xref: /linux/kernel/time/clocksource.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * linux/kernel/time/clocksource.c
3  *
4  * This file contains the functions which manage clocksource drivers.
5  *
6  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  * TODO WishList:
23  *   o Allow clocksource drivers to be unregistered
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/device.h>
29 #include <linux/clocksource.h>
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
33 #include <linux/tick.h>
34 #include <linux/kthread.h>
35 
36 #include "tick-internal.h"
37 #include "timekeeping_internal.h"
38 
39 /**
40  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
41  * @mult:	pointer to mult variable
42  * @shift:	pointer to shift variable
43  * @from:	frequency to convert from
44  * @to:		frequency to convert to
45  * @maxsec:	guaranteed runtime conversion range in seconds
46  *
47  * The function evaluates the shift/mult pair for the scaled math
48  * operations of clocksources and clockevents.
49  *
50  * @to and @from are frequency values in HZ. For clock sources @to is
51  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
52  * event @to is the counter frequency and @from is NSEC_PER_SEC.
53  *
54  * The @maxsec conversion range argument controls the time frame in
55  * seconds which must be covered by the runtime conversion with the
56  * calculated mult and shift factors. This guarantees that no 64bit
57  * overflow happens when the input value of the conversion is
58  * multiplied with the calculated mult factor. Larger ranges may
59  * reduce the conversion accuracy by chosing smaller mult and shift
60  * factors.
61  */
62 void
63 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
64 {
65 	u64 tmp;
66 	u32 sft, sftacc= 32;
67 
68 	/*
69 	 * Calculate the shift factor which is limiting the conversion
70 	 * range:
71 	 */
72 	tmp = ((u64)maxsec * from) >> 32;
73 	while (tmp) {
74 		tmp >>=1;
75 		sftacc--;
76 	}
77 
78 	/*
79 	 * Find the conversion shift/mult pair which has the best
80 	 * accuracy and fits the maxsec conversion range:
81 	 */
82 	for (sft = 32; sft > 0; sft--) {
83 		tmp = (u64) to << sft;
84 		tmp += from / 2;
85 		do_div(tmp, from);
86 		if ((tmp >> sftacc) == 0)
87 			break;
88 	}
89 	*mult = tmp;
90 	*shift = sft;
91 }
92 
93 /*[Clocksource internal variables]---------
94  * curr_clocksource:
95  *	currently selected clocksource.
96  * clocksource_list:
97  *	linked list with the registered clocksources
98  * clocksource_mutex:
99  *	protects manipulations to curr_clocksource and the clocksource_list
100  * override_name:
101  *	Name of the user-specified clocksource.
102  */
103 static struct clocksource *curr_clocksource;
104 static LIST_HEAD(clocksource_list);
105 static DEFINE_MUTEX(clocksource_mutex);
106 static char override_name[CS_NAME_LEN];
107 static int finished_booting;
108 
109 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
110 static void clocksource_watchdog_work(struct work_struct *work);
111 static void clocksource_select(void);
112 
113 static LIST_HEAD(watchdog_list);
114 static struct clocksource *watchdog;
115 static struct timer_list watchdog_timer;
116 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
117 static DEFINE_SPINLOCK(watchdog_lock);
118 static int watchdog_running;
119 static atomic_t watchdog_reset_pending;
120 
121 static int clocksource_watchdog_kthread(void *data);
122 static void __clocksource_change_rating(struct clocksource *cs, int rating);
123 
124 /*
125  * Interval: 0.5sec Threshold: 0.0625s
126  */
127 #define WATCHDOG_INTERVAL (HZ >> 1)
128 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
129 
130 static void clocksource_watchdog_work(struct work_struct *work)
131 {
132 	/*
133 	 * If kthread_run fails the next watchdog scan over the
134 	 * watchdog_list will find the unstable clock again.
135 	 */
136 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
137 }
138 
139 static void __clocksource_unstable(struct clocksource *cs)
140 {
141 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
142 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
143 	if (finished_booting)
144 		schedule_work(&watchdog_work);
145 }
146 
147 /**
148  * clocksource_mark_unstable - mark clocksource unstable via watchdog
149  * @cs:		clocksource to be marked unstable
150  *
151  * This function is called instead of clocksource_change_rating from
152  * cpu hotplug code to avoid a deadlock between the clocksource mutex
153  * and the cpu hotplug mutex. It defers the update of the clocksource
154  * to the watchdog thread.
155  */
156 void clocksource_mark_unstable(struct clocksource *cs)
157 {
158 	unsigned long flags;
159 
160 	spin_lock_irqsave(&watchdog_lock, flags);
161 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
162 		if (list_empty(&cs->wd_list))
163 			list_add(&cs->wd_list, &watchdog_list);
164 		__clocksource_unstable(cs);
165 	}
166 	spin_unlock_irqrestore(&watchdog_lock, flags);
167 }
168 
169 static void clocksource_watchdog(unsigned long data)
170 {
171 	struct clocksource *cs;
172 	cycle_t csnow, wdnow, cslast, wdlast, delta;
173 	int64_t wd_nsec, cs_nsec;
174 	int next_cpu, reset_pending;
175 
176 	spin_lock(&watchdog_lock);
177 	if (!watchdog_running)
178 		goto out;
179 
180 	reset_pending = atomic_read(&watchdog_reset_pending);
181 
182 	list_for_each_entry(cs, &watchdog_list, wd_list) {
183 
184 		/* Clocksource already marked unstable? */
185 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
186 			if (finished_booting)
187 				schedule_work(&watchdog_work);
188 			continue;
189 		}
190 
191 		local_irq_disable();
192 		csnow = cs->read(cs);
193 		wdnow = watchdog->read(watchdog);
194 		local_irq_enable();
195 
196 		/* Clocksource initialized ? */
197 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
198 		    atomic_read(&watchdog_reset_pending)) {
199 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
200 			cs->wd_last = wdnow;
201 			cs->cs_last = csnow;
202 			continue;
203 		}
204 
205 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
206 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
207 					     watchdog->shift);
208 
209 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
210 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
211 		wdlast = cs->wd_last; /* save these in case we print them */
212 		cslast = cs->cs_last;
213 		cs->cs_last = csnow;
214 		cs->wd_last = wdnow;
215 
216 		if (atomic_read(&watchdog_reset_pending))
217 			continue;
218 
219 		/* Check the deviation from the watchdog clocksource. */
220 		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
221 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
222 				smp_processor_id(), cs->name);
223 			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
224 				watchdog->name, wdnow, wdlast, watchdog->mask);
225 			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
226 				cs->name, csnow, cslast, cs->mask);
227 			__clocksource_unstable(cs);
228 			continue;
229 		}
230 
231 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
232 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
233 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
234 			/* Mark it valid for high-res. */
235 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
236 
237 			/*
238 			 * clocksource_done_booting() will sort it if
239 			 * finished_booting is not set yet.
240 			 */
241 			if (!finished_booting)
242 				continue;
243 
244 			/*
245 			 * If this is not the current clocksource let
246 			 * the watchdog thread reselect it. Due to the
247 			 * change to high res this clocksource might
248 			 * be preferred now. If it is the current
249 			 * clocksource let the tick code know about
250 			 * that change.
251 			 */
252 			if (cs != curr_clocksource) {
253 				cs->flags |= CLOCK_SOURCE_RESELECT;
254 				schedule_work(&watchdog_work);
255 			} else {
256 				tick_clock_notify();
257 			}
258 		}
259 	}
260 
261 	/*
262 	 * We only clear the watchdog_reset_pending, when we did a
263 	 * full cycle through all clocksources.
264 	 */
265 	if (reset_pending)
266 		atomic_dec(&watchdog_reset_pending);
267 
268 	/*
269 	 * Cycle through CPUs to check if the CPUs stay synchronized
270 	 * to each other.
271 	 */
272 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
273 	if (next_cpu >= nr_cpu_ids)
274 		next_cpu = cpumask_first(cpu_online_mask);
275 	watchdog_timer.expires += WATCHDOG_INTERVAL;
276 	add_timer_on(&watchdog_timer, next_cpu);
277 out:
278 	spin_unlock(&watchdog_lock);
279 }
280 
281 static inline void clocksource_start_watchdog(void)
282 {
283 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
284 		return;
285 	init_timer(&watchdog_timer);
286 	watchdog_timer.function = clocksource_watchdog;
287 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
288 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
289 	watchdog_running = 1;
290 }
291 
292 static inline void clocksource_stop_watchdog(void)
293 {
294 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
295 		return;
296 	del_timer(&watchdog_timer);
297 	watchdog_running = 0;
298 }
299 
300 static inline void clocksource_reset_watchdog(void)
301 {
302 	struct clocksource *cs;
303 
304 	list_for_each_entry(cs, &watchdog_list, wd_list)
305 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
306 }
307 
308 static void clocksource_resume_watchdog(void)
309 {
310 	atomic_inc(&watchdog_reset_pending);
311 }
312 
313 static void clocksource_enqueue_watchdog(struct clocksource *cs)
314 {
315 	unsigned long flags;
316 
317 	spin_lock_irqsave(&watchdog_lock, flags);
318 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
319 		/* cs is a clocksource to be watched. */
320 		list_add(&cs->wd_list, &watchdog_list);
321 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
322 	} else {
323 		/* cs is a watchdog. */
324 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
325 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
326 		/* Pick the best watchdog. */
327 		if (!watchdog || cs->rating > watchdog->rating) {
328 			watchdog = cs;
329 			/* Reset watchdog cycles */
330 			clocksource_reset_watchdog();
331 		}
332 	}
333 	/* Check if the watchdog timer needs to be started. */
334 	clocksource_start_watchdog();
335 	spin_unlock_irqrestore(&watchdog_lock, flags);
336 }
337 
338 static void clocksource_dequeue_watchdog(struct clocksource *cs)
339 {
340 	unsigned long flags;
341 
342 	spin_lock_irqsave(&watchdog_lock, flags);
343 	if (cs != watchdog) {
344 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
345 			/* cs is a watched clocksource. */
346 			list_del_init(&cs->wd_list);
347 			/* Check if the watchdog timer needs to be stopped. */
348 			clocksource_stop_watchdog();
349 		}
350 	}
351 	spin_unlock_irqrestore(&watchdog_lock, flags);
352 }
353 
354 static int __clocksource_watchdog_kthread(void)
355 {
356 	struct clocksource *cs, *tmp;
357 	unsigned long flags;
358 	LIST_HEAD(unstable);
359 	int select = 0;
360 
361 	spin_lock_irqsave(&watchdog_lock, flags);
362 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
363 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
364 			list_del_init(&cs->wd_list);
365 			list_add(&cs->wd_list, &unstable);
366 			select = 1;
367 		}
368 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
369 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
370 			select = 1;
371 		}
372 	}
373 	/* Check if the watchdog timer needs to be stopped. */
374 	clocksource_stop_watchdog();
375 	spin_unlock_irqrestore(&watchdog_lock, flags);
376 
377 	/* Needs to be done outside of watchdog lock */
378 	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
379 		list_del_init(&cs->wd_list);
380 		__clocksource_change_rating(cs, 0);
381 	}
382 	return select;
383 }
384 
385 static int clocksource_watchdog_kthread(void *data)
386 {
387 	mutex_lock(&clocksource_mutex);
388 	if (__clocksource_watchdog_kthread())
389 		clocksource_select();
390 	mutex_unlock(&clocksource_mutex);
391 	return 0;
392 }
393 
394 static bool clocksource_is_watchdog(struct clocksource *cs)
395 {
396 	return cs == watchdog;
397 }
398 
399 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
400 
401 static void clocksource_enqueue_watchdog(struct clocksource *cs)
402 {
403 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
404 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
405 }
406 
407 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
408 static inline void clocksource_resume_watchdog(void) { }
409 static inline int __clocksource_watchdog_kthread(void) { return 0; }
410 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
411 void clocksource_mark_unstable(struct clocksource *cs) { }
412 
413 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
414 
415 /**
416  * clocksource_suspend - suspend the clocksource(s)
417  */
418 void clocksource_suspend(void)
419 {
420 	struct clocksource *cs;
421 
422 	list_for_each_entry_reverse(cs, &clocksource_list, list)
423 		if (cs->suspend)
424 			cs->suspend(cs);
425 }
426 
427 /**
428  * clocksource_resume - resume the clocksource(s)
429  */
430 void clocksource_resume(void)
431 {
432 	struct clocksource *cs;
433 
434 	list_for_each_entry(cs, &clocksource_list, list)
435 		if (cs->resume)
436 			cs->resume(cs);
437 
438 	clocksource_resume_watchdog();
439 }
440 
441 /**
442  * clocksource_touch_watchdog - Update watchdog
443  *
444  * Update the watchdog after exception contexts such as kgdb so as not
445  * to incorrectly trip the watchdog. This might fail when the kernel
446  * was stopped in code which holds watchdog_lock.
447  */
448 void clocksource_touch_watchdog(void)
449 {
450 	clocksource_resume_watchdog();
451 }
452 
453 /**
454  * clocksource_max_adjustment- Returns max adjustment amount
455  * @cs:         Pointer to clocksource
456  *
457  */
458 static u32 clocksource_max_adjustment(struct clocksource *cs)
459 {
460 	u64 ret;
461 	/*
462 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
463 	 */
464 	ret = (u64)cs->mult * 11;
465 	do_div(ret,100);
466 	return (u32)ret;
467 }
468 
469 /**
470  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
471  * @mult:	cycle to nanosecond multiplier
472  * @shift:	cycle to nanosecond divisor (power of two)
473  * @maxadj:	maximum adjustment value to mult (~11%)
474  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
475  * @max_cyc:	maximum cycle value before potential overflow (does not include
476  *		any safety margin)
477  *
478  * NOTE: This function includes a safety margin of 50%, in other words, we
479  * return half the number of nanoseconds the hardware counter can technically
480  * cover. This is done so that we can potentially detect problems caused by
481  * delayed timers or bad hardware, which might result in time intervals that
482  * are larger than what the math used can handle without overflows.
483  */
484 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
485 {
486 	u64 max_nsecs, max_cycles;
487 
488 	/*
489 	 * Calculate the maximum number of cycles that we can pass to the
490 	 * cyc2ns() function without overflowing a 64-bit result.
491 	 */
492 	max_cycles = ULLONG_MAX;
493 	do_div(max_cycles, mult+maxadj);
494 
495 	/*
496 	 * The actual maximum number of cycles we can defer the clocksource is
497 	 * determined by the minimum of max_cycles and mask.
498 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
499 	 * too long if there's a large negative adjustment.
500 	 */
501 	max_cycles = min(max_cycles, mask);
502 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
503 
504 	/* return the max_cycles value as well if requested */
505 	if (max_cyc)
506 		*max_cyc = max_cycles;
507 
508 	/* Return 50% of the actual maximum, so we can detect bad values */
509 	max_nsecs >>= 1;
510 
511 	return max_nsecs;
512 }
513 
514 /**
515  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
516  * @cs:         Pointer to clocksource to be updated
517  *
518  */
519 static inline void clocksource_update_max_deferment(struct clocksource *cs)
520 {
521 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
522 						cs->maxadj, cs->mask,
523 						&cs->max_cycles);
524 }
525 
526 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
527 
528 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
529 {
530 	struct clocksource *cs;
531 
532 	if (!finished_booting || list_empty(&clocksource_list))
533 		return NULL;
534 
535 	/*
536 	 * We pick the clocksource with the highest rating. If oneshot
537 	 * mode is active, we pick the highres valid clocksource with
538 	 * the best rating.
539 	 */
540 	list_for_each_entry(cs, &clocksource_list, list) {
541 		if (skipcur && cs == curr_clocksource)
542 			continue;
543 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
544 			continue;
545 		return cs;
546 	}
547 	return NULL;
548 }
549 
550 static void __clocksource_select(bool skipcur)
551 {
552 	bool oneshot = tick_oneshot_mode_active();
553 	struct clocksource *best, *cs;
554 
555 	/* Find the best suitable clocksource */
556 	best = clocksource_find_best(oneshot, skipcur);
557 	if (!best)
558 		return;
559 
560 	/* Check for the override clocksource. */
561 	list_for_each_entry(cs, &clocksource_list, list) {
562 		if (skipcur && cs == curr_clocksource)
563 			continue;
564 		if (strcmp(cs->name, override_name) != 0)
565 			continue;
566 		/*
567 		 * Check to make sure we don't switch to a non-highres
568 		 * capable clocksource if the tick code is in oneshot
569 		 * mode (highres or nohz)
570 		 */
571 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
572 			/* Override clocksource cannot be used. */
573 			pr_warn("Override clocksource %s is not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
574 				cs->name);
575 			override_name[0] = 0;
576 		} else
577 			/* Override clocksource can be used. */
578 			best = cs;
579 		break;
580 	}
581 
582 	if (curr_clocksource != best && !timekeeping_notify(best)) {
583 		pr_info("Switched to clocksource %s\n", best->name);
584 		curr_clocksource = best;
585 	}
586 }
587 
588 /**
589  * clocksource_select - Select the best clocksource available
590  *
591  * Private function. Must hold clocksource_mutex when called.
592  *
593  * Select the clocksource with the best rating, or the clocksource,
594  * which is selected by userspace override.
595  */
596 static void clocksource_select(void)
597 {
598 	__clocksource_select(false);
599 }
600 
601 static void clocksource_select_fallback(void)
602 {
603 	__clocksource_select(true);
604 }
605 
606 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
607 static inline void clocksource_select(void) { }
608 static inline void clocksource_select_fallback(void) { }
609 
610 #endif
611 
612 /*
613  * clocksource_done_booting - Called near the end of core bootup
614  *
615  * Hack to avoid lots of clocksource churn at boot time.
616  * We use fs_initcall because we want this to start before
617  * device_initcall but after subsys_initcall.
618  */
619 static int __init clocksource_done_booting(void)
620 {
621 	mutex_lock(&clocksource_mutex);
622 	curr_clocksource = clocksource_default_clock();
623 	finished_booting = 1;
624 	/*
625 	 * Run the watchdog first to eliminate unstable clock sources
626 	 */
627 	__clocksource_watchdog_kthread();
628 	clocksource_select();
629 	mutex_unlock(&clocksource_mutex);
630 	return 0;
631 }
632 fs_initcall(clocksource_done_booting);
633 
634 /*
635  * Enqueue the clocksource sorted by rating
636  */
637 static void clocksource_enqueue(struct clocksource *cs)
638 {
639 	struct list_head *entry = &clocksource_list;
640 	struct clocksource *tmp;
641 
642 	list_for_each_entry(tmp, &clocksource_list, list)
643 		/* Keep track of the place, where to insert */
644 		if (tmp->rating >= cs->rating)
645 			entry = &tmp->list;
646 	list_add(&cs->list, entry);
647 }
648 
649 /**
650  * __clocksource_update_freq_scale - Used update clocksource with new freq
651  * @cs:		clocksource to be registered
652  * @scale:	Scale factor multiplied against freq to get clocksource hz
653  * @freq:	clocksource frequency (cycles per second) divided by scale
654  *
655  * This should only be called from the clocksource->enable() method.
656  *
657  * This *SHOULD NOT* be called directly! Please use the
658  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
659  * functions.
660  */
661 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
662 {
663 	u64 sec;
664 
665 	/*
666 	 * Default clocksources are *special* and self-define their mult/shift.
667 	 * But, you're not special, so you should specify a freq value.
668 	 */
669 	if (freq) {
670 		/*
671 		 * Calc the maximum number of seconds which we can run before
672 		 * wrapping around. For clocksources which have a mask > 32-bit
673 		 * we need to limit the max sleep time to have a good
674 		 * conversion precision. 10 minutes is still a reasonable
675 		 * amount. That results in a shift value of 24 for a
676 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
677 		 * ~ 0.06ppm granularity for NTP.
678 		 */
679 		sec = cs->mask;
680 		do_div(sec, freq);
681 		do_div(sec, scale);
682 		if (!sec)
683 			sec = 1;
684 		else if (sec > 600 && cs->mask > UINT_MAX)
685 			sec = 600;
686 
687 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
688 				       NSEC_PER_SEC / scale, sec * scale);
689 	}
690 	/*
691 	 * Ensure clocksources that have large 'mult' values don't overflow
692 	 * when adjusted.
693 	 */
694 	cs->maxadj = clocksource_max_adjustment(cs);
695 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
696 		|| (cs->mult - cs->maxadj > cs->mult))) {
697 		cs->mult >>= 1;
698 		cs->shift--;
699 		cs->maxadj = clocksource_max_adjustment(cs);
700 	}
701 
702 	/*
703 	 * Only warn for *special* clocksources that self-define
704 	 * their mult/shift values and don't specify a freq.
705 	 */
706 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
707 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
708 		cs->name);
709 
710 	clocksource_update_max_deferment(cs);
711 
712 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
713 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
714 }
715 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
716 
717 /**
718  * __clocksource_register_scale - Used to install new clocksources
719  * @cs:		clocksource to be registered
720  * @scale:	Scale factor multiplied against freq to get clocksource hz
721  * @freq:	clocksource frequency (cycles per second) divided by scale
722  *
723  * Returns -EBUSY if registration fails, zero otherwise.
724  *
725  * This *SHOULD NOT* be called directly! Please use the
726  * clocksource_register_hz() or clocksource_register_khz helper functions.
727  */
728 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
729 {
730 
731 	/* Initialize mult/shift and max_idle_ns */
732 	__clocksource_update_freq_scale(cs, scale, freq);
733 
734 	/* Add clocksource to the clocksource list */
735 	mutex_lock(&clocksource_mutex);
736 	clocksource_enqueue(cs);
737 	clocksource_enqueue_watchdog(cs);
738 	clocksource_select();
739 	mutex_unlock(&clocksource_mutex);
740 	return 0;
741 }
742 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
743 
744 static void __clocksource_change_rating(struct clocksource *cs, int rating)
745 {
746 	list_del(&cs->list);
747 	cs->rating = rating;
748 	clocksource_enqueue(cs);
749 }
750 
751 /**
752  * clocksource_change_rating - Change the rating of a registered clocksource
753  * @cs:		clocksource to be changed
754  * @rating:	new rating
755  */
756 void clocksource_change_rating(struct clocksource *cs, int rating)
757 {
758 	mutex_lock(&clocksource_mutex);
759 	__clocksource_change_rating(cs, rating);
760 	clocksource_select();
761 	mutex_unlock(&clocksource_mutex);
762 }
763 EXPORT_SYMBOL(clocksource_change_rating);
764 
765 /*
766  * Unbind clocksource @cs. Called with clocksource_mutex held
767  */
768 static int clocksource_unbind(struct clocksource *cs)
769 {
770 	/*
771 	 * I really can't convince myself to support this on hardware
772 	 * designed by lobotomized monkeys.
773 	 */
774 	if (clocksource_is_watchdog(cs))
775 		return -EBUSY;
776 
777 	if (cs == curr_clocksource) {
778 		/* Select and try to install a replacement clock source */
779 		clocksource_select_fallback();
780 		if (curr_clocksource == cs)
781 			return -EBUSY;
782 	}
783 	clocksource_dequeue_watchdog(cs);
784 	list_del_init(&cs->list);
785 	return 0;
786 }
787 
788 /**
789  * clocksource_unregister - remove a registered clocksource
790  * @cs:	clocksource to be unregistered
791  */
792 int clocksource_unregister(struct clocksource *cs)
793 {
794 	int ret = 0;
795 
796 	mutex_lock(&clocksource_mutex);
797 	if (!list_empty(&cs->list))
798 		ret = clocksource_unbind(cs);
799 	mutex_unlock(&clocksource_mutex);
800 	return ret;
801 }
802 EXPORT_SYMBOL(clocksource_unregister);
803 
804 #ifdef CONFIG_SYSFS
805 /**
806  * sysfs_show_current_clocksources - sysfs interface for current clocksource
807  * @dev:	unused
808  * @attr:	unused
809  * @buf:	char buffer to be filled with clocksource list
810  *
811  * Provides sysfs interface for listing current clocksource.
812  */
813 static ssize_t
814 sysfs_show_current_clocksources(struct device *dev,
815 				struct device_attribute *attr, char *buf)
816 {
817 	ssize_t count = 0;
818 
819 	mutex_lock(&clocksource_mutex);
820 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
821 	mutex_unlock(&clocksource_mutex);
822 
823 	return count;
824 }
825 
826 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
827 {
828 	size_t ret = cnt;
829 
830 	/* strings from sysfs write are not 0 terminated! */
831 	if (!cnt || cnt >= CS_NAME_LEN)
832 		return -EINVAL;
833 
834 	/* strip of \n: */
835 	if (buf[cnt-1] == '\n')
836 		cnt--;
837 	if (cnt > 0)
838 		memcpy(dst, buf, cnt);
839 	dst[cnt] = 0;
840 	return ret;
841 }
842 
843 /**
844  * sysfs_override_clocksource - interface for manually overriding clocksource
845  * @dev:	unused
846  * @attr:	unused
847  * @buf:	name of override clocksource
848  * @count:	length of buffer
849  *
850  * Takes input from sysfs interface for manually overriding the default
851  * clocksource selection.
852  */
853 static ssize_t sysfs_override_clocksource(struct device *dev,
854 					  struct device_attribute *attr,
855 					  const char *buf, size_t count)
856 {
857 	ssize_t ret;
858 
859 	mutex_lock(&clocksource_mutex);
860 
861 	ret = sysfs_get_uname(buf, override_name, count);
862 	if (ret >= 0)
863 		clocksource_select();
864 
865 	mutex_unlock(&clocksource_mutex);
866 
867 	return ret;
868 }
869 
870 /**
871  * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
872  * @dev:	unused
873  * @attr:	unused
874  * @buf:	unused
875  * @count:	length of buffer
876  *
877  * Takes input from sysfs interface for manually unbinding a clocksource.
878  */
879 static ssize_t sysfs_unbind_clocksource(struct device *dev,
880 					struct device_attribute *attr,
881 					const char *buf, size_t count)
882 {
883 	struct clocksource *cs;
884 	char name[CS_NAME_LEN];
885 	ssize_t ret;
886 
887 	ret = sysfs_get_uname(buf, name, count);
888 	if (ret < 0)
889 		return ret;
890 
891 	ret = -ENODEV;
892 	mutex_lock(&clocksource_mutex);
893 	list_for_each_entry(cs, &clocksource_list, list) {
894 		if (strcmp(cs->name, name))
895 			continue;
896 		ret = clocksource_unbind(cs);
897 		break;
898 	}
899 	mutex_unlock(&clocksource_mutex);
900 
901 	return ret ? ret : count;
902 }
903 
904 /**
905  * sysfs_show_available_clocksources - sysfs interface for listing clocksource
906  * @dev:	unused
907  * @attr:	unused
908  * @buf:	char buffer to be filled with clocksource list
909  *
910  * Provides sysfs interface for listing registered clocksources
911  */
912 static ssize_t
913 sysfs_show_available_clocksources(struct device *dev,
914 				  struct device_attribute *attr,
915 				  char *buf)
916 {
917 	struct clocksource *src;
918 	ssize_t count = 0;
919 
920 	mutex_lock(&clocksource_mutex);
921 	list_for_each_entry(src, &clocksource_list, list) {
922 		/*
923 		 * Don't show non-HRES clocksource if the tick code is
924 		 * in one shot mode (highres=on or nohz=on)
925 		 */
926 		if (!tick_oneshot_mode_active() ||
927 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
928 			count += snprintf(buf + count,
929 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
930 				  "%s ", src->name);
931 	}
932 	mutex_unlock(&clocksource_mutex);
933 
934 	count += snprintf(buf + count,
935 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
936 
937 	return count;
938 }
939 
940 /*
941  * Sysfs setup bits:
942  */
943 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
944 		   sysfs_override_clocksource);
945 
946 static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
947 
948 static DEVICE_ATTR(available_clocksource, 0444,
949 		   sysfs_show_available_clocksources, NULL);
950 
951 static struct bus_type clocksource_subsys = {
952 	.name = "clocksource",
953 	.dev_name = "clocksource",
954 };
955 
956 static struct device device_clocksource = {
957 	.id	= 0,
958 	.bus	= &clocksource_subsys,
959 };
960 
961 static int __init init_clocksource_sysfs(void)
962 {
963 	int error = subsys_system_register(&clocksource_subsys, NULL);
964 
965 	if (!error)
966 		error = device_register(&device_clocksource);
967 	if (!error)
968 		error = device_create_file(
969 				&device_clocksource,
970 				&dev_attr_current_clocksource);
971 	if (!error)
972 		error = device_create_file(&device_clocksource,
973 					   &dev_attr_unbind_clocksource);
974 	if (!error)
975 		error = device_create_file(
976 				&device_clocksource,
977 				&dev_attr_available_clocksource);
978 	return error;
979 }
980 
981 device_initcall(init_clocksource_sysfs);
982 #endif /* CONFIG_SYSFS */
983 
984 /**
985  * boot_override_clocksource - boot clock override
986  * @str:	override name
987  *
988  * Takes a clocksource= boot argument and uses it
989  * as the clocksource override name.
990  */
991 static int __init boot_override_clocksource(char* str)
992 {
993 	mutex_lock(&clocksource_mutex);
994 	if (str)
995 		strlcpy(override_name, str, sizeof(override_name));
996 	mutex_unlock(&clocksource_mutex);
997 	return 1;
998 }
999 
1000 __setup("clocksource=", boot_override_clocksource);
1001 
1002 /**
1003  * boot_override_clock - Compatibility layer for deprecated boot option
1004  * @str:	override name
1005  *
1006  * DEPRECATED! Takes a clock= boot argument and uses it
1007  * as the clocksource override name
1008  */
1009 static int __init boot_override_clock(char* str)
1010 {
1011 	if (!strcmp(str, "pmtmr")) {
1012 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1013 		return boot_override_clocksource("acpi_pm");
1014 	}
1015 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1016 	return boot_override_clocksource(str);
1017 }
1018 
1019 __setup("clock=", boot_override_clock);
1020