
322 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
323 	watchdog_running = 1;
324 }
325 
326 static inline void clocksource_stop_watchdog(void)
327 {
328 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
329 		return;
330 	del_timer(&watchdog_timer);
331 	watchdog_running = 0;
332 }
333 
334 static inline void clocksource_reset_watchdog(void)
335 {
336 	struct clocksource *cs;
337 
338 	list_for_each_entry(cs, &watchdog_list, wd_list)
339 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
340 }
341 
342 static void clocksource_resume_watchdog(void)
343 {
344 	unsigned long flags;
345 
346 	/*
347 	 * We use trylock here to avoid a potential dead lock when
348 	 * kgdb calls this code after the kernel has been stopped with
349 	 * watchdog_lock held. When watchdog_lock is held we just
350 	 * return and accept, that the watchdog might trigger and mark
351 	 * the monitored clock source (usually TSC) unstable.
352 	 *
353 	 * This does not affect the other caller clocksource_resume()
354 	 * because at this point the kernel is UP, interrupts are
355 	 * disabled and nothing can hold watchdog_lock.
356 	 */
357 	if (!spin_trylock_irqsave(&watchdog_lock, flags))
358 		return;
359 	clocksource_reset_watchdog();
360 	spin_unlock_irqrestore(&watchdog_lock, flags);
361 }
362 
363 static void clocksource_enqueue_watchdog(struct clocksource *cs)
364 {
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(&watchdog_lock, flags);
368 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
369 		/* cs is a clocksource to be watched. */
370 		list_add(&cs->wd_list, &watchdog_list);
371 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
372 	} else {
373 		/* cs is a watchdog. */
374 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
375 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
376 		/* Pick the best watchdog. */
377 		if (!watchdog || cs->rating > watchdog->rating) {
378 			watchdog = cs;
379 			/* Reset watchdog cycles */
380 			clocksource_reset_watchdog();
381 		}
382 	}
383 	/* Check if the watchdog timer needs to be started. */
384 	clocksource_start_watchdog();
385 	spin_unlock_irqrestore(&watchdog_lock, flags);
386 }
387 
388 static void clocksource_dequeue_watchdog(struct clocksource *cs)
389 {
390 	struct clocksource *tmp;
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(&watchdog_lock, flags);
394 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
395 		/* cs is a watched clocksource. */
396 		list_del_init(&cs->wd_list);
397 	} else if (cs == watchdog) {
398 		/* Reset watchdog cycles */
399 		clocksource_reset_watchdog();
400 		/* Current watchdog is removed. Find an alternative. */
401 		watchdog = NULL;
402 		list_for_each_entry(tmp, &clocksource_list, list) {
403 			if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
404 				continue;
405 			if (!watchdog || tmp->rating > watchdog->rating)
406 				watchdog = tmp;
407 		}
408 	}
409 	cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
410 	/* Check if the watchdog timer needs to be stopped. */
411 	clocksource_stop_watchdog();
412 	spin_unlock_irqrestore(&watchdog_lock, flags);
413 }
414 
415 static int clocksource_watchdog_kthread(void *data)
416 {
417 	struct clocksource *cs, *tmp;
418 	unsigned long flags;
419 	LIST_HEAD(unstable);
420 
421 	mutex_lock(&clocksource_mutex);
422 	spin_lock_irqsave(&watchdog_lock, flags);
423 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
424 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
425 			list_del_init(&cs->wd_list);
426 			list_add(&cs->wd_list, &unstable);
427 		}
428 	/* Check if the watchdog timer needs to be stopped. */
429 	clocksource_stop_watchdog();
430 	spin_unlock_irqrestore(&watchdog_lock, flags);
431 
432 	/* Needs to be done outside of watchdog lock */
433 	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
434 		list_del_init(&cs->wd_list);
435 		__clocksource_change_rating(cs, 0);
436 	}
437 	mutex_unlock(&clocksource_mutex);
438 	return 0;
439 }
440 
441 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
442 
443 static void clocksource_enqueue_watchdog(struct clocksource *cs)
444 {
445 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
446 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
447 }
448 
449 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
450 static inline void clocksource_resume_watchdog(void) { }
451 static inline int clocksource_watchdog_kthread(void *data) { return 0; }
452 
453 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
454 
455 /**
456  * clocksource_suspend - suspend the clocksource(s)
457  */
458 void clocksource_suspend(void)
459 {
460 	struct clocksource *cs;
461 
462 	list_for_each_entry_reverse(cs, &clocksource_list, list)
463 		if (cs->suspend)
464 			cs->suspend(cs);
465 }
466 
467 /**
468  * clocksource_resume - resume the clocksource(s)
469  */
470 void clocksource_resume(void)
471 {
472 	struct clocksource *cs;
473 
474 	list_for_each_entry(cs, &clocksource_list, list)
475 		if (cs->resume)
476 			cs->resume(cs);
477 
478 	clocksource_resume_watchdog();
479 }
480 
481 /**
482  * clocksource_touch_watchdog - Update watchdog
483  *
484  * Update the watchdog after exception contexts such as kgdb so as not
485  * to incorrectly trip the watchdog. This might fail when the kernel
486  * was stopped in code which holds watchdog_lock.
487  */
488 void clocksource_touch_watchdog(void)
489 {
490 	clocksource_resume_watchdog();
491 }
492 
493 /**
494  * clocksource_max_deferment - Returns max time the clocksource can be deferred
495  * @cs:         Pointer to clocksource
496  *
497  */
498 static u64 clocksource_max_deferment(struct clocksource *cs)
499 {
500 	u64 max_nsecs, max_cycles;
501 
502 	/*
503 	 * Calculate the maximum number of cycles that we can pass to the
504 	 * cyc2ns function without overflowing a 64-bit signed result. The
505 	 * maximum number of cycles is equal to ULLONG_MAX/cs->mult which
506 	 * is equivalent to the below.
507 	 * max_cycles < (2^63)/cs->mult
508 	 * max_cycles < 2^(log2((2^63)/cs->mult))
509 	 * max_cycles < 2^(log2(2^63) - log2(cs->mult))
510 	 * max_cycles < 2^(63 - log2(cs->mult))
511 	 * max_cycles < 1 << (63 - log2(cs->mult))
512 	 * Please note that we add 1 to the result of the log2 to account for
513 	 * any rounding errors, ensure the above inequality is satisfied and
514 	 * no overflow will occur.
515 	 */
516 	max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1));
517 
518 	/*
519 	 * The actual maximum number of cycles we can defer the clocksource is
520 	 * determined by the minimum of max_cycles and cs->mask.
521 	 */
522 	max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
523 	max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift);
524 
525 	/*
526 	 * To ensure that the clocksource does not wrap whilst we are idle,
527 	 * limit the time the clocksource can be deferred by 12.5%. Please
528 	 * note a margin of 12.5% is used because this can be computed with
529 	 * a shift, versus say 10% which would require division.
530 	 */
531 	return max_nsecs - (max_nsecs >> 5);
532 }
533 
534 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
535 
536 /**
537  * clocksource_select - Select the best clocksource available
538  *
539  * Private function. Must hold clocksource_mutex when called.
540  *
541  * Select the clocksource with the best rating, or the clocksource,
542  * which is selected by userspace override.
543  */
544 static void clocksource_select(void)
545 {
546 	struct clocksource *best, *cs;
547 
548 	if (!finished_booting || list_empty(&clocksource_list))
549 		return;
550 	/* First clocksource on the list has the best rating. */
551 	best = list_first_entry(&clocksource_list, struct clocksource, list);
552 	/* Check for the override clocksource. */
553 	list_for_each_entry(cs, &clocksource_list, list) {
554 		if (strcmp(cs->name, override_name) != 0)
555 			continue;
556 		/*
557 		 * Check to make sure we don't switch to a non-highres
558 		 * capable clocksource if the tick code is in oneshot
559 		 * mode (highres or nohz)
560 		 */
561 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
562 		    tick_oneshot_mode_active()) {
563 			/* Override clocksource cannot be used. */
564 			printk(KERN_WARNING "Override clocksource %s is not "
565 			       "HRT compatible. Cannot switch while in "
566 			       "HRT/NOHZ mode\n", cs->name);
567 			override_name[0] = 0;
568 		} else
569 			/* Override clocksource can be used. */
570 			best = cs;
571 		break;
572 	}
573 	if (curr_clocksource != best) {
574 		printk(KERN_INFO "Switching to clocksource %s\n", best->name);
575 		curr_clocksource = best;
576 		timekeeping_notify(curr_clocksource);
577 	}
578 }
579 
580 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
581 
582 static inline void clocksource_select(void) { }
583 
584 #endif
585 
586 /*
587  * clocksource_done_booting - Called near the end of core bootup
588  *
589  * Hack to avoid lots of clocksource churn at boot time.
590  * We use fs_initcall because we want this to start before
591  * device_initcall but after subsys_initcall.
592  */
593 static int __init clocksource_done_booting(void)
594 {
595 	mutex_lock(&clocksource_mutex);
596 	curr_clocksource = clocksource_default_clock();
597 	mutex_unlock(&clocksource_mutex);
598 
599 	finished_booting = 1;
600 
601 	/*
602 	 * Run the watchdog first to eliminate unstable clock sources
603 	 */
604 	clocksource_watchdog_kthread(NULL);
605 
606 	mutex_lock(&clocksource_mutex);
607 	clocksource_select();
608 	mutex_unlock(&clocksource_mutex);
609 	return 0;
610 }
611 fs_initcall(clocksource_done_booting);
612 
613 /*
614  * Enqueue the clocksource sorted by rating
615  */
616 static void clocksource_enqueue(struct clocksource *cs)
617 {
618 	struct list_head *entry = &clocksource_list;
619 	struct clocksource *tmp;
620 
621 	list_for_each_entry(tmp, &clocksource_list, list)
622 		/* Keep track of the place, where to insert */
623 		if (tmp->rating >= cs->rating)
624 			entry = &tmp->list;
625 	list_add(&cs->list, entry);
626 }
627 
628 
629 /*
630  * Maximum time we expect to go between ticks. This includes idle
631  * tickless time. It provides the trade off between selecting a
632  * mult/shift pair that is very precise but can only handle a short
633  * period of time, vs. a mult/shift pair that can handle long periods
634  * of time but isn't as precise.
635  *
636  * This is a subsystem constant, and actual hardware limitations
637  * may override it (ie: clocksources that wrap every 3 seconds).
638  */
639 #define MAX_UPDATE_LENGTH 5 /* Seconds */
640 
641 /**
642  * __clocksource_updatefreq_scale - Used update clocksource with new freq
643  * @t:		clocksource to be registered
644  * @scale:	Scale factor multiplied against freq to get clocksource hz
645  * @freq:	clocksource frequency (cycles per second) divided by scale
646  *
647  * This should only be called from the clocksource->enable() method.
648  *
649  * This *SHOULD NOT* be called directly! Please use the
650  * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
651  */
652 void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
653 {
654 	/*
655 	 * Ideally we want to use  some of the limits used in
656 	 * clocksource_max_deferment, to provide a more informed
657 	 * MAX_UPDATE_LENGTH. But for now this just gets the
658 	 * register interface working properly.
659 	 */
660 	clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
661 				      NSEC_PER_SEC/scale,
662 				      MAX_UPDATE_LENGTH*scale);
663 	cs->max_idle_ns = clocksource_max_deferment(cs);
664 }
665 EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
666 
667 /**
668  * __clocksource_register_scale - Used to install new clocksources
669  * @t:		clocksource to be registered
670  * @scale:	Scale factor multiplied against freq to get clocksource hz
671  * @freq:	clocksource frequency (cycles per second) divided by scale
672  *
673  * Returns -EBUSY if registration fails, zero otherwise.
674  *
675  * This *SHOULD NOT* be called directly! Please use the
676  * clocksource_register_hz() or clocksource_register_khz helper functions.
677  */
678 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
679 {
680 
681 	/* Intialize mult/shift and max_idle_ns */
682 	__clocksource_updatefreq_scale(cs, scale, freq);
683 
684 	/* Add clocksource to the clcoksource list */
685 	mutex_lock(&clocksource_mutex);
686 	clocksource_enqueue(cs);
687 	clocksource_select();
688 	clocksource_enqueue_watchdog(cs);
689 	mutex_unlock(&clocksource_mutex);
690 	return 0;
691 }
692 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
693 
694 
695 /**
696  * clocksource_register - Used to install new clocksources
697  * @t:		clocksource to be registered
698  *
699  * Returns -EBUSY if registration fails, zero otherwise.
700  */
701 int clocksource_register(struct clocksource *cs)
702 {
703 	/* calculate max idle time permitted for this clocksource */
704 	cs->max_idle_ns = clocksource_max_deferment(cs);
705 
706 	mutex_lock(&clocksource_mutex);
707 	clocksource_enqueue(cs);
708 	clocksource_select();
709 	clocksource_enqueue_watchdog(cs);
710 	mutex_unlock(&clocksource_mutex);
711 	return 0;
712 }
713 EXPORT_SYMBOL(clocksource_register);
714 
715 static void __clocksource_change_rating(struct clocksource *cs, int rating)
716 {
717 	list_del(&cs->list);
718 	cs->rating = rating;
719 	clocksource_enqueue(cs);
720 	clocksource_select();
721 }
722 
723 /**
724  * clocksource_change_rating - Change the rating of a registered clocksource
725  */
726 void clocksource_change_rating(struct clocksource *cs, int rating)
727 {
728 	mutex_lock(&clocksource_mutex);
729 	__clocksource_change_rating(cs, rating);
730 	mutex_unlock(&clocksource_mutex);
731 }
732 EXPORT_SYMBOL(clocksource_change_rating);
733 
734 /**
735  * clocksource_unregister - remove a registered clocksource
736  */
737 void clocksource_unregister(struct clocksource *cs)
738 {
739 	mutex_lock(&clocksource_mutex);
740 	clocksource_dequeue_watchdog(cs);
741 	list_del(&cs->list);
742 	clocksource_select();
743 	mutex_unlock(&clocksource_mutex);
744 }
745 EXPORT_SYMBOL(clocksource_unregister);
746 
747 #ifdef CONFIG_SYSFS
748 /**
749  * sysfs_show_current_clocksources - sysfs interface for current clocksource
750  * @dev:	unused
751  * @buf:	char buffer to be filled with clocksource list
752  *
753  * Provides sysfs interface for listing current clocksource.
754  */
755 static ssize_t
756 sysfs_show_current_clocksources(struct sys_device *dev,
757 				struct sysdev_attribute *attr, char *buf)
758 {
759 	ssize_t count = 0;
760 
761 	mutex_lock(&clocksource_mutex);
762 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
763 	mutex_unlock(&clocksource_mutex);
764 
765 	return count;
766 }
767 
768 /**
769  * sysfs_override_clocksource - interface for manually overriding clocksource
770  * @dev:	unused
771  * @buf:	name of override clocksource
772  * @count:	length of buffer
773  *
774  * Takes input from sysfs interface for manually overriding the default
775  * clocksource selection.
776  */
777 static ssize_t sysfs_override_clocksource(struct sys_device *dev,
778 					  struct sysdev_attribute *attr,
779 					  const char *buf, size_t count)
780 {
781 	size_t ret = count;
782 
783 	/* strings from sysfs write are not 0 terminated! */
784 	if (count >= sizeof(override_name))
785 		return -EINVAL;
786 
787 	/* strip of \n: */
788 	if (buf[count-1] == '\n')
789 		count--;
790 
791 	mutex_lock(&clocksource_mutex);
792 
793 	if (count > 0)
794 		memcpy(override_name, buf, count);
795 	override_name[count] = 0;
796 	clocksource_select();
797 
798 	mutex_unlock(&clocksource_mutex);
799 
800 	return ret;
801 }
802 
803 /**
804  * sysfs_show_available_clocksources - sysfs interface for listing clocksource
805  * @dev:	unused
806  * @buf:	char buffer to be filled with clocksource list
807  *
808  * Provides sysfs interface for listing registered clocksources
809  */
810 static ssize_t
811 sysfs_show_available_clocksources(struct sys_device *dev,
812 				  struct sysdev_attribute *attr,
813 				  char *buf)
814 {
815 	struct clocksource *src;
816 	ssize_t count = 0;
817 
818 	mutex_lock(&clocksource_mutex);
819 	list_for_each_entry(src, &clocksource_list, list) {
820 		/*
821 		 * Don't show non-HRES clocksource if the tick code is
822 		 * in one shot mode (highres=on or nohz=on)
823 		 */
824 		if (!tick_oneshot_mode_active() ||
825 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
826 			count += snprintf(buf + count,
827 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
828 				  "%s ", src->name);
829 	}
830 	mutex_unlock(&clocksource_mutex);
831 
832 	count += snprintf(buf + count,
833 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
834 
835 	return count;
836 }
837 
838 /*
839  * Sysfs setup bits:
840  */
841 static SYSDEV_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
842 		   sysfs_override_clocksource);
843 
844 static SYSDEV_ATTR(available_clocksource, 0444,
845 		   sysfs_show_available_clocksources, NULL);
846 
847 static struct sysdev_class clocksource_sysclass = {
848 	.name = "clocksource",
849 };
850 
851 static struct sys_device device_clocksource = {
852 	.id	= 0,
853 	.cls	= &clocksource_sysclass,
854 };
855 
856 static int __init init_clocksource_sysfs(void)
857 {
858 	int error = sysdev_class_register(&clocksource_sysclass);
859 
860 	if (!error)
861 		error = sysdev_register(&device_clocksource);
862 	if (!error)
863 		error = sysdev_create_file(
864 				&device_clocksource,
865 				&attr_current_clocksource);
866 	if (!error)
867 		error = sysdev_create_file(
868 				&device_clocksource,
869 				&attr_available_clocksource);
870 	return error;
871 }
872 
873 device_initcall(init_clocksource_sysfs);
874 #endif /* CONFIG_SYSFS */
875 
876 /**
877  * boot_override_clocksource - boot clock override
878  * @str:	override name
879  *
880  * Takes a clocksource= boot argument and uses it
881  * as the clocksource override name.
882  */
883 static int __init boot_override_clocksource(char* str)
884 {
885 	mutex_lock(&clocksource_mutex);
886 	if (str)
887 		strlcpy(override_name, str, sizeof(override_name));
888 	mutex_unlock(&clocksource_mutex);
889 	return 1;
890 }
891 
892 __setup("clocksource=", boot_override_clocksource);
893 
894 /**
895  * boot_override_clock - Compatibility layer for deprecated boot option
896  * @str:	override name
897  *
898  * DEPRECATED! Takes a clock= boot argument and uses it
899  * as the clocksource override name
900  */
901 static int __init boot_override_clock(char* str)
902 {
903 	if (!strcmp(str, "pmtmr")) {
904 		printk("Warning: clock=pmtmr is deprecated. "
905 			"Use clocksource=acpi_pm.\n");
906 		return boot_override_clocksource("acpi_pm");
907 	}
908 	printk("Warning! clock= boot option is deprecated. "
909 		"Use clocksource=xyz\n");
910 	return boot_override_clocksource(str);
911 }
912 
913 __setup("clock=", boot_override_clock);
914