1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * This file contains the functions which manage clocksource drivers. 4 * 5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/device.h> 11 #include <linux/clocksource.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ 15 #include <linux/tick.h> 16 #include <linux/kthread.h> 17 18 #include "tick-internal.h" 19 #include "timekeeping_internal.h" 20 21 /** 22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks 23 * @mult: pointer to mult variable 24 * @shift: pointer to shift variable 25 * @from: frequency to convert from 26 * @to: frequency to convert to 27 * @maxsec: guaranteed runtime conversion range in seconds 28 * 29 * The function evaluates the shift/mult pair for the scaled math 30 * operations of clocksources and clockevents. 31 * 32 * @to and @from are frequency values in HZ. For clock sources @to is 33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock 34 * event @to is the counter frequency and @from is NSEC_PER_SEC. 35 * 36 * The @maxsec conversion range argument controls the time frame in 37 * seconds which must be covered by the runtime conversion with the 38 * calculated mult and shift factors. This guarantees that no 64bit 39 * overflow happens when the input value of the conversion is 40 * multiplied with the calculated mult factor. Larger ranges may 41 * reduce the conversion accuracy by chosing smaller mult and shift 42 * factors. 43 */ 44 void 45 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec) 46 { 47 u64 tmp; 48 u32 sft, sftacc= 32; 49 50 /* 51 * Calculate the shift factor which is limiting the conversion 52 * range: 53 */ 54 tmp = ((u64)maxsec * from) >> 32; 55 while (tmp) { 56 tmp >>=1; 57 sftacc--; 58 } 59 60 /* 61 * Find the conversion shift/mult pair which has the best 62 * accuracy and fits the maxsec conversion range: 63 */ 64 for (sft = 32; sft > 0; sft--) { 65 tmp = (u64) to << sft; 66 tmp += from / 2; 67 do_div(tmp, from); 68 if ((tmp >> sftacc) == 0) 69 break; 70 } 71 *mult = tmp; 72 *shift = sft; 73 } 74 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift); 75 76 /*[Clocksource internal variables]--------- 77 * curr_clocksource: 78 * currently selected clocksource. 79 * suspend_clocksource: 80 * used to calculate the suspend time. 81 * clocksource_list: 82 * linked list with the registered clocksources 83 * clocksource_mutex: 84 * protects manipulations to curr_clocksource and the clocksource_list 85 * override_name: 86 * Name of the user-specified clocksource. 87 */ 88 static struct clocksource *curr_clocksource; 89 static struct clocksource *suspend_clocksource; 90 static LIST_HEAD(clocksource_list); 91 static DEFINE_MUTEX(clocksource_mutex); 92 static char override_name[CS_NAME_LEN]; 93 static int finished_booting; 94 static u64 suspend_start; 95 96 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG 97 static void clocksource_watchdog_work(struct work_struct *work); 98 static void clocksource_select(void); 99 100 static LIST_HEAD(watchdog_list); 101 static struct clocksource *watchdog; 102 static struct timer_list watchdog_timer; 103 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); 104 static DEFINE_SPINLOCK(watchdog_lock); 105 static int watchdog_running; 106 static atomic_t watchdog_reset_pending; 107 108 static void inline clocksource_watchdog_lock(unsigned long *flags) 109 { 110 spin_lock_irqsave(&watchdog_lock, *flags); 111 } 112 113 static void inline clocksource_watchdog_unlock(unsigned long *flags) 114 { 115 spin_unlock_irqrestore(&watchdog_lock, *flags); 116 } 117 118 static int clocksource_watchdog_kthread(void *data); 119 static void __clocksource_change_rating(struct clocksource *cs, int rating); 120 121 /* 122 * Interval: 0.5sec Threshold: 0.0625s 123 */ 124 #define WATCHDOG_INTERVAL (HZ >> 1) 125 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) 126 127 static void clocksource_watchdog_work(struct work_struct *work) 128 { 129 /* 130 * We cannot directly run clocksource_watchdog_kthread() here, because 131 * clocksource_select() calls timekeeping_notify() which uses 132 * stop_machine(). One cannot use stop_machine() from a workqueue() due 133 * lock inversions wrt CPU hotplug. 134 * 135 * Also, we only ever run this work once or twice during the lifetime 136 * of the kernel, so there is no point in creating a more permanent 137 * kthread for this. 138 * 139 * If kthread_run fails the next watchdog scan over the 140 * watchdog_list will find the unstable clock again. 141 */ 142 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); 143 } 144 145 static void __clocksource_unstable(struct clocksource *cs) 146 { 147 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); 148 cs->flags |= CLOCK_SOURCE_UNSTABLE; 149 150 /* 151 * If the clocksource is registered clocksource_watchdog_kthread() will 152 * re-rate and re-select. 153 */ 154 if (list_empty(&cs->list)) { 155 cs->rating = 0; 156 return; 157 } 158 159 if (cs->mark_unstable) 160 cs->mark_unstable(cs); 161 162 /* kick clocksource_watchdog_kthread() */ 163 if (finished_booting) 164 schedule_work(&watchdog_work); 165 } 166 167 /** 168 * clocksource_mark_unstable - mark clocksource unstable via watchdog 169 * @cs: clocksource to be marked unstable 170 * 171 * This function is called by the x86 TSC code to mark clocksources as unstable; 172 * it defers demotion and re-selection to a kthread. 173 */ 174 void clocksource_mark_unstable(struct clocksource *cs) 175 { 176 unsigned long flags; 177 178 spin_lock_irqsave(&watchdog_lock, flags); 179 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { 180 if (!list_empty(&cs->list) && list_empty(&cs->wd_list)) 181 list_add(&cs->wd_list, &watchdog_list); 182 __clocksource_unstable(cs); 183 } 184 spin_unlock_irqrestore(&watchdog_lock, flags); 185 } 186 187 static void clocksource_watchdog(struct timer_list *unused) 188 { 189 struct clocksource *cs; 190 u64 csnow, wdnow, cslast, wdlast, delta; 191 int64_t wd_nsec, cs_nsec; 192 int next_cpu, reset_pending; 193 194 spin_lock(&watchdog_lock); 195 if (!watchdog_running) 196 goto out; 197 198 reset_pending = atomic_read(&watchdog_reset_pending); 199 200 list_for_each_entry(cs, &watchdog_list, wd_list) { 201 202 /* Clocksource already marked unstable? */ 203 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 204 if (finished_booting) 205 schedule_work(&watchdog_work); 206 continue; 207 } 208 209 local_irq_disable(); 210 csnow = cs->read(cs); 211 wdnow = watchdog->read(watchdog); 212 local_irq_enable(); 213 214 /* Clocksource initialized ? */ 215 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || 216 atomic_read(&watchdog_reset_pending)) { 217 cs->flags |= CLOCK_SOURCE_WATCHDOG; 218 cs->wd_last = wdnow; 219 cs->cs_last = csnow; 220 continue; 221 } 222 223 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask); 224 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult, 225 watchdog->shift); 226 227 delta = clocksource_delta(csnow, cs->cs_last, cs->mask); 228 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift); 229 wdlast = cs->wd_last; /* save these in case we print them */ 230 cslast = cs->cs_last; 231 cs->cs_last = csnow; 232 cs->wd_last = wdnow; 233 234 if (atomic_read(&watchdog_reset_pending)) 235 continue; 236 237 /* Check the deviation from the watchdog clocksource. */ 238 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) { 239 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n", 240 smp_processor_id(), cs->name); 241 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n", 242 watchdog->name, wdnow, wdlast, watchdog->mask); 243 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n", 244 cs->name, csnow, cslast, cs->mask); 245 __clocksource_unstable(cs); 246 continue; 247 } 248 249 if (cs == curr_clocksource && cs->tick_stable) 250 cs->tick_stable(cs); 251 252 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && 253 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && 254 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { 255 /* Mark it valid for high-res. */ 256 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 257 258 /* 259 * clocksource_done_booting() will sort it if 260 * finished_booting is not set yet. 261 */ 262 if (!finished_booting) 263 continue; 264 265 /* 266 * If this is not the current clocksource let 267 * the watchdog thread reselect it. Due to the 268 * change to high res this clocksource might 269 * be preferred now. If it is the current 270 * clocksource let the tick code know about 271 * that change. 272 */ 273 if (cs != curr_clocksource) { 274 cs->flags |= CLOCK_SOURCE_RESELECT; 275 schedule_work(&watchdog_work); 276 } else { 277 tick_clock_notify(); 278 } 279 } 280 } 281 282 /* 283 * We only clear the watchdog_reset_pending, when we did a 284 * full cycle through all clocksources. 285 */ 286 if (reset_pending) 287 atomic_dec(&watchdog_reset_pending); 288 289 /* 290 * Cycle through CPUs to check if the CPUs stay synchronized 291 * to each other. 292 */ 293 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); 294 if (next_cpu >= nr_cpu_ids) 295 next_cpu = cpumask_first(cpu_online_mask); 296 watchdog_timer.expires += WATCHDOG_INTERVAL; 297 add_timer_on(&watchdog_timer, next_cpu); 298 out: 299 spin_unlock(&watchdog_lock); 300 } 301 302 static inline void clocksource_start_watchdog(void) 303 { 304 if (watchdog_running || !watchdog || list_empty(&watchdog_list)) 305 return; 306 timer_setup(&watchdog_timer, clocksource_watchdog, 0); 307 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; 308 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); 309 watchdog_running = 1; 310 } 311 312 static inline void clocksource_stop_watchdog(void) 313 { 314 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) 315 return; 316 del_timer(&watchdog_timer); 317 watchdog_running = 0; 318 } 319 320 static inline void clocksource_reset_watchdog(void) 321 { 322 struct clocksource *cs; 323 324 list_for_each_entry(cs, &watchdog_list, wd_list) 325 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 326 } 327 328 static void clocksource_resume_watchdog(void) 329 { 330 atomic_inc(&watchdog_reset_pending); 331 } 332 333 static void clocksource_enqueue_watchdog(struct clocksource *cs) 334 { 335 INIT_LIST_HEAD(&cs->wd_list); 336 337 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 338 /* cs is a clocksource to be watched. */ 339 list_add(&cs->wd_list, &watchdog_list); 340 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 341 } else { 342 /* cs is a watchdog. */ 343 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 344 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 345 } 346 } 347 348 static void clocksource_select_watchdog(bool fallback) 349 { 350 struct clocksource *cs, *old_wd; 351 unsigned long flags; 352 353 spin_lock_irqsave(&watchdog_lock, flags); 354 /* save current watchdog */ 355 old_wd = watchdog; 356 if (fallback) 357 watchdog = NULL; 358 359 list_for_each_entry(cs, &clocksource_list, list) { 360 /* cs is a clocksource to be watched. */ 361 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) 362 continue; 363 364 /* Skip current if we were requested for a fallback. */ 365 if (fallback && cs == old_wd) 366 continue; 367 368 /* Pick the best watchdog. */ 369 if (!watchdog || cs->rating > watchdog->rating) 370 watchdog = cs; 371 } 372 /* If we failed to find a fallback restore the old one. */ 373 if (!watchdog) 374 watchdog = old_wd; 375 376 /* If we changed the watchdog we need to reset cycles. */ 377 if (watchdog != old_wd) 378 clocksource_reset_watchdog(); 379 380 /* Check if the watchdog timer needs to be started. */ 381 clocksource_start_watchdog(); 382 spin_unlock_irqrestore(&watchdog_lock, flags); 383 } 384 385 static void clocksource_dequeue_watchdog(struct clocksource *cs) 386 { 387 if (cs != watchdog) { 388 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 389 /* cs is a watched clocksource. */ 390 list_del_init(&cs->wd_list); 391 /* Check if the watchdog timer needs to be stopped. */ 392 clocksource_stop_watchdog(); 393 } 394 } 395 } 396 397 static int __clocksource_watchdog_kthread(void) 398 { 399 struct clocksource *cs, *tmp; 400 unsigned long flags; 401 int select = 0; 402 403 spin_lock_irqsave(&watchdog_lock, flags); 404 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { 405 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 406 list_del_init(&cs->wd_list); 407 __clocksource_change_rating(cs, 0); 408 select = 1; 409 } 410 if (cs->flags & CLOCK_SOURCE_RESELECT) { 411 cs->flags &= ~CLOCK_SOURCE_RESELECT; 412 select = 1; 413 } 414 } 415 /* Check if the watchdog timer needs to be stopped. */ 416 clocksource_stop_watchdog(); 417 spin_unlock_irqrestore(&watchdog_lock, flags); 418 419 return select; 420 } 421 422 static int clocksource_watchdog_kthread(void *data) 423 { 424 mutex_lock(&clocksource_mutex); 425 if (__clocksource_watchdog_kthread()) 426 clocksource_select(); 427 mutex_unlock(&clocksource_mutex); 428 return 0; 429 } 430 431 static bool clocksource_is_watchdog(struct clocksource *cs) 432 { 433 return cs == watchdog; 434 } 435 436 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ 437 438 static void clocksource_enqueue_watchdog(struct clocksource *cs) 439 { 440 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 441 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 442 } 443 444 static void clocksource_select_watchdog(bool fallback) { } 445 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } 446 static inline void clocksource_resume_watchdog(void) { } 447 static inline int __clocksource_watchdog_kthread(void) { return 0; } 448 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; } 449 void clocksource_mark_unstable(struct clocksource *cs) { } 450 451 static inline void clocksource_watchdog_lock(unsigned long *flags) { } 452 static inline void clocksource_watchdog_unlock(unsigned long *flags) { } 453 454 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ 455 456 static bool clocksource_is_suspend(struct clocksource *cs) 457 { 458 return cs == suspend_clocksource; 459 } 460 461 static void __clocksource_suspend_select(struct clocksource *cs) 462 { 463 /* 464 * Skip the clocksource which will be stopped in suspend state. 465 */ 466 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP)) 467 return; 468 469 /* 470 * The nonstop clocksource can be selected as the suspend clocksource to 471 * calculate the suspend time, so it should not supply suspend/resume 472 * interfaces to suspend the nonstop clocksource when system suspends. 473 */ 474 if (cs->suspend || cs->resume) { 475 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n", 476 cs->name); 477 } 478 479 /* Pick the best rating. */ 480 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating) 481 suspend_clocksource = cs; 482 } 483 484 /** 485 * clocksource_suspend_select - Select the best clocksource for suspend timing 486 * @fallback: if select a fallback clocksource 487 */ 488 static void clocksource_suspend_select(bool fallback) 489 { 490 struct clocksource *cs, *old_suspend; 491 492 old_suspend = suspend_clocksource; 493 if (fallback) 494 suspend_clocksource = NULL; 495 496 list_for_each_entry(cs, &clocksource_list, list) { 497 /* Skip current if we were requested for a fallback. */ 498 if (fallback && cs == old_suspend) 499 continue; 500 501 __clocksource_suspend_select(cs); 502 } 503 } 504 505 /** 506 * clocksource_start_suspend_timing - Start measuring the suspend timing 507 * @cs: current clocksource from timekeeping 508 * @start_cycles: current cycles from timekeeping 509 * 510 * This function will save the start cycle values of suspend timer to calculate 511 * the suspend time when resuming system. 512 * 513 * This function is called late in the suspend process from timekeeping_suspend(), 514 * that means processes are freezed, non-boot cpus and interrupts are disabled 515 * now. It is therefore possible to start the suspend timer without taking the 516 * clocksource mutex. 517 */ 518 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles) 519 { 520 if (!suspend_clocksource) 521 return; 522 523 /* 524 * If current clocksource is the suspend timer, we should use the 525 * tkr_mono.cycle_last value as suspend_start to avoid same reading 526 * from suspend timer. 527 */ 528 if (clocksource_is_suspend(cs)) { 529 suspend_start = start_cycles; 530 return; 531 } 532 533 if (suspend_clocksource->enable && 534 suspend_clocksource->enable(suspend_clocksource)) { 535 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n"); 536 return; 537 } 538 539 suspend_start = suspend_clocksource->read(suspend_clocksource); 540 } 541 542 /** 543 * clocksource_stop_suspend_timing - Stop measuring the suspend timing 544 * @cs: current clocksource from timekeeping 545 * @cycle_now: current cycles from timekeeping 546 * 547 * This function will calculate the suspend time from suspend timer. 548 * 549 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource. 550 * 551 * This function is called early in the resume process from timekeeping_resume(), 552 * that means there is only one cpu, no processes are running and the interrupts 553 * are disabled. It is therefore possible to stop the suspend timer without 554 * taking the clocksource mutex. 555 */ 556 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now) 557 { 558 u64 now, delta, nsec = 0; 559 560 if (!suspend_clocksource) 561 return 0; 562 563 /* 564 * If current clocksource is the suspend timer, we should use the 565 * tkr_mono.cycle_last value from timekeeping as current cycle to 566 * avoid same reading from suspend timer. 567 */ 568 if (clocksource_is_suspend(cs)) 569 now = cycle_now; 570 else 571 now = suspend_clocksource->read(suspend_clocksource); 572 573 if (now > suspend_start) { 574 delta = clocksource_delta(now, suspend_start, 575 suspend_clocksource->mask); 576 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult, 577 suspend_clocksource->shift); 578 } 579 580 /* 581 * Disable the suspend timer to save power if current clocksource is 582 * not the suspend timer. 583 */ 584 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable) 585 suspend_clocksource->disable(suspend_clocksource); 586 587 return nsec; 588 } 589 590 /** 591 * clocksource_suspend - suspend the clocksource(s) 592 */ 593 void clocksource_suspend(void) 594 { 595 struct clocksource *cs; 596 597 list_for_each_entry_reverse(cs, &clocksource_list, list) 598 if (cs->suspend) 599 cs->suspend(cs); 600 } 601 602 /** 603 * clocksource_resume - resume the clocksource(s) 604 */ 605 void clocksource_resume(void) 606 { 607 struct clocksource *cs; 608 609 list_for_each_entry(cs, &clocksource_list, list) 610 if (cs->resume) 611 cs->resume(cs); 612 613 clocksource_resume_watchdog(); 614 } 615 616 /** 617 * clocksource_touch_watchdog - Update watchdog 618 * 619 * Update the watchdog after exception contexts such as kgdb so as not 620 * to incorrectly trip the watchdog. This might fail when the kernel 621 * was stopped in code which holds watchdog_lock. 622 */ 623 void clocksource_touch_watchdog(void) 624 { 625 clocksource_resume_watchdog(); 626 } 627 628 /** 629 * clocksource_max_adjustment- Returns max adjustment amount 630 * @cs: Pointer to clocksource 631 * 632 */ 633 static u32 clocksource_max_adjustment(struct clocksource *cs) 634 { 635 u64 ret; 636 /* 637 * We won't try to correct for more than 11% adjustments (110,000 ppm), 638 */ 639 ret = (u64)cs->mult * 11; 640 do_div(ret,100); 641 return (u32)ret; 642 } 643 644 /** 645 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted 646 * @mult: cycle to nanosecond multiplier 647 * @shift: cycle to nanosecond divisor (power of two) 648 * @maxadj: maximum adjustment value to mult (~11%) 649 * @mask: bitmask for two's complement subtraction of non 64 bit counters 650 * @max_cyc: maximum cycle value before potential overflow (does not include 651 * any safety margin) 652 * 653 * NOTE: This function includes a safety margin of 50%, in other words, we 654 * return half the number of nanoseconds the hardware counter can technically 655 * cover. This is done so that we can potentially detect problems caused by 656 * delayed timers or bad hardware, which might result in time intervals that 657 * are larger than what the math used can handle without overflows. 658 */ 659 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc) 660 { 661 u64 max_nsecs, max_cycles; 662 663 /* 664 * Calculate the maximum number of cycles that we can pass to the 665 * cyc2ns() function without overflowing a 64-bit result. 666 */ 667 max_cycles = ULLONG_MAX; 668 do_div(max_cycles, mult+maxadj); 669 670 /* 671 * The actual maximum number of cycles we can defer the clocksource is 672 * determined by the minimum of max_cycles and mask. 673 * Note: Here we subtract the maxadj to make sure we don't sleep for 674 * too long if there's a large negative adjustment. 675 */ 676 max_cycles = min(max_cycles, mask); 677 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift); 678 679 /* return the max_cycles value as well if requested */ 680 if (max_cyc) 681 *max_cyc = max_cycles; 682 683 /* Return 50% of the actual maximum, so we can detect bad values */ 684 max_nsecs >>= 1; 685 686 return max_nsecs; 687 } 688 689 /** 690 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles 691 * @cs: Pointer to clocksource to be updated 692 * 693 */ 694 static inline void clocksource_update_max_deferment(struct clocksource *cs) 695 { 696 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift, 697 cs->maxadj, cs->mask, 698 &cs->max_cycles); 699 } 700 701 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET 702 703 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur) 704 { 705 struct clocksource *cs; 706 707 if (!finished_booting || list_empty(&clocksource_list)) 708 return NULL; 709 710 /* 711 * We pick the clocksource with the highest rating. If oneshot 712 * mode is active, we pick the highres valid clocksource with 713 * the best rating. 714 */ 715 list_for_each_entry(cs, &clocksource_list, list) { 716 if (skipcur && cs == curr_clocksource) 717 continue; 718 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 719 continue; 720 return cs; 721 } 722 return NULL; 723 } 724 725 static void __clocksource_select(bool skipcur) 726 { 727 bool oneshot = tick_oneshot_mode_active(); 728 struct clocksource *best, *cs; 729 730 /* Find the best suitable clocksource */ 731 best = clocksource_find_best(oneshot, skipcur); 732 if (!best) 733 return; 734 735 if (!strlen(override_name)) 736 goto found; 737 738 /* Check for the override clocksource. */ 739 list_for_each_entry(cs, &clocksource_list, list) { 740 if (skipcur && cs == curr_clocksource) 741 continue; 742 if (strcmp(cs->name, override_name) != 0) 743 continue; 744 /* 745 * Check to make sure we don't switch to a non-highres 746 * capable clocksource if the tick code is in oneshot 747 * mode (highres or nohz) 748 */ 749 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) { 750 /* Override clocksource cannot be used. */ 751 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 752 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n", 753 cs->name); 754 override_name[0] = 0; 755 } else { 756 /* 757 * The override cannot be currently verified. 758 * Deferring to let the watchdog check. 759 */ 760 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n", 761 cs->name); 762 } 763 } else 764 /* Override clocksource can be used. */ 765 best = cs; 766 break; 767 } 768 769 found: 770 if (curr_clocksource != best && !timekeeping_notify(best)) { 771 pr_info("Switched to clocksource %s\n", best->name); 772 curr_clocksource = best; 773 } 774 } 775 776 /** 777 * clocksource_select - Select the best clocksource available 778 * 779 * Private function. Must hold clocksource_mutex when called. 780 * 781 * Select the clocksource with the best rating, or the clocksource, 782 * which is selected by userspace override. 783 */ 784 static void clocksource_select(void) 785 { 786 __clocksource_select(false); 787 } 788 789 static void clocksource_select_fallback(void) 790 { 791 __clocksource_select(true); 792 } 793 794 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */ 795 static inline void clocksource_select(void) { } 796 static inline void clocksource_select_fallback(void) { } 797 798 #endif 799 800 /* 801 * clocksource_done_booting - Called near the end of core bootup 802 * 803 * Hack to avoid lots of clocksource churn at boot time. 804 * We use fs_initcall because we want this to start before 805 * device_initcall but after subsys_initcall. 806 */ 807 static int __init clocksource_done_booting(void) 808 { 809 mutex_lock(&clocksource_mutex); 810 curr_clocksource = clocksource_default_clock(); 811 finished_booting = 1; 812 /* 813 * Run the watchdog first to eliminate unstable clock sources 814 */ 815 __clocksource_watchdog_kthread(); 816 clocksource_select(); 817 mutex_unlock(&clocksource_mutex); 818 return 0; 819 } 820 fs_initcall(clocksource_done_booting); 821 822 /* 823 * Enqueue the clocksource sorted by rating 824 */ 825 static void clocksource_enqueue(struct clocksource *cs) 826 { 827 struct list_head *entry = &clocksource_list; 828 struct clocksource *tmp; 829 830 list_for_each_entry(tmp, &clocksource_list, list) { 831 /* Keep track of the place, where to insert */ 832 if (tmp->rating < cs->rating) 833 break; 834 entry = &tmp->list; 835 } 836 list_add(&cs->list, entry); 837 } 838 839 /** 840 * __clocksource_update_freq_scale - Used update clocksource with new freq 841 * @cs: clocksource to be registered 842 * @scale: Scale factor multiplied against freq to get clocksource hz 843 * @freq: clocksource frequency (cycles per second) divided by scale 844 * 845 * This should only be called from the clocksource->enable() method. 846 * 847 * This *SHOULD NOT* be called directly! Please use the 848 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper 849 * functions. 850 */ 851 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq) 852 { 853 u64 sec; 854 855 /* 856 * Default clocksources are *special* and self-define their mult/shift. 857 * But, you're not special, so you should specify a freq value. 858 */ 859 if (freq) { 860 /* 861 * Calc the maximum number of seconds which we can run before 862 * wrapping around. For clocksources which have a mask > 32-bit 863 * we need to limit the max sleep time to have a good 864 * conversion precision. 10 minutes is still a reasonable 865 * amount. That results in a shift value of 24 for a 866 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to 867 * ~ 0.06ppm granularity for NTP. 868 */ 869 sec = cs->mask; 870 do_div(sec, freq); 871 do_div(sec, scale); 872 if (!sec) 873 sec = 1; 874 else if (sec > 600 && cs->mask > UINT_MAX) 875 sec = 600; 876 877 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, 878 NSEC_PER_SEC / scale, sec * scale); 879 } 880 /* 881 * Ensure clocksources that have large 'mult' values don't overflow 882 * when adjusted. 883 */ 884 cs->maxadj = clocksource_max_adjustment(cs); 885 while (freq && ((cs->mult + cs->maxadj < cs->mult) 886 || (cs->mult - cs->maxadj > cs->mult))) { 887 cs->mult >>= 1; 888 cs->shift--; 889 cs->maxadj = clocksource_max_adjustment(cs); 890 } 891 892 /* 893 * Only warn for *special* clocksources that self-define 894 * their mult/shift values and don't specify a freq. 895 */ 896 WARN_ONCE(cs->mult + cs->maxadj < cs->mult, 897 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n", 898 cs->name); 899 900 clocksource_update_max_deferment(cs); 901 902 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n", 903 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns); 904 } 905 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale); 906 907 /** 908 * __clocksource_register_scale - Used to install new clocksources 909 * @cs: clocksource to be registered 910 * @scale: Scale factor multiplied against freq to get clocksource hz 911 * @freq: clocksource frequency (cycles per second) divided by scale 912 * 913 * Returns -EBUSY if registration fails, zero otherwise. 914 * 915 * This *SHOULD NOT* be called directly! Please use the 916 * clocksource_register_hz() or clocksource_register_khz helper functions. 917 */ 918 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) 919 { 920 unsigned long flags; 921 922 clocksource_arch_init(cs); 923 924 /* Initialize mult/shift and max_idle_ns */ 925 __clocksource_update_freq_scale(cs, scale, freq); 926 927 /* Add clocksource to the clocksource list */ 928 mutex_lock(&clocksource_mutex); 929 930 clocksource_watchdog_lock(&flags); 931 clocksource_enqueue(cs); 932 clocksource_enqueue_watchdog(cs); 933 clocksource_watchdog_unlock(&flags); 934 935 clocksource_select(); 936 clocksource_select_watchdog(false); 937 __clocksource_suspend_select(cs); 938 mutex_unlock(&clocksource_mutex); 939 return 0; 940 } 941 EXPORT_SYMBOL_GPL(__clocksource_register_scale); 942 943 static void __clocksource_change_rating(struct clocksource *cs, int rating) 944 { 945 list_del(&cs->list); 946 cs->rating = rating; 947 clocksource_enqueue(cs); 948 } 949 950 /** 951 * clocksource_change_rating - Change the rating of a registered clocksource 952 * @cs: clocksource to be changed 953 * @rating: new rating 954 */ 955 void clocksource_change_rating(struct clocksource *cs, int rating) 956 { 957 unsigned long flags; 958 959 mutex_lock(&clocksource_mutex); 960 clocksource_watchdog_lock(&flags); 961 __clocksource_change_rating(cs, rating); 962 clocksource_watchdog_unlock(&flags); 963 964 clocksource_select(); 965 clocksource_select_watchdog(false); 966 clocksource_suspend_select(false); 967 mutex_unlock(&clocksource_mutex); 968 } 969 EXPORT_SYMBOL(clocksource_change_rating); 970 971 /* 972 * Unbind clocksource @cs. Called with clocksource_mutex held 973 */ 974 static int clocksource_unbind(struct clocksource *cs) 975 { 976 unsigned long flags; 977 978 if (clocksource_is_watchdog(cs)) { 979 /* Select and try to install a replacement watchdog. */ 980 clocksource_select_watchdog(true); 981 if (clocksource_is_watchdog(cs)) 982 return -EBUSY; 983 } 984 985 if (cs == curr_clocksource) { 986 /* Select and try to install a replacement clock source */ 987 clocksource_select_fallback(); 988 if (curr_clocksource == cs) 989 return -EBUSY; 990 } 991 992 if (clocksource_is_suspend(cs)) { 993 /* 994 * Select and try to install a replacement suspend clocksource. 995 * If no replacement suspend clocksource, we will just let the 996 * clocksource go and have no suspend clocksource. 997 */ 998 clocksource_suspend_select(true); 999 } 1000 1001 clocksource_watchdog_lock(&flags); 1002 clocksource_dequeue_watchdog(cs); 1003 list_del_init(&cs->list); 1004 clocksource_watchdog_unlock(&flags); 1005 1006 return 0; 1007 } 1008 1009 /** 1010 * clocksource_unregister - remove a registered clocksource 1011 * @cs: clocksource to be unregistered 1012 */ 1013 int clocksource_unregister(struct clocksource *cs) 1014 { 1015 int ret = 0; 1016 1017 mutex_lock(&clocksource_mutex); 1018 if (!list_empty(&cs->list)) 1019 ret = clocksource_unbind(cs); 1020 mutex_unlock(&clocksource_mutex); 1021 return ret; 1022 } 1023 EXPORT_SYMBOL(clocksource_unregister); 1024 1025 #ifdef CONFIG_SYSFS 1026 /** 1027 * current_clocksource_show - sysfs interface for current clocksource 1028 * @dev: unused 1029 * @attr: unused 1030 * @buf: char buffer to be filled with clocksource list 1031 * 1032 * Provides sysfs interface for listing current clocksource. 1033 */ 1034 static ssize_t current_clocksource_show(struct device *dev, 1035 struct device_attribute *attr, 1036 char *buf) 1037 { 1038 ssize_t count = 0; 1039 1040 mutex_lock(&clocksource_mutex); 1041 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); 1042 mutex_unlock(&clocksource_mutex); 1043 1044 return count; 1045 } 1046 1047 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt) 1048 { 1049 size_t ret = cnt; 1050 1051 /* strings from sysfs write are not 0 terminated! */ 1052 if (!cnt || cnt >= CS_NAME_LEN) 1053 return -EINVAL; 1054 1055 /* strip of \n: */ 1056 if (buf[cnt-1] == '\n') 1057 cnt--; 1058 if (cnt > 0) 1059 memcpy(dst, buf, cnt); 1060 dst[cnt] = 0; 1061 return ret; 1062 } 1063 1064 /** 1065 * current_clocksource_store - interface for manually overriding clocksource 1066 * @dev: unused 1067 * @attr: unused 1068 * @buf: name of override clocksource 1069 * @count: length of buffer 1070 * 1071 * Takes input from sysfs interface for manually overriding the default 1072 * clocksource selection. 1073 */ 1074 static ssize_t current_clocksource_store(struct device *dev, 1075 struct device_attribute *attr, 1076 const char *buf, size_t count) 1077 { 1078 ssize_t ret; 1079 1080 mutex_lock(&clocksource_mutex); 1081 1082 ret = sysfs_get_uname(buf, override_name, count); 1083 if (ret >= 0) 1084 clocksource_select(); 1085 1086 mutex_unlock(&clocksource_mutex); 1087 1088 return ret; 1089 } 1090 static DEVICE_ATTR_RW(current_clocksource); 1091 1092 /** 1093 * unbind_clocksource_store - interface for manually unbinding clocksource 1094 * @dev: unused 1095 * @attr: unused 1096 * @buf: unused 1097 * @count: length of buffer 1098 * 1099 * Takes input from sysfs interface for manually unbinding a clocksource. 1100 */ 1101 static ssize_t unbind_clocksource_store(struct device *dev, 1102 struct device_attribute *attr, 1103 const char *buf, size_t count) 1104 { 1105 struct clocksource *cs; 1106 char name[CS_NAME_LEN]; 1107 ssize_t ret; 1108 1109 ret = sysfs_get_uname(buf, name, count); 1110 if (ret < 0) 1111 return ret; 1112 1113 ret = -ENODEV; 1114 mutex_lock(&clocksource_mutex); 1115 list_for_each_entry(cs, &clocksource_list, list) { 1116 if (strcmp(cs->name, name)) 1117 continue; 1118 ret = clocksource_unbind(cs); 1119 break; 1120 } 1121 mutex_unlock(&clocksource_mutex); 1122 1123 return ret ? ret : count; 1124 } 1125 static DEVICE_ATTR_WO(unbind_clocksource); 1126 1127 /** 1128 * available_clocksource_show - sysfs interface for listing clocksource 1129 * @dev: unused 1130 * @attr: unused 1131 * @buf: char buffer to be filled with clocksource list 1132 * 1133 * Provides sysfs interface for listing registered clocksources 1134 */ 1135 static ssize_t available_clocksource_show(struct device *dev, 1136 struct device_attribute *attr, 1137 char *buf) 1138 { 1139 struct clocksource *src; 1140 ssize_t count = 0; 1141 1142 mutex_lock(&clocksource_mutex); 1143 list_for_each_entry(src, &clocksource_list, list) { 1144 /* 1145 * Don't show non-HRES clocksource if the tick code is 1146 * in one shot mode (highres=on or nohz=on) 1147 */ 1148 if (!tick_oneshot_mode_active() || 1149 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 1150 count += snprintf(buf + count, 1151 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), 1152 "%s ", src->name); 1153 } 1154 mutex_unlock(&clocksource_mutex); 1155 1156 count += snprintf(buf + count, 1157 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); 1158 1159 return count; 1160 } 1161 static DEVICE_ATTR_RO(available_clocksource); 1162 1163 static struct attribute *clocksource_attrs[] = { 1164 &dev_attr_current_clocksource.attr, 1165 &dev_attr_unbind_clocksource.attr, 1166 &dev_attr_available_clocksource.attr, 1167 NULL 1168 }; 1169 ATTRIBUTE_GROUPS(clocksource); 1170 1171 static struct bus_type clocksource_subsys = { 1172 .name = "clocksource", 1173 .dev_name = "clocksource", 1174 }; 1175 1176 static struct device device_clocksource = { 1177 .id = 0, 1178 .bus = &clocksource_subsys, 1179 .groups = clocksource_groups, 1180 }; 1181 1182 static int __init init_clocksource_sysfs(void) 1183 { 1184 int error = subsys_system_register(&clocksource_subsys, NULL); 1185 1186 if (!error) 1187 error = device_register(&device_clocksource); 1188 1189 return error; 1190 } 1191 1192 device_initcall(init_clocksource_sysfs); 1193 #endif /* CONFIG_SYSFS */ 1194 1195 /** 1196 * boot_override_clocksource - boot clock override 1197 * @str: override name 1198 * 1199 * Takes a clocksource= boot argument and uses it 1200 * as the clocksource override name. 1201 */ 1202 static int __init boot_override_clocksource(char* str) 1203 { 1204 mutex_lock(&clocksource_mutex); 1205 if (str) 1206 strlcpy(override_name, str, sizeof(override_name)); 1207 mutex_unlock(&clocksource_mutex); 1208 return 1; 1209 } 1210 1211 __setup("clocksource=", boot_override_clocksource); 1212 1213 /** 1214 * boot_override_clock - Compatibility layer for deprecated boot option 1215 * @str: override name 1216 * 1217 * DEPRECATED! Takes a clock= boot argument and uses it 1218 * as the clocksource override name 1219 */ 1220 static int __init boot_override_clock(char* str) 1221 { 1222 if (!strcmp(str, "pmtmr")) { 1223 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n"); 1224 return boot_override_clocksource("acpi_pm"); 1225 } 1226 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n"); 1227 return boot_override_clocksource(str); 1228 } 1229 1230 __setup("clock=", boot_override_clock); 1231