1 /* 2 * linux/kernel/time/clocksource.c 3 * 4 * This file contains the functions which manage clocksource drivers. 5 * 6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 * 22 * TODO WishList: 23 * o Allow clocksource drivers to be unregistered 24 */ 25 26 #include <linux/device.h> 27 #include <linux/clocksource.h> 28 #include <linux/init.h> 29 #include <linux/module.h> 30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ 31 #include <linux/tick.h> 32 #include <linux/kthread.h> 33 34 #include "tick-internal.h" 35 #include "timekeeping_internal.h" 36 37 void timecounter_init(struct timecounter *tc, 38 const struct cyclecounter *cc, 39 u64 start_tstamp) 40 { 41 tc->cc = cc; 42 tc->cycle_last = cc->read(cc); 43 tc->nsec = start_tstamp; 44 } 45 EXPORT_SYMBOL_GPL(timecounter_init); 46 47 /** 48 * timecounter_read_delta - get nanoseconds since last call of this function 49 * @tc: Pointer to time counter 50 * 51 * When the underlying cycle counter runs over, this will be handled 52 * correctly as long as it does not run over more than once between 53 * calls. 54 * 55 * The first call to this function for a new time counter initializes 56 * the time tracking and returns an undefined result. 57 */ 58 static u64 timecounter_read_delta(struct timecounter *tc) 59 { 60 cycle_t cycle_now, cycle_delta; 61 u64 ns_offset; 62 63 /* read cycle counter: */ 64 cycle_now = tc->cc->read(tc->cc); 65 66 /* calculate the delta since the last timecounter_read_delta(): */ 67 cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask; 68 69 /* convert to nanoseconds: */ 70 ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta); 71 72 /* update time stamp of timecounter_read_delta() call: */ 73 tc->cycle_last = cycle_now; 74 75 return ns_offset; 76 } 77 78 u64 timecounter_read(struct timecounter *tc) 79 { 80 u64 nsec; 81 82 /* increment time by nanoseconds since last call */ 83 nsec = timecounter_read_delta(tc); 84 nsec += tc->nsec; 85 tc->nsec = nsec; 86 87 return nsec; 88 } 89 EXPORT_SYMBOL_GPL(timecounter_read); 90 91 u64 timecounter_cyc2time(struct timecounter *tc, 92 cycle_t cycle_tstamp) 93 { 94 u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask; 95 u64 nsec; 96 97 /* 98 * Instead of always treating cycle_tstamp as more recent 99 * than tc->cycle_last, detect when it is too far in the 100 * future and treat it as old time stamp instead. 101 */ 102 if (cycle_delta > tc->cc->mask / 2) { 103 cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask; 104 nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta); 105 } else { 106 nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec; 107 } 108 109 return nsec; 110 } 111 EXPORT_SYMBOL_GPL(timecounter_cyc2time); 112 113 /** 114 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks 115 * @mult: pointer to mult variable 116 * @shift: pointer to shift variable 117 * @from: frequency to convert from 118 * @to: frequency to convert to 119 * @maxsec: guaranteed runtime conversion range in seconds 120 * 121 * The function evaluates the shift/mult pair for the scaled math 122 * operations of clocksources and clockevents. 123 * 124 * @to and @from are frequency values in HZ. For clock sources @to is 125 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock 126 * event @to is the counter frequency and @from is NSEC_PER_SEC. 127 * 128 * The @maxsec conversion range argument controls the time frame in 129 * seconds which must be covered by the runtime conversion with the 130 * calculated mult and shift factors. This guarantees that no 64bit 131 * overflow happens when the input value of the conversion is 132 * multiplied with the calculated mult factor. Larger ranges may 133 * reduce the conversion accuracy by chosing smaller mult and shift 134 * factors. 135 */ 136 void 137 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec) 138 { 139 u64 tmp; 140 u32 sft, sftacc= 32; 141 142 /* 143 * Calculate the shift factor which is limiting the conversion 144 * range: 145 */ 146 tmp = ((u64)maxsec * from) >> 32; 147 while (tmp) { 148 tmp >>=1; 149 sftacc--; 150 } 151 152 /* 153 * Find the conversion shift/mult pair which has the best 154 * accuracy and fits the maxsec conversion range: 155 */ 156 for (sft = 32; sft > 0; sft--) { 157 tmp = (u64) to << sft; 158 tmp += from / 2; 159 do_div(tmp, from); 160 if ((tmp >> sftacc) == 0) 161 break; 162 } 163 *mult = tmp; 164 *shift = sft; 165 } 166 167 /*[Clocksource internal variables]--------- 168 * curr_clocksource: 169 * currently selected clocksource. 170 * clocksource_list: 171 * linked list with the registered clocksources 172 * clocksource_mutex: 173 * protects manipulations to curr_clocksource and the clocksource_list 174 * override_name: 175 * Name of the user-specified clocksource. 176 */ 177 static struct clocksource *curr_clocksource; 178 static LIST_HEAD(clocksource_list); 179 static DEFINE_MUTEX(clocksource_mutex); 180 static char override_name[CS_NAME_LEN]; 181 static int finished_booting; 182 183 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG 184 static void clocksource_watchdog_work(struct work_struct *work); 185 static void clocksource_select(void); 186 187 static LIST_HEAD(watchdog_list); 188 static struct clocksource *watchdog; 189 static struct timer_list watchdog_timer; 190 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); 191 static DEFINE_SPINLOCK(watchdog_lock); 192 static int watchdog_running; 193 static atomic_t watchdog_reset_pending; 194 195 static int clocksource_watchdog_kthread(void *data); 196 static void __clocksource_change_rating(struct clocksource *cs, int rating); 197 198 /* 199 * Interval: 0.5sec Threshold: 0.0625s 200 */ 201 #define WATCHDOG_INTERVAL (HZ >> 1) 202 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) 203 204 static void clocksource_watchdog_work(struct work_struct *work) 205 { 206 /* 207 * If kthread_run fails the next watchdog scan over the 208 * watchdog_list will find the unstable clock again. 209 */ 210 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); 211 } 212 213 static void __clocksource_unstable(struct clocksource *cs) 214 { 215 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); 216 cs->flags |= CLOCK_SOURCE_UNSTABLE; 217 if (finished_booting) 218 schedule_work(&watchdog_work); 219 } 220 221 static void clocksource_unstable(struct clocksource *cs, int64_t delta) 222 { 223 printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", 224 cs->name, delta); 225 __clocksource_unstable(cs); 226 } 227 228 /** 229 * clocksource_mark_unstable - mark clocksource unstable via watchdog 230 * @cs: clocksource to be marked unstable 231 * 232 * This function is called instead of clocksource_change_rating from 233 * cpu hotplug code to avoid a deadlock between the clocksource mutex 234 * and the cpu hotplug mutex. It defers the update of the clocksource 235 * to the watchdog thread. 236 */ 237 void clocksource_mark_unstable(struct clocksource *cs) 238 { 239 unsigned long flags; 240 241 spin_lock_irqsave(&watchdog_lock, flags); 242 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { 243 if (list_empty(&cs->wd_list)) 244 list_add(&cs->wd_list, &watchdog_list); 245 __clocksource_unstable(cs); 246 } 247 spin_unlock_irqrestore(&watchdog_lock, flags); 248 } 249 250 static void clocksource_watchdog(unsigned long data) 251 { 252 struct clocksource *cs; 253 cycle_t csnow, wdnow, delta; 254 int64_t wd_nsec, cs_nsec; 255 int next_cpu, reset_pending; 256 257 spin_lock(&watchdog_lock); 258 if (!watchdog_running) 259 goto out; 260 261 reset_pending = atomic_read(&watchdog_reset_pending); 262 263 list_for_each_entry(cs, &watchdog_list, wd_list) { 264 265 /* Clocksource already marked unstable? */ 266 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 267 if (finished_booting) 268 schedule_work(&watchdog_work); 269 continue; 270 } 271 272 local_irq_disable(); 273 csnow = cs->read(cs); 274 wdnow = watchdog->read(watchdog); 275 local_irq_enable(); 276 277 /* Clocksource initialized ? */ 278 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || 279 atomic_read(&watchdog_reset_pending)) { 280 cs->flags |= CLOCK_SOURCE_WATCHDOG; 281 cs->wd_last = wdnow; 282 cs->cs_last = csnow; 283 continue; 284 } 285 286 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask); 287 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult, 288 watchdog->shift); 289 290 delta = clocksource_delta(csnow, cs->cs_last, cs->mask); 291 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift); 292 cs->cs_last = csnow; 293 cs->wd_last = wdnow; 294 295 if (atomic_read(&watchdog_reset_pending)) 296 continue; 297 298 /* Check the deviation from the watchdog clocksource. */ 299 if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) { 300 clocksource_unstable(cs, cs_nsec - wd_nsec); 301 continue; 302 } 303 304 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && 305 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && 306 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { 307 /* Mark it valid for high-res. */ 308 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 309 310 /* 311 * clocksource_done_booting() will sort it if 312 * finished_booting is not set yet. 313 */ 314 if (!finished_booting) 315 continue; 316 317 /* 318 * If this is not the current clocksource let 319 * the watchdog thread reselect it. Due to the 320 * change to high res this clocksource might 321 * be preferred now. If it is the current 322 * clocksource let the tick code know about 323 * that change. 324 */ 325 if (cs != curr_clocksource) { 326 cs->flags |= CLOCK_SOURCE_RESELECT; 327 schedule_work(&watchdog_work); 328 } else { 329 tick_clock_notify(); 330 } 331 } 332 } 333 334 /* 335 * We only clear the watchdog_reset_pending, when we did a 336 * full cycle through all clocksources. 337 */ 338 if (reset_pending) 339 atomic_dec(&watchdog_reset_pending); 340 341 /* 342 * Cycle through CPUs to check if the CPUs stay synchronized 343 * to each other. 344 */ 345 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); 346 if (next_cpu >= nr_cpu_ids) 347 next_cpu = cpumask_first(cpu_online_mask); 348 watchdog_timer.expires += WATCHDOG_INTERVAL; 349 add_timer_on(&watchdog_timer, next_cpu); 350 out: 351 spin_unlock(&watchdog_lock); 352 } 353 354 static inline void clocksource_start_watchdog(void) 355 { 356 if (watchdog_running || !watchdog || list_empty(&watchdog_list)) 357 return; 358 init_timer(&watchdog_timer); 359 watchdog_timer.function = clocksource_watchdog; 360 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; 361 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); 362 watchdog_running = 1; 363 } 364 365 static inline void clocksource_stop_watchdog(void) 366 { 367 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) 368 return; 369 del_timer(&watchdog_timer); 370 watchdog_running = 0; 371 } 372 373 static inline void clocksource_reset_watchdog(void) 374 { 375 struct clocksource *cs; 376 377 list_for_each_entry(cs, &watchdog_list, wd_list) 378 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 379 } 380 381 static void clocksource_resume_watchdog(void) 382 { 383 atomic_inc(&watchdog_reset_pending); 384 } 385 386 static void clocksource_enqueue_watchdog(struct clocksource *cs) 387 { 388 unsigned long flags; 389 390 spin_lock_irqsave(&watchdog_lock, flags); 391 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 392 /* cs is a clocksource to be watched. */ 393 list_add(&cs->wd_list, &watchdog_list); 394 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 395 } else { 396 /* cs is a watchdog. */ 397 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 398 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 399 /* Pick the best watchdog. */ 400 if (!watchdog || cs->rating > watchdog->rating) { 401 watchdog = cs; 402 /* Reset watchdog cycles */ 403 clocksource_reset_watchdog(); 404 } 405 } 406 /* Check if the watchdog timer needs to be started. */ 407 clocksource_start_watchdog(); 408 spin_unlock_irqrestore(&watchdog_lock, flags); 409 } 410 411 static void clocksource_dequeue_watchdog(struct clocksource *cs) 412 { 413 unsigned long flags; 414 415 spin_lock_irqsave(&watchdog_lock, flags); 416 if (cs != watchdog) { 417 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 418 /* cs is a watched clocksource. */ 419 list_del_init(&cs->wd_list); 420 /* Check if the watchdog timer needs to be stopped. */ 421 clocksource_stop_watchdog(); 422 } 423 } 424 spin_unlock_irqrestore(&watchdog_lock, flags); 425 } 426 427 static int __clocksource_watchdog_kthread(void) 428 { 429 struct clocksource *cs, *tmp; 430 unsigned long flags; 431 LIST_HEAD(unstable); 432 int select = 0; 433 434 spin_lock_irqsave(&watchdog_lock, flags); 435 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { 436 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 437 list_del_init(&cs->wd_list); 438 list_add(&cs->wd_list, &unstable); 439 select = 1; 440 } 441 if (cs->flags & CLOCK_SOURCE_RESELECT) { 442 cs->flags &= ~CLOCK_SOURCE_RESELECT; 443 select = 1; 444 } 445 } 446 /* Check if the watchdog timer needs to be stopped. */ 447 clocksource_stop_watchdog(); 448 spin_unlock_irqrestore(&watchdog_lock, flags); 449 450 /* Needs to be done outside of watchdog lock */ 451 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { 452 list_del_init(&cs->wd_list); 453 __clocksource_change_rating(cs, 0); 454 } 455 return select; 456 } 457 458 static int clocksource_watchdog_kthread(void *data) 459 { 460 mutex_lock(&clocksource_mutex); 461 if (__clocksource_watchdog_kthread()) 462 clocksource_select(); 463 mutex_unlock(&clocksource_mutex); 464 return 0; 465 } 466 467 static bool clocksource_is_watchdog(struct clocksource *cs) 468 { 469 return cs == watchdog; 470 } 471 472 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ 473 474 static void clocksource_enqueue_watchdog(struct clocksource *cs) 475 { 476 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 477 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 478 } 479 480 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } 481 static inline void clocksource_resume_watchdog(void) { } 482 static inline int __clocksource_watchdog_kthread(void) { return 0; } 483 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; } 484 void clocksource_mark_unstable(struct clocksource *cs) { } 485 486 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ 487 488 /** 489 * clocksource_suspend - suspend the clocksource(s) 490 */ 491 void clocksource_suspend(void) 492 { 493 struct clocksource *cs; 494 495 list_for_each_entry_reverse(cs, &clocksource_list, list) 496 if (cs->suspend) 497 cs->suspend(cs); 498 } 499 500 /** 501 * clocksource_resume - resume the clocksource(s) 502 */ 503 void clocksource_resume(void) 504 { 505 struct clocksource *cs; 506 507 list_for_each_entry(cs, &clocksource_list, list) 508 if (cs->resume) 509 cs->resume(cs); 510 511 clocksource_resume_watchdog(); 512 } 513 514 /** 515 * clocksource_touch_watchdog - Update watchdog 516 * 517 * Update the watchdog after exception contexts such as kgdb so as not 518 * to incorrectly trip the watchdog. This might fail when the kernel 519 * was stopped in code which holds watchdog_lock. 520 */ 521 void clocksource_touch_watchdog(void) 522 { 523 clocksource_resume_watchdog(); 524 } 525 526 /** 527 * clocksource_max_adjustment- Returns max adjustment amount 528 * @cs: Pointer to clocksource 529 * 530 */ 531 static u32 clocksource_max_adjustment(struct clocksource *cs) 532 { 533 u64 ret; 534 /* 535 * We won't try to correct for more than 11% adjustments (110,000 ppm), 536 */ 537 ret = (u64)cs->mult * 11; 538 do_div(ret,100); 539 return (u32)ret; 540 } 541 542 /** 543 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted 544 * @mult: cycle to nanosecond multiplier 545 * @shift: cycle to nanosecond divisor (power of two) 546 * @maxadj: maximum adjustment value to mult (~11%) 547 * @mask: bitmask for two's complement subtraction of non 64 bit counters 548 */ 549 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask) 550 { 551 u64 max_nsecs, max_cycles; 552 553 /* 554 * Calculate the maximum number of cycles that we can pass to the 555 * cyc2ns function without overflowing a 64-bit signed result. The 556 * maximum number of cycles is equal to ULLONG_MAX/(mult+maxadj) 557 * which is equivalent to the below. 558 * max_cycles < (2^63)/(mult + maxadj) 559 * max_cycles < 2^(log2((2^63)/(mult + maxadj))) 560 * max_cycles < 2^(log2(2^63) - log2(mult + maxadj)) 561 * max_cycles < 2^(63 - log2(mult + maxadj)) 562 * max_cycles < 1 << (63 - log2(mult + maxadj)) 563 * Please note that we add 1 to the result of the log2 to account for 564 * any rounding errors, ensure the above inequality is satisfied and 565 * no overflow will occur. 566 */ 567 max_cycles = 1ULL << (63 - (ilog2(mult + maxadj) + 1)); 568 569 /* 570 * The actual maximum number of cycles we can defer the clocksource is 571 * determined by the minimum of max_cycles and mask. 572 * Note: Here we subtract the maxadj to make sure we don't sleep for 573 * too long if there's a large negative adjustment. 574 */ 575 max_cycles = min(max_cycles, mask); 576 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift); 577 578 return max_nsecs; 579 } 580 581 /** 582 * clocksource_max_deferment - Returns max time the clocksource can be deferred 583 * @cs: Pointer to clocksource 584 * 585 */ 586 static u64 clocksource_max_deferment(struct clocksource *cs) 587 { 588 u64 max_nsecs; 589 590 max_nsecs = clocks_calc_max_nsecs(cs->mult, cs->shift, cs->maxadj, 591 cs->mask); 592 /* 593 * To ensure that the clocksource does not wrap whilst we are idle, 594 * limit the time the clocksource can be deferred by 12.5%. Please 595 * note a margin of 12.5% is used because this can be computed with 596 * a shift, versus say 10% which would require division. 597 */ 598 return max_nsecs - (max_nsecs >> 3); 599 } 600 601 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET 602 603 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur) 604 { 605 struct clocksource *cs; 606 607 if (!finished_booting || list_empty(&clocksource_list)) 608 return NULL; 609 610 /* 611 * We pick the clocksource with the highest rating. If oneshot 612 * mode is active, we pick the highres valid clocksource with 613 * the best rating. 614 */ 615 list_for_each_entry(cs, &clocksource_list, list) { 616 if (skipcur && cs == curr_clocksource) 617 continue; 618 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 619 continue; 620 return cs; 621 } 622 return NULL; 623 } 624 625 static void __clocksource_select(bool skipcur) 626 { 627 bool oneshot = tick_oneshot_mode_active(); 628 struct clocksource *best, *cs; 629 630 /* Find the best suitable clocksource */ 631 best = clocksource_find_best(oneshot, skipcur); 632 if (!best) 633 return; 634 635 /* Check for the override clocksource. */ 636 list_for_each_entry(cs, &clocksource_list, list) { 637 if (skipcur && cs == curr_clocksource) 638 continue; 639 if (strcmp(cs->name, override_name) != 0) 640 continue; 641 /* 642 * Check to make sure we don't switch to a non-highres 643 * capable clocksource if the tick code is in oneshot 644 * mode (highres or nohz) 645 */ 646 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) { 647 /* Override clocksource cannot be used. */ 648 printk(KERN_WARNING "Override clocksource %s is not " 649 "HRT compatible. Cannot switch while in " 650 "HRT/NOHZ mode\n", cs->name); 651 override_name[0] = 0; 652 } else 653 /* Override clocksource can be used. */ 654 best = cs; 655 break; 656 } 657 658 if (curr_clocksource != best && !timekeeping_notify(best)) { 659 pr_info("Switched to clocksource %s\n", best->name); 660 curr_clocksource = best; 661 } 662 } 663 664 /** 665 * clocksource_select - Select the best clocksource available 666 * 667 * Private function. Must hold clocksource_mutex when called. 668 * 669 * Select the clocksource with the best rating, or the clocksource, 670 * which is selected by userspace override. 671 */ 672 static void clocksource_select(void) 673 { 674 return __clocksource_select(false); 675 } 676 677 static void clocksource_select_fallback(void) 678 { 679 return __clocksource_select(true); 680 } 681 682 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */ 683 684 static inline void clocksource_select(void) { } 685 static inline void clocksource_select_fallback(void) { } 686 687 #endif 688 689 /* 690 * clocksource_done_booting - Called near the end of core bootup 691 * 692 * Hack to avoid lots of clocksource churn at boot time. 693 * We use fs_initcall because we want this to start before 694 * device_initcall but after subsys_initcall. 695 */ 696 static int __init clocksource_done_booting(void) 697 { 698 mutex_lock(&clocksource_mutex); 699 curr_clocksource = clocksource_default_clock(); 700 finished_booting = 1; 701 /* 702 * Run the watchdog first to eliminate unstable clock sources 703 */ 704 __clocksource_watchdog_kthread(); 705 clocksource_select(); 706 mutex_unlock(&clocksource_mutex); 707 return 0; 708 } 709 fs_initcall(clocksource_done_booting); 710 711 /* 712 * Enqueue the clocksource sorted by rating 713 */ 714 static void clocksource_enqueue(struct clocksource *cs) 715 { 716 struct list_head *entry = &clocksource_list; 717 struct clocksource *tmp; 718 719 list_for_each_entry(tmp, &clocksource_list, list) 720 /* Keep track of the place, where to insert */ 721 if (tmp->rating >= cs->rating) 722 entry = &tmp->list; 723 list_add(&cs->list, entry); 724 } 725 726 /** 727 * __clocksource_updatefreq_scale - Used update clocksource with new freq 728 * @cs: clocksource to be registered 729 * @scale: Scale factor multiplied against freq to get clocksource hz 730 * @freq: clocksource frequency (cycles per second) divided by scale 731 * 732 * This should only be called from the clocksource->enable() method. 733 * 734 * This *SHOULD NOT* be called directly! Please use the 735 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions. 736 */ 737 void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq) 738 { 739 u64 sec; 740 /* 741 * Calc the maximum number of seconds which we can run before 742 * wrapping around. For clocksources which have a mask > 32bit 743 * we need to limit the max sleep time to have a good 744 * conversion precision. 10 minutes is still a reasonable 745 * amount. That results in a shift value of 24 for a 746 * clocksource with mask >= 40bit and f >= 4GHz. That maps to 747 * ~ 0.06ppm granularity for NTP. We apply the same 12.5% 748 * margin as we do in clocksource_max_deferment() 749 */ 750 sec = (cs->mask - (cs->mask >> 3)); 751 do_div(sec, freq); 752 do_div(sec, scale); 753 if (!sec) 754 sec = 1; 755 else if (sec > 600 && cs->mask > UINT_MAX) 756 sec = 600; 757 758 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, 759 NSEC_PER_SEC / scale, sec * scale); 760 761 /* 762 * for clocksources that have large mults, to avoid overflow. 763 * Since mult may be adjusted by ntp, add an safety extra margin 764 * 765 */ 766 cs->maxadj = clocksource_max_adjustment(cs); 767 while ((cs->mult + cs->maxadj < cs->mult) 768 || (cs->mult - cs->maxadj > cs->mult)) { 769 cs->mult >>= 1; 770 cs->shift--; 771 cs->maxadj = clocksource_max_adjustment(cs); 772 } 773 774 cs->max_idle_ns = clocksource_max_deferment(cs); 775 } 776 EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale); 777 778 /** 779 * __clocksource_register_scale - Used to install new clocksources 780 * @cs: clocksource to be registered 781 * @scale: Scale factor multiplied against freq to get clocksource hz 782 * @freq: clocksource frequency (cycles per second) divided by scale 783 * 784 * Returns -EBUSY if registration fails, zero otherwise. 785 * 786 * This *SHOULD NOT* be called directly! Please use the 787 * clocksource_register_hz() or clocksource_register_khz helper functions. 788 */ 789 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) 790 { 791 792 /* Initialize mult/shift and max_idle_ns */ 793 __clocksource_updatefreq_scale(cs, scale, freq); 794 795 /* Add clocksource to the clocksource list */ 796 mutex_lock(&clocksource_mutex); 797 clocksource_enqueue(cs); 798 clocksource_enqueue_watchdog(cs); 799 clocksource_select(); 800 mutex_unlock(&clocksource_mutex); 801 return 0; 802 } 803 EXPORT_SYMBOL_GPL(__clocksource_register_scale); 804 805 806 /** 807 * clocksource_register - Used to install new clocksources 808 * @cs: clocksource to be registered 809 * 810 * Returns -EBUSY if registration fails, zero otherwise. 811 */ 812 int clocksource_register(struct clocksource *cs) 813 { 814 /* calculate max adjustment for given mult/shift */ 815 cs->maxadj = clocksource_max_adjustment(cs); 816 WARN_ONCE(cs->mult + cs->maxadj < cs->mult, 817 "Clocksource %s might overflow on 11%% adjustment\n", 818 cs->name); 819 820 /* calculate max idle time permitted for this clocksource */ 821 cs->max_idle_ns = clocksource_max_deferment(cs); 822 823 mutex_lock(&clocksource_mutex); 824 clocksource_enqueue(cs); 825 clocksource_enqueue_watchdog(cs); 826 clocksource_select(); 827 mutex_unlock(&clocksource_mutex); 828 return 0; 829 } 830 EXPORT_SYMBOL(clocksource_register); 831 832 static void __clocksource_change_rating(struct clocksource *cs, int rating) 833 { 834 list_del(&cs->list); 835 cs->rating = rating; 836 clocksource_enqueue(cs); 837 } 838 839 /** 840 * clocksource_change_rating - Change the rating of a registered clocksource 841 * @cs: clocksource to be changed 842 * @rating: new rating 843 */ 844 void clocksource_change_rating(struct clocksource *cs, int rating) 845 { 846 mutex_lock(&clocksource_mutex); 847 __clocksource_change_rating(cs, rating); 848 clocksource_select(); 849 mutex_unlock(&clocksource_mutex); 850 } 851 EXPORT_SYMBOL(clocksource_change_rating); 852 853 /* 854 * Unbind clocksource @cs. Called with clocksource_mutex held 855 */ 856 static int clocksource_unbind(struct clocksource *cs) 857 { 858 /* 859 * I really can't convince myself to support this on hardware 860 * designed by lobotomized monkeys. 861 */ 862 if (clocksource_is_watchdog(cs)) 863 return -EBUSY; 864 865 if (cs == curr_clocksource) { 866 /* Select and try to install a replacement clock source */ 867 clocksource_select_fallback(); 868 if (curr_clocksource == cs) 869 return -EBUSY; 870 } 871 clocksource_dequeue_watchdog(cs); 872 list_del_init(&cs->list); 873 return 0; 874 } 875 876 /** 877 * clocksource_unregister - remove a registered clocksource 878 * @cs: clocksource to be unregistered 879 */ 880 int clocksource_unregister(struct clocksource *cs) 881 { 882 int ret = 0; 883 884 mutex_lock(&clocksource_mutex); 885 if (!list_empty(&cs->list)) 886 ret = clocksource_unbind(cs); 887 mutex_unlock(&clocksource_mutex); 888 return ret; 889 } 890 EXPORT_SYMBOL(clocksource_unregister); 891 892 #ifdef CONFIG_SYSFS 893 /** 894 * sysfs_show_current_clocksources - sysfs interface for current clocksource 895 * @dev: unused 896 * @attr: unused 897 * @buf: char buffer to be filled with clocksource list 898 * 899 * Provides sysfs interface for listing current clocksource. 900 */ 901 static ssize_t 902 sysfs_show_current_clocksources(struct device *dev, 903 struct device_attribute *attr, char *buf) 904 { 905 ssize_t count = 0; 906 907 mutex_lock(&clocksource_mutex); 908 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); 909 mutex_unlock(&clocksource_mutex); 910 911 return count; 912 } 913 914 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt) 915 { 916 size_t ret = cnt; 917 918 /* strings from sysfs write are not 0 terminated! */ 919 if (!cnt || cnt >= CS_NAME_LEN) 920 return -EINVAL; 921 922 /* strip of \n: */ 923 if (buf[cnt-1] == '\n') 924 cnt--; 925 if (cnt > 0) 926 memcpy(dst, buf, cnt); 927 dst[cnt] = 0; 928 return ret; 929 } 930 931 /** 932 * sysfs_override_clocksource - interface for manually overriding clocksource 933 * @dev: unused 934 * @attr: unused 935 * @buf: name of override clocksource 936 * @count: length of buffer 937 * 938 * Takes input from sysfs interface for manually overriding the default 939 * clocksource selection. 940 */ 941 static ssize_t sysfs_override_clocksource(struct device *dev, 942 struct device_attribute *attr, 943 const char *buf, size_t count) 944 { 945 ssize_t ret; 946 947 mutex_lock(&clocksource_mutex); 948 949 ret = sysfs_get_uname(buf, override_name, count); 950 if (ret >= 0) 951 clocksource_select(); 952 953 mutex_unlock(&clocksource_mutex); 954 955 return ret; 956 } 957 958 /** 959 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource 960 * @dev: unused 961 * @attr: unused 962 * @buf: unused 963 * @count: length of buffer 964 * 965 * Takes input from sysfs interface for manually unbinding a clocksource. 966 */ 967 static ssize_t sysfs_unbind_clocksource(struct device *dev, 968 struct device_attribute *attr, 969 const char *buf, size_t count) 970 { 971 struct clocksource *cs; 972 char name[CS_NAME_LEN]; 973 ssize_t ret; 974 975 ret = sysfs_get_uname(buf, name, count); 976 if (ret < 0) 977 return ret; 978 979 ret = -ENODEV; 980 mutex_lock(&clocksource_mutex); 981 list_for_each_entry(cs, &clocksource_list, list) { 982 if (strcmp(cs->name, name)) 983 continue; 984 ret = clocksource_unbind(cs); 985 break; 986 } 987 mutex_unlock(&clocksource_mutex); 988 989 return ret ? ret : count; 990 } 991 992 /** 993 * sysfs_show_available_clocksources - sysfs interface for listing clocksource 994 * @dev: unused 995 * @attr: unused 996 * @buf: char buffer to be filled with clocksource list 997 * 998 * Provides sysfs interface for listing registered clocksources 999 */ 1000 static ssize_t 1001 sysfs_show_available_clocksources(struct device *dev, 1002 struct device_attribute *attr, 1003 char *buf) 1004 { 1005 struct clocksource *src; 1006 ssize_t count = 0; 1007 1008 mutex_lock(&clocksource_mutex); 1009 list_for_each_entry(src, &clocksource_list, list) { 1010 /* 1011 * Don't show non-HRES clocksource if the tick code is 1012 * in one shot mode (highres=on or nohz=on) 1013 */ 1014 if (!tick_oneshot_mode_active() || 1015 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 1016 count += snprintf(buf + count, 1017 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), 1018 "%s ", src->name); 1019 } 1020 mutex_unlock(&clocksource_mutex); 1021 1022 count += snprintf(buf + count, 1023 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); 1024 1025 return count; 1026 } 1027 1028 /* 1029 * Sysfs setup bits: 1030 */ 1031 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources, 1032 sysfs_override_clocksource); 1033 1034 static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource); 1035 1036 static DEVICE_ATTR(available_clocksource, 0444, 1037 sysfs_show_available_clocksources, NULL); 1038 1039 static struct bus_type clocksource_subsys = { 1040 .name = "clocksource", 1041 .dev_name = "clocksource", 1042 }; 1043 1044 static struct device device_clocksource = { 1045 .id = 0, 1046 .bus = &clocksource_subsys, 1047 }; 1048 1049 static int __init init_clocksource_sysfs(void) 1050 { 1051 int error = subsys_system_register(&clocksource_subsys, NULL); 1052 1053 if (!error) 1054 error = device_register(&device_clocksource); 1055 if (!error) 1056 error = device_create_file( 1057 &device_clocksource, 1058 &dev_attr_current_clocksource); 1059 if (!error) 1060 error = device_create_file(&device_clocksource, 1061 &dev_attr_unbind_clocksource); 1062 if (!error) 1063 error = device_create_file( 1064 &device_clocksource, 1065 &dev_attr_available_clocksource); 1066 return error; 1067 } 1068 1069 device_initcall(init_clocksource_sysfs); 1070 #endif /* CONFIG_SYSFS */ 1071 1072 /** 1073 * boot_override_clocksource - boot clock override 1074 * @str: override name 1075 * 1076 * Takes a clocksource= boot argument and uses it 1077 * as the clocksource override name. 1078 */ 1079 static int __init boot_override_clocksource(char* str) 1080 { 1081 mutex_lock(&clocksource_mutex); 1082 if (str) 1083 strlcpy(override_name, str, sizeof(override_name)); 1084 mutex_unlock(&clocksource_mutex); 1085 return 1; 1086 } 1087 1088 __setup("clocksource=", boot_override_clocksource); 1089 1090 /** 1091 * boot_override_clock - Compatibility layer for deprecated boot option 1092 * @str: override name 1093 * 1094 * DEPRECATED! Takes a clock= boot argument and uses it 1095 * as the clocksource override name 1096 */ 1097 static int __init boot_override_clock(char* str) 1098 { 1099 if (!strcmp(str, "pmtmr")) { 1100 printk("Warning: clock=pmtmr is deprecated. " 1101 "Use clocksource=acpi_pm.\n"); 1102 return boot_override_clocksource("acpi_pm"); 1103 } 1104 printk("Warning! clock= boot option is deprecated. " 1105 "Use clocksource=xyz\n"); 1106 return boot_override_clocksource(str); 1107 } 1108 1109 __setup("clock=", boot_override_clock); 1110