xref: /linux/kernel/time/clocksource.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * linux/kernel/time/clocksource.c
3  *
4  * This file contains the functions which manage clocksource drivers.
5  *
6  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  * TODO WishList:
23  *   o Allow clocksource drivers to be unregistered
24  */
25 
26 #include <linux/device.h>
27 #include <linux/clocksource.h>
28 #include <linux/init.h>
29 #include <linux/module.h>
30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31 #include <linux/tick.h>
32 #include <linux/kthread.h>
33 
34 #include "tick-internal.h"
35 #include "timekeeping_internal.h"
36 
37 void timecounter_init(struct timecounter *tc,
38 		      const struct cyclecounter *cc,
39 		      u64 start_tstamp)
40 {
41 	tc->cc = cc;
42 	tc->cycle_last = cc->read(cc);
43 	tc->nsec = start_tstamp;
44 }
45 EXPORT_SYMBOL_GPL(timecounter_init);
46 
47 /**
48  * timecounter_read_delta - get nanoseconds since last call of this function
49  * @tc:         Pointer to time counter
50  *
51  * When the underlying cycle counter runs over, this will be handled
52  * correctly as long as it does not run over more than once between
53  * calls.
54  *
55  * The first call to this function for a new time counter initializes
56  * the time tracking and returns an undefined result.
57  */
58 static u64 timecounter_read_delta(struct timecounter *tc)
59 {
60 	cycle_t cycle_now, cycle_delta;
61 	u64 ns_offset;
62 
63 	/* read cycle counter: */
64 	cycle_now = tc->cc->read(tc->cc);
65 
66 	/* calculate the delta since the last timecounter_read_delta(): */
67 	cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
68 
69 	/* convert to nanoseconds: */
70 	ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
71 
72 	/* update time stamp of timecounter_read_delta() call: */
73 	tc->cycle_last = cycle_now;
74 
75 	return ns_offset;
76 }
77 
78 u64 timecounter_read(struct timecounter *tc)
79 {
80 	u64 nsec;
81 
82 	/* increment time by nanoseconds since last call */
83 	nsec = timecounter_read_delta(tc);
84 	nsec += tc->nsec;
85 	tc->nsec = nsec;
86 
87 	return nsec;
88 }
89 EXPORT_SYMBOL_GPL(timecounter_read);
90 
91 u64 timecounter_cyc2time(struct timecounter *tc,
92 			 cycle_t cycle_tstamp)
93 {
94 	u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
95 	u64 nsec;
96 
97 	/*
98 	 * Instead of always treating cycle_tstamp as more recent
99 	 * than tc->cycle_last, detect when it is too far in the
100 	 * future and treat it as old time stamp instead.
101 	 */
102 	if (cycle_delta > tc->cc->mask / 2) {
103 		cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
104 		nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
105 	} else {
106 		nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
107 	}
108 
109 	return nsec;
110 }
111 EXPORT_SYMBOL_GPL(timecounter_cyc2time);
112 
113 /**
114  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
115  * @mult:	pointer to mult variable
116  * @shift:	pointer to shift variable
117  * @from:	frequency to convert from
118  * @to:		frequency to convert to
119  * @maxsec:	guaranteed runtime conversion range in seconds
120  *
121  * The function evaluates the shift/mult pair for the scaled math
122  * operations of clocksources and clockevents.
123  *
124  * @to and @from are frequency values in HZ. For clock sources @to is
125  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
126  * event @to is the counter frequency and @from is NSEC_PER_SEC.
127  *
128  * The @maxsec conversion range argument controls the time frame in
129  * seconds which must be covered by the runtime conversion with the
130  * calculated mult and shift factors. This guarantees that no 64bit
131  * overflow happens when the input value of the conversion is
132  * multiplied with the calculated mult factor. Larger ranges may
133  * reduce the conversion accuracy by chosing smaller mult and shift
134  * factors.
135  */
136 void
137 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
138 {
139 	u64 tmp;
140 	u32 sft, sftacc= 32;
141 
142 	/*
143 	 * Calculate the shift factor which is limiting the conversion
144 	 * range:
145 	 */
146 	tmp = ((u64)maxsec * from) >> 32;
147 	while (tmp) {
148 		tmp >>=1;
149 		sftacc--;
150 	}
151 
152 	/*
153 	 * Find the conversion shift/mult pair which has the best
154 	 * accuracy and fits the maxsec conversion range:
155 	 */
156 	for (sft = 32; sft > 0; sft--) {
157 		tmp = (u64) to << sft;
158 		tmp += from / 2;
159 		do_div(tmp, from);
160 		if ((tmp >> sftacc) == 0)
161 			break;
162 	}
163 	*mult = tmp;
164 	*shift = sft;
165 }
166 
167 /*[Clocksource internal variables]---------
168  * curr_clocksource:
169  *	currently selected clocksource.
170  * clocksource_list:
171  *	linked list with the registered clocksources
172  * clocksource_mutex:
173  *	protects manipulations to curr_clocksource and the clocksource_list
174  * override_name:
175  *	Name of the user-specified clocksource.
176  */
177 static struct clocksource *curr_clocksource;
178 static LIST_HEAD(clocksource_list);
179 static DEFINE_MUTEX(clocksource_mutex);
180 static char override_name[CS_NAME_LEN];
181 static int finished_booting;
182 
183 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
184 static void clocksource_watchdog_work(struct work_struct *work);
185 static void clocksource_select(void);
186 
187 static LIST_HEAD(watchdog_list);
188 static struct clocksource *watchdog;
189 static struct timer_list watchdog_timer;
190 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
191 static DEFINE_SPINLOCK(watchdog_lock);
192 static int watchdog_running;
193 static atomic_t watchdog_reset_pending;
194 
195 static int clocksource_watchdog_kthread(void *data);
196 static void __clocksource_change_rating(struct clocksource *cs, int rating);
197 
198 /*
199  * Interval: 0.5sec Threshold: 0.0625s
200  */
201 #define WATCHDOG_INTERVAL (HZ >> 1)
202 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
203 
204 static void clocksource_watchdog_work(struct work_struct *work)
205 {
206 	/*
207 	 * If kthread_run fails the next watchdog scan over the
208 	 * watchdog_list will find the unstable clock again.
209 	 */
210 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
211 }
212 
213 static void __clocksource_unstable(struct clocksource *cs)
214 {
215 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
216 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
217 	if (finished_booting)
218 		schedule_work(&watchdog_work);
219 }
220 
221 static void clocksource_unstable(struct clocksource *cs, int64_t delta)
222 {
223 	printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
224 	       cs->name, delta);
225 	__clocksource_unstable(cs);
226 }
227 
228 /**
229  * clocksource_mark_unstable - mark clocksource unstable via watchdog
230  * @cs:		clocksource to be marked unstable
231  *
232  * This function is called instead of clocksource_change_rating from
233  * cpu hotplug code to avoid a deadlock between the clocksource mutex
234  * and the cpu hotplug mutex. It defers the update of the clocksource
235  * to the watchdog thread.
236  */
237 void clocksource_mark_unstable(struct clocksource *cs)
238 {
239 	unsigned long flags;
240 
241 	spin_lock_irqsave(&watchdog_lock, flags);
242 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
243 		if (list_empty(&cs->wd_list))
244 			list_add(&cs->wd_list, &watchdog_list);
245 		__clocksource_unstable(cs);
246 	}
247 	spin_unlock_irqrestore(&watchdog_lock, flags);
248 }
249 
250 static void clocksource_watchdog(unsigned long data)
251 {
252 	struct clocksource *cs;
253 	cycle_t csnow, wdnow, delta;
254 	int64_t wd_nsec, cs_nsec;
255 	int next_cpu, reset_pending;
256 
257 	spin_lock(&watchdog_lock);
258 	if (!watchdog_running)
259 		goto out;
260 
261 	reset_pending = atomic_read(&watchdog_reset_pending);
262 
263 	list_for_each_entry(cs, &watchdog_list, wd_list) {
264 
265 		/* Clocksource already marked unstable? */
266 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
267 			if (finished_booting)
268 				schedule_work(&watchdog_work);
269 			continue;
270 		}
271 
272 		local_irq_disable();
273 		csnow = cs->read(cs);
274 		wdnow = watchdog->read(watchdog);
275 		local_irq_enable();
276 
277 		/* Clocksource initialized ? */
278 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
279 		    atomic_read(&watchdog_reset_pending)) {
280 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
281 			cs->wd_last = wdnow;
282 			cs->cs_last = csnow;
283 			continue;
284 		}
285 
286 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
287 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
288 					     watchdog->shift);
289 
290 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
291 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
292 		cs->cs_last = csnow;
293 		cs->wd_last = wdnow;
294 
295 		if (atomic_read(&watchdog_reset_pending))
296 			continue;
297 
298 		/* Check the deviation from the watchdog clocksource. */
299 		if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
300 			clocksource_unstable(cs, cs_nsec - wd_nsec);
301 			continue;
302 		}
303 
304 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
305 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
306 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
307 			/* Mark it valid for high-res. */
308 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
309 
310 			/*
311 			 * clocksource_done_booting() will sort it if
312 			 * finished_booting is not set yet.
313 			 */
314 			if (!finished_booting)
315 				continue;
316 
317 			/*
318 			 * If this is not the current clocksource let
319 			 * the watchdog thread reselect it. Due to the
320 			 * change to high res this clocksource might
321 			 * be preferred now. If it is the current
322 			 * clocksource let the tick code know about
323 			 * that change.
324 			 */
325 			if (cs != curr_clocksource) {
326 				cs->flags |= CLOCK_SOURCE_RESELECT;
327 				schedule_work(&watchdog_work);
328 			} else {
329 				tick_clock_notify();
330 			}
331 		}
332 	}
333 
334 	/*
335 	 * We only clear the watchdog_reset_pending, when we did a
336 	 * full cycle through all clocksources.
337 	 */
338 	if (reset_pending)
339 		atomic_dec(&watchdog_reset_pending);
340 
341 	/*
342 	 * Cycle through CPUs to check if the CPUs stay synchronized
343 	 * to each other.
344 	 */
345 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
346 	if (next_cpu >= nr_cpu_ids)
347 		next_cpu = cpumask_first(cpu_online_mask);
348 	watchdog_timer.expires += WATCHDOG_INTERVAL;
349 	add_timer_on(&watchdog_timer, next_cpu);
350 out:
351 	spin_unlock(&watchdog_lock);
352 }
353 
354 static inline void clocksource_start_watchdog(void)
355 {
356 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
357 		return;
358 	init_timer(&watchdog_timer);
359 	watchdog_timer.function = clocksource_watchdog;
360 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
361 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
362 	watchdog_running = 1;
363 }
364 
365 static inline void clocksource_stop_watchdog(void)
366 {
367 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
368 		return;
369 	del_timer(&watchdog_timer);
370 	watchdog_running = 0;
371 }
372 
373 static inline void clocksource_reset_watchdog(void)
374 {
375 	struct clocksource *cs;
376 
377 	list_for_each_entry(cs, &watchdog_list, wd_list)
378 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
379 }
380 
381 static void clocksource_resume_watchdog(void)
382 {
383 	atomic_inc(&watchdog_reset_pending);
384 }
385 
386 static void clocksource_enqueue_watchdog(struct clocksource *cs)
387 {
388 	unsigned long flags;
389 
390 	spin_lock_irqsave(&watchdog_lock, flags);
391 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
392 		/* cs is a clocksource to be watched. */
393 		list_add(&cs->wd_list, &watchdog_list);
394 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
395 	} else {
396 		/* cs is a watchdog. */
397 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
398 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
399 		/* Pick the best watchdog. */
400 		if (!watchdog || cs->rating > watchdog->rating) {
401 			watchdog = cs;
402 			/* Reset watchdog cycles */
403 			clocksource_reset_watchdog();
404 		}
405 	}
406 	/* Check if the watchdog timer needs to be started. */
407 	clocksource_start_watchdog();
408 	spin_unlock_irqrestore(&watchdog_lock, flags);
409 }
410 
411 static void clocksource_dequeue_watchdog(struct clocksource *cs)
412 {
413 	unsigned long flags;
414 
415 	spin_lock_irqsave(&watchdog_lock, flags);
416 	if (cs != watchdog) {
417 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
418 			/* cs is a watched clocksource. */
419 			list_del_init(&cs->wd_list);
420 			/* Check if the watchdog timer needs to be stopped. */
421 			clocksource_stop_watchdog();
422 		}
423 	}
424 	spin_unlock_irqrestore(&watchdog_lock, flags);
425 }
426 
427 static int __clocksource_watchdog_kthread(void)
428 {
429 	struct clocksource *cs, *tmp;
430 	unsigned long flags;
431 	LIST_HEAD(unstable);
432 	int select = 0;
433 
434 	spin_lock_irqsave(&watchdog_lock, flags);
435 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
436 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
437 			list_del_init(&cs->wd_list);
438 			list_add(&cs->wd_list, &unstable);
439 			select = 1;
440 		}
441 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
442 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
443 			select = 1;
444 		}
445 	}
446 	/* Check if the watchdog timer needs to be stopped. */
447 	clocksource_stop_watchdog();
448 	spin_unlock_irqrestore(&watchdog_lock, flags);
449 
450 	/* Needs to be done outside of watchdog lock */
451 	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
452 		list_del_init(&cs->wd_list);
453 		__clocksource_change_rating(cs, 0);
454 	}
455 	return select;
456 }
457 
458 static int clocksource_watchdog_kthread(void *data)
459 {
460 	mutex_lock(&clocksource_mutex);
461 	if (__clocksource_watchdog_kthread())
462 		clocksource_select();
463 	mutex_unlock(&clocksource_mutex);
464 	return 0;
465 }
466 
467 static bool clocksource_is_watchdog(struct clocksource *cs)
468 {
469 	return cs == watchdog;
470 }
471 
472 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
473 
474 static void clocksource_enqueue_watchdog(struct clocksource *cs)
475 {
476 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
477 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
478 }
479 
480 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
481 static inline void clocksource_resume_watchdog(void) { }
482 static inline int __clocksource_watchdog_kthread(void) { return 0; }
483 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
484 void clocksource_mark_unstable(struct clocksource *cs) { }
485 
486 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
487 
488 /**
489  * clocksource_suspend - suspend the clocksource(s)
490  */
491 void clocksource_suspend(void)
492 {
493 	struct clocksource *cs;
494 
495 	list_for_each_entry_reverse(cs, &clocksource_list, list)
496 		if (cs->suspend)
497 			cs->suspend(cs);
498 }
499 
500 /**
501  * clocksource_resume - resume the clocksource(s)
502  */
503 void clocksource_resume(void)
504 {
505 	struct clocksource *cs;
506 
507 	list_for_each_entry(cs, &clocksource_list, list)
508 		if (cs->resume)
509 			cs->resume(cs);
510 
511 	clocksource_resume_watchdog();
512 }
513 
514 /**
515  * clocksource_touch_watchdog - Update watchdog
516  *
517  * Update the watchdog after exception contexts such as kgdb so as not
518  * to incorrectly trip the watchdog. This might fail when the kernel
519  * was stopped in code which holds watchdog_lock.
520  */
521 void clocksource_touch_watchdog(void)
522 {
523 	clocksource_resume_watchdog();
524 }
525 
526 /**
527  * clocksource_max_adjustment- Returns max adjustment amount
528  * @cs:         Pointer to clocksource
529  *
530  */
531 static u32 clocksource_max_adjustment(struct clocksource *cs)
532 {
533 	u64 ret;
534 	/*
535 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
536 	 */
537 	ret = (u64)cs->mult * 11;
538 	do_div(ret,100);
539 	return (u32)ret;
540 }
541 
542 /**
543  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
544  * @mult:	cycle to nanosecond multiplier
545  * @shift:	cycle to nanosecond divisor (power of two)
546  * @maxadj:	maximum adjustment value to mult (~11%)
547  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
548  */
549 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask)
550 {
551 	u64 max_nsecs, max_cycles;
552 
553 	/*
554 	 * Calculate the maximum number of cycles that we can pass to the
555 	 * cyc2ns function without overflowing a 64-bit signed result. The
556 	 * maximum number of cycles is equal to ULLONG_MAX/(mult+maxadj)
557 	 * which is equivalent to the below.
558 	 * max_cycles < (2^63)/(mult + maxadj)
559 	 * max_cycles < 2^(log2((2^63)/(mult + maxadj)))
560 	 * max_cycles < 2^(log2(2^63) - log2(mult + maxadj))
561 	 * max_cycles < 2^(63 - log2(mult + maxadj))
562 	 * max_cycles < 1 << (63 - log2(mult + maxadj))
563 	 * Please note that we add 1 to the result of the log2 to account for
564 	 * any rounding errors, ensure the above inequality is satisfied and
565 	 * no overflow will occur.
566 	 */
567 	max_cycles = 1ULL << (63 - (ilog2(mult + maxadj) + 1));
568 
569 	/*
570 	 * The actual maximum number of cycles we can defer the clocksource is
571 	 * determined by the minimum of max_cycles and mask.
572 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
573 	 * too long if there's a large negative adjustment.
574 	 */
575 	max_cycles = min(max_cycles, mask);
576 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
577 
578 	return max_nsecs;
579 }
580 
581 /**
582  * clocksource_max_deferment - Returns max time the clocksource can be deferred
583  * @cs:         Pointer to clocksource
584  *
585  */
586 static u64 clocksource_max_deferment(struct clocksource *cs)
587 {
588 	u64 max_nsecs;
589 
590 	max_nsecs = clocks_calc_max_nsecs(cs->mult, cs->shift, cs->maxadj,
591 					  cs->mask);
592 	/*
593 	 * To ensure that the clocksource does not wrap whilst we are idle,
594 	 * limit the time the clocksource can be deferred by 12.5%. Please
595 	 * note a margin of 12.5% is used because this can be computed with
596 	 * a shift, versus say 10% which would require division.
597 	 */
598 	return max_nsecs - (max_nsecs >> 3);
599 }
600 
601 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
602 
603 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
604 {
605 	struct clocksource *cs;
606 
607 	if (!finished_booting || list_empty(&clocksource_list))
608 		return NULL;
609 
610 	/*
611 	 * We pick the clocksource with the highest rating. If oneshot
612 	 * mode is active, we pick the highres valid clocksource with
613 	 * the best rating.
614 	 */
615 	list_for_each_entry(cs, &clocksource_list, list) {
616 		if (skipcur && cs == curr_clocksource)
617 			continue;
618 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
619 			continue;
620 		return cs;
621 	}
622 	return NULL;
623 }
624 
625 static void __clocksource_select(bool skipcur)
626 {
627 	bool oneshot = tick_oneshot_mode_active();
628 	struct clocksource *best, *cs;
629 
630 	/* Find the best suitable clocksource */
631 	best = clocksource_find_best(oneshot, skipcur);
632 	if (!best)
633 		return;
634 
635 	/* Check for the override clocksource. */
636 	list_for_each_entry(cs, &clocksource_list, list) {
637 		if (skipcur && cs == curr_clocksource)
638 			continue;
639 		if (strcmp(cs->name, override_name) != 0)
640 			continue;
641 		/*
642 		 * Check to make sure we don't switch to a non-highres
643 		 * capable clocksource if the tick code is in oneshot
644 		 * mode (highres or nohz)
645 		 */
646 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
647 			/* Override clocksource cannot be used. */
648 			printk(KERN_WARNING "Override clocksource %s is not "
649 			       "HRT compatible. Cannot switch while in "
650 			       "HRT/NOHZ mode\n", cs->name);
651 			override_name[0] = 0;
652 		} else
653 			/* Override clocksource can be used. */
654 			best = cs;
655 		break;
656 	}
657 
658 	if (curr_clocksource != best && !timekeeping_notify(best)) {
659 		pr_info("Switched to clocksource %s\n", best->name);
660 		curr_clocksource = best;
661 	}
662 }
663 
664 /**
665  * clocksource_select - Select the best clocksource available
666  *
667  * Private function. Must hold clocksource_mutex when called.
668  *
669  * Select the clocksource with the best rating, or the clocksource,
670  * which is selected by userspace override.
671  */
672 static void clocksource_select(void)
673 {
674 	return __clocksource_select(false);
675 }
676 
677 static void clocksource_select_fallback(void)
678 {
679 	return __clocksource_select(true);
680 }
681 
682 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
683 
684 static inline void clocksource_select(void) { }
685 static inline void clocksource_select_fallback(void) { }
686 
687 #endif
688 
689 /*
690  * clocksource_done_booting - Called near the end of core bootup
691  *
692  * Hack to avoid lots of clocksource churn at boot time.
693  * We use fs_initcall because we want this to start before
694  * device_initcall but after subsys_initcall.
695  */
696 static int __init clocksource_done_booting(void)
697 {
698 	mutex_lock(&clocksource_mutex);
699 	curr_clocksource = clocksource_default_clock();
700 	finished_booting = 1;
701 	/*
702 	 * Run the watchdog first to eliminate unstable clock sources
703 	 */
704 	__clocksource_watchdog_kthread();
705 	clocksource_select();
706 	mutex_unlock(&clocksource_mutex);
707 	return 0;
708 }
709 fs_initcall(clocksource_done_booting);
710 
711 /*
712  * Enqueue the clocksource sorted by rating
713  */
714 static void clocksource_enqueue(struct clocksource *cs)
715 {
716 	struct list_head *entry = &clocksource_list;
717 	struct clocksource *tmp;
718 
719 	list_for_each_entry(tmp, &clocksource_list, list)
720 		/* Keep track of the place, where to insert */
721 		if (tmp->rating >= cs->rating)
722 			entry = &tmp->list;
723 	list_add(&cs->list, entry);
724 }
725 
726 /**
727  * __clocksource_updatefreq_scale - Used update clocksource with new freq
728  * @cs:		clocksource to be registered
729  * @scale:	Scale factor multiplied against freq to get clocksource hz
730  * @freq:	clocksource frequency (cycles per second) divided by scale
731  *
732  * This should only be called from the clocksource->enable() method.
733  *
734  * This *SHOULD NOT* be called directly! Please use the
735  * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
736  */
737 void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
738 {
739 	u64 sec;
740 	/*
741 	 * Calc the maximum number of seconds which we can run before
742 	 * wrapping around. For clocksources which have a mask > 32bit
743 	 * we need to limit the max sleep time to have a good
744 	 * conversion precision. 10 minutes is still a reasonable
745 	 * amount. That results in a shift value of 24 for a
746 	 * clocksource with mask >= 40bit and f >= 4GHz. That maps to
747 	 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
748 	 * margin as we do in clocksource_max_deferment()
749 	 */
750 	sec = (cs->mask - (cs->mask >> 3));
751 	do_div(sec, freq);
752 	do_div(sec, scale);
753 	if (!sec)
754 		sec = 1;
755 	else if (sec > 600 && cs->mask > UINT_MAX)
756 		sec = 600;
757 
758 	clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
759 			       NSEC_PER_SEC / scale, sec * scale);
760 
761 	/*
762 	 * for clocksources that have large mults, to avoid overflow.
763 	 * Since mult may be adjusted by ntp, add an safety extra margin
764 	 *
765 	 */
766 	cs->maxadj = clocksource_max_adjustment(cs);
767 	while ((cs->mult + cs->maxadj < cs->mult)
768 		|| (cs->mult - cs->maxadj > cs->mult)) {
769 		cs->mult >>= 1;
770 		cs->shift--;
771 		cs->maxadj = clocksource_max_adjustment(cs);
772 	}
773 
774 	cs->max_idle_ns = clocksource_max_deferment(cs);
775 }
776 EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
777 
778 /**
779  * __clocksource_register_scale - Used to install new clocksources
780  * @cs:		clocksource to be registered
781  * @scale:	Scale factor multiplied against freq to get clocksource hz
782  * @freq:	clocksource frequency (cycles per second) divided by scale
783  *
784  * Returns -EBUSY if registration fails, zero otherwise.
785  *
786  * This *SHOULD NOT* be called directly! Please use the
787  * clocksource_register_hz() or clocksource_register_khz helper functions.
788  */
789 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
790 {
791 
792 	/* Initialize mult/shift and max_idle_ns */
793 	__clocksource_updatefreq_scale(cs, scale, freq);
794 
795 	/* Add clocksource to the clocksource list */
796 	mutex_lock(&clocksource_mutex);
797 	clocksource_enqueue(cs);
798 	clocksource_enqueue_watchdog(cs);
799 	clocksource_select();
800 	mutex_unlock(&clocksource_mutex);
801 	return 0;
802 }
803 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
804 
805 
806 /**
807  * clocksource_register - Used to install new clocksources
808  * @cs:		clocksource to be registered
809  *
810  * Returns -EBUSY if registration fails, zero otherwise.
811  */
812 int clocksource_register(struct clocksource *cs)
813 {
814 	/* calculate max adjustment for given mult/shift */
815 	cs->maxadj = clocksource_max_adjustment(cs);
816 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
817 		"Clocksource %s might overflow on 11%% adjustment\n",
818 		cs->name);
819 
820 	/* calculate max idle time permitted for this clocksource */
821 	cs->max_idle_ns = clocksource_max_deferment(cs);
822 
823 	mutex_lock(&clocksource_mutex);
824 	clocksource_enqueue(cs);
825 	clocksource_enqueue_watchdog(cs);
826 	clocksource_select();
827 	mutex_unlock(&clocksource_mutex);
828 	return 0;
829 }
830 EXPORT_SYMBOL(clocksource_register);
831 
832 static void __clocksource_change_rating(struct clocksource *cs, int rating)
833 {
834 	list_del(&cs->list);
835 	cs->rating = rating;
836 	clocksource_enqueue(cs);
837 }
838 
839 /**
840  * clocksource_change_rating - Change the rating of a registered clocksource
841  * @cs:		clocksource to be changed
842  * @rating:	new rating
843  */
844 void clocksource_change_rating(struct clocksource *cs, int rating)
845 {
846 	mutex_lock(&clocksource_mutex);
847 	__clocksource_change_rating(cs, rating);
848 	clocksource_select();
849 	mutex_unlock(&clocksource_mutex);
850 }
851 EXPORT_SYMBOL(clocksource_change_rating);
852 
853 /*
854  * Unbind clocksource @cs. Called with clocksource_mutex held
855  */
856 static int clocksource_unbind(struct clocksource *cs)
857 {
858 	/*
859 	 * I really can't convince myself to support this on hardware
860 	 * designed by lobotomized monkeys.
861 	 */
862 	if (clocksource_is_watchdog(cs))
863 		return -EBUSY;
864 
865 	if (cs == curr_clocksource) {
866 		/* Select and try to install a replacement clock source */
867 		clocksource_select_fallback();
868 		if (curr_clocksource == cs)
869 			return -EBUSY;
870 	}
871 	clocksource_dequeue_watchdog(cs);
872 	list_del_init(&cs->list);
873 	return 0;
874 }
875 
876 /**
877  * clocksource_unregister - remove a registered clocksource
878  * @cs:	clocksource to be unregistered
879  */
880 int clocksource_unregister(struct clocksource *cs)
881 {
882 	int ret = 0;
883 
884 	mutex_lock(&clocksource_mutex);
885 	if (!list_empty(&cs->list))
886 		ret = clocksource_unbind(cs);
887 	mutex_unlock(&clocksource_mutex);
888 	return ret;
889 }
890 EXPORT_SYMBOL(clocksource_unregister);
891 
892 #ifdef CONFIG_SYSFS
893 /**
894  * sysfs_show_current_clocksources - sysfs interface for current clocksource
895  * @dev:	unused
896  * @attr:	unused
897  * @buf:	char buffer to be filled with clocksource list
898  *
899  * Provides sysfs interface for listing current clocksource.
900  */
901 static ssize_t
902 sysfs_show_current_clocksources(struct device *dev,
903 				struct device_attribute *attr, char *buf)
904 {
905 	ssize_t count = 0;
906 
907 	mutex_lock(&clocksource_mutex);
908 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
909 	mutex_unlock(&clocksource_mutex);
910 
911 	return count;
912 }
913 
914 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
915 {
916 	size_t ret = cnt;
917 
918 	/* strings from sysfs write are not 0 terminated! */
919 	if (!cnt || cnt >= CS_NAME_LEN)
920 		return -EINVAL;
921 
922 	/* strip of \n: */
923 	if (buf[cnt-1] == '\n')
924 		cnt--;
925 	if (cnt > 0)
926 		memcpy(dst, buf, cnt);
927 	dst[cnt] = 0;
928 	return ret;
929 }
930 
931 /**
932  * sysfs_override_clocksource - interface for manually overriding clocksource
933  * @dev:	unused
934  * @attr:	unused
935  * @buf:	name of override clocksource
936  * @count:	length of buffer
937  *
938  * Takes input from sysfs interface for manually overriding the default
939  * clocksource selection.
940  */
941 static ssize_t sysfs_override_clocksource(struct device *dev,
942 					  struct device_attribute *attr,
943 					  const char *buf, size_t count)
944 {
945 	ssize_t ret;
946 
947 	mutex_lock(&clocksource_mutex);
948 
949 	ret = sysfs_get_uname(buf, override_name, count);
950 	if (ret >= 0)
951 		clocksource_select();
952 
953 	mutex_unlock(&clocksource_mutex);
954 
955 	return ret;
956 }
957 
958 /**
959  * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
960  * @dev:	unused
961  * @attr:	unused
962  * @buf:	unused
963  * @count:	length of buffer
964  *
965  * Takes input from sysfs interface for manually unbinding a clocksource.
966  */
967 static ssize_t sysfs_unbind_clocksource(struct device *dev,
968 					struct device_attribute *attr,
969 					const char *buf, size_t count)
970 {
971 	struct clocksource *cs;
972 	char name[CS_NAME_LEN];
973 	ssize_t ret;
974 
975 	ret = sysfs_get_uname(buf, name, count);
976 	if (ret < 0)
977 		return ret;
978 
979 	ret = -ENODEV;
980 	mutex_lock(&clocksource_mutex);
981 	list_for_each_entry(cs, &clocksource_list, list) {
982 		if (strcmp(cs->name, name))
983 			continue;
984 		ret = clocksource_unbind(cs);
985 		break;
986 	}
987 	mutex_unlock(&clocksource_mutex);
988 
989 	return ret ? ret : count;
990 }
991 
992 /**
993  * sysfs_show_available_clocksources - sysfs interface for listing clocksource
994  * @dev:	unused
995  * @attr:	unused
996  * @buf:	char buffer to be filled with clocksource list
997  *
998  * Provides sysfs interface for listing registered clocksources
999  */
1000 static ssize_t
1001 sysfs_show_available_clocksources(struct device *dev,
1002 				  struct device_attribute *attr,
1003 				  char *buf)
1004 {
1005 	struct clocksource *src;
1006 	ssize_t count = 0;
1007 
1008 	mutex_lock(&clocksource_mutex);
1009 	list_for_each_entry(src, &clocksource_list, list) {
1010 		/*
1011 		 * Don't show non-HRES clocksource if the tick code is
1012 		 * in one shot mode (highres=on or nohz=on)
1013 		 */
1014 		if (!tick_oneshot_mode_active() ||
1015 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1016 			count += snprintf(buf + count,
1017 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1018 				  "%s ", src->name);
1019 	}
1020 	mutex_unlock(&clocksource_mutex);
1021 
1022 	count += snprintf(buf + count,
1023 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1024 
1025 	return count;
1026 }
1027 
1028 /*
1029  * Sysfs setup bits:
1030  */
1031 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
1032 		   sysfs_override_clocksource);
1033 
1034 static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
1035 
1036 static DEVICE_ATTR(available_clocksource, 0444,
1037 		   sysfs_show_available_clocksources, NULL);
1038 
1039 static struct bus_type clocksource_subsys = {
1040 	.name = "clocksource",
1041 	.dev_name = "clocksource",
1042 };
1043 
1044 static struct device device_clocksource = {
1045 	.id	= 0,
1046 	.bus	= &clocksource_subsys,
1047 };
1048 
1049 static int __init init_clocksource_sysfs(void)
1050 {
1051 	int error = subsys_system_register(&clocksource_subsys, NULL);
1052 
1053 	if (!error)
1054 		error = device_register(&device_clocksource);
1055 	if (!error)
1056 		error = device_create_file(
1057 				&device_clocksource,
1058 				&dev_attr_current_clocksource);
1059 	if (!error)
1060 		error = device_create_file(&device_clocksource,
1061 					   &dev_attr_unbind_clocksource);
1062 	if (!error)
1063 		error = device_create_file(
1064 				&device_clocksource,
1065 				&dev_attr_available_clocksource);
1066 	return error;
1067 }
1068 
1069 device_initcall(init_clocksource_sysfs);
1070 #endif /* CONFIG_SYSFS */
1071 
1072 /**
1073  * boot_override_clocksource - boot clock override
1074  * @str:	override name
1075  *
1076  * Takes a clocksource= boot argument and uses it
1077  * as the clocksource override name.
1078  */
1079 static int __init boot_override_clocksource(char* str)
1080 {
1081 	mutex_lock(&clocksource_mutex);
1082 	if (str)
1083 		strlcpy(override_name, str, sizeof(override_name));
1084 	mutex_unlock(&clocksource_mutex);
1085 	return 1;
1086 }
1087 
1088 __setup("clocksource=", boot_override_clocksource);
1089 
1090 /**
1091  * boot_override_clock - Compatibility layer for deprecated boot option
1092  * @str:	override name
1093  *
1094  * DEPRECATED! Takes a clock= boot argument and uses it
1095  * as the clocksource override name
1096  */
1097 static int __init boot_override_clock(char* str)
1098 {
1099 	if (!strcmp(str, "pmtmr")) {
1100 		printk("Warning: clock=pmtmr is deprecated. "
1101 			"Use clocksource=acpi_pm.\n");
1102 		return boot_override_clocksource("acpi_pm");
1103 	}
1104 	printk("Warning! clock= boot option is deprecated. "
1105 		"Use clocksource=xyz\n");
1106 	return boot_override_clocksource(str);
1107 }
1108 
1109 __setup("clock=", boot_override_clock);
1110