1 /* 2 * linux/kernel/time/clocksource.c 3 * 4 * This file contains the functions which manage clocksource drivers. 5 * 6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 * 22 * TODO WishList: 23 * o Allow clocksource drivers to be unregistered 24 */ 25 26 #include <linux/clocksource.h> 27 #include <linux/sysdev.h> 28 #include <linux/init.h> 29 #include <linux/module.h> 30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ 31 #include <linux/tick.h> 32 #include <linux/kthread.h> 33 34 void timecounter_init(struct timecounter *tc, 35 const struct cyclecounter *cc, 36 u64 start_tstamp) 37 { 38 tc->cc = cc; 39 tc->cycle_last = cc->read(cc); 40 tc->nsec = start_tstamp; 41 } 42 EXPORT_SYMBOL_GPL(timecounter_init); 43 44 /** 45 * timecounter_read_delta - get nanoseconds since last call of this function 46 * @tc: Pointer to time counter 47 * 48 * When the underlying cycle counter runs over, this will be handled 49 * correctly as long as it does not run over more than once between 50 * calls. 51 * 52 * The first call to this function for a new time counter initializes 53 * the time tracking and returns an undefined result. 54 */ 55 static u64 timecounter_read_delta(struct timecounter *tc) 56 { 57 cycle_t cycle_now, cycle_delta; 58 u64 ns_offset; 59 60 /* read cycle counter: */ 61 cycle_now = tc->cc->read(tc->cc); 62 63 /* calculate the delta since the last timecounter_read_delta(): */ 64 cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask; 65 66 /* convert to nanoseconds: */ 67 ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta); 68 69 /* update time stamp of timecounter_read_delta() call: */ 70 tc->cycle_last = cycle_now; 71 72 return ns_offset; 73 } 74 75 u64 timecounter_read(struct timecounter *tc) 76 { 77 u64 nsec; 78 79 /* increment time by nanoseconds since last call */ 80 nsec = timecounter_read_delta(tc); 81 nsec += tc->nsec; 82 tc->nsec = nsec; 83 84 return nsec; 85 } 86 EXPORT_SYMBOL_GPL(timecounter_read); 87 88 u64 timecounter_cyc2time(struct timecounter *tc, 89 cycle_t cycle_tstamp) 90 { 91 u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask; 92 u64 nsec; 93 94 /* 95 * Instead of always treating cycle_tstamp as more recent 96 * than tc->cycle_last, detect when it is too far in the 97 * future and treat it as old time stamp instead. 98 */ 99 if (cycle_delta > tc->cc->mask / 2) { 100 cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask; 101 nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta); 102 } else { 103 nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec; 104 } 105 106 return nsec; 107 } 108 EXPORT_SYMBOL_GPL(timecounter_cyc2time); 109 110 /** 111 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks 112 * @mult: pointer to mult variable 113 * @shift: pointer to shift variable 114 * @from: frequency to convert from 115 * @to: frequency to convert to 116 * @minsec: guaranteed runtime conversion range in seconds 117 * 118 * The function evaluates the shift/mult pair for the scaled math 119 * operations of clocksources and clockevents. 120 * 121 * @to and @from are frequency values in HZ. For clock sources @to is 122 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock 123 * event @to is the counter frequency and @from is NSEC_PER_SEC. 124 * 125 * The @minsec conversion range argument controls the time frame in 126 * seconds which must be covered by the runtime conversion with the 127 * calculated mult and shift factors. This guarantees that no 64bit 128 * overflow happens when the input value of the conversion is 129 * multiplied with the calculated mult factor. Larger ranges may 130 * reduce the conversion accuracy by chosing smaller mult and shift 131 * factors. 132 */ 133 void 134 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec) 135 { 136 u64 tmp; 137 u32 sft, sftacc= 32; 138 139 /* 140 * Calculate the shift factor which is limiting the conversion 141 * range: 142 */ 143 tmp = ((u64)minsec * from) >> 32; 144 while (tmp) { 145 tmp >>=1; 146 sftacc--; 147 } 148 149 /* 150 * Find the conversion shift/mult pair which has the best 151 * accuracy and fits the maxsec conversion range: 152 */ 153 for (sft = 32; sft > 0; sft--) { 154 tmp = (u64) to << sft; 155 do_div(tmp, from); 156 if ((tmp >> sftacc) == 0) 157 break; 158 } 159 *mult = tmp; 160 *shift = sft; 161 } 162 163 /*[Clocksource internal variables]--------- 164 * curr_clocksource: 165 * currently selected clocksource. 166 * clocksource_list: 167 * linked list with the registered clocksources 168 * clocksource_mutex: 169 * protects manipulations to curr_clocksource and the clocksource_list 170 * override_name: 171 * Name of the user-specified clocksource. 172 */ 173 static struct clocksource *curr_clocksource; 174 static LIST_HEAD(clocksource_list); 175 static DEFINE_MUTEX(clocksource_mutex); 176 static char override_name[32]; 177 static int finished_booting; 178 179 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG 180 static void clocksource_watchdog_work(struct work_struct *work); 181 182 static LIST_HEAD(watchdog_list); 183 static struct clocksource *watchdog; 184 static struct timer_list watchdog_timer; 185 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); 186 static DEFINE_SPINLOCK(watchdog_lock); 187 static cycle_t watchdog_last; 188 static int watchdog_running; 189 190 static int clocksource_watchdog_kthread(void *data); 191 static void __clocksource_change_rating(struct clocksource *cs, int rating); 192 193 /* 194 * Interval: 0.5sec Threshold: 0.0625s 195 */ 196 #define WATCHDOG_INTERVAL (HZ >> 1) 197 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) 198 199 static void clocksource_watchdog_work(struct work_struct *work) 200 { 201 /* 202 * If kthread_run fails the next watchdog scan over the 203 * watchdog_list will find the unstable clock again. 204 */ 205 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); 206 } 207 208 static void __clocksource_unstable(struct clocksource *cs) 209 { 210 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); 211 cs->flags |= CLOCK_SOURCE_UNSTABLE; 212 if (finished_booting) 213 schedule_work(&watchdog_work); 214 } 215 216 static void clocksource_unstable(struct clocksource *cs, int64_t delta) 217 { 218 printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", 219 cs->name, delta); 220 __clocksource_unstable(cs); 221 } 222 223 /** 224 * clocksource_mark_unstable - mark clocksource unstable via watchdog 225 * @cs: clocksource to be marked unstable 226 * 227 * This function is called instead of clocksource_change_rating from 228 * cpu hotplug code to avoid a deadlock between the clocksource mutex 229 * and the cpu hotplug mutex. It defers the update of the clocksource 230 * to the watchdog thread. 231 */ 232 void clocksource_mark_unstable(struct clocksource *cs) 233 { 234 unsigned long flags; 235 236 spin_lock_irqsave(&watchdog_lock, flags); 237 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { 238 if (list_empty(&cs->wd_list)) 239 list_add(&cs->wd_list, &watchdog_list); 240 __clocksource_unstable(cs); 241 } 242 spin_unlock_irqrestore(&watchdog_lock, flags); 243 } 244 245 static void clocksource_watchdog(unsigned long data) 246 { 247 struct clocksource *cs; 248 cycle_t csnow, wdnow; 249 int64_t wd_nsec, cs_nsec; 250 int next_cpu; 251 252 spin_lock(&watchdog_lock); 253 if (!watchdog_running) 254 goto out; 255 256 wdnow = watchdog->read(watchdog); 257 wd_nsec = clocksource_cyc2ns((wdnow - watchdog_last) & watchdog->mask, 258 watchdog->mult, watchdog->shift); 259 watchdog_last = wdnow; 260 261 list_for_each_entry(cs, &watchdog_list, wd_list) { 262 263 /* Clocksource already marked unstable? */ 264 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 265 if (finished_booting) 266 schedule_work(&watchdog_work); 267 continue; 268 } 269 270 csnow = cs->read(cs); 271 272 /* Clocksource initialized ? */ 273 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { 274 cs->flags |= CLOCK_SOURCE_WATCHDOG; 275 cs->wd_last = csnow; 276 continue; 277 } 278 279 /* Check the deviation from the watchdog clocksource. */ 280 cs_nsec = clocksource_cyc2ns((csnow - cs->wd_last) & 281 cs->mask, cs->mult, cs->shift); 282 cs->wd_last = csnow; 283 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) { 284 clocksource_unstable(cs, cs_nsec - wd_nsec); 285 continue; 286 } 287 288 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && 289 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && 290 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { 291 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 292 /* 293 * We just marked the clocksource as highres-capable, 294 * notify the rest of the system as well so that we 295 * transition into high-res mode: 296 */ 297 tick_clock_notify(); 298 } 299 } 300 301 /* 302 * Cycle through CPUs to check if the CPUs stay synchronized 303 * to each other. 304 */ 305 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); 306 if (next_cpu >= nr_cpu_ids) 307 next_cpu = cpumask_first(cpu_online_mask); 308 watchdog_timer.expires += WATCHDOG_INTERVAL; 309 add_timer_on(&watchdog_timer, next_cpu); 310 out: 311 spin_unlock(&watchdog_lock); 312 } 313 314 static inline void clocksource_start_watchdog(void) 315 { 316 if (watchdog_running || !watchdog || list_empty(&watchdog_list)) 317 return; 318 init_timer(&watchdog_timer); 319 watchdog_timer.function = clocksource_watchdog; 320 watchdog_last = watchdog->read(watchdog); 321 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; 322 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); 323 watchdog_running = 1; 324 } 325 326 static inline void clocksource_stop_watchdog(void) 327 { 328 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) 329 return; 330 del_timer(&watchdog_timer); 331 watchdog_running = 0; 332 } 333 334 static inline void clocksource_reset_watchdog(void) 335 { 336 struct clocksource *cs; 337 338 list_for_each_entry(cs, &watchdog_list, wd_list) 339 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 340 } 341 342 static void clocksource_resume_watchdog(void) 343 { 344 unsigned long flags; 345 346 /* 347 * We use trylock here to avoid a potential dead lock when 348 * kgdb calls this code after the kernel has been stopped with 349 * watchdog_lock held. When watchdog_lock is held we just 350 * return and accept, that the watchdog might trigger and mark 351 * the monitored clock source (usually TSC) unstable. 352 * 353 * This does not affect the other caller clocksource_resume() 354 * because at this point the kernel is UP, interrupts are 355 * disabled and nothing can hold watchdog_lock. 356 */ 357 if (!spin_trylock_irqsave(&watchdog_lock, flags)) 358 return; 359 clocksource_reset_watchdog(); 360 spin_unlock_irqrestore(&watchdog_lock, flags); 361 } 362 363 static void clocksource_enqueue_watchdog(struct clocksource *cs) 364 { 365 unsigned long flags; 366 367 spin_lock_irqsave(&watchdog_lock, flags); 368 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 369 /* cs is a clocksource to be watched. */ 370 list_add(&cs->wd_list, &watchdog_list); 371 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 372 } else { 373 /* cs is a watchdog. */ 374 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 375 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 376 /* Pick the best watchdog. */ 377 if (!watchdog || cs->rating > watchdog->rating) { 378 watchdog = cs; 379 /* Reset watchdog cycles */ 380 clocksource_reset_watchdog(); 381 } 382 } 383 /* Check if the watchdog timer needs to be started. */ 384 clocksource_start_watchdog(); 385 spin_unlock_irqrestore(&watchdog_lock, flags); 386 } 387 388 static void clocksource_dequeue_watchdog(struct clocksource *cs) 389 { 390 struct clocksource *tmp; 391 unsigned long flags; 392 393 spin_lock_irqsave(&watchdog_lock, flags); 394 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 395 /* cs is a watched clocksource. */ 396 list_del_init(&cs->wd_list); 397 } else if (cs == watchdog) { 398 /* Reset watchdog cycles */ 399 clocksource_reset_watchdog(); 400 /* Current watchdog is removed. Find an alternative. */ 401 watchdog = NULL; 402 list_for_each_entry(tmp, &clocksource_list, list) { 403 if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY) 404 continue; 405 if (!watchdog || tmp->rating > watchdog->rating) 406 watchdog = tmp; 407 } 408 } 409 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 410 /* Check if the watchdog timer needs to be stopped. */ 411 clocksource_stop_watchdog(); 412 spin_unlock_irqrestore(&watchdog_lock, flags); 413 } 414 415 static int clocksource_watchdog_kthread(void *data) 416 { 417 struct clocksource *cs, *tmp; 418 unsigned long flags; 419 LIST_HEAD(unstable); 420 421 mutex_lock(&clocksource_mutex); 422 spin_lock_irqsave(&watchdog_lock, flags); 423 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) 424 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 425 list_del_init(&cs->wd_list); 426 list_add(&cs->wd_list, &unstable); 427 } 428 /* Check if the watchdog timer needs to be stopped. */ 429 clocksource_stop_watchdog(); 430 spin_unlock_irqrestore(&watchdog_lock, flags); 431 432 /* Needs to be done outside of watchdog lock */ 433 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { 434 list_del_init(&cs->wd_list); 435 __clocksource_change_rating(cs, 0); 436 } 437 mutex_unlock(&clocksource_mutex); 438 return 0; 439 } 440 441 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ 442 443 static void clocksource_enqueue_watchdog(struct clocksource *cs) 444 { 445 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 446 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 447 } 448 449 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } 450 static inline void clocksource_resume_watchdog(void) { } 451 static inline int clocksource_watchdog_kthread(void *data) { return 0; } 452 453 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ 454 455 /** 456 * clocksource_suspend - suspend the clocksource(s) 457 */ 458 void clocksource_suspend(void) 459 { 460 struct clocksource *cs; 461 462 list_for_each_entry_reverse(cs, &clocksource_list, list) 463 if (cs->suspend) 464 cs->suspend(cs); 465 } 466 467 /** 468 * clocksource_resume - resume the clocksource(s) 469 */ 470 void clocksource_resume(void) 471 { 472 struct clocksource *cs; 473 474 list_for_each_entry(cs, &clocksource_list, list) 475 if (cs->resume) 476 cs->resume(cs); 477 478 clocksource_resume_watchdog(); 479 } 480 481 /** 482 * clocksource_touch_watchdog - Update watchdog 483 * 484 * Update the watchdog after exception contexts such as kgdb so as not 485 * to incorrectly trip the watchdog. This might fail when the kernel 486 * was stopped in code which holds watchdog_lock. 487 */ 488 void clocksource_touch_watchdog(void) 489 { 490 clocksource_resume_watchdog(); 491 } 492 493 /** 494 * clocksource_max_deferment - Returns max time the clocksource can be deferred 495 * @cs: Pointer to clocksource 496 * 497 */ 498 static u64 clocksource_max_deferment(struct clocksource *cs) 499 { 500 u64 max_nsecs, max_cycles; 501 502 /* 503 * Calculate the maximum number of cycles that we can pass to the 504 * cyc2ns function without overflowing a 64-bit signed result. The 505 * maximum number of cycles is equal to ULLONG_MAX/cs->mult which 506 * is equivalent to the below. 507 * max_cycles < (2^63)/cs->mult 508 * max_cycles < 2^(log2((2^63)/cs->mult)) 509 * max_cycles < 2^(log2(2^63) - log2(cs->mult)) 510 * max_cycles < 2^(63 - log2(cs->mult)) 511 * max_cycles < 1 << (63 - log2(cs->mult)) 512 * Please note that we add 1 to the result of the log2 to account for 513 * any rounding errors, ensure the above inequality is satisfied and 514 * no overflow will occur. 515 */ 516 max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1)); 517 518 /* 519 * The actual maximum number of cycles we can defer the clocksource is 520 * determined by the minimum of max_cycles and cs->mask. 521 */ 522 max_cycles = min_t(u64, max_cycles, (u64) cs->mask); 523 max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift); 524 525 /* 526 * To ensure that the clocksource does not wrap whilst we are idle, 527 * limit the time the clocksource can be deferred by 12.5%. Please 528 * note a margin of 12.5% is used because this can be computed with 529 * a shift, versus say 10% which would require division. 530 */ 531 return max_nsecs - (max_nsecs >> 5); 532 } 533 534 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET 535 536 /** 537 * clocksource_select - Select the best clocksource available 538 * 539 * Private function. Must hold clocksource_mutex when called. 540 * 541 * Select the clocksource with the best rating, or the clocksource, 542 * which is selected by userspace override. 543 */ 544 static void clocksource_select(void) 545 { 546 struct clocksource *best, *cs; 547 548 if (!finished_booting || list_empty(&clocksource_list)) 549 return; 550 /* First clocksource on the list has the best rating. */ 551 best = list_first_entry(&clocksource_list, struct clocksource, list); 552 /* Check for the override clocksource. */ 553 list_for_each_entry(cs, &clocksource_list, list) { 554 if (strcmp(cs->name, override_name) != 0) 555 continue; 556 /* 557 * Check to make sure we don't switch to a non-highres 558 * capable clocksource if the tick code is in oneshot 559 * mode (highres or nohz) 560 */ 561 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && 562 tick_oneshot_mode_active()) { 563 /* Override clocksource cannot be used. */ 564 printk(KERN_WARNING "Override clocksource %s is not " 565 "HRT compatible. Cannot switch while in " 566 "HRT/NOHZ mode\n", cs->name); 567 override_name[0] = 0; 568 } else 569 /* Override clocksource can be used. */ 570 best = cs; 571 break; 572 } 573 if (curr_clocksource != best) { 574 printk(KERN_INFO "Switching to clocksource %s\n", best->name); 575 curr_clocksource = best; 576 timekeeping_notify(curr_clocksource); 577 } 578 } 579 580 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */ 581 582 static inline void clocksource_select(void) { } 583 584 #endif 585 586 /* 587 * clocksource_done_booting - Called near the end of core bootup 588 * 589 * Hack to avoid lots of clocksource churn at boot time. 590 * We use fs_initcall because we want this to start before 591 * device_initcall but after subsys_initcall. 592 */ 593 static int __init clocksource_done_booting(void) 594 { 595 mutex_lock(&clocksource_mutex); 596 curr_clocksource = clocksource_default_clock(); 597 mutex_unlock(&clocksource_mutex); 598 599 finished_booting = 1; 600 601 /* 602 * Run the watchdog first to eliminate unstable clock sources 603 */ 604 clocksource_watchdog_kthread(NULL); 605 606 mutex_lock(&clocksource_mutex); 607 clocksource_select(); 608 mutex_unlock(&clocksource_mutex); 609 return 0; 610 } 611 fs_initcall(clocksource_done_booting); 612 613 /* 614 * Enqueue the clocksource sorted by rating 615 */ 616 static void clocksource_enqueue(struct clocksource *cs) 617 { 618 struct list_head *entry = &clocksource_list; 619 struct clocksource *tmp; 620 621 list_for_each_entry(tmp, &clocksource_list, list) 622 /* Keep track of the place, where to insert */ 623 if (tmp->rating >= cs->rating) 624 entry = &tmp->list; 625 list_add(&cs->list, entry); 626 } 627 628 629 /* 630 * Maximum time we expect to go between ticks. This includes idle 631 * tickless time. It provides the trade off between selecting a 632 * mult/shift pair that is very precise but can only handle a short 633 * period of time, vs. a mult/shift pair that can handle long periods 634 * of time but isn't as precise. 635 * 636 * This is a subsystem constant, and actual hardware limitations 637 * may override it (ie: clocksources that wrap every 3 seconds). 638 */ 639 #define MAX_UPDATE_LENGTH 5 /* Seconds */ 640 641 /** 642 * __clocksource_updatefreq_scale - Used update clocksource with new freq 643 * @t: clocksource to be registered 644 * @scale: Scale factor multiplied against freq to get clocksource hz 645 * @freq: clocksource frequency (cycles per second) divided by scale 646 * 647 * This should only be called from the clocksource->enable() method. 648 * 649 * This *SHOULD NOT* be called directly! Please use the 650 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions. 651 */ 652 void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq) 653 { 654 /* 655 * Ideally we want to use some of the limits used in 656 * clocksource_max_deferment, to provide a more informed 657 * MAX_UPDATE_LENGTH. But for now this just gets the 658 * register interface working properly. 659 */ 660 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, 661 NSEC_PER_SEC/scale, 662 MAX_UPDATE_LENGTH*scale); 663 cs->max_idle_ns = clocksource_max_deferment(cs); 664 } 665 EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale); 666 667 /** 668 * __clocksource_register_scale - Used to install new clocksources 669 * @t: clocksource to be registered 670 * @scale: Scale factor multiplied against freq to get clocksource hz 671 * @freq: clocksource frequency (cycles per second) divided by scale 672 * 673 * Returns -EBUSY if registration fails, zero otherwise. 674 * 675 * This *SHOULD NOT* be called directly! Please use the 676 * clocksource_register_hz() or clocksource_register_khz helper functions. 677 */ 678 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) 679 { 680 681 /* Intialize mult/shift and max_idle_ns */ 682 __clocksource_updatefreq_scale(cs, scale, freq); 683 684 /* Add clocksource to the clcoksource list */ 685 mutex_lock(&clocksource_mutex); 686 clocksource_enqueue(cs); 687 clocksource_select(); 688 clocksource_enqueue_watchdog(cs); 689 mutex_unlock(&clocksource_mutex); 690 return 0; 691 } 692 EXPORT_SYMBOL_GPL(__clocksource_register_scale); 693 694 695 /** 696 * clocksource_register - Used to install new clocksources 697 * @t: clocksource to be registered 698 * 699 * Returns -EBUSY if registration fails, zero otherwise. 700 */ 701 int clocksource_register(struct clocksource *cs) 702 { 703 /* calculate max idle time permitted for this clocksource */ 704 cs->max_idle_ns = clocksource_max_deferment(cs); 705 706 mutex_lock(&clocksource_mutex); 707 clocksource_enqueue(cs); 708 clocksource_select(); 709 clocksource_enqueue_watchdog(cs); 710 mutex_unlock(&clocksource_mutex); 711 return 0; 712 } 713 EXPORT_SYMBOL(clocksource_register); 714 715 static void __clocksource_change_rating(struct clocksource *cs, int rating) 716 { 717 list_del(&cs->list); 718 cs->rating = rating; 719 clocksource_enqueue(cs); 720 clocksource_select(); 721 } 722 723 /** 724 * clocksource_change_rating - Change the rating of a registered clocksource 725 */ 726 void clocksource_change_rating(struct clocksource *cs, int rating) 727 { 728 mutex_lock(&clocksource_mutex); 729 __clocksource_change_rating(cs, rating); 730 mutex_unlock(&clocksource_mutex); 731 } 732 EXPORT_SYMBOL(clocksource_change_rating); 733 734 /** 735 * clocksource_unregister - remove a registered clocksource 736 */ 737 void clocksource_unregister(struct clocksource *cs) 738 { 739 mutex_lock(&clocksource_mutex); 740 clocksource_dequeue_watchdog(cs); 741 list_del(&cs->list); 742 clocksource_select(); 743 mutex_unlock(&clocksource_mutex); 744 } 745 EXPORT_SYMBOL(clocksource_unregister); 746 747 #ifdef CONFIG_SYSFS 748 /** 749 * sysfs_show_current_clocksources - sysfs interface for current clocksource 750 * @dev: unused 751 * @buf: char buffer to be filled with clocksource list 752 * 753 * Provides sysfs interface for listing current clocksource. 754 */ 755 static ssize_t 756 sysfs_show_current_clocksources(struct sys_device *dev, 757 struct sysdev_attribute *attr, char *buf) 758 { 759 ssize_t count = 0; 760 761 mutex_lock(&clocksource_mutex); 762 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); 763 mutex_unlock(&clocksource_mutex); 764 765 return count; 766 } 767 768 /** 769 * sysfs_override_clocksource - interface for manually overriding clocksource 770 * @dev: unused 771 * @buf: name of override clocksource 772 * @count: length of buffer 773 * 774 * Takes input from sysfs interface for manually overriding the default 775 * clocksource selection. 776 */ 777 static ssize_t sysfs_override_clocksource(struct sys_device *dev, 778 struct sysdev_attribute *attr, 779 const char *buf, size_t count) 780 { 781 size_t ret = count; 782 783 /* strings from sysfs write are not 0 terminated! */ 784 if (count >= sizeof(override_name)) 785 return -EINVAL; 786 787 /* strip of \n: */ 788 if (buf[count-1] == '\n') 789 count--; 790 791 mutex_lock(&clocksource_mutex); 792 793 if (count > 0) 794 memcpy(override_name, buf, count); 795 override_name[count] = 0; 796 clocksource_select(); 797 798 mutex_unlock(&clocksource_mutex); 799 800 return ret; 801 } 802 803 /** 804 * sysfs_show_available_clocksources - sysfs interface for listing clocksource 805 * @dev: unused 806 * @buf: char buffer to be filled with clocksource list 807 * 808 * Provides sysfs interface for listing registered clocksources 809 */ 810 static ssize_t 811 sysfs_show_available_clocksources(struct sys_device *dev, 812 struct sysdev_attribute *attr, 813 char *buf) 814 { 815 struct clocksource *src; 816 ssize_t count = 0; 817 818 mutex_lock(&clocksource_mutex); 819 list_for_each_entry(src, &clocksource_list, list) { 820 /* 821 * Don't show non-HRES clocksource if the tick code is 822 * in one shot mode (highres=on or nohz=on) 823 */ 824 if (!tick_oneshot_mode_active() || 825 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 826 count += snprintf(buf + count, 827 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), 828 "%s ", src->name); 829 } 830 mutex_unlock(&clocksource_mutex); 831 832 count += snprintf(buf + count, 833 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); 834 835 return count; 836 } 837 838 /* 839 * Sysfs setup bits: 840 */ 841 static SYSDEV_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources, 842 sysfs_override_clocksource); 843 844 static SYSDEV_ATTR(available_clocksource, 0444, 845 sysfs_show_available_clocksources, NULL); 846 847 static struct sysdev_class clocksource_sysclass = { 848 .name = "clocksource", 849 }; 850 851 static struct sys_device device_clocksource = { 852 .id = 0, 853 .cls = &clocksource_sysclass, 854 }; 855 856 static int __init init_clocksource_sysfs(void) 857 { 858 int error = sysdev_class_register(&clocksource_sysclass); 859 860 if (!error) 861 error = sysdev_register(&device_clocksource); 862 if (!error) 863 error = sysdev_create_file( 864 &device_clocksource, 865 &attr_current_clocksource); 866 if (!error) 867 error = sysdev_create_file( 868 &device_clocksource, 869 &attr_available_clocksource); 870 return error; 871 } 872 873 device_initcall(init_clocksource_sysfs); 874 #endif /* CONFIG_SYSFS */ 875 876 /** 877 * boot_override_clocksource - boot clock override 878 * @str: override name 879 * 880 * Takes a clocksource= boot argument and uses it 881 * as the clocksource override name. 882 */ 883 static int __init boot_override_clocksource(char* str) 884 { 885 mutex_lock(&clocksource_mutex); 886 if (str) 887 strlcpy(override_name, str, sizeof(override_name)); 888 mutex_unlock(&clocksource_mutex); 889 return 1; 890 } 891 892 __setup("clocksource=", boot_override_clocksource); 893 894 /** 895 * boot_override_clock - Compatibility layer for deprecated boot option 896 * @str: override name 897 * 898 * DEPRECATED! Takes a clock= boot argument and uses it 899 * as the clocksource override name 900 */ 901 static int __init boot_override_clock(char* str) 902 { 903 if (!strcmp(str, "pmtmr")) { 904 printk("Warning: clock=pmtmr is deprecated. " 905 "Use clocksource=acpi_pm.\n"); 906 return boot_override_clocksource("acpi_pm"); 907 } 908 printk("Warning! clock= boot option is deprecated. " 909 "Use clocksource=xyz\n"); 910 return boot_override_clocksource(str); 911 } 912 913 __setup("clock=", boot_override_clock); 914