xref: /linux/kernel/time/clocksource.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19 
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22 
23 static void clocksource_enqueue(struct clocksource *cs);
24 
25 static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
26 {
27 	u64 delta = clocksource_delta(end, start, cs->mask, cs->max_raw_delta);
28 
29 	if (likely(delta < cs->max_cycles))
30 		return clocksource_cyc2ns(delta, cs->mult, cs->shift);
31 
32 	return mul_u64_u32_shr(delta, cs->mult, cs->shift);
33 }
34 
35 /**
36  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
37  * @mult:	pointer to mult variable
38  * @shift:	pointer to shift variable
39  * @from:	frequency to convert from
40  * @to:		frequency to convert to
41  * @maxsec:	guaranteed runtime conversion range in seconds
42  *
43  * The function evaluates the shift/mult pair for the scaled math
44  * operations of clocksources and clockevents.
45  *
46  * @to and @from are frequency values in HZ. For clock sources @to is
47  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
48  * event @to is the counter frequency and @from is NSEC_PER_SEC.
49  *
50  * The @maxsec conversion range argument controls the time frame in
51  * seconds which must be covered by the runtime conversion with the
52  * calculated mult and shift factors. This guarantees that no 64bit
53  * overflow happens when the input value of the conversion is
54  * multiplied with the calculated mult factor. Larger ranges may
55  * reduce the conversion accuracy by choosing smaller mult and shift
56  * factors.
57  */
58 void
59 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
60 {
61 	u64 tmp;
62 	u32 sft, sftacc= 32;
63 
64 	/*
65 	 * Calculate the shift factor which is limiting the conversion
66 	 * range:
67 	 */
68 	tmp = ((u64)maxsec * from) >> 32;
69 	while (tmp) {
70 		tmp >>=1;
71 		sftacc--;
72 	}
73 
74 	/*
75 	 * Find the conversion shift/mult pair which has the best
76 	 * accuracy and fits the maxsec conversion range:
77 	 */
78 	for (sft = 32; sft > 0; sft--) {
79 		tmp = (u64) to << sft;
80 		tmp += from / 2;
81 		do_div(tmp, from);
82 		if ((tmp >> sftacc) == 0)
83 			break;
84 	}
85 	*mult = tmp;
86 	*shift = sft;
87 }
88 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
89 
90 /*[Clocksource internal variables]---------
91  * curr_clocksource:
92  *	currently selected clocksource.
93  * suspend_clocksource:
94  *	used to calculate the suspend time.
95  * clocksource_list:
96  *	linked list with the registered clocksources
97  * clocksource_mutex:
98  *	protects manipulations to curr_clocksource and the clocksource_list
99  * override_name:
100  *	Name of the user-specified clocksource.
101  */
102 static struct clocksource *curr_clocksource;
103 static struct clocksource *suspend_clocksource;
104 static LIST_HEAD(clocksource_list);
105 static DEFINE_MUTEX(clocksource_mutex);
106 static char override_name[CS_NAME_LEN];
107 static int finished_booting;
108 static u64 suspend_start;
109 
110 /*
111  * Interval: 0.5sec.
112  */
113 #define WATCHDOG_INTERVAL (HZ >> 1)
114 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
115 
116 /*
117  * Threshold: 0.0312s, when doubled: 0.0625s.
118  */
119 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
120 
121 /*
122  * Maximum permissible delay between two readouts of the watchdog
123  * clocksource surrounding a read of the clocksource being validated.
124  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
125  * a lower bound for cs->uncertainty_margin values when registering clocks.
126  *
127  * The default of 500 parts per million is based on NTP's limits.
128  * If a clocksource is good enough for NTP, it is good enough for us!
129  *
130  * In other words, by default, even if a clocksource is extremely
131  * precise (for example, with a sub-nanosecond period), the maximum
132  * permissible skew between the clocksource watchdog and the clocksource
133  * under test is not permitted to go below the 500ppm minimum defined
134  * by MAX_SKEW_USEC.  This 500ppm minimum may be overridden using the
135  * CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option.
136  */
137 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
138 #define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
139 #else
140 #define MAX_SKEW_USEC	(125 * WATCHDOG_INTERVAL / HZ)
141 #endif
142 
143 /*
144  * Default for maximum permissible skew when cs->uncertainty_margin is
145  * not specified, and the lower bound even when cs->uncertainty_margin
146  * is specified.  This is also the default that is used when registering
147  * clocks with unspecified cs->uncertainty_margin, so this macro is used
148  * even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels.
149  */
150 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
151 
152 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
153 static void clocksource_watchdog_work(struct work_struct *work);
154 static void clocksource_select(void);
155 
156 static LIST_HEAD(watchdog_list);
157 static struct clocksource *watchdog;
158 static struct timer_list watchdog_timer;
159 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
160 static DEFINE_SPINLOCK(watchdog_lock);
161 static int watchdog_running;
162 static atomic_t watchdog_reset_pending;
163 static int64_t watchdog_max_interval;
164 
165 static inline void clocksource_watchdog_lock(unsigned long *flags)
166 {
167 	spin_lock_irqsave(&watchdog_lock, *flags);
168 }
169 
170 static inline void clocksource_watchdog_unlock(unsigned long *flags)
171 {
172 	spin_unlock_irqrestore(&watchdog_lock, *flags);
173 }
174 
175 static int clocksource_watchdog_kthread(void *data);
176 
177 static void clocksource_watchdog_work(struct work_struct *work)
178 {
179 	/*
180 	 * We cannot directly run clocksource_watchdog_kthread() here, because
181 	 * clocksource_select() calls timekeeping_notify() which uses
182 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
183 	 * lock inversions wrt CPU hotplug.
184 	 *
185 	 * Also, we only ever run this work once or twice during the lifetime
186 	 * of the kernel, so there is no point in creating a more permanent
187 	 * kthread for this.
188 	 *
189 	 * If kthread_run fails the next watchdog scan over the
190 	 * watchdog_list will find the unstable clock again.
191 	 */
192 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
193 }
194 
195 static void clocksource_change_rating(struct clocksource *cs, int rating)
196 {
197 	list_del(&cs->list);
198 	cs->rating = rating;
199 	clocksource_enqueue(cs);
200 }
201 
202 static void __clocksource_unstable(struct clocksource *cs)
203 {
204 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
205 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
206 
207 	/*
208 	 * If the clocksource is registered clocksource_watchdog_kthread() will
209 	 * re-rate and re-select.
210 	 */
211 	if (list_empty(&cs->list)) {
212 		cs->rating = 0;
213 		return;
214 	}
215 
216 	if (cs->mark_unstable)
217 		cs->mark_unstable(cs);
218 
219 	/* kick clocksource_watchdog_kthread() */
220 	if (finished_booting)
221 		schedule_work(&watchdog_work);
222 }
223 
224 /**
225  * clocksource_mark_unstable - mark clocksource unstable via watchdog
226  * @cs:		clocksource to be marked unstable
227  *
228  * This function is called by the x86 TSC code to mark clocksources as unstable;
229  * it defers demotion and re-selection to a kthread.
230  */
231 void clocksource_mark_unstable(struct clocksource *cs)
232 {
233 	unsigned long flags;
234 
235 	spin_lock_irqsave(&watchdog_lock, flags);
236 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
237 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
238 			list_add(&cs->wd_list, &watchdog_list);
239 		__clocksource_unstable(cs);
240 	}
241 	spin_unlock_irqrestore(&watchdog_lock, flags);
242 }
243 
244 static int verify_n_cpus = 8;
245 module_param(verify_n_cpus, int, 0644);
246 
247 enum wd_read_status {
248 	WD_READ_SUCCESS,
249 	WD_READ_UNSTABLE,
250 	WD_READ_SKIP
251 };
252 
253 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
254 {
255 	int64_t md = 2 * watchdog->uncertainty_margin;
256 	unsigned int nretries, max_retries;
257 	int64_t wd_delay, wd_seq_delay;
258 	u64 wd_end, wd_end2;
259 
260 	max_retries = clocksource_get_max_watchdog_retry();
261 	for (nretries = 0; nretries <= max_retries; nretries++) {
262 		local_irq_disable();
263 		*wdnow = watchdog->read(watchdog);
264 		*csnow = cs->read(cs);
265 		wd_end = watchdog->read(watchdog);
266 		wd_end2 = watchdog->read(watchdog);
267 		local_irq_enable();
268 
269 		wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
270 		if (wd_delay <= md + cs->uncertainty_margin) {
271 			if (nretries > 1 && nretries >= max_retries) {
272 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
273 					smp_processor_id(), watchdog->name, nretries);
274 			}
275 			return WD_READ_SUCCESS;
276 		}
277 
278 		/*
279 		 * Now compute delay in consecutive watchdog read to see if
280 		 * there is too much external interferences that cause
281 		 * significant delay in reading both clocksource and watchdog.
282 		 *
283 		 * If consecutive WD read-back delay > md, report
284 		 * system busy, reinit the watchdog and skip the current
285 		 * watchdog test.
286 		 */
287 		wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
288 		if (wd_seq_delay > md)
289 			goto skip_test;
290 	}
291 
292 	pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
293 		smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
294 	return WD_READ_UNSTABLE;
295 
296 skip_test:
297 	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
298 		smp_processor_id(), watchdog->name, wd_seq_delay);
299 	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
300 		cs->name, wd_delay);
301 	return WD_READ_SKIP;
302 }
303 
304 static u64 csnow_mid;
305 static cpumask_t cpus_ahead;
306 static cpumask_t cpus_behind;
307 static cpumask_t cpus_chosen;
308 
309 static void clocksource_verify_choose_cpus(void)
310 {
311 	int cpu, i, n = verify_n_cpus;
312 
313 	if (n < 0 || n >= num_online_cpus()) {
314 		/* Check all of the CPUs. */
315 		cpumask_copy(&cpus_chosen, cpu_online_mask);
316 		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
317 		return;
318 	}
319 
320 	/* If no checking desired, or no other CPU to check, leave. */
321 	cpumask_clear(&cpus_chosen);
322 	if (n == 0 || num_online_cpus() <= 1)
323 		return;
324 
325 	/* Make sure to select at least one CPU other than the current CPU. */
326 	cpu = cpumask_any_but(cpu_online_mask, smp_processor_id());
327 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
328 		return;
329 	cpumask_set_cpu(cpu, &cpus_chosen);
330 
331 	/* Force a sane value for the boot parameter. */
332 	if (n > nr_cpu_ids)
333 		n = nr_cpu_ids;
334 
335 	/*
336 	 * Randomly select the specified number of CPUs.  If the same
337 	 * CPU is selected multiple times, that CPU is checked only once,
338 	 * and no replacement CPU is selected.  This gracefully handles
339 	 * situations where verify_n_cpus is greater than the number of
340 	 * CPUs that are currently online.
341 	 */
342 	for (i = 1; i < n; i++) {
343 		cpu = cpumask_random(cpu_online_mask);
344 		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
345 			cpumask_set_cpu(cpu, &cpus_chosen);
346 	}
347 
348 	/* Don't verify ourselves. */
349 	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
350 }
351 
352 static void clocksource_verify_one_cpu(void *csin)
353 {
354 	struct clocksource *cs = (struct clocksource *)csin;
355 
356 	csnow_mid = cs->read(cs);
357 }
358 
359 void clocksource_verify_percpu(struct clocksource *cs)
360 {
361 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
362 	u64 csnow_begin, csnow_end;
363 	int cpu, testcpu;
364 	s64 delta;
365 
366 	if (verify_n_cpus == 0)
367 		return;
368 	cpumask_clear(&cpus_ahead);
369 	cpumask_clear(&cpus_behind);
370 	cpus_read_lock();
371 	migrate_disable();
372 	clocksource_verify_choose_cpus();
373 	if (cpumask_empty(&cpus_chosen)) {
374 		migrate_enable();
375 		cpus_read_unlock();
376 		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
377 		return;
378 	}
379 	testcpu = smp_processor_id();
380 	pr_info("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n",
381 		cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
382 	preempt_disable();
383 	for_each_cpu(cpu, &cpus_chosen) {
384 		if (cpu == testcpu)
385 			continue;
386 		csnow_begin = cs->read(cs);
387 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
388 		csnow_end = cs->read(cs);
389 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
390 		if (delta < 0)
391 			cpumask_set_cpu(cpu, &cpus_behind);
392 		delta = (csnow_end - csnow_mid) & cs->mask;
393 		if (delta < 0)
394 			cpumask_set_cpu(cpu, &cpus_ahead);
395 		cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end);
396 		if (cs_nsec > cs_nsec_max)
397 			cs_nsec_max = cs_nsec;
398 		if (cs_nsec < cs_nsec_min)
399 			cs_nsec_min = cs_nsec;
400 	}
401 	preempt_enable();
402 	migrate_enable();
403 	cpus_read_unlock();
404 	if (!cpumask_empty(&cpus_ahead))
405 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
406 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
407 	if (!cpumask_empty(&cpus_behind))
408 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
409 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
410 	pr_info("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
411 		testcpu, cs_nsec_min, cs_nsec_max, cs->name);
412 }
413 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
414 
415 static inline void clocksource_reset_watchdog(void)
416 {
417 	struct clocksource *cs;
418 
419 	list_for_each_entry(cs, &watchdog_list, wd_list)
420 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
421 }
422 
423 
424 static void clocksource_watchdog(struct timer_list *unused)
425 {
426 	int64_t wd_nsec, cs_nsec, interval;
427 	u64 csnow, wdnow, cslast, wdlast;
428 	int next_cpu, reset_pending;
429 	struct clocksource *cs;
430 	enum wd_read_status read_ret;
431 	unsigned long extra_wait = 0;
432 	u32 md;
433 
434 	spin_lock(&watchdog_lock);
435 	if (!watchdog_running)
436 		goto out;
437 
438 	reset_pending = atomic_read(&watchdog_reset_pending);
439 
440 	list_for_each_entry(cs, &watchdog_list, wd_list) {
441 
442 		/* Clocksource already marked unstable? */
443 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
444 			if (finished_booting)
445 				schedule_work(&watchdog_work);
446 			continue;
447 		}
448 
449 		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
450 
451 		if (read_ret == WD_READ_UNSTABLE) {
452 			/* Clock readout unreliable, so give it up. */
453 			__clocksource_unstable(cs);
454 			continue;
455 		}
456 
457 		/*
458 		 * When WD_READ_SKIP is returned, it means the system is likely
459 		 * under very heavy load, where the latency of reading
460 		 * watchdog/clocksource is very big, and affect the accuracy of
461 		 * watchdog check. So give system some space and suspend the
462 		 * watchdog check for 5 minutes.
463 		 */
464 		if (read_ret == WD_READ_SKIP) {
465 			/*
466 			 * As the watchdog timer will be suspended, and
467 			 * cs->last could keep unchanged for 5 minutes, reset
468 			 * the counters.
469 			 */
470 			clocksource_reset_watchdog();
471 			extra_wait = HZ * 300;
472 			break;
473 		}
474 
475 		/* Clocksource initialized ? */
476 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
477 		    atomic_read(&watchdog_reset_pending)) {
478 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
479 			cs->wd_last = wdnow;
480 			cs->cs_last = csnow;
481 			continue;
482 		}
483 
484 		wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow);
485 		cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow);
486 		wdlast = cs->wd_last; /* save these in case we print them */
487 		cslast = cs->cs_last;
488 		cs->cs_last = csnow;
489 		cs->wd_last = wdnow;
490 
491 		if (atomic_read(&watchdog_reset_pending))
492 			continue;
493 
494 		/*
495 		 * The processing of timer softirqs can get delayed (usually
496 		 * on account of ksoftirqd not getting to run in a timely
497 		 * manner), which causes the watchdog interval to stretch.
498 		 * Skew detection may fail for longer watchdog intervals
499 		 * on account of fixed margins being used.
500 		 * Some clocksources, e.g. acpi_pm, cannot tolerate
501 		 * watchdog intervals longer than a few seconds.
502 		 */
503 		interval = max(cs_nsec, wd_nsec);
504 		if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
505 			if (system_state > SYSTEM_SCHEDULING &&
506 			    interval > 2 * watchdog_max_interval) {
507 				watchdog_max_interval = interval;
508 				pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
509 					cs_nsec, wd_nsec);
510 			}
511 			watchdog_timer.expires = jiffies;
512 			continue;
513 		}
514 
515 		/* Check the deviation from the watchdog clocksource. */
516 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
517 		if (abs(cs_nsec - wd_nsec) > md) {
518 			s64 cs_wd_msec;
519 			s64 wd_msec;
520 			u32 wd_rem;
521 
522 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
523 				smp_processor_id(), cs->name);
524 			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
525 				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
526 			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
527 				cs->name, cs_nsec, csnow, cslast, cs->mask);
528 			cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
529 			wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
530 			pr_warn("                      Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
531 				cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
532 			if (curr_clocksource == cs)
533 				pr_warn("                      '%s' is current clocksource.\n", cs->name);
534 			else if (curr_clocksource)
535 				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
536 			else
537 				pr_warn("                      No current clocksource.\n");
538 			__clocksource_unstable(cs);
539 			continue;
540 		}
541 
542 		if (cs == curr_clocksource && cs->tick_stable)
543 			cs->tick_stable(cs);
544 
545 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
546 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
547 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
548 			/* Mark it valid for high-res. */
549 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
550 
551 			/*
552 			 * clocksource_done_booting() will sort it if
553 			 * finished_booting is not set yet.
554 			 */
555 			if (!finished_booting)
556 				continue;
557 
558 			/*
559 			 * If this is not the current clocksource let
560 			 * the watchdog thread reselect it. Due to the
561 			 * change to high res this clocksource might
562 			 * be preferred now. If it is the current
563 			 * clocksource let the tick code know about
564 			 * that change.
565 			 */
566 			if (cs != curr_clocksource) {
567 				cs->flags |= CLOCK_SOURCE_RESELECT;
568 				schedule_work(&watchdog_work);
569 			} else {
570 				tick_clock_notify();
571 			}
572 		}
573 	}
574 
575 	/*
576 	 * We only clear the watchdog_reset_pending, when we did a
577 	 * full cycle through all clocksources.
578 	 */
579 	if (reset_pending)
580 		atomic_dec(&watchdog_reset_pending);
581 
582 	/*
583 	 * Cycle through CPUs to check if the CPUs stay synchronized
584 	 * to each other.
585 	 */
586 	next_cpu = cpumask_next_wrap(raw_smp_processor_id(), cpu_online_mask);
587 
588 	/*
589 	 * Arm timer if not already pending: could race with concurrent
590 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
591 	 */
592 	if (!timer_pending(&watchdog_timer)) {
593 		watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
594 		add_timer_on(&watchdog_timer, next_cpu);
595 	}
596 out:
597 	spin_unlock(&watchdog_lock);
598 }
599 
600 static inline void clocksource_start_watchdog(void)
601 {
602 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
603 		return;
604 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
605 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
606 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
607 	watchdog_running = 1;
608 }
609 
610 static inline void clocksource_stop_watchdog(void)
611 {
612 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
613 		return;
614 	timer_delete(&watchdog_timer);
615 	watchdog_running = 0;
616 }
617 
618 static void clocksource_resume_watchdog(void)
619 {
620 	atomic_inc(&watchdog_reset_pending);
621 }
622 
623 static void clocksource_enqueue_watchdog(struct clocksource *cs)
624 {
625 	INIT_LIST_HEAD(&cs->wd_list);
626 
627 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
628 		/* cs is a clocksource to be watched. */
629 		list_add(&cs->wd_list, &watchdog_list);
630 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
631 	} else {
632 		/* cs is a watchdog. */
633 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
634 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
635 	}
636 }
637 
638 static void clocksource_select_watchdog(bool fallback)
639 {
640 	struct clocksource *cs, *old_wd;
641 	unsigned long flags;
642 
643 	spin_lock_irqsave(&watchdog_lock, flags);
644 	/* save current watchdog */
645 	old_wd = watchdog;
646 	if (fallback)
647 		watchdog = NULL;
648 
649 	list_for_each_entry(cs, &clocksource_list, list) {
650 		/* cs is a clocksource to be watched. */
651 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
652 			continue;
653 
654 		/* Skip current if we were requested for a fallback. */
655 		if (fallback && cs == old_wd)
656 			continue;
657 
658 		/* Pick the best watchdog. */
659 		if (!watchdog || cs->rating > watchdog->rating)
660 			watchdog = cs;
661 	}
662 	/* If we failed to find a fallback restore the old one. */
663 	if (!watchdog)
664 		watchdog = old_wd;
665 
666 	/* If we changed the watchdog we need to reset cycles. */
667 	if (watchdog != old_wd)
668 		clocksource_reset_watchdog();
669 
670 	/* Check if the watchdog timer needs to be started. */
671 	clocksource_start_watchdog();
672 	spin_unlock_irqrestore(&watchdog_lock, flags);
673 }
674 
675 static void clocksource_dequeue_watchdog(struct clocksource *cs)
676 {
677 	if (cs != watchdog) {
678 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
679 			/* cs is a watched clocksource. */
680 			list_del_init(&cs->wd_list);
681 			/* Check if the watchdog timer needs to be stopped. */
682 			clocksource_stop_watchdog();
683 		}
684 	}
685 }
686 
687 static int __clocksource_watchdog_kthread(void)
688 {
689 	struct clocksource *cs, *tmp;
690 	unsigned long flags;
691 	int select = 0;
692 
693 	/* Do any required per-CPU skew verification. */
694 	if (curr_clocksource &&
695 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
696 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
697 		clocksource_verify_percpu(curr_clocksource);
698 
699 	spin_lock_irqsave(&watchdog_lock, flags);
700 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
701 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
702 			list_del_init(&cs->wd_list);
703 			clocksource_change_rating(cs, 0);
704 			select = 1;
705 		}
706 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
707 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
708 			select = 1;
709 		}
710 	}
711 	/* Check if the watchdog timer needs to be stopped. */
712 	clocksource_stop_watchdog();
713 	spin_unlock_irqrestore(&watchdog_lock, flags);
714 
715 	return select;
716 }
717 
718 static int clocksource_watchdog_kthread(void *data)
719 {
720 	mutex_lock(&clocksource_mutex);
721 	if (__clocksource_watchdog_kthread())
722 		clocksource_select();
723 	mutex_unlock(&clocksource_mutex);
724 	return 0;
725 }
726 
727 static bool clocksource_is_watchdog(struct clocksource *cs)
728 {
729 	return cs == watchdog;
730 }
731 
732 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
733 
734 static void clocksource_enqueue_watchdog(struct clocksource *cs)
735 {
736 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
737 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
738 }
739 
740 static void clocksource_select_watchdog(bool fallback) { }
741 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
742 static inline void clocksource_resume_watchdog(void) { }
743 static inline int __clocksource_watchdog_kthread(void) { return 0; }
744 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
745 void clocksource_mark_unstable(struct clocksource *cs) { }
746 
747 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
748 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
749 
750 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
751 
752 static bool clocksource_is_suspend(struct clocksource *cs)
753 {
754 	return cs == suspend_clocksource;
755 }
756 
757 static void __clocksource_suspend_select(struct clocksource *cs)
758 {
759 	/*
760 	 * Skip the clocksource which will be stopped in suspend state.
761 	 */
762 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
763 		return;
764 
765 	/*
766 	 * The nonstop clocksource can be selected as the suspend clocksource to
767 	 * calculate the suspend time, so it should not supply suspend/resume
768 	 * interfaces to suspend the nonstop clocksource when system suspends.
769 	 */
770 	if (cs->suspend || cs->resume) {
771 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
772 			cs->name);
773 	}
774 
775 	/* Pick the best rating. */
776 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
777 		suspend_clocksource = cs;
778 }
779 
780 /**
781  * clocksource_suspend_select - Select the best clocksource for suspend timing
782  * @fallback:	if select a fallback clocksource
783  */
784 static void clocksource_suspend_select(bool fallback)
785 {
786 	struct clocksource *cs, *old_suspend;
787 
788 	old_suspend = suspend_clocksource;
789 	if (fallback)
790 		suspend_clocksource = NULL;
791 
792 	list_for_each_entry(cs, &clocksource_list, list) {
793 		/* Skip current if we were requested for a fallback. */
794 		if (fallback && cs == old_suspend)
795 			continue;
796 
797 		__clocksource_suspend_select(cs);
798 	}
799 }
800 
801 /**
802  * clocksource_start_suspend_timing - Start measuring the suspend timing
803  * @cs:			current clocksource from timekeeping
804  * @start_cycles:	current cycles from timekeeping
805  *
806  * This function will save the start cycle values of suspend timer to calculate
807  * the suspend time when resuming system.
808  *
809  * This function is called late in the suspend process from timekeeping_suspend(),
810  * that means processes are frozen, non-boot cpus and interrupts are disabled
811  * now. It is therefore possible to start the suspend timer without taking the
812  * clocksource mutex.
813  */
814 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
815 {
816 	if (!suspend_clocksource)
817 		return;
818 
819 	/*
820 	 * If current clocksource is the suspend timer, we should use the
821 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
822 	 * from suspend timer.
823 	 */
824 	if (clocksource_is_suspend(cs)) {
825 		suspend_start = start_cycles;
826 		return;
827 	}
828 
829 	if (suspend_clocksource->enable &&
830 	    suspend_clocksource->enable(suspend_clocksource)) {
831 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
832 		return;
833 	}
834 
835 	suspend_start = suspend_clocksource->read(suspend_clocksource);
836 }
837 
838 /**
839  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
840  * @cs:		current clocksource from timekeeping
841  * @cycle_now:	current cycles from timekeeping
842  *
843  * This function will calculate the suspend time from suspend timer.
844  *
845  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
846  *
847  * This function is called early in the resume process from timekeeping_resume(),
848  * that means there is only one cpu, no processes are running and the interrupts
849  * are disabled. It is therefore possible to stop the suspend timer without
850  * taking the clocksource mutex.
851  */
852 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
853 {
854 	u64 now, nsec = 0;
855 
856 	if (!suspend_clocksource)
857 		return 0;
858 
859 	/*
860 	 * If current clocksource is the suspend timer, we should use the
861 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
862 	 * avoid same reading from suspend timer.
863 	 */
864 	if (clocksource_is_suspend(cs))
865 		now = cycle_now;
866 	else
867 		now = suspend_clocksource->read(suspend_clocksource);
868 
869 	if (now > suspend_start)
870 		nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now);
871 
872 	/*
873 	 * Disable the suspend timer to save power if current clocksource is
874 	 * not the suspend timer.
875 	 */
876 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
877 		suspend_clocksource->disable(suspend_clocksource);
878 
879 	return nsec;
880 }
881 
882 /**
883  * clocksource_suspend - suspend the clocksource(s)
884  */
885 void clocksource_suspend(void)
886 {
887 	struct clocksource *cs;
888 
889 	list_for_each_entry_reverse(cs, &clocksource_list, list)
890 		if (cs->suspend)
891 			cs->suspend(cs);
892 }
893 
894 /**
895  * clocksource_resume - resume the clocksource(s)
896  */
897 void clocksource_resume(void)
898 {
899 	struct clocksource *cs;
900 
901 	list_for_each_entry(cs, &clocksource_list, list)
902 		if (cs->resume)
903 			cs->resume(cs);
904 
905 	clocksource_resume_watchdog();
906 }
907 
908 /**
909  * clocksource_touch_watchdog - Update watchdog
910  *
911  * Update the watchdog after exception contexts such as kgdb so as not
912  * to incorrectly trip the watchdog. This might fail when the kernel
913  * was stopped in code which holds watchdog_lock.
914  */
915 void clocksource_touch_watchdog(void)
916 {
917 	clocksource_resume_watchdog();
918 }
919 
920 /**
921  * clocksource_max_adjustment- Returns max adjustment amount
922  * @cs:         Pointer to clocksource
923  *
924  */
925 static u32 clocksource_max_adjustment(struct clocksource *cs)
926 {
927 	u64 ret;
928 	/*
929 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
930 	 */
931 	ret = (u64)cs->mult * 11;
932 	do_div(ret,100);
933 	return (u32)ret;
934 }
935 
936 /**
937  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
938  * @mult:	cycle to nanosecond multiplier
939  * @shift:	cycle to nanosecond divisor (power of two)
940  * @maxadj:	maximum adjustment value to mult (~11%)
941  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
942  * @max_cyc:	maximum cycle value before potential overflow (does not include
943  *		any safety margin)
944  *
945  * NOTE: This function includes a safety margin of 50%, in other words, we
946  * return half the number of nanoseconds the hardware counter can technically
947  * cover. This is done so that we can potentially detect problems caused by
948  * delayed timers or bad hardware, which might result in time intervals that
949  * are larger than what the math used can handle without overflows.
950  */
951 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
952 {
953 	u64 max_nsecs, max_cycles;
954 
955 	/*
956 	 * Calculate the maximum number of cycles that we can pass to the
957 	 * cyc2ns() function without overflowing a 64-bit result.
958 	 */
959 	max_cycles = ULLONG_MAX;
960 	do_div(max_cycles, mult+maxadj);
961 
962 	/*
963 	 * The actual maximum number of cycles we can defer the clocksource is
964 	 * determined by the minimum of max_cycles and mask.
965 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
966 	 * too long if there's a large negative adjustment.
967 	 */
968 	max_cycles = min(max_cycles, mask);
969 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
970 
971 	/* return the max_cycles value as well if requested */
972 	if (max_cyc)
973 		*max_cyc = max_cycles;
974 
975 	/* Return 50% of the actual maximum, so we can detect bad values */
976 	max_nsecs >>= 1;
977 
978 	return max_nsecs;
979 }
980 
981 /**
982  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
983  * @cs:         Pointer to clocksource to be updated
984  *
985  */
986 static inline void clocksource_update_max_deferment(struct clocksource *cs)
987 {
988 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
989 						cs->maxadj, cs->mask,
990 						&cs->max_cycles);
991 
992 	/*
993 	 * Threshold for detecting negative motion in clocksource_delta().
994 	 *
995 	 * Allow for 0.875 of the counter width so that overly long idle
996 	 * sleeps, which go slightly over mask/2, do not trigger the
997 	 * negative motion detection.
998 	 */
999 	cs->max_raw_delta = (cs->mask >> 1) + (cs->mask >> 2) + (cs->mask >> 3);
1000 }
1001 
1002 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
1003 {
1004 	struct clocksource *cs;
1005 
1006 	if (!finished_booting || list_empty(&clocksource_list))
1007 		return NULL;
1008 
1009 	/*
1010 	 * We pick the clocksource with the highest rating. If oneshot
1011 	 * mode is active, we pick the highres valid clocksource with
1012 	 * the best rating.
1013 	 */
1014 	list_for_each_entry(cs, &clocksource_list, list) {
1015 		if (skipcur && cs == curr_clocksource)
1016 			continue;
1017 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1018 			continue;
1019 		return cs;
1020 	}
1021 	return NULL;
1022 }
1023 
1024 static void __clocksource_select(bool skipcur)
1025 {
1026 	bool oneshot = tick_oneshot_mode_active();
1027 	struct clocksource *best, *cs;
1028 
1029 	/* Find the best suitable clocksource */
1030 	best = clocksource_find_best(oneshot, skipcur);
1031 	if (!best)
1032 		return;
1033 
1034 	if (!strlen(override_name))
1035 		goto found;
1036 
1037 	/* Check for the override clocksource. */
1038 	list_for_each_entry(cs, &clocksource_list, list) {
1039 		if (skipcur && cs == curr_clocksource)
1040 			continue;
1041 		if (strcmp(cs->name, override_name) != 0)
1042 			continue;
1043 		/*
1044 		 * Check to make sure we don't switch to a non-highres
1045 		 * capable clocksource if the tick code is in oneshot
1046 		 * mode (highres or nohz)
1047 		 */
1048 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1049 			/* Override clocksource cannot be used. */
1050 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1051 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1052 					cs->name);
1053 				override_name[0] = 0;
1054 			} else {
1055 				/*
1056 				 * The override cannot be currently verified.
1057 				 * Deferring to let the watchdog check.
1058 				 */
1059 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1060 					cs->name);
1061 			}
1062 		} else
1063 			/* Override clocksource can be used. */
1064 			best = cs;
1065 		break;
1066 	}
1067 
1068 found:
1069 	if (curr_clocksource != best && !timekeeping_notify(best)) {
1070 		pr_info("Switched to clocksource %s\n", best->name);
1071 		curr_clocksource = best;
1072 	}
1073 }
1074 
1075 /**
1076  * clocksource_select - Select the best clocksource available
1077  *
1078  * Private function. Must hold clocksource_mutex when called.
1079  *
1080  * Select the clocksource with the best rating, or the clocksource,
1081  * which is selected by userspace override.
1082  */
1083 static void clocksource_select(void)
1084 {
1085 	__clocksource_select(false);
1086 }
1087 
1088 static void clocksource_select_fallback(void)
1089 {
1090 	__clocksource_select(true);
1091 }
1092 
1093 /*
1094  * clocksource_done_booting - Called near the end of core bootup
1095  *
1096  * Hack to avoid lots of clocksource churn at boot time.
1097  * We use fs_initcall because we want this to start before
1098  * device_initcall but after subsys_initcall.
1099  */
1100 static int __init clocksource_done_booting(void)
1101 {
1102 	mutex_lock(&clocksource_mutex);
1103 	curr_clocksource = clocksource_default_clock();
1104 	finished_booting = 1;
1105 	/*
1106 	 * Run the watchdog first to eliminate unstable clock sources
1107 	 */
1108 	__clocksource_watchdog_kthread();
1109 	clocksource_select();
1110 	mutex_unlock(&clocksource_mutex);
1111 	return 0;
1112 }
1113 fs_initcall(clocksource_done_booting);
1114 
1115 /*
1116  * Enqueue the clocksource sorted by rating
1117  */
1118 static void clocksource_enqueue(struct clocksource *cs)
1119 {
1120 	struct list_head *entry = &clocksource_list;
1121 	struct clocksource *tmp;
1122 
1123 	list_for_each_entry(tmp, &clocksource_list, list) {
1124 		/* Keep track of the place, where to insert */
1125 		if (tmp->rating < cs->rating)
1126 			break;
1127 		entry = &tmp->list;
1128 	}
1129 	list_add(&cs->list, entry);
1130 }
1131 
1132 /**
1133  * __clocksource_update_freq_scale - Used update clocksource with new freq
1134  * @cs:		clocksource to be registered
1135  * @scale:	Scale factor multiplied against freq to get clocksource hz
1136  * @freq:	clocksource frequency (cycles per second) divided by scale
1137  *
1138  * This should only be called from the clocksource->enable() method.
1139  *
1140  * This *SHOULD NOT* be called directly! Please use the
1141  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1142  * functions.
1143  */
1144 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1145 {
1146 	u64 sec;
1147 
1148 	/*
1149 	 * Default clocksources are *special* and self-define their mult/shift.
1150 	 * But, you're not special, so you should specify a freq value.
1151 	 */
1152 	if (freq) {
1153 		/*
1154 		 * Calc the maximum number of seconds which we can run before
1155 		 * wrapping around. For clocksources which have a mask > 32-bit
1156 		 * we need to limit the max sleep time to have a good
1157 		 * conversion precision. 10 minutes is still a reasonable
1158 		 * amount. That results in a shift value of 24 for a
1159 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1160 		 * ~ 0.06ppm granularity for NTP.
1161 		 */
1162 		sec = cs->mask;
1163 		do_div(sec, freq);
1164 		do_div(sec, scale);
1165 		if (!sec)
1166 			sec = 1;
1167 		else if (sec > 600 && cs->mask > UINT_MAX)
1168 			sec = 600;
1169 
1170 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1171 				       NSEC_PER_SEC / scale, sec * scale);
1172 	}
1173 
1174 	/*
1175 	 * If the uncertainty margin is not specified, calculate it.  If
1176 	 * both scale and freq are non-zero, calculate the clock period, but
1177 	 * bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default.
1178 	 * However, if either of scale or freq is zero, be very conservative
1179 	 * and take the tens-of-milliseconds WATCHDOG_THRESHOLD value
1180 	 * for the uncertainty margin.  Allow stupidly small uncertainty
1181 	 * margins to be specified by the caller for testing purposes,
1182 	 * but warn to discourage production use of this capability.
1183 	 *
1184 	 * Bottom line:  The sum of the uncertainty margins of the
1185 	 * watchdog clocksource and the clocksource under test will be at
1186 	 * least 500ppm by default.  For more information, please see the
1187 	 * comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above.
1188 	 */
1189 	if (scale && freq && !cs->uncertainty_margin) {
1190 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1191 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1192 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1193 	} else if (!cs->uncertainty_margin) {
1194 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1195 	}
1196 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1197 
1198 	/*
1199 	 * Ensure clocksources that have large 'mult' values don't overflow
1200 	 * when adjusted.
1201 	 */
1202 	cs->maxadj = clocksource_max_adjustment(cs);
1203 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1204 		|| (cs->mult - cs->maxadj > cs->mult))) {
1205 		cs->mult >>= 1;
1206 		cs->shift--;
1207 		cs->maxadj = clocksource_max_adjustment(cs);
1208 	}
1209 
1210 	/*
1211 	 * Only warn for *special* clocksources that self-define
1212 	 * their mult/shift values and don't specify a freq.
1213 	 */
1214 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1215 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1216 		cs->name);
1217 
1218 	clocksource_update_max_deferment(cs);
1219 
1220 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1221 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1222 }
1223 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1224 
1225 /**
1226  * __clocksource_register_scale - Used to install new clocksources
1227  * @cs:		clocksource to be registered
1228  * @scale:	Scale factor multiplied against freq to get clocksource hz
1229  * @freq:	clocksource frequency (cycles per second) divided by scale
1230  *
1231  * Returns -EBUSY if registration fails, zero otherwise.
1232  *
1233  * This *SHOULD NOT* be called directly! Please use the
1234  * clocksource_register_hz() or clocksource_register_khz helper functions.
1235  */
1236 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1237 {
1238 	unsigned long flags;
1239 
1240 	clocksource_arch_init(cs);
1241 
1242 	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1243 		cs->id = CSID_GENERIC;
1244 	if (cs->vdso_clock_mode < 0 ||
1245 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1246 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1247 			cs->name, cs->vdso_clock_mode);
1248 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1249 	}
1250 
1251 	/* Initialize mult/shift and max_idle_ns */
1252 	__clocksource_update_freq_scale(cs, scale, freq);
1253 
1254 	/* Add clocksource to the clocksource list */
1255 	mutex_lock(&clocksource_mutex);
1256 
1257 	clocksource_watchdog_lock(&flags);
1258 	clocksource_enqueue(cs);
1259 	clocksource_enqueue_watchdog(cs);
1260 	clocksource_watchdog_unlock(&flags);
1261 
1262 	clocksource_select();
1263 	clocksource_select_watchdog(false);
1264 	__clocksource_suspend_select(cs);
1265 	mutex_unlock(&clocksource_mutex);
1266 	return 0;
1267 }
1268 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1269 
1270 /*
1271  * Unbind clocksource @cs. Called with clocksource_mutex held
1272  */
1273 static int clocksource_unbind(struct clocksource *cs)
1274 {
1275 	unsigned long flags;
1276 
1277 	if (clocksource_is_watchdog(cs)) {
1278 		/* Select and try to install a replacement watchdog. */
1279 		clocksource_select_watchdog(true);
1280 		if (clocksource_is_watchdog(cs))
1281 			return -EBUSY;
1282 	}
1283 
1284 	if (cs == curr_clocksource) {
1285 		/* Select and try to install a replacement clock source */
1286 		clocksource_select_fallback();
1287 		if (curr_clocksource == cs)
1288 			return -EBUSY;
1289 	}
1290 
1291 	if (clocksource_is_suspend(cs)) {
1292 		/*
1293 		 * Select and try to install a replacement suspend clocksource.
1294 		 * If no replacement suspend clocksource, we will just let the
1295 		 * clocksource go and have no suspend clocksource.
1296 		 */
1297 		clocksource_suspend_select(true);
1298 	}
1299 
1300 	clocksource_watchdog_lock(&flags);
1301 	clocksource_dequeue_watchdog(cs);
1302 	list_del_init(&cs->list);
1303 	clocksource_watchdog_unlock(&flags);
1304 
1305 	return 0;
1306 }
1307 
1308 /**
1309  * clocksource_unregister - remove a registered clocksource
1310  * @cs:	clocksource to be unregistered
1311  */
1312 int clocksource_unregister(struct clocksource *cs)
1313 {
1314 	int ret = 0;
1315 
1316 	mutex_lock(&clocksource_mutex);
1317 	if (!list_empty(&cs->list))
1318 		ret = clocksource_unbind(cs);
1319 	mutex_unlock(&clocksource_mutex);
1320 	return ret;
1321 }
1322 EXPORT_SYMBOL(clocksource_unregister);
1323 
1324 #ifdef CONFIG_SYSFS
1325 /**
1326  * current_clocksource_show - sysfs interface for current clocksource
1327  * @dev:	unused
1328  * @attr:	unused
1329  * @buf:	char buffer to be filled with clocksource list
1330  *
1331  * Provides sysfs interface for listing current clocksource.
1332  */
1333 static ssize_t current_clocksource_show(struct device *dev,
1334 					struct device_attribute *attr,
1335 					char *buf)
1336 {
1337 	ssize_t count = 0;
1338 
1339 	mutex_lock(&clocksource_mutex);
1340 	count = sysfs_emit(buf, "%s\n", curr_clocksource->name);
1341 	mutex_unlock(&clocksource_mutex);
1342 
1343 	return count;
1344 }
1345 
1346 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1347 {
1348 	size_t ret = cnt;
1349 
1350 	/* strings from sysfs write are not 0 terminated! */
1351 	if (!cnt || cnt >= CS_NAME_LEN)
1352 		return -EINVAL;
1353 
1354 	/* strip of \n: */
1355 	if (buf[cnt-1] == '\n')
1356 		cnt--;
1357 	if (cnt > 0)
1358 		memcpy(dst, buf, cnt);
1359 	dst[cnt] = 0;
1360 	return ret;
1361 }
1362 
1363 /**
1364  * current_clocksource_store - interface for manually overriding clocksource
1365  * @dev:	unused
1366  * @attr:	unused
1367  * @buf:	name of override clocksource
1368  * @count:	length of buffer
1369  *
1370  * Takes input from sysfs interface for manually overriding the default
1371  * clocksource selection.
1372  */
1373 static ssize_t current_clocksource_store(struct device *dev,
1374 					 struct device_attribute *attr,
1375 					 const char *buf, size_t count)
1376 {
1377 	ssize_t ret;
1378 
1379 	mutex_lock(&clocksource_mutex);
1380 
1381 	ret = sysfs_get_uname(buf, override_name, count);
1382 	if (ret >= 0)
1383 		clocksource_select();
1384 
1385 	mutex_unlock(&clocksource_mutex);
1386 
1387 	return ret;
1388 }
1389 static DEVICE_ATTR_RW(current_clocksource);
1390 
1391 /**
1392  * unbind_clocksource_store - interface for manually unbinding clocksource
1393  * @dev:	unused
1394  * @attr:	unused
1395  * @buf:	unused
1396  * @count:	length of buffer
1397  *
1398  * Takes input from sysfs interface for manually unbinding a clocksource.
1399  */
1400 static ssize_t unbind_clocksource_store(struct device *dev,
1401 					struct device_attribute *attr,
1402 					const char *buf, size_t count)
1403 {
1404 	struct clocksource *cs;
1405 	char name[CS_NAME_LEN];
1406 	ssize_t ret;
1407 
1408 	ret = sysfs_get_uname(buf, name, count);
1409 	if (ret < 0)
1410 		return ret;
1411 
1412 	ret = -ENODEV;
1413 	mutex_lock(&clocksource_mutex);
1414 	list_for_each_entry(cs, &clocksource_list, list) {
1415 		if (strcmp(cs->name, name))
1416 			continue;
1417 		ret = clocksource_unbind(cs);
1418 		break;
1419 	}
1420 	mutex_unlock(&clocksource_mutex);
1421 
1422 	return ret ? ret : count;
1423 }
1424 static DEVICE_ATTR_WO(unbind_clocksource);
1425 
1426 /**
1427  * available_clocksource_show - sysfs interface for listing clocksource
1428  * @dev:	unused
1429  * @attr:	unused
1430  * @buf:	char buffer to be filled with clocksource list
1431  *
1432  * Provides sysfs interface for listing registered clocksources
1433  */
1434 static ssize_t available_clocksource_show(struct device *dev,
1435 					  struct device_attribute *attr,
1436 					  char *buf)
1437 {
1438 	struct clocksource *src;
1439 	ssize_t count = 0;
1440 
1441 	mutex_lock(&clocksource_mutex);
1442 	list_for_each_entry(src, &clocksource_list, list) {
1443 		/*
1444 		 * Don't show non-HRES clocksource if the tick code is
1445 		 * in one shot mode (highres=on or nohz=on)
1446 		 */
1447 		if (!tick_oneshot_mode_active() ||
1448 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1449 			count += snprintf(buf + count,
1450 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1451 				  "%s ", src->name);
1452 	}
1453 	mutex_unlock(&clocksource_mutex);
1454 
1455 	count += snprintf(buf + count,
1456 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1457 
1458 	return count;
1459 }
1460 static DEVICE_ATTR_RO(available_clocksource);
1461 
1462 static struct attribute *clocksource_attrs[] = {
1463 	&dev_attr_current_clocksource.attr,
1464 	&dev_attr_unbind_clocksource.attr,
1465 	&dev_attr_available_clocksource.attr,
1466 	NULL
1467 };
1468 ATTRIBUTE_GROUPS(clocksource);
1469 
1470 static const struct bus_type clocksource_subsys = {
1471 	.name = "clocksource",
1472 	.dev_name = "clocksource",
1473 };
1474 
1475 static struct device device_clocksource = {
1476 	.id	= 0,
1477 	.bus	= &clocksource_subsys,
1478 	.groups	= clocksource_groups,
1479 };
1480 
1481 static int __init init_clocksource_sysfs(void)
1482 {
1483 	int error = subsys_system_register(&clocksource_subsys, NULL);
1484 
1485 	if (!error)
1486 		error = device_register(&device_clocksource);
1487 
1488 	return error;
1489 }
1490 
1491 device_initcall(init_clocksource_sysfs);
1492 #endif /* CONFIG_SYSFS */
1493 
1494 /**
1495  * boot_override_clocksource - boot clock override
1496  * @str:	override name
1497  *
1498  * Takes a clocksource= boot argument and uses it
1499  * as the clocksource override name.
1500  */
1501 static int __init boot_override_clocksource(char* str)
1502 {
1503 	mutex_lock(&clocksource_mutex);
1504 	if (str)
1505 		strscpy(override_name, str);
1506 	mutex_unlock(&clocksource_mutex);
1507 	return 1;
1508 }
1509 
1510 __setup("clocksource=", boot_override_clocksource);
1511 
1512 /**
1513  * boot_override_clock - Compatibility layer for deprecated boot option
1514  * @str:	override name
1515  *
1516  * DEPRECATED! Takes a clock= boot argument and uses it
1517  * as the clocksource override name
1518  */
1519 static int __init boot_override_clock(char* str)
1520 {
1521 	if (!strcmp(str, "pmtmr")) {
1522 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1523 		return boot_override_clocksource("acpi_pm");
1524 	}
1525 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1526 	return boot_override_clocksource(str);
1527 }
1528 
1529 __setup("clock=", boot_override_clock);
1530