xref: /linux/kernel/sys.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
51 
52 #include <linux/kmsg_dump.h>
53 /* Move somewhere else to avoid recompiling? */
54 #include <generated/utsrelease.h>
55 
56 #include <asm/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/unistd.h>
59 
60 #ifndef SET_UNALIGN_CTL
61 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
62 #endif
63 #ifndef GET_UNALIGN_CTL
64 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
65 #endif
66 #ifndef SET_FPEMU_CTL
67 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
68 #endif
69 #ifndef GET_FPEMU_CTL
70 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
71 #endif
72 #ifndef SET_FPEXC_CTL
73 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
74 #endif
75 #ifndef GET_FPEXC_CTL
76 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
77 #endif
78 #ifndef GET_ENDIAN
79 # define GET_ENDIAN(a,b)	(-EINVAL)
80 #endif
81 #ifndef SET_ENDIAN
82 # define SET_ENDIAN(a,b)	(-EINVAL)
83 #endif
84 #ifndef GET_TSC_CTL
85 # define GET_TSC_CTL(a)		(-EINVAL)
86 #endif
87 #ifndef SET_TSC_CTL
88 # define SET_TSC_CTL(a)		(-EINVAL)
89 #endif
90 
91 /*
92  * this is where the system-wide overflow UID and GID are defined, for
93  * architectures that now have 32-bit UID/GID but didn't in the past
94  */
95 
96 int overflowuid = DEFAULT_OVERFLOWUID;
97 int overflowgid = DEFAULT_OVERFLOWGID;
98 
99 EXPORT_SYMBOL(overflowuid);
100 EXPORT_SYMBOL(overflowgid);
101 
102 /*
103  * the same as above, but for filesystems which can only store a 16-bit
104  * UID and GID. as such, this is needed on all architectures
105  */
106 
107 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
108 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
109 
110 EXPORT_SYMBOL(fs_overflowuid);
111 EXPORT_SYMBOL(fs_overflowgid);
112 
113 /*
114  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
115  */
116 
117 int C_A_D = 1;
118 struct pid *cad_pid;
119 EXPORT_SYMBOL(cad_pid);
120 
121 /*
122  * If set, this is used for preparing the system to power off.
123  */
124 
125 void (*pm_power_off_prepare)(void);
126 
127 /*
128  * Returns true if current's euid is same as p's uid or euid,
129  * or has CAP_SYS_NICE to p's user_ns.
130  *
131  * Called with rcu_read_lock, creds are safe
132  */
133 static bool set_one_prio_perm(struct task_struct *p)
134 {
135 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
136 
137 	if (uid_eq(pcred->uid,  cred->euid) ||
138 	    uid_eq(pcred->euid, cred->euid))
139 		return true;
140 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
141 		return true;
142 	return false;
143 }
144 
145 /*
146  * set the priority of a task
147  * - the caller must hold the RCU read lock
148  */
149 static int set_one_prio(struct task_struct *p, int niceval, int error)
150 {
151 	int no_nice;
152 
153 	if (!set_one_prio_perm(p)) {
154 		error = -EPERM;
155 		goto out;
156 	}
157 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
158 		error = -EACCES;
159 		goto out;
160 	}
161 	no_nice = security_task_setnice(p, niceval);
162 	if (no_nice) {
163 		error = no_nice;
164 		goto out;
165 	}
166 	if (error == -ESRCH)
167 		error = 0;
168 	set_user_nice(p, niceval);
169 out:
170 	return error;
171 }
172 
173 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
174 {
175 	struct task_struct *g, *p;
176 	struct user_struct *user;
177 	const struct cred *cred = current_cred();
178 	int error = -EINVAL;
179 	struct pid *pgrp;
180 	kuid_t uid;
181 
182 	if (which > PRIO_USER || which < PRIO_PROCESS)
183 		goto out;
184 
185 	/* normalize: avoid signed division (rounding problems) */
186 	error = -ESRCH;
187 	if (niceval < -20)
188 		niceval = -20;
189 	if (niceval > 19)
190 		niceval = 19;
191 
192 	rcu_read_lock();
193 	read_lock(&tasklist_lock);
194 	switch (which) {
195 		case PRIO_PROCESS:
196 			if (who)
197 				p = find_task_by_vpid(who);
198 			else
199 				p = current;
200 			if (p)
201 				error = set_one_prio(p, niceval, error);
202 			break;
203 		case PRIO_PGRP:
204 			if (who)
205 				pgrp = find_vpid(who);
206 			else
207 				pgrp = task_pgrp(current);
208 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
209 				error = set_one_prio(p, niceval, error);
210 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
211 			break;
212 		case PRIO_USER:
213 			uid = make_kuid(cred->user_ns, who);
214 			user = cred->user;
215 			if (!who)
216 				uid = cred->uid;
217 			else if (!uid_eq(uid, cred->uid) &&
218 				 !(user = find_user(uid)))
219 				goto out_unlock;	/* No processes for this user */
220 
221 			do_each_thread(g, p) {
222 				if (uid_eq(task_uid(p), uid))
223 					error = set_one_prio(p, niceval, error);
224 			} while_each_thread(g, p);
225 			if (!uid_eq(uid, cred->uid))
226 				free_uid(user);		/* For find_user() */
227 			break;
228 	}
229 out_unlock:
230 	read_unlock(&tasklist_lock);
231 	rcu_read_unlock();
232 out:
233 	return error;
234 }
235 
236 /*
237  * Ugh. To avoid negative return values, "getpriority()" will
238  * not return the normal nice-value, but a negated value that
239  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
240  * to stay compatible.
241  */
242 SYSCALL_DEFINE2(getpriority, int, which, int, who)
243 {
244 	struct task_struct *g, *p;
245 	struct user_struct *user;
246 	const struct cred *cred = current_cred();
247 	long niceval, retval = -ESRCH;
248 	struct pid *pgrp;
249 	kuid_t uid;
250 
251 	if (which > PRIO_USER || which < PRIO_PROCESS)
252 		return -EINVAL;
253 
254 	rcu_read_lock();
255 	read_lock(&tasklist_lock);
256 	switch (which) {
257 		case PRIO_PROCESS:
258 			if (who)
259 				p = find_task_by_vpid(who);
260 			else
261 				p = current;
262 			if (p) {
263 				niceval = 20 - task_nice(p);
264 				if (niceval > retval)
265 					retval = niceval;
266 			}
267 			break;
268 		case PRIO_PGRP:
269 			if (who)
270 				pgrp = find_vpid(who);
271 			else
272 				pgrp = task_pgrp(current);
273 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
274 				niceval = 20 - task_nice(p);
275 				if (niceval > retval)
276 					retval = niceval;
277 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
278 			break;
279 		case PRIO_USER:
280 			uid = make_kuid(cred->user_ns, who);
281 			user = cred->user;
282 			if (!who)
283 				uid = cred->uid;
284 			else if (!uid_eq(uid, cred->uid) &&
285 				 !(user = find_user(uid)))
286 				goto out_unlock;	/* No processes for this user */
287 
288 			do_each_thread(g, p) {
289 				if (uid_eq(task_uid(p), uid)) {
290 					niceval = 20 - task_nice(p);
291 					if (niceval > retval)
292 						retval = niceval;
293 				}
294 			} while_each_thread(g, p);
295 			if (!uid_eq(uid, cred->uid))
296 				free_uid(user);		/* for find_user() */
297 			break;
298 	}
299 out_unlock:
300 	read_unlock(&tasklist_lock);
301 	rcu_read_unlock();
302 
303 	return retval;
304 }
305 
306 /**
307  *	emergency_restart - reboot the system
308  *
309  *	Without shutting down any hardware or taking any locks
310  *	reboot the system.  This is called when we know we are in
311  *	trouble so this is our best effort to reboot.  This is
312  *	safe to call in interrupt context.
313  */
314 void emergency_restart(void)
315 {
316 	kmsg_dump(KMSG_DUMP_EMERG);
317 	machine_emergency_restart();
318 }
319 EXPORT_SYMBOL_GPL(emergency_restart);
320 
321 void kernel_restart_prepare(char *cmd)
322 {
323 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
324 	system_state = SYSTEM_RESTART;
325 	usermodehelper_disable();
326 	device_shutdown();
327 	syscore_shutdown();
328 }
329 
330 /**
331  *	register_reboot_notifier - Register function to be called at reboot time
332  *	@nb: Info about notifier function to be called
333  *
334  *	Registers a function with the list of functions
335  *	to be called at reboot time.
336  *
337  *	Currently always returns zero, as blocking_notifier_chain_register()
338  *	always returns zero.
339  */
340 int register_reboot_notifier(struct notifier_block *nb)
341 {
342 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
343 }
344 EXPORT_SYMBOL(register_reboot_notifier);
345 
346 /**
347  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
348  *	@nb: Hook to be unregistered
349  *
350  *	Unregisters a previously registered reboot
351  *	notifier function.
352  *
353  *	Returns zero on success, or %-ENOENT on failure.
354  */
355 int unregister_reboot_notifier(struct notifier_block *nb)
356 {
357 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
358 }
359 EXPORT_SYMBOL(unregister_reboot_notifier);
360 
361 /**
362  *	kernel_restart - reboot the system
363  *	@cmd: pointer to buffer containing command to execute for restart
364  *		or %NULL
365  *
366  *	Shutdown everything and perform a clean reboot.
367  *	This is not safe to call in interrupt context.
368  */
369 void kernel_restart(char *cmd)
370 {
371 	kernel_restart_prepare(cmd);
372 	disable_nonboot_cpus();
373 	if (!cmd)
374 		printk(KERN_EMERG "Restarting system.\n");
375 	else
376 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
377 	kmsg_dump(KMSG_DUMP_RESTART);
378 	machine_restart(cmd);
379 }
380 EXPORT_SYMBOL_GPL(kernel_restart);
381 
382 static void kernel_shutdown_prepare(enum system_states state)
383 {
384 	blocking_notifier_call_chain(&reboot_notifier_list,
385 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
386 	system_state = state;
387 	usermodehelper_disable();
388 	device_shutdown();
389 }
390 /**
391  *	kernel_halt - halt the system
392  *
393  *	Shutdown everything and perform a clean system halt.
394  */
395 void kernel_halt(void)
396 {
397 	kernel_shutdown_prepare(SYSTEM_HALT);
398 	syscore_shutdown();
399 	printk(KERN_EMERG "System halted.\n");
400 	kmsg_dump(KMSG_DUMP_HALT);
401 	machine_halt();
402 }
403 
404 EXPORT_SYMBOL_GPL(kernel_halt);
405 
406 /**
407  *	kernel_power_off - power_off the system
408  *
409  *	Shutdown everything and perform a clean system power_off.
410  */
411 void kernel_power_off(void)
412 {
413 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
414 	if (pm_power_off_prepare)
415 		pm_power_off_prepare();
416 	disable_nonboot_cpus();
417 	syscore_shutdown();
418 	printk(KERN_EMERG "Power down.\n");
419 	kmsg_dump(KMSG_DUMP_POWEROFF);
420 	machine_power_off();
421 }
422 EXPORT_SYMBOL_GPL(kernel_power_off);
423 
424 static DEFINE_MUTEX(reboot_mutex);
425 
426 /*
427  * Reboot system call: for obvious reasons only root may call it,
428  * and even root needs to set up some magic numbers in the registers
429  * so that some mistake won't make this reboot the whole machine.
430  * You can also set the meaning of the ctrl-alt-del-key here.
431  *
432  * reboot doesn't sync: do that yourself before calling this.
433  */
434 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
435 		void __user *, arg)
436 {
437 	char buffer[256];
438 	int ret = 0;
439 
440 	/* We only trust the superuser with rebooting the system. */
441 	if (!capable(CAP_SYS_BOOT))
442 		return -EPERM;
443 
444 	/* For safety, we require "magic" arguments. */
445 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
446 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
447 	                magic2 != LINUX_REBOOT_MAGIC2A &&
448 			magic2 != LINUX_REBOOT_MAGIC2B &&
449 	                magic2 != LINUX_REBOOT_MAGIC2C))
450 		return -EINVAL;
451 
452 	/*
453 	 * If pid namespaces are enabled and the current task is in a child
454 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
455 	 * call do_exit().
456 	 */
457 	ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
458 	if (ret)
459 		return ret;
460 
461 	/* Instead of trying to make the power_off code look like
462 	 * halt when pm_power_off is not set do it the easy way.
463 	 */
464 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
465 		cmd = LINUX_REBOOT_CMD_HALT;
466 
467 	mutex_lock(&reboot_mutex);
468 	switch (cmd) {
469 	case LINUX_REBOOT_CMD_RESTART:
470 		kernel_restart(NULL);
471 		break;
472 
473 	case LINUX_REBOOT_CMD_CAD_ON:
474 		C_A_D = 1;
475 		break;
476 
477 	case LINUX_REBOOT_CMD_CAD_OFF:
478 		C_A_D = 0;
479 		break;
480 
481 	case LINUX_REBOOT_CMD_HALT:
482 		kernel_halt();
483 		do_exit(0);
484 		panic("cannot halt");
485 
486 	case LINUX_REBOOT_CMD_POWER_OFF:
487 		kernel_power_off();
488 		do_exit(0);
489 		break;
490 
491 	case LINUX_REBOOT_CMD_RESTART2:
492 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
493 			ret = -EFAULT;
494 			break;
495 		}
496 		buffer[sizeof(buffer) - 1] = '\0';
497 
498 		kernel_restart(buffer);
499 		break;
500 
501 #ifdef CONFIG_KEXEC
502 	case LINUX_REBOOT_CMD_KEXEC:
503 		ret = kernel_kexec();
504 		break;
505 #endif
506 
507 #ifdef CONFIG_HIBERNATION
508 	case LINUX_REBOOT_CMD_SW_SUSPEND:
509 		ret = hibernate();
510 		break;
511 #endif
512 
513 	default:
514 		ret = -EINVAL;
515 		break;
516 	}
517 	mutex_unlock(&reboot_mutex);
518 	return ret;
519 }
520 
521 static void deferred_cad(struct work_struct *dummy)
522 {
523 	kernel_restart(NULL);
524 }
525 
526 /*
527  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
528  * As it's called within an interrupt, it may NOT sync: the only choice
529  * is whether to reboot at once, or just ignore the ctrl-alt-del.
530  */
531 void ctrl_alt_del(void)
532 {
533 	static DECLARE_WORK(cad_work, deferred_cad);
534 
535 	if (C_A_D)
536 		schedule_work(&cad_work);
537 	else
538 		kill_cad_pid(SIGINT, 1);
539 }
540 
541 /*
542  * Unprivileged users may change the real gid to the effective gid
543  * or vice versa.  (BSD-style)
544  *
545  * If you set the real gid at all, or set the effective gid to a value not
546  * equal to the real gid, then the saved gid is set to the new effective gid.
547  *
548  * This makes it possible for a setgid program to completely drop its
549  * privileges, which is often a useful assertion to make when you are doing
550  * a security audit over a program.
551  *
552  * The general idea is that a program which uses just setregid() will be
553  * 100% compatible with BSD.  A program which uses just setgid() will be
554  * 100% compatible with POSIX with saved IDs.
555  *
556  * SMP: There are not races, the GIDs are checked only by filesystem
557  *      operations (as far as semantic preservation is concerned).
558  */
559 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
560 {
561 	struct user_namespace *ns = current_user_ns();
562 	const struct cred *old;
563 	struct cred *new;
564 	int retval;
565 	kgid_t krgid, kegid;
566 
567 	krgid = make_kgid(ns, rgid);
568 	kegid = make_kgid(ns, egid);
569 
570 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
571 		return -EINVAL;
572 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
573 		return -EINVAL;
574 
575 	new = prepare_creds();
576 	if (!new)
577 		return -ENOMEM;
578 	old = current_cred();
579 
580 	retval = -EPERM;
581 	if (rgid != (gid_t) -1) {
582 		if (gid_eq(old->gid, krgid) ||
583 		    gid_eq(old->egid, krgid) ||
584 		    nsown_capable(CAP_SETGID))
585 			new->gid = krgid;
586 		else
587 			goto error;
588 	}
589 	if (egid != (gid_t) -1) {
590 		if (gid_eq(old->gid, kegid) ||
591 		    gid_eq(old->egid, kegid) ||
592 		    gid_eq(old->sgid, kegid) ||
593 		    nsown_capable(CAP_SETGID))
594 			new->egid = kegid;
595 		else
596 			goto error;
597 	}
598 
599 	if (rgid != (gid_t) -1 ||
600 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
601 		new->sgid = new->egid;
602 	new->fsgid = new->egid;
603 
604 	return commit_creds(new);
605 
606 error:
607 	abort_creds(new);
608 	return retval;
609 }
610 
611 /*
612  * setgid() is implemented like SysV w/ SAVED_IDS
613  *
614  * SMP: Same implicit races as above.
615  */
616 SYSCALL_DEFINE1(setgid, gid_t, gid)
617 {
618 	struct user_namespace *ns = current_user_ns();
619 	const struct cred *old;
620 	struct cred *new;
621 	int retval;
622 	kgid_t kgid;
623 
624 	kgid = make_kgid(ns, gid);
625 	if (!gid_valid(kgid))
626 		return -EINVAL;
627 
628 	new = prepare_creds();
629 	if (!new)
630 		return -ENOMEM;
631 	old = current_cred();
632 
633 	retval = -EPERM;
634 	if (nsown_capable(CAP_SETGID))
635 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
636 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
637 		new->egid = new->fsgid = kgid;
638 	else
639 		goto error;
640 
641 	return commit_creds(new);
642 
643 error:
644 	abort_creds(new);
645 	return retval;
646 }
647 
648 /*
649  * change the user struct in a credentials set to match the new UID
650  */
651 static int set_user(struct cred *new)
652 {
653 	struct user_struct *new_user;
654 
655 	new_user = alloc_uid(new->uid);
656 	if (!new_user)
657 		return -EAGAIN;
658 
659 	/*
660 	 * We don't fail in case of NPROC limit excess here because too many
661 	 * poorly written programs don't check set*uid() return code, assuming
662 	 * it never fails if called by root.  We may still enforce NPROC limit
663 	 * for programs doing set*uid()+execve() by harmlessly deferring the
664 	 * failure to the execve() stage.
665 	 */
666 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
667 			new_user != INIT_USER)
668 		current->flags |= PF_NPROC_EXCEEDED;
669 	else
670 		current->flags &= ~PF_NPROC_EXCEEDED;
671 
672 	free_uid(new->user);
673 	new->user = new_user;
674 	return 0;
675 }
676 
677 /*
678  * Unprivileged users may change the real uid to the effective uid
679  * or vice versa.  (BSD-style)
680  *
681  * If you set the real uid at all, or set the effective uid to a value not
682  * equal to the real uid, then the saved uid is set to the new effective uid.
683  *
684  * This makes it possible for a setuid program to completely drop its
685  * privileges, which is often a useful assertion to make when you are doing
686  * a security audit over a program.
687  *
688  * The general idea is that a program which uses just setreuid() will be
689  * 100% compatible with BSD.  A program which uses just setuid() will be
690  * 100% compatible with POSIX with saved IDs.
691  */
692 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
693 {
694 	struct user_namespace *ns = current_user_ns();
695 	const struct cred *old;
696 	struct cred *new;
697 	int retval;
698 	kuid_t kruid, keuid;
699 
700 	kruid = make_kuid(ns, ruid);
701 	keuid = make_kuid(ns, euid);
702 
703 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
704 		return -EINVAL;
705 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
706 		return -EINVAL;
707 
708 	new = prepare_creds();
709 	if (!new)
710 		return -ENOMEM;
711 	old = current_cred();
712 
713 	retval = -EPERM;
714 	if (ruid != (uid_t) -1) {
715 		new->uid = kruid;
716 		if (!uid_eq(old->uid, kruid) &&
717 		    !uid_eq(old->euid, kruid) &&
718 		    !nsown_capable(CAP_SETUID))
719 			goto error;
720 	}
721 
722 	if (euid != (uid_t) -1) {
723 		new->euid = keuid;
724 		if (!uid_eq(old->uid, keuid) &&
725 		    !uid_eq(old->euid, keuid) &&
726 		    !uid_eq(old->suid, keuid) &&
727 		    !nsown_capable(CAP_SETUID))
728 			goto error;
729 	}
730 
731 	if (!uid_eq(new->uid, old->uid)) {
732 		retval = set_user(new);
733 		if (retval < 0)
734 			goto error;
735 	}
736 	if (ruid != (uid_t) -1 ||
737 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
738 		new->suid = new->euid;
739 	new->fsuid = new->euid;
740 
741 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
742 	if (retval < 0)
743 		goto error;
744 
745 	return commit_creds(new);
746 
747 error:
748 	abort_creds(new);
749 	return retval;
750 }
751 
752 /*
753  * setuid() is implemented like SysV with SAVED_IDS
754  *
755  * Note that SAVED_ID's is deficient in that a setuid root program
756  * like sendmail, for example, cannot set its uid to be a normal
757  * user and then switch back, because if you're root, setuid() sets
758  * the saved uid too.  If you don't like this, blame the bright people
759  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
760  * will allow a root program to temporarily drop privileges and be able to
761  * regain them by swapping the real and effective uid.
762  */
763 SYSCALL_DEFINE1(setuid, uid_t, uid)
764 {
765 	struct user_namespace *ns = current_user_ns();
766 	const struct cred *old;
767 	struct cred *new;
768 	int retval;
769 	kuid_t kuid;
770 
771 	kuid = make_kuid(ns, uid);
772 	if (!uid_valid(kuid))
773 		return -EINVAL;
774 
775 	new = prepare_creds();
776 	if (!new)
777 		return -ENOMEM;
778 	old = current_cred();
779 
780 	retval = -EPERM;
781 	if (nsown_capable(CAP_SETUID)) {
782 		new->suid = new->uid = kuid;
783 		if (!uid_eq(kuid, old->uid)) {
784 			retval = set_user(new);
785 			if (retval < 0)
786 				goto error;
787 		}
788 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
789 		goto error;
790 	}
791 
792 	new->fsuid = new->euid = kuid;
793 
794 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
795 	if (retval < 0)
796 		goto error;
797 
798 	return commit_creds(new);
799 
800 error:
801 	abort_creds(new);
802 	return retval;
803 }
804 
805 
806 /*
807  * This function implements a generic ability to update ruid, euid,
808  * and suid.  This allows you to implement the 4.4 compatible seteuid().
809  */
810 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
811 {
812 	struct user_namespace *ns = current_user_ns();
813 	const struct cred *old;
814 	struct cred *new;
815 	int retval;
816 	kuid_t kruid, keuid, ksuid;
817 
818 	kruid = make_kuid(ns, ruid);
819 	keuid = make_kuid(ns, euid);
820 	ksuid = make_kuid(ns, suid);
821 
822 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
823 		return -EINVAL;
824 
825 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
826 		return -EINVAL;
827 
828 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
829 		return -EINVAL;
830 
831 	new = prepare_creds();
832 	if (!new)
833 		return -ENOMEM;
834 
835 	old = current_cred();
836 
837 	retval = -EPERM;
838 	if (!nsown_capable(CAP_SETUID)) {
839 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
840 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
841 			goto error;
842 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
843 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
844 			goto error;
845 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
846 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
847 			goto error;
848 	}
849 
850 	if (ruid != (uid_t) -1) {
851 		new->uid = kruid;
852 		if (!uid_eq(kruid, old->uid)) {
853 			retval = set_user(new);
854 			if (retval < 0)
855 				goto error;
856 		}
857 	}
858 	if (euid != (uid_t) -1)
859 		new->euid = keuid;
860 	if (suid != (uid_t) -1)
861 		new->suid = ksuid;
862 	new->fsuid = new->euid;
863 
864 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
865 	if (retval < 0)
866 		goto error;
867 
868 	return commit_creds(new);
869 
870 error:
871 	abort_creds(new);
872 	return retval;
873 }
874 
875 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
876 {
877 	const struct cred *cred = current_cred();
878 	int retval;
879 	uid_t ruid, euid, suid;
880 
881 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
882 	euid = from_kuid_munged(cred->user_ns, cred->euid);
883 	suid = from_kuid_munged(cred->user_ns, cred->suid);
884 
885 	if (!(retval   = put_user(ruid, ruidp)) &&
886 	    !(retval   = put_user(euid, euidp)))
887 		retval = put_user(suid, suidp);
888 
889 	return retval;
890 }
891 
892 /*
893  * Same as above, but for rgid, egid, sgid.
894  */
895 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
896 {
897 	struct user_namespace *ns = current_user_ns();
898 	const struct cred *old;
899 	struct cred *new;
900 	int retval;
901 	kgid_t krgid, kegid, ksgid;
902 
903 	krgid = make_kgid(ns, rgid);
904 	kegid = make_kgid(ns, egid);
905 	ksgid = make_kgid(ns, sgid);
906 
907 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
908 		return -EINVAL;
909 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
910 		return -EINVAL;
911 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
912 		return -EINVAL;
913 
914 	new = prepare_creds();
915 	if (!new)
916 		return -ENOMEM;
917 	old = current_cred();
918 
919 	retval = -EPERM;
920 	if (!nsown_capable(CAP_SETGID)) {
921 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
922 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
923 			goto error;
924 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
925 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
926 			goto error;
927 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
928 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
929 			goto error;
930 	}
931 
932 	if (rgid != (gid_t) -1)
933 		new->gid = krgid;
934 	if (egid != (gid_t) -1)
935 		new->egid = kegid;
936 	if (sgid != (gid_t) -1)
937 		new->sgid = ksgid;
938 	new->fsgid = new->egid;
939 
940 	return commit_creds(new);
941 
942 error:
943 	abort_creds(new);
944 	return retval;
945 }
946 
947 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
948 {
949 	const struct cred *cred = current_cred();
950 	int retval;
951 	gid_t rgid, egid, sgid;
952 
953 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
954 	egid = from_kgid_munged(cred->user_ns, cred->egid);
955 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
956 
957 	if (!(retval   = put_user(rgid, rgidp)) &&
958 	    !(retval   = put_user(egid, egidp)))
959 		retval = put_user(sgid, sgidp);
960 
961 	return retval;
962 }
963 
964 
965 /*
966  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
967  * is used for "access()" and for the NFS daemon (letting nfsd stay at
968  * whatever uid it wants to). It normally shadows "euid", except when
969  * explicitly set by setfsuid() or for access..
970  */
971 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
972 {
973 	const struct cred *old;
974 	struct cred *new;
975 	uid_t old_fsuid;
976 	kuid_t kuid;
977 
978 	old = current_cred();
979 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
980 
981 	kuid = make_kuid(old->user_ns, uid);
982 	if (!uid_valid(kuid))
983 		return old_fsuid;
984 
985 	new = prepare_creds();
986 	if (!new)
987 		return old_fsuid;
988 
989 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
990 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
991 	    nsown_capable(CAP_SETUID)) {
992 		if (!uid_eq(kuid, old->fsuid)) {
993 			new->fsuid = kuid;
994 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
995 				goto change_okay;
996 		}
997 	}
998 
999 	abort_creds(new);
1000 	return old_fsuid;
1001 
1002 change_okay:
1003 	commit_creds(new);
1004 	return old_fsuid;
1005 }
1006 
1007 /*
1008  * Samma på svenska..
1009  */
1010 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1011 {
1012 	const struct cred *old;
1013 	struct cred *new;
1014 	gid_t old_fsgid;
1015 	kgid_t kgid;
1016 
1017 	old = current_cred();
1018 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1019 
1020 	kgid = make_kgid(old->user_ns, gid);
1021 	if (!gid_valid(kgid))
1022 		return old_fsgid;
1023 
1024 	new = prepare_creds();
1025 	if (!new)
1026 		return old_fsgid;
1027 
1028 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
1029 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1030 	    nsown_capable(CAP_SETGID)) {
1031 		if (!gid_eq(kgid, old->fsgid)) {
1032 			new->fsgid = kgid;
1033 			goto change_okay;
1034 		}
1035 	}
1036 
1037 	abort_creds(new);
1038 	return old_fsgid;
1039 
1040 change_okay:
1041 	commit_creds(new);
1042 	return old_fsgid;
1043 }
1044 
1045 void do_sys_times(struct tms *tms)
1046 {
1047 	cputime_t tgutime, tgstime, cutime, cstime;
1048 
1049 	spin_lock_irq(&current->sighand->siglock);
1050 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1051 	cutime = current->signal->cutime;
1052 	cstime = current->signal->cstime;
1053 	spin_unlock_irq(&current->sighand->siglock);
1054 	tms->tms_utime = cputime_to_clock_t(tgutime);
1055 	tms->tms_stime = cputime_to_clock_t(tgstime);
1056 	tms->tms_cutime = cputime_to_clock_t(cutime);
1057 	tms->tms_cstime = cputime_to_clock_t(cstime);
1058 }
1059 
1060 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1061 {
1062 	if (tbuf) {
1063 		struct tms tmp;
1064 
1065 		do_sys_times(&tmp);
1066 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1067 			return -EFAULT;
1068 	}
1069 	force_successful_syscall_return();
1070 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1071 }
1072 
1073 /*
1074  * This needs some heavy checking ...
1075  * I just haven't the stomach for it. I also don't fully
1076  * understand sessions/pgrp etc. Let somebody who does explain it.
1077  *
1078  * OK, I think I have the protection semantics right.... this is really
1079  * only important on a multi-user system anyway, to make sure one user
1080  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1081  *
1082  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1083  * LBT 04.03.94
1084  */
1085 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1086 {
1087 	struct task_struct *p;
1088 	struct task_struct *group_leader = current->group_leader;
1089 	struct pid *pgrp;
1090 	int err;
1091 
1092 	if (!pid)
1093 		pid = task_pid_vnr(group_leader);
1094 	if (!pgid)
1095 		pgid = pid;
1096 	if (pgid < 0)
1097 		return -EINVAL;
1098 	rcu_read_lock();
1099 
1100 	/* From this point forward we keep holding onto the tasklist lock
1101 	 * so that our parent does not change from under us. -DaveM
1102 	 */
1103 	write_lock_irq(&tasklist_lock);
1104 
1105 	err = -ESRCH;
1106 	p = find_task_by_vpid(pid);
1107 	if (!p)
1108 		goto out;
1109 
1110 	err = -EINVAL;
1111 	if (!thread_group_leader(p))
1112 		goto out;
1113 
1114 	if (same_thread_group(p->real_parent, group_leader)) {
1115 		err = -EPERM;
1116 		if (task_session(p) != task_session(group_leader))
1117 			goto out;
1118 		err = -EACCES;
1119 		if (p->did_exec)
1120 			goto out;
1121 	} else {
1122 		err = -ESRCH;
1123 		if (p != group_leader)
1124 			goto out;
1125 	}
1126 
1127 	err = -EPERM;
1128 	if (p->signal->leader)
1129 		goto out;
1130 
1131 	pgrp = task_pid(p);
1132 	if (pgid != pid) {
1133 		struct task_struct *g;
1134 
1135 		pgrp = find_vpid(pgid);
1136 		g = pid_task(pgrp, PIDTYPE_PGID);
1137 		if (!g || task_session(g) != task_session(group_leader))
1138 			goto out;
1139 	}
1140 
1141 	err = security_task_setpgid(p, pgid);
1142 	if (err)
1143 		goto out;
1144 
1145 	if (task_pgrp(p) != pgrp)
1146 		change_pid(p, PIDTYPE_PGID, pgrp);
1147 
1148 	err = 0;
1149 out:
1150 	/* All paths lead to here, thus we are safe. -DaveM */
1151 	write_unlock_irq(&tasklist_lock);
1152 	rcu_read_unlock();
1153 	return err;
1154 }
1155 
1156 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1157 {
1158 	struct task_struct *p;
1159 	struct pid *grp;
1160 	int retval;
1161 
1162 	rcu_read_lock();
1163 	if (!pid)
1164 		grp = task_pgrp(current);
1165 	else {
1166 		retval = -ESRCH;
1167 		p = find_task_by_vpid(pid);
1168 		if (!p)
1169 			goto out;
1170 		grp = task_pgrp(p);
1171 		if (!grp)
1172 			goto out;
1173 
1174 		retval = security_task_getpgid(p);
1175 		if (retval)
1176 			goto out;
1177 	}
1178 	retval = pid_vnr(grp);
1179 out:
1180 	rcu_read_unlock();
1181 	return retval;
1182 }
1183 
1184 #ifdef __ARCH_WANT_SYS_GETPGRP
1185 
1186 SYSCALL_DEFINE0(getpgrp)
1187 {
1188 	return sys_getpgid(0);
1189 }
1190 
1191 #endif
1192 
1193 SYSCALL_DEFINE1(getsid, pid_t, pid)
1194 {
1195 	struct task_struct *p;
1196 	struct pid *sid;
1197 	int retval;
1198 
1199 	rcu_read_lock();
1200 	if (!pid)
1201 		sid = task_session(current);
1202 	else {
1203 		retval = -ESRCH;
1204 		p = find_task_by_vpid(pid);
1205 		if (!p)
1206 			goto out;
1207 		sid = task_session(p);
1208 		if (!sid)
1209 			goto out;
1210 
1211 		retval = security_task_getsid(p);
1212 		if (retval)
1213 			goto out;
1214 	}
1215 	retval = pid_vnr(sid);
1216 out:
1217 	rcu_read_unlock();
1218 	return retval;
1219 }
1220 
1221 SYSCALL_DEFINE0(setsid)
1222 {
1223 	struct task_struct *group_leader = current->group_leader;
1224 	struct pid *sid = task_pid(group_leader);
1225 	pid_t session = pid_vnr(sid);
1226 	int err = -EPERM;
1227 
1228 	write_lock_irq(&tasklist_lock);
1229 	/* Fail if I am already a session leader */
1230 	if (group_leader->signal->leader)
1231 		goto out;
1232 
1233 	/* Fail if a process group id already exists that equals the
1234 	 * proposed session id.
1235 	 */
1236 	if (pid_task(sid, PIDTYPE_PGID))
1237 		goto out;
1238 
1239 	group_leader->signal->leader = 1;
1240 	__set_special_pids(sid);
1241 
1242 	proc_clear_tty(group_leader);
1243 
1244 	err = session;
1245 out:
1246 	write_unlock_irq(&tasklist_lock);
1247 	if (err > 0) {
1248 		proc_sid_connector(group_leader);
1249 		sched_autogroup_create_attach(group_leader);
1250 	}
1251 	return err;
1252 }
1253 
1254 DECLARE_RWSEM(uts_sem);
1255 
1256 #ifdef COMPAT_UTS_MACHINE
1257 #define override_architecture(name) \
1258 	(personality(current->personality) == PER_LINUX32 && \
1259 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1260 		      sizeof(COMPAT_UTS_MACHINE)))
1261 #else
1262 #define override_architecture(name)	0
1263 #endif
1264 
1265 /*
1266  * Work around broken programs that cannot handle "Linux 3.0".
1267  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1268  */
1269 static int override_release(char __user *release, size_t len)
1270 {
1271 	int ret = 0;
1272 
1273 	if (current->personality & UNAME26) {
1274 		const char *rest = UTS_RELEASE;
1275 		char buf[65] = { 0 };
1276 		int ndots = 0;
1277 		unsigned v;
1278 		size_t copy;
1279 
1280 		while (*rest) {
1281 			if (*rest == '.' && ++ndots >= 3)
1282 				break;
1283 			if (!isdigit(*rest) && *rest != '.')
1284 				break;
1285 			rest++;
1286 		}
1287 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1288 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1289 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1290 		ret = copy_to_user(release, buf, copy + 1);
1291 	}
1292 	return ret;
1293 }
1294 
1295 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1296 {
1297 	int errno = 0;
1298 
1299 	down_read(&uts_sem);
1300 	if (copy_to_user(name, utsname(), sizeof *name))
1301 		errno = -EFAULT;
1302 	up_read(&uts_sem);
1303 
1304 	if (!errno && override_release(name->release, sizeof(name->release)))
1305 		errno = -EFAULT;
1306 	if (!errno && override_architecture(name))
1307 		errno = -EFAULT;
1308 	return errno;
1309 }
1310 
1311 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1312 /*
1313  * Old cruft
1314  */
1315 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1316 {
1317 	int error = 0;
1318 
1319 	if (!name)
1320 		return -EFAULT;
1321 
1322 	down_read(&uts_sem);
1323 	if (copy_to_user(name, utsname(), sizeof(*name)))
1324 		error = -EFAULT;
1325 	up_read(&uts_sem);
1326 
1327 	if (!error && override_release(name->release, sizeof(name->release)))
1328 		error = -EFAULT;
1329 	if (!error && override_architecture(name))
1330 		error = -EFAULT;
1331 	return error;
1332 }
1333 
1334 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1335 {
1336 	int error;
1337 
1338 	if (!name)
1339 		return -EFAULT;
1340 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1341 		return -EFAULT;
1342 
1343 	down_read(&uts_sem);
1344 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1345 			       __OLD_UTS_LEN);
1346 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1347 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1348 				__OLD_UTS_LEN);
1349 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1350 	error |= __copy_to_user(&name->release, &utsname()->release,
1351 				__OLD_UTS_LEN);
1352 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1353 	error |= __copy_to_user(&name->version, &utsname()->version,
1354 				__OLD_UTS_LEN);
1355 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1356 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1357 				__OLD_UTS_LEN);
1358 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1359 	up_read(&uts_sem);
1360 
1361 	if (!error && override_architecture(name))
1362 		error = -EFAULT;
1363 	if (!error && override_release(name->release, sizeof(name->release)))
1364 		error = -EFAULT;
1365 	return error ? -EFAULT : 0;
1366 }
1367 #endif
1368 
1369 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1370 {
1371 	int errno;
1372 	char tmp[__NEW_UTS_LEN];
1373 
1374 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1375 		return -EPERM;
1376 
1377 	if (len < 0 || len > __NEW_UTS_LEN)
1378 		return -EINVAL;
1379 	down_write(&uts_sem);
1380 	errno = -EFAULT;
1381 	if (!copy_from_user(tmp, name, len)) {
1382 		struct new_utsname *u = utsname();
1383 
1384 		memcpy(u->nodename, tmp, len);
1385 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1386 		errno = 0;
1387 		uts_proc_notify(UTS_PROC_HOSTNAME);
1388 	}
1389 	up_write(&uts_sem);
1390 	return errno;
1391 }
1392 
1393 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1394 
1395 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1396 {
1397 	int i, errno;
1398 	struct new_utsname *u;
1399 
1400 	if (len < 0)
1401 		return -EINVAL;
1402 	down_read(&uts_sem);
1403 	u = utsname();
1404 	i = 1 + strlen(u->nodename);
1405 	if (i > len)
1406 		i = len;
1407 	errno = 0;
1408 	if (copy_to_user(name, u->nodename, i))
1409 		errno = -EFAULT;
1410 	up_read(&uts_sem);
1411 	return errno;
1412 }
1413 
1414 #endif
1415 
1416 /*
1417  * Only setdomainname; getdomainname can be implemented by calling
1418  * uname()
1419  */
1420 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1421 {
1422 	int errno;
1423 	char tmp[__NEW_UTS_LEN];
1424 
1425 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1426 		return -EPERM;
1427 	if (len < 0 || len > __NEW_UTS_LEN)
1428 		return -EINVAL;
1429 
1430 	down_write(&uts_sem);
1431 	errno = -EFAULT;
1432 	if (!copy_from_user(tmp, name, len)) {
1433 		struct new_utsname *u = utsname();
1434 
1435 		memcpy(u->domainname, tmp, len);
1436 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1437 		errno = 0;
1438 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1439 	}
1440 	up_write(&uts_sem);
1441 	return errno;
1442 }
1443 
1444 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1445 {
1446 	struct rlimit value;
1447 	int ret;
1448 
1449 	ret = do_prlimit(current, resource, NULL, &value);
1450 	if (!ret)
1451 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1452 
1453 	return ret;
1454 }
1455 
1456 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1457 
1458 /*
1459  *	Back compatibility for getrlimit. Needed for some apps.
1460  */
1461 
1462 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1463 		struct rlimit __user *, rlim)
1464 {
1465 	struct rlimit x;
1466 	if (resource >= RLIM_NLIMITS)
1467 		return -EINVAL;
1468 
1469 	task_lock(current->group_leader);
1470 	x = current->signal->rlim[resource];
1471 	task_unlock(current->group_leader);
1472 	if (x.rlim_cur > 0x7FFFFFFF)
1473 		x.rlim_cur = 0x7FFFFFFF;
1474 	if (x.rlim_max > 0x7FFFFFFF)
1475 		x.rlim_max = 0x7FFFFFFF;
1476 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1477 }
1478 
1479 #endif
1480 
1481 static inline bool rlim64_is_infinity(__u64 rlim64)
1482 {
1483 #if BITS_PER_LONG < 64
1484 	return rlim64 >= ULONG_MAX;
1485 #else
1486 	return rlim64 == RLIM64_INFINITY;
1487 #endif
1488 }
1489 
1490 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1491 {
1492 	if (rlim->rlim_cur == RLIM_INFINITY)
1493 		rlim64->rlim_cur = RLIM64_INFINITY;
1494 	else
1495 		rlim64->rlim_cur = rlim->rlim_cur;
1496 	if (rlim->rlim_max == RLIM_INFINITY)
1497 		rlim64->rlim_max = RLIM64_INFINITY;
1498 	else
1499 		rlim64->rlim_max = rlim->rlim_max;
1500 }
1501 
1502 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1503 {
1504 	if (rlim64_is_infinity(rlim64->rlim_cur))
1505 		rlim->rlim_cur = RLIM_INFINITY;
1506 	else
1507 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1508 	if (rlim64_is_infinity(rlim64->rlim_max))
1509 		rlim->rlim_max = RLIM_INFINITY;
1510 	else
1511 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1512 }
1513 
1514 /* make sure you are allowed to change @tsk limits before calling this */
1515 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1516 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1517 {
1518 	struct rlimit *rlim;
1519 	int retval = 0;
1520 
1521 	if (resource >= RLIM_NLIMITS)
1522 		return -EINVAL;
1523 	if (new_rlim) {
1524 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1525 			return -EINVAL;
1526 		if (resource == RLIMIT_NOFILE &&
1527 				new_rlim->rlim_max > sysctl_nr_open)
1528 			return -EPERM;
1529 	}
1530 
1531 	/* protect tsk->signal and tsk->sighand from disappearing */
1532 	read_lock(&tasklist_lock);
1533 	if (!tsk->sighand) {
1534 		retval = -ESRCH;
1535 		goto out;
1536 	}
1537 
1538 	rlim = tsk->signal->rlim + resource;
1539 	task_lock(tsk->group_leader);
1540 	if (new_rlim) {
1541 		/* Keep the capable check against init_user_ns until
1542 		   cgroups can contain all limits */
1543 		if (new_rlim->rlim_max > rlim->rlim_max &&
1544 				!capable(CAP_SYS_RESOURCE))
1545 			retval = -EPERM;
1546 		if (!retval)
1547 			retval = security_task_setrlimit(tsk->group_leader,
1548 					resource, new_rlim);
1549 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1550 			/*
1551 			 * The caller is asking for an immediate RLIMIT_CPU
1552 			 * expiry.  But we use the zero value to mean "it was
1553 			 * never set".  So let's cheat and make it one second
1554 			 * instead
1555 			 */
1556 			new_rlim->rlim_cur = 1;
1557 		}
1558 	}
1559 	if (!retval) {
1560 		if (old_rlim)
1561 			*old_rlim = *rlim;
1562 		if (new_rlim)
1563 			*rlim = *new_rlim;
1564 	}
1565 	task_unlock(tsk->group_leader);
1566 
1567 	/*
1568 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1569 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1570 	 * very long-standing error, and fixing it now risks breakage of
1571 	 * applications, so we live with it
1572 	 */
1573 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1574 			 new_rlim->rlim_cur != RLIM_INFINITY)
1575 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1576 out:
1577 	read_unlock(&tasklist_lock);
1578 	return retval;
1579 }
1580 
1581 /* rcu lock must be held */
1582 static int check_prlimit_permission(struct task_struct *task)
1583 {
1584 	const struct cred *cred = current_cred(), *tcred;
1585 
1586 	if (current == task)
1587 		return 0;
1588 
1589 	tcred = __task_cred(task);
1590 	if (uid_eq(cred->uid, tcred->euid) &&
1591 	    uid_eq(cred->uid, tcred->suid) &&
1592 	    uid_eq(cred->uid, tcred->uid)  &&
1593 	    gid_eq(cred->gid, tcred->egid) &&
1594 	    gid_eq(cred->gid, tcred->sgid) &&
1595 	    gid_eq(cred->gid, tcred->gid))
1596 		return 0;
1597 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1598 		return 0;
1599 
1600 	return -EPERM;
1601 }
1602 
1603 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1604 		const struct rlimit64 __user *, new_rlim,
1605 		struct rlimit64 __user *, old_rlim)
1606 {
1607 	struct rlimit64 old64, new64;
1608 	struct rlimit old, new;
1609 	struct task_struct *tsk;
1610 	int ret;
1611 
1612 	if (new_rlim) {
1613 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1614 			return -EFAULT;
1615 		rlim64_to_rlim(&new64, &new);
1616 	}
1617 
1618 	rcu_read_lock();
1619 	tsk = pid ? find_task_by_vpid(pid) : current;
1620 	if (!tsk) {
1621 		rcu_read_unlock();
1622 		return -ESRCH;
1623 	}
1624 	ret = check_prlimit_permission(tsk);
1625 	if (ret) {
1626 		rcu_read_unlock();
1627 		return ret;
1628 	}
1629 	get_task_struct(tsk);
1630 	rcu_read_unlock();
1631 
1632 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1633 			old_rlim ? &old : NULL);
1634 
1635 	if (!ret && old_rlim) {
1636 		rlim_to_rlim64(&old, &old64);
1637 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1638 			ret = -EFAULT;
1639 	}
1640 
1641 	put_task_struct(tsk);
1642 	return ret;
1643 }
1644 
1645 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1646 {
1647 	struct rlimit new_rlim;
1648 
1649 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1650 		return -EFAULT;
1651 	return do_prlimit(current, resource, &new_rlim, NULL);
1652 }
1653 
1654 /*
1655  * It would make sense to put struct rusage in the task_struct,
1656  * except that would make the task_struct be *really big*.  After
1657  * task_struct gets moved into malloc'ed memory, it would
1658  * make sense to do this.  It will make moving the rest of the information
1659  * a lot simpler!  (Which we're not doing right now because we're not
1660  * measuring them yet).
1661  *
1662  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1663  * races with threads incrementing their own counters.  But since word
1664  * reads are atomic, we either get new values or old values and we don't
1665  * care which for the sums.  We always take the siglock to protect reading
1666  * the c* fields from p->signal from races with exit.c updating those
1667  * fields when reaping, so a sample either gets all the additions of a
1668  * given child after it's reaped, or none so this sample is before reaping.
1669  *
1670  * Locking:
1671  * We need to take the siglock for CHILDEREN, SELF and BOTH
1672  * for  the cases current multithreaded, non-current single threaded
1673  * non-current multithreaded.  Thread traversal is now safe with
1674  * the siglock held.
1675  * Strictly speaking, we donot need to take the siglock if we are current and
1676  * single threaded,  as no one else can take our signal_struct away, no one
1677  * else can  reap the  children to update signal->c* counters, and no one else
1678  * can race with the signal-> fields. If we do not take any lock, the
1679  * signal-> fields could be read out of order while another thread was just
1680  * exiting. So we should  place a read memory barrier when we avoid the lock.
1681  * On the writer side,  write memory barrier is implied in  __exit_signal
1682  * as __exit_signal releases  the siglock spinlock after updating the signal->
1683  * fields. But we don't do this yet to keep things simple.
1684  *
1685  */
1686 
1687 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1688 {
1689 	r->ru_nvcsw += t->nvcsw;
1690 	r->ru_nivcsw += t->nivcsw;
1691 	r->ru_minflt += t->min_flt;
1692 	r->ru_majflt += t->maj_flt;
1693 	r->ru_inblock += task_io_get_inblock(t);
1694 	r->ru_oublock += task_io_get_oublock(t);
1695 }
1696 
1697 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1698 {
1699 	struct task_struct *t;
1700 	unsigned long flags;
1701 	cputime_t tgutime, tgstime, utime, stime;
1702 	unsigned long maxrss = 0;
1703 
1704 	memset((char *) r, 0, sizeof *r);
1705 	utime = stime = 0;
1706 
1707 	if (who == RUSAGE_THREAD) {
1708 		task_cputime_adjusted(current, &utime, &stime);
1709 		accumulate_thread_rusage(p, r);
1710 		maxrss = p->signal->maxrss;
1711 		goto out;
1712 	}
1713 
1714 	if (!lock_task_sighand(p, &flags))
1715 		return;
1716 
1717 	switch (who) {
1718 		case RUSAGE_BOTH:
1719 		case RUSAGE_CHILDREN:
1720 			utime = p->signal->cutime;
1721 			stime = p->signal->cstime;
1722 			r->ru_nvcsw = p->signal->cnvcsw;
1723 			r->ru_nivcsw = p->signal->cnivcsw;
1724 			r->ru_minflt = p->signal->cmin_flt;
1725 			r->ru_majflt = p->signal->cmaj_flt;
1726 			r->ru_inblock = p->signal->cinblock;
1727 			r->ru_oublock = p->signal->coublock;
1728 			maxrss = p->signal->cmaxrss;
1729 
1730 			if (who == RUSAGE_CHILDREN)
1731 				break;
1732 
1733 		case RUSAGE_SELF:
1734 			thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1735 			utime += tgutime;
1736 			stime += tgstime;
1737 			r->ru_nvcsw += p->signal->nvcsw;
1738 			r->ru_nivcsw += p->signal->nivcsw;
1739 			r->ru_minflt += p->signal->min_flt;
1740 			r->ru_majflt += p->signal->maj_flt;
1741 			r->ru_inblock += p->signal->inblock;
1742 			r->ru_oublock += p->signal->oublock;
1743 			if (maxrss < p->signal->maxrss)
1744 				maxrss = p->signal->maxrss;
1745 			t = p;
1746 			do {
1747 				accumulate_thread_rusage(t, r);
1748 				t = next_thread(t);
1749 			} while (t != p);
1750 			break;
1751 
1752 		default:
1753 			BUG();
1754 	}
1755 	unlock_task_sighand(p, &flags);
1756 
1757 out:
1758 	cputime_to_timeval(utime, &r->ru_utime);
1759 	cputime_to_timeval(stime, &r->ru_stime);
1760 
1761 	if (who != RUSAGE_CHILDREN) {
1762 		struct mm_struct *mm = get_task_mm(p);
1763 		if (mm) {
1764 			setmax_mm_hiwater_rss(&maxrss, mm);
1765 			mmput(mm);
1766 		}
1767 	}
1768 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1769 }
1770 
1771 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1772 {
1773 	struct rusage r;
1774 	k_getrusage(p, who, &r);
1775 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1776 }
1777 
1778 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1779 {
1780 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1781 	    who != RUSAGE_THREAD)
1782 		return -EINVAL;
1783 	return getrusage(current, who, ru);
1784 }
1785 
1786 SYSCALL_DEFINE1(umask, int, mask)
1787 {
1788 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1789 	return mask;
1790 }
1791 
1792 #ifdef CONFIG_CHECKPOINT_RESTORE
1793 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1794 {
1795 	struct fd exe;
1796 	struct dentry *dentry;
1797 	int err;
1798 
1799 	exe = fdget(fd);
1800 	if (!exe.file)
1801 		return -EBADF;
1802 
1803 	dentry = exe.file->f_path.dentry;
1804 
1805 	/*
1806 	 * Because the original mm->exe_file points to executable file, make
1807 	 * sure that this one is executable as well, to avoid breaking an
1808 	 * overall picture.
1809 	 */
1810 	err = -EACCES;
1811 	if (!S_ISREG(dentry->d_inode->i_mode)	||
1812 	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1813 		goto exit;
1814 
1815 	err = inode_permission(dentry->d_inode, MAY_EXEC);
1816 	if (err)
1817 		goto exit;
1818 
1819 	down_write(&mm->mmap_sem);
1820 
1821 	/*
1822 	 * Forbid mm->exe_file change if old file still mapped.
1823 	 */
1824 	err = -EBUSY;
1825 	if (mm->exe_file) {
1826 		struct vm_area_struct *vma;
1827 
1828 		for (vma = mm->mmap; vma; vma = vma->vm_next)
1829 			if (vma->vm_file &&
1830 			    path_equal(&vma->vm_file->f_path,
1831 				       &mm->exe_file->f_path))
1832 				goto exit_unlock;
1833 	}
1834 
1835 	/*
1836 	 * The symlink can be changed only once, just to disallow arbitrary
1837 	 * transitions malicious software might bring in. This means one
1838 	 * could make a snapshot over all processes running and monitor
1839 	 * /proc/pid/exe changes to notice unusual activity if needed.
1840 	 */
1841 	err = -EPERM;
1842 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1843 		goto exit_unlock;
1844 
1845 	err = 0;
1846 	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
1847 exit_unlock:
1848 	up_write(&mm->mmap_sem);
1849 
1850 exit:
1851 	fdput(exe);
1852 	return err;
1853 }
1854 
1855 static int prctl_set_mm(int opt, unsigned long addr,
1856 			unsigned long arg4, unsigned long arg5)
1857 {
1858 	unsigned long rlim = rlimit(RLIMIT_DATA);
1859 	struct mm_struct *mm = current->mm;
1860 	struct vm_area_struct *vma;
1861 	int error;
1862 
1863 	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1864 		return -EINVAL;
1865 
1866 	if (!capable(CAP_SYS_RESOURCE))
1867 		return -EPERM;
1868 
1869 	if (opt == PR_SET_MM_EXE_FILE)
1870 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1871 
1872 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1873 		return -EINVAL;
1874 
1875 	error = -EINVAL;
1876 
1877 	down_read(&mm->mmap_sem);
1878 	vma = find_vma(mm, addr);
1879 
1880 	switch (opt) {
1881 	case PR_SET_MM_START_CODE:
1882 		mm->start_code = addr;
1883 		break;
1884 	case PR_SET_MM_END_CODE:
1885 		mm->end_code = addr;
1886 		break;
1887 	case PR_SET_MM_START_DATA:
1888 		mm->start_data = addr;
1889 		break;
1890 	case PR_SET_MM_END_DATA:
1891 		mm->end_data = addr;
1892 		break;
1893 
1894 	case PR_SET_MM_START_BRK:
1895 		if (addr <= mm->end_data)
1896 			goto out;
1897 
1898 		if (rlim < RLIM_INFINITY &&
1899 		    (mm->brk - addr) +
1900 		    (mm->end_data - mm->start_data) > rlim)
1901 			goto out;
1902 
1903 		mm->start_brk = addr;
1904 		break;
1905 
1906 	case PR_SET_MM_BRK:
1907 		if (addr <= mm->end_data)
1908 			goto out;
1909 
1910 		if (rlim < RLIM_INFINITY &&
1911 		    (addr - mm->start_brk) +
1912 		    (mm->end_data - mm->start_data) > rlim)
1913 			goto out;
1914 
1915 		mm->brk = addr;
1916 		break;
1917 
1918 	/*
1919 	 * If command line arguments and environment
1920 	 * are placed somewhere else on stack, we can
1921 	 * set them up here, ARG_START/END to setup
1922 	 * command line argumets and ENV_START/END
1923 	 * for environment.
1924 	 */
1925 	case PR_SET_MM_START_STACK:
1926 	case PR_SET_MM_ARG_START:
1927 	case PR_SET_MM_ARG_END:
1928 	case PR_SET_MM_ENV_START:
1929 	case PR_SET_MM_ENV_END:
1930 		if (!vma) {
1931 			error = -EFAULT;
1932 			goto out;
1933 		}
1934 		if (opt == PR_SET_MM_START_STACK)
1935 			mm->start_stack = addr;
1936 		else if (opt == PR_SET_MM_ARG_START)
1937 			mm->arg_start = addr;
1938 		else if (opt == PR_SET_MM_ARG_END)
1939 			mm->arg_end = addr;
1940 		else if (opt == PR_SET_MM_ENV_START)
1941 			mm->env_start = addr;
1942 		else if (opt == PR_SET_MM_ENV_END)
1943 			mm->env_end = addr;
1944 		break;
1945 
1946 	/*
1947 	 * This doesn't move auxiliary vector itself
1948 	 * since it's pinned to mm_struct, but allow
1949 	 * to fill vector with new values. It's up
1950 	 * to a caller to provide sane values here
1951 	 * otherwise user space tools which use this
1952 	 * vector might be unhappy.
1953 	 */
1954 	case PR_SET_MM_AUXV: {
1955 		unsigned long user_auxv[AT_VECTOR_SIZE];
1956 
1957 		if (arg4 > sizeof(user_auxv))
1958 			goto out;
1959 		up_read(&mm->mmap_sem);
1960 
1961 		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1962 			return -EFAULT;
1963 
1964 		/* Make sure the last entry is always AT_NULL */
1965 		user_auxv[AT_VECTOR_SIZE - 2] = 0;
1966 		user_auxv[AT_VECTOR_SIZE - 1] = 0;
1967 
1968 		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1969 
1970 		task_lock(current);
1971 		memcpy(mm->saved_auxv, user_auxv, arg4);
1972 		task_unlock(current);
1973 
1974 		return 0;
1975 	}
1976 	default:
1977 		goto out;
1978 	}
1979 
1980 	error = 0;
1981 out:
1982 	up_read(&mm->mmap_sem);
1983 	return error;
1984 }
1985 
1986 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1987 {
1988 	return put_user(me->clear_child_tid, tid_addr);
1989 }
1990 
1991 #else /* CONFIG_CHECKPOINT_RESTORE */
1992 static int prctl_set_mm(int opt, unsigned long addr,
1993 			unsigned long arg4, unsigned long arg5)
1994 {
1995 	return -EINVAL;
1996 }
1997 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1998 {
1999 	return -EINVAL;
2000 }
2001 #endif
2002 
2003 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2004 		unsigned long, arg4, unsigned long, arg5)
2005 {
2006 	struct task_struct *me = current;
2007 	unsigned char comm[sizeof(me->comm)];
2008 	long error;
2009 
2010 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2011 	if (error != -ENOSYS)
2012 		return error;
2013 
2014 	error = 0;
2015 	switch (option) {
2016 	case PR_SET_PDEATHSIG:
2017 		if (!valid_signal(arg2)) {
2018 			error = -EINVAL;
2019 			break;
2020 		}
2021 		me->pdeath_signal = arg2;
2022 		break;
2023 	case PR_GET_PDEATHSIG:
2024 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2025 		break;
2026 	case PR_GET_DUMPABLE:
2027 		error = get_dumpable(me->mm);
2028 		break;
2029 	case PR_SET_DUMPABLE:
2030 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2031 			error = -EINVAL;
2032 			break;
2033 		}
2034 		set_dumpable(me->mm, arg2);
2035 		break;
2036 
2037 	case PR_SET_UNALIGN:
2038 		error = SET_UNALIGN_CTL(me, arg2);
2039 		break;
2040 	case PR_GET_UNALIGN:
2041 		error = GET_UNALIGN_CTL(me, arg2);
2042 		break;
2043 	case PR_SET_FPEMU:
2044 		error = SET_FPEMU_CTL(me, arg2);
2045 		break;
2046 	case PR_GET_FPEMU:
2047 		error = GET_FPEMU_CTL(me, arg2);
2048 		break;
2049 	case PR_SET_FPEXC:
2050 		error = SET_FPEXC_CTL(me, arg2);
2051 		break;
2052 	case PR_GET_FPEXC:
2053 		error = GET_FPEXC_CTL(me, arg2);
2054 		break;
2055 	case PR_GET_TIMING:
2056 		error = PR_TIMING_STATISTICAL;
2057 		break;
2058 	case PR_SET_TIMING:
2059 		if (arg2 != PR_TIMING_STATISTICAL)
2060 			error = -EINVAL;
2061 		break;
2062 	case PR_SET_NAME:
2063 		comm[sizeof(me->comm) - 1] = 0;
2064 		if (strncpy_from_user(comm, (char __user *)arg2,
2065 				      sizeof(me->comm) - 1) < 0)
2066 			return -EFAULT;
2067 		set_task_comm(me, comm);
2068 		proc_comm_connector(me);
2069 		break;
2070 	case PR_GET_NAME:
2071 		get_task_comm(comm, me);
2072 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2073 			return -EFAULT;
2074 		break;
2075 	case PR_GET_ENDIAN:
2076 		error = GET_ENDIAN(me, arg2);
2077 		break;
2078 	case PR_SET_ENDIAN:
2079 		error = SET_ENDIAN(me, arg2);
2080 		break;
2081 	case PR_GET_SECCOMP:
2082 		error = prctl_get_seccomp();
2083 		break;
2084 	case PR_SET_SECCOMP:
2085 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2086 		break;
2087 	case PR_GET_TSC:
2088 		error = GET_TSC_CTL(arg2);
2089 		break;
2090 	case PR_SET_TSC:
2091 		error = SET_TSC_CTL(arg2);
2092 		break;
2093 	case PR_TASK_PERF_EVENTS_DISABLE:
2094 		error = perf_event_task_disable();
2095 		break;
2096 	case PR_TASK_PERF_EVENTS_ENABLE:
2097 		error = perf_event_task_enable();
2098 		break;
2099 	case PR_GET_TIMERSLACK:
2100 		error = current->timer_slack_ns;
2101 		break;
2102 	case PR_SET_TIMERSLACK:
2103 		if (arg2 <= 0)
2104 			current->timer_slack_ns =
2105 					current->default_timer_slack_ns;
2106 		else
2107 			current->timer_slack_ns = arg2;
2108 		break;
2109 	case PR_MCE_KILL:
2110 		if (arg4 | arg5)
2111 			return -EINVAL;
2112 		switch (arg2) {
2113 		case PR_MCE_KILL_CLEAR:
2114 			if (arg3 != 0)
2115 				return -EINVAL;
2116 			current->flags &= ~PF_MCE_PROCESS;
2117 			break;
2118 		case PR_MCE_KILL_SET:
2119 			current->flags |= PF_MCE_PROCESS;
2120 			if (arg3 == PR_MCE_KILL_EARLY)
2121 				current->flags |= PF_MCE_EARLY;
2122 			else if (arg3 == PR_MCE_KILL_LATE)
2123 				current->flags &= ~PF_MCE_EARLY;
2124 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2125 				current->flags &=
2126 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2127 			else
2128 				return -EINVAL;
2129 			break;
2130 		default:
2131 			return -EINVAL;
2132 		}
2133 		break;
2134 	case PR_MCE_KILL_GET:
2135 		if (arg2 | arg3 | arg4 | arg5)
2136 			return -EINVAL;
2137 		if (current->flags & PF_MCE_PROCESS)
2138 			error = (current->flags & PF_MCE_EARLY) ?
2139 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2140 		else
2141 			error = PR_MCE_KILL_DEFAULT;
2142 		break;
2143 	case PR_SET_MM:
2144 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2145 		break;
2146 	case PR_GET_TID_ADDRESS:
2147 		error = prctl_get_tid_address(me, (int __user **)arg2);
2148 		break;
2149 	case PR_SET_CHILD_SUBREAPER:
2150 		me->signal->is_child_subreaper = !!arg2;
2151 		break;
2152 	case PR_GET_CHILD_SUBREAPER:
2153 		error = put_user(me->signal->is_child_subreaper,
2154 				 (int __user *)arg2);
2155 		break;
2156 	case PR_SET_NO_NEW_PRIVS:
2157 		if (arg2 != 1 || arg3 || arg4 || arg5)
2158 			return -EINVAL;
2159 
2160 		current->no_new_privs = 1;
2161 		break;
2162 	case PR_GET_NO_NEW_PRIVS:
2163 		if (arg2 || arg3 || arg4 || arg5)
2164 			return -EINVAL;
2165 		return current->no_new_privs ? 1 : 0;
2166 	default:
2167 		error = -EINVAL;
2168 		break;
2169 	}
2170 	return error;
2171 }
2172 
2173 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2174 		struct getcpu_cache __user *, unused)
2175 {
2176 	int err = 0;
2177 	int cpu = raw_smp_processor_id();
2178 	if (cpup)
2179 		err |= put_user(cpu, cpup);
2180 	if (nodep)
2181 		err |= put_user(cpu_to_node(cpu), nodep);
2182 	return err ? -EFAULT : 0;
2183 }
2184 
2185 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2186 
2187 static void argv_cleanup(struct subprocess_info *info)
2188 {
2189 	argv_free(info->argv);
2190 }
2191 
2192 static int __orderly_poweroff(void)
2193 {
2194 	int argc;
2195 	char **argv;
2196 	static char *envp[] = {
2197 		"HOME=/",
2198 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2199 		NULL
2200 	};
2201 	int ret;
2202 
2203 	argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2204 	if (argv == NULL) {
2205 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2206 		       __func__, poweroff_cmd);
2207 		return -ENOMEM;
2208 	}
2209 
2210 	ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_WAIT_EXEC,
2211 				      NULL, argv_cleanup, NULL);
2212 	if (ret == -ENOMEM)
2213 		argv_free(argv);
2214 
2215 	return ret;
2216 }
2217 
2218 /**
2219  * orderly_poweroff - Trigger an orderly system poweroff
2220  * @force: force poweroff if command execution fails
2221  *
2222  * This may be called from any context to trigger a system shutdown.
2223  * If the orderly shutdown fails, it will force an immediate shutdown.
2224  */
2225 int orderly_poweroff(bool force)
2226 {
2227 	int ret = __orderly_poweroff();
2228 
2229 	if (ret && force) {
2230 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2231 		       "forcing the issue\n");
2232 
2233 		/*
2234 		 * I guess this should try to kick off some daemon to sync and
2235 		 * poweroff asap.  Or not even bother syncing if we're doing an
2236 		 * emergency shutdown?
2237 		 */
2238 		emergency_sync();
2239 		kernel_power_off();
2240 	}
2241 
2242 	return ret;
2243 }
2244 EXPORT_SYMBOL_GPL(orderly_poweroff);
2245