1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/sys.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/mm_inline.h> 11 #include <linux/utsname.h> 12 #include <linux/mman.h> 13 #include <linux/reboot.h> 14 #include <linux/prctl.h> 15 #include <linux/highuid.h> 16 #include <linux/fs.h> 17 #include <linux/kmod.h> 18 #include <linux/ksm.h> 19 #include <linux/perf_event.h> 20 #include <linux/resource.h> 21 #include <linux/kernel.h> 22 #include <linux/workqueue.h> 23 #include <linux/capability.h> 24 #include <linux/device.h> 25 #include <linux/key.h> 26 #include <linux/times.h> 27 #include <linux/posix-timers.h> 28 #include <linux/security.h> 29 #include <linux/random.h> 30 #include <linux/suspend.h> 31 #include <linux/tty.h> 32 #include <linux/signal.h> 33 #include <linux/cn_proc.h> 34 #include <linux/getcpu.h> 35 #include <linux/task_io_accounting_ops.h> 36 #include <linux/seccomp.h> 37 #include <linux/cpu.h> 38 #include <linux/personality.h> 39 #include <linux/ptrace.h> 40 #include <linux/fs_struct.h> 41 #include <linux/file.h> 42 #include <linux/mount.h> 43 #include <linux/gfp.h> 44 #include <linux/syscore_ops.h> 45 #include <linux/version.h> 46 #include <linux/ctype.h> 47 #include <linux/syscall_user_dispatch.h> 48 49 #include <linux/compat.h> 50 #include <linux/syscalls.h> 51 #include <linux/kprobes.h> 52 #include <linux/user_namespace.h> 53 #include <linux/time_namespace.h> 54 #include <linux/binfmts.h> 55 56 #include <linux/sched.h> 57 #include <linux/sched/autogroup.h> 58 #include <linux/sched/loadavg.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/mm.h> 61 #include <linux/sched/coredump.h> 62 #include <linux/sched/task.h> 63 #include <linux/sched/cputime.h> 64 #include <linux/rcupdate.h> 65 #include <linux/uidgid.h> 66 #include <linux/cred.h> 67 68 #include <linux/nospec.h> 69 70 #include <linux/kmsg_dump.h> 71 /* Move somewhere else to avoid recompiling? */ 72 #include <generated/utsrelease.h> 73 74 #include <linux/uaccess.h> 75 #include <asm/io.h> 76 #include <asm/unistd.h> 77 78 #include "uid16.h" 79 80 #ifndef SET_UNALIGN_CTL 81 # define SET_UNALIGN_CTL(a, b) (-EINVAL) 82 #endif 83 #ifndef GET_UNALIGN_CTL 84 # define GET_UNALIGN_CTL(a, b) (-EINVAL) 85 #endif 86 #ifndef SET_FPEMU_CTL 87 # define SET_FPEMU_CTL(a, b) (-EINVAL) 88 #endif 89 #ifndef GET_FPEMU_CTL 90 # define GET_FPEMU_CTL(a, b) (-EINVAL) 91 #endif 92 #ifndef SET_FPEXC_CTL 93 # define SET_FPEXC_CTL(a, b) (-EINVAL) 94 #endif 95 #ifndef GET_FPEXC_CTL 96 # define GET_FPEXC_CTL(a, b) (-EINVAL) 97 #endif 98 #ifndef GET_ENDIAN 99 # define GET_ENDIAN(a, b) (-EINVAL) 100 #endif 101 #ifndef SET_ENDIAN 102 # define SET_ENDIAN(a, b) (-EINVAL) 103 #endif 104 #ifndef GET_TSC_CTL 105 # define GET_TSC_CTL(a) (-EINVAL) 106 #endif 107 #ifndef SET_TSC_CTL 108 # define SET_TSC_CTL(a) (-EINVAL) 109 #endif 110 #ifndef GET_FP_MODE 111 # define GET_FP_MODE(a) (-EINVAL) 112 #endif 113 #ifndef SET_FP_MODE 114 # define SET_FP_MODE(a,b) (-EINVAL) 115 #endif 116 #ifndef SVE_SET_VL 117 # define SVE_SET_VL(a) (-EINVAL) 118 #endif 119 #ifndef SVE_GET_VL 120 # define SVE_GET_VL() (-EINVAL) 121 #endif 122 #ifndef SME_SET_VL 123 # define SME_SET_VL(a) (-EINVAL) 124 #endif 125 #ifndef SME_GET_VL 126 # define SME_GET_VL() (-EINVAL) 127 #endif 128 #ifndef PAC_RESET_KEYS 129 # define PAC_RESET_KEYS(a, b) (-EINVAL) 130 #endif 131 #ifndef PAC_SET_ENABLED_KEYS 132 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL) 133 #endif 134 #ifndef PAC_GET_ENABLED_KEYS 135 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL) 136 #endif 137 #ifndef SET_TAGGED_ADDR_CTRL 138 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL) 139 #endif 140 #ifndef GET_TAGGED_ADDR_CTRL 141 # define GET_TAGGED_ADDR_CTRL() (-EINVAL) 142 #endif 143 #ifndef RISCV_V_SET_CONTROL 144 # define RISCV_V_SET_CONTROL(a) (-EINVAL) 145 #endif 146 #ifndef RISCV_V_GET_CONTROL 147 # define RISCV_V_GET_CONTROL() (-EINVAL) 148 #endif 149 #ifndef PPC_GET_DEXCR_ASPECT 150 # define PPC_GET_DEXCR_ASPECT(a, b) (-EINVAL) 151 #endif 152 #ifndef PPC_SET_DEXCR_ASPECT 153 # define PPC_SET_DEXCR_ASPECT(a, b, c) (-EINVAL) 154 #endif 155 156 /* 157 * this is where the system-wide overflow UID and GID are defined, for 158 * architectures that now have 32-bit UID/GID but didn't in the past 159 */ 160 161 int overflowuid = DEFAULT_OVERFLOWUID; 162 int overflowgid = DEFAULT_OVERFLOWGID; 163 164 EXPORT_SYMBOL(overflowuid); 165 EXPORT_SYMBOL(overflowgid); 166 167 /* 168 * the same as above, but for filesystems which can only store a 16-bit 169 * UID and GID. as such, this is needed on all architectures 170 */ 171 172 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 173 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID; 174 175 EXPORT_SYMBOL(fs_overflowuid); 176 EXPORT_SYMBOL(fs_overflowgid); 177 178 /* 179 * Returns true if current's euid is same as p's uid or euid, 180 * or has CAP_SYS_NICE to p's user_ns. 181 * 182 * Called with rcu_read_lock, creds are safe 183 */ 184 static bool set_one_prio_perm(struct task_struct *p) 185 { 186 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 187 188 if (uid_eq(pcred->uid, cred->euid) || 189 uid_eq(pcred->euid, cred->euid)) 190 return true; 191 if (ns_capable(pcred->user_ns, CAP_SYS_NICE)) 192 return true; 193 return false; 194 } 195 196 /* 197 * set the priority of a task 198 * - the caller must hold the RCU read lock 199 */ 200 static int set_one_prio(struct task_struct *p, int niceval, int error) 201 { 202 int no_nice; 203 204 if (!set_one_prio_perm(p)) { 205 error = -EPERM; 206 goto out; 207 } 208 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 209 error = -EACCES; 210 goto out; 211 } 212 no_nice = security_task_setnice(p, niceval); 213 if (no_nice) { 214 error = no_nice; 215 goto out; 216 } 217 if (error == -ESRCH) 218 error = 0; 219 set_user_nice(p, niceval); 220 out: 221 return error; 222 } 223 224 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 225 { 226 struct task_struct *g, *p; 227 struct user_struct *user; 228 const struct cred *cred = current_cred(); 229 int error = -EINVAL; 230 struct pid *pgrp; 231 kuid_t uid; 232 233 if (which > PRIO_USER || which < PRIO_PROCESS) 234 goto out; 235 236 /* normalize: avoid signed division (rounding problems) */ 237 error = -ESRCH; 238 if (niceval < MIN_NICE) 239 niceval = MIN_NICE; 240 if (niceval > MAX_NICE) 241 niceval = MAX_NICE; 242 243 rcu_read_lock(); 244 switch (which) { 245 case PRIO_PROCESS: 246 if (who) 247 p = find_task_by_vpid(who); 248 else 249 p = current; 250 if (p) 251 error = set_one_prio(p, niceval, error); 252 break; 253 case PRIO_PGRP: 254 if (who) 255 pgrp = find_vpid(who); 256 else 257 pgrp = task_pgrp(current); 258 read_lock(&tasklist_lock); 259 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 260 error = set_one_prio(p, niceval, error); 261 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 262 read_unlock(&tasklist_lock); 263 break; 264 case PRIO_USER: 265 uid = make_kuid(cred->user_ns, who); 266 user = cred->user; 267 if (!who) 268 uid = cred->uid; 269 else if (!uid_eq(uid, cred->uid)) { 270 user = find_user(uid); 271 if (!user) 272 goto out_unlock; /* No processes for this user */ 273 } 274 for_each_process_thread(g, p) { 275 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) 276 error = set_one_prio(p, niceval, error); 277 } 278 if (!uid_eq(uid, cred->uid)) 279 free_uid(user); /* For find_user() */ 280 break; 281 } 282 out_unlock: 283 rcu_read_unlock(); 284 out: 285 return error; 286 } 287 288 /* 289 * Ugh. To avoid negative return values, "getpriority()" will 290 * not return the normal nice-value, but a negated value that 291 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 292 * to stay compatible. 293 */ 294 SYSCALL_DEFINE2(getpriority, int, which, int, who) 295 { 296 struct task_struct *g, *p; 297 struct user_struct *user; 298 const struct cred *cred = current_cred(); 299 long niceval, retval = -ESRCH; 300 struct pid *pgrp; 301 kuid_t uid; 302 303 if (which > PRIO_USER || which < PRIO_PROCESS) 304 return -EINVAL; 305 306 rcu_read_lock(); 307 switch (which) { 308 case PRIO_PROCESS: 309 if (who) 310 p = find_task_by_vpid(who); 311 else 312 p = current; 313 if (p) { 314 niceval = nice_to_rlimit(task_nice(p)); 315 if (niceval > retval) 316 retval = niceval; 317 } 318 break; 319 case PRIO_PGRP: 320 if (who) 321 pgrp = find_vpid(who); 322 else 323 pgrp = task_pgrp(current); 324 read_lock(&tasklist_lock); 325 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 326 niceval = nice_to_rlimit(task_nice(p)); 327 if (niceval > retval) 328 retval = niceval; 329 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 330 read_unlock(&tasklist_lock); 331 break; 332 case PRIO_USER: 333 uid = make_kuid(cred->user_ns, who); 334 user = cred->user; 335 if (!who) 336 uid = cred->uid; 337 else if (!uid_eq(uid, cred->uid)) { 338 user = find_user(uid); 339 if (!user) 340 goto out_unlock; /* No processes for this user */ 341 } 342 for_each_process_thread(g, p) { 343 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) { 344 niceval = nice_to_rlimit(task_nice(p)); 345 if (niceval > retval) 346 retval = niceval; 347 } 348 } 349 if (!uid_eq(uid, cred->uid)) 350 free_uid(user); /* for find_user() */ 351 break; 352 } 353 out_unlock: 354 rcu_read_unlock(); 355 356 return retval; 357 } 358 359 /* 360 * Unprivileged users may change the real gid to the effective gid 361 * or vice versa. (BSD-style) 362 * 363 * If you set the real gid at all, or set the effective gid to a value not 364 * equal to the real gid, then the saved gid is set to the new effective gid. 365 * 366 * This makes it possible for a setgid program to completely drop its 367 * privileges, which is often a useful assertion to make when you are doing 368 * a security audit over a program. 369 * 370 * The general idea is that a program which uses just setregid() will be 371 * 100% compatible with BSD. A program which uses just setgid() will be 372 * 100% compatible with POSIX with saved IDs. 373 * 374 * SMP: There are not races, the GIDs are checked only by filesystem 375 * operations (as far as semantic preservation is concerned). 376 */ 377 #ifdef CONFIG_MULTIUSER 378 long __sys_setregid(gid_t rgid, gid_t egid) 379 { 380 struct user_namespace *ns = current_user_ns(); 381 const struct cred *old; 382 struct cred *new; 383 int retval; 384 kgid_t krgid, kegid; 385 386 krgid = make_kgid(ns, rgid); 387 kegid = make_kgid(ns, egid); 388 389 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 390 return -EINVAL; 391 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 392 return -EINVAL; 393 394 new = prepare_creds(); 395 if (!new) 396 return -ENOMEM; 397 old = current_cred(); 398 399 retval = -EPERM; 400 if (rgid != (gid_t) -1) { 401 if (gid_eq(old->gid, krgid) || 402 gid_eq(old->egid, krgid) || 403 ns_capable_setid(old->user_ns, CAP_SETGID)) 404 new->gid = krgid; 405 else 406 goto error; 407 } 408 if (egid != (gid_t) -1) { 409 if (gid_eq(old->gid, kegid) || 410 gid_eq(old->egid, kegid) || 411 gid_eq(old->sgid, kegid) || 412 ns_capable_setid(old->user_ns, CAP_SETGID)) 413 new->egid = kegid; 414 else 415 goto error; 416 } 417 418 if (rgid != (gid_t) -1 || 419 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid))) 420 new->sgid = new->egid; 421 new->fsgid = new->egid; 422 423 retval = security_task_fix_setgid(new, old, LSM_SETID_RE); 424 if (retval < 0) 425 goto error; 426 427 return commit_creds(new); 428 429 error: 430 abort_creds(new); 431 return retval; 432 } 433 434 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 435 { 436 return __sys_setregid(rgid, egid); 437 } 438 439 /* 440 * setgid() is implemented like SysV w/ SAVED_IDS 441 * 442 * SMP: Same implicit races as above. 443 */ 444 long __sys_setgid(gid_t gid) 445 { 446 struct user_namespace *ns = current_user_ns(); 447 const struct cred *old; 448 struct cred *new; 449 int retval; 450 kgid_t kgid; 451 452 kgid = make_kgid(ns, gid); 453 if (!gid_valid(kgid)) 454 return -EINVAL; 455 456 new = prepare_creds(); 457 if (!new) 458 return -ENOMEM; 459 old = current_cred(); 460 461 retval = -EPERM; 462 if (ns_capable_setid(old->user_ns, CAP_SETGID)) 463 new->gid = new->egid = new->sgid = new->fsgid = kgid; 464 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid)) 465 new->egid = new->fsgid = kgid; 466 else 467 goto error; 468 469 retval = security_task_fix_setgid(new, old, LSM_SETID_ID); 470 if (retval < 0) 471 goto error; 472 473 return commit_creds(new); 474 475 error: 476 abort_creds(new); 477 return retval; 478 } 479 480 SYSCALL_DEFINE1(setgid, gid_t, gid) 481 { 482 return __sys_setgid(gid); 483 } 484 485 /* 486 * change the user struct in a credentials set to match the new UID 487 */ 488 static int set_user(struct cred *new) 489 { 490 struct user_struct *new_user; 491 492 new_user = alloc_uid(new->uid); 493 if (!new_user) 494 return -EAGAIN; 495 496 free_uid(new->user); 497 new->user = new_user; 498 return 0; 499 } 500 501 static void flag_nproc_exceeded(struct cred *new) 502 { 503 if (new->ucounts == current_ucounts()) 504 return; 505 506 /* 507 * We don't fail in case of NPROC limit excess here because too many 508 * poorly written programs don't check set*uid() return code, assuming 509 * it never fails if called by root. We may still enforce NPROC limit 510 * for programs doing set*uid()+execve() by harmlessly deferring the 511 * failure to the execve() stage. 512 */ 513 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) && 514 new->user != INIT_USER) 515 current->flags |= PF_NPROC_EXCEEDED; 516 else 517 current->flags &= ~PF_NPROC_EXCEEDED; 518 } 519 520 /* 521 * Unprivileged users may change the real uid to the effective uid 522 * or vice versa. (BSD-style) 523 * 524 * If you set the real uid at all, or set the effective uid to a value not 525 * equal to the real uid, then the saved uid is set to the new effective uid. 526 * 527 * This makes it possible for a setuid program to completely drop its 528 * privileges, which is often a useful assertion to make when you are doing 529 * a security audit over a program. 530 * 531 * The general idea is that a program which uses just setreuid() will be 532 * 100% compatible with BSD. A program which uses just setuid() will be 533 * 100% compatible with POSIX with saved IDs. 534 */ 535 long __sys_setreuid(uid_t ruid, uid_t euid) 536 { 537 struct user_namespace *ns = current_user_ns(); 538 const struct cred *old; 539 struct cred *new; 540 int retval; 541 kuid_t kruid, keuid; 542 543 kruid = make_kuid(ns, ruid); 544 keuid = make_kuid(ns, euid); 545 546 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 547 return -EINVAL; 548 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 549 return -EINVAL; 550 551 new = prepare_creds(); 552 if (!new) 553 return -ENOMEM; 554 old = current_cred(); 555 556 retval = -EPERM; 557 if (ruid != (uid_t) -1) { 558 new->uid = kruid; 559 if (!uid_eq(old->uid, kruid) && 560 !uid_eq(old->euid, kruid) && 561 !ns_capable_setid(old->user_ns, CAP_SETUID)) 562 goto error; 563 } 564 565 if (euid != (uid_t) -1) { 566 new->euid = keuid; 567 if (!uid_eq(old->uid, keuid) && 568 !uid_eq(old->euid, keuid) && 569 !uid_eq(old->suid, keuid) && 570 !ns_capable_setid(old->user_ns, CAP_SETUID)) 571 goto error; 572 } 573 574 if (!uid_eq(new->uid, old->uid)) { 575 retval = set_user(new); 576 if (retval < 0) 577 goto error; 578 } 579 if (ruid != (uid_t) -1 || 580 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid))) 581 new->suid = new->euid; 582 new->fsuid = new->euid; 583 584 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 585 if (retval < 0) 586 goto error; 587 588 retval = set_cred_ucounts(new); 589 if (retval < 0) 590 goto error; 591 592 flag_nproc_exceeded(new); 593 return commit_creds(new); 594 595 error: 596 abort_creds(new); 597 return retval; 598 } 599 600 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 601 { 602 return __sys_setreuid(ruid, euid); 603 } 604 605 /* 606 * setuid() is implemented like SysV with SAVED_IDS 607 * 608 * Note that SAVED_ID's is deficient in that a setuid root program 609 * like sendmail, for example, cannot set its uid to be a normal 610 * user and then switch back, because if you're root, setuid() sets 611 * the saved uid too. If you don't like this, blame the bright people 612 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 613 * will allow a root program to temporarily drop privileges and be able to 614 * regain them by swapping the real and effective uid. 615 */ 616 long __sys_setuid(uid_t uid) 617 { 618 struct user_namespace *ns = current_user_ns(); 619 const struct cred *old; 620 struct cred *new; 621 int retval; 622 kuid_t kuid; 623 624 kuid = make_kuid(ns, uid); 625 if (!uid_valid(kuid)) 626 return -EINVAL; 627 628 new = prepare_creds(); 629 if (!new) 630 return -ENOMEM; 631 old = current_cred(); 632 633 retval = -EPERM; 634 if (ns_capable_setid(old->user_ns, CAP_SETUID)) { 635 new->suid = new->uid = kuid; 636 if (!uid_eq(kuid, old->uid)) { 637 retval = set_user(new); 638 if (retval < 0) 639 goto error; 640 } 641 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) { 642 goto error; 643 } 644 645 new->fsuid = new->euid = kuid; 646 647 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 648 if (retval < 0) 649 goto error; 650 651 retval = set_cred_ucounts(new); 652 if (retval < 0) 653 goto error; 654 655 flag_nproc_exceeded(new); 656 return commit_creds(new); 657 658 error: 659 abort_creds(new); 660 return retval; 661 } 662 663 SYSCALL_DEFINE1(setuid, uid_t, uid) 664 { 665 return __sys_setuid(uid); 666 } 667 668 669 /* 670 * This function implements a generic ability to update ruid, euid, 671 * and suid. This allows you to implement the 4.4 compatible seteuid(). 672 */ 673 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 674 { 675 struct user_namespace *ns = current_user_ns(); 676 const struct cred *old; 677 struct cred *new; 678 int retval; 679 kuid_t kruid, keuid, ksuid; 680 bool ruid_new, euid_new, suid_new; 681 682 kruid = make_kuid(ns, ruid); 683 keuid = make_kuid(ns, euid); 684 ksuid = make_kuid(ns, suid); 685 686 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 687 return -EINVAL; 688 689 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 690 return -EINVAL; 691 692 if ((suid != (uid_t) -1) && !uid_valid(ksuid)) 693 return -EINVAL; 694 695 old = current_cred(); 696 697 /* check for no-op */ 698 if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) && 699 (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) && 700 uid_eq(keuid, old->fsuid))) && 701 (suid == (uid_t) -1 || uid_eq(ksuid, old->suid))) 702 return 0; 703 704 ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) && 705 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid); 706 euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) && 707 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid); 708 suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) && 709 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid); 710 if ((ruid_new || euid_new || suid_new) && 711 !ns_capable_setid(old->user_ns, CAP_SETUID)) 712 return -EPERM; 713 714 new = prepare_creds(); 715 if (!new) 716 return -ENOMEM; 717 718 if (ruid != (uid_t) -1) { 719 new->uid = kruid; 720 if (!uid_eq(kruid, old->uid)) { 721 retval = set_user(new); 722 if (retval < 0) 723 goto error; 724 } 725 } 726 if (euid != (uid_t) -1) 727 new->euid = keuid; 728 if (suid != (uid_t) -1) 729 new->suid = ksuid; 730 new->fsuid = new->euid; 731 732 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 733 if (retval < 0) 734 goto error; 735 736 retval = set_cred_ucounts(new); 737 if (retval < 0) 738 goto error; 739 740 flag_nproc_exceeded(new); 741 return commit_creds(new); 742 743 error: 744 abort_creds(new); 745 return retval; 746 } 747 748 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 749 { 750 return __sys_setresuid(ruid, euid, suid); 751 } 752 753 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp) 754 { 755 const struct cred *cred = current_cred(); 756 int retval; 757 uid_t ruid, euid, suid; 758 759 ruid = from_kuid_munged(cred->user_ns, cred->uid); 760 euid = from_kuid_munged(cred->user_ns, cred->euid); 761 suid = from_kuid_munged(cred->user_ns, cred->suid); 762 763 retval = put_user(ruid, ruidp); 764 if (!retval) { 765 retval = put_user(euid, euidp); 766 if (!retval) 767 return put_user(suid, suidp); 768 } 769 return retval; 770 } 771 772 /* 773 * Same as above, but for rgid, egid, sgid. 774 */ 775 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 776 { 777 struct user_namespace *ns = current_user_ns(); 778 const struct cred *old; 779 struct cred *new; 780 int retval; 781 kgid_t krgid, kegid, ksgid; 782 bool rgid_new, egid_new, sgid_new; 783 784 krgid = make_kgid(ns, rgid); 785 kegid = make_kgid(ns, egid); 786 ksgid = make_kgid(ns, sgid); 787 788 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 789 return -EINVAL; 790 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 791 return -EINVAL; 792 if ((sgid != (gid_t) -1) && !gid_valid(ksgid)) 793 return -EINVAL; 794 795 old = current_cred(); 796 797 /* check for no-op */ 798 if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) && 799 (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) && 800 gid_eq(kegid, old->fsgid))) && 801 (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid))) 802 return 0; 803 804 rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) && 805 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid); 806 egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) && 807 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid); 808 sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) && 809 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid); 810 if ((rgid_new || egid_new || sgid_new) && 811 !ns_capable_setid(old->user_ns, CAP_SETGID)) 812 return -EPERM; 813 814 new = prepare_creds(); 815 if (!new) 816 return -ENOMEM; 817 818 if (rgid != (gid_t) -1) 819 new->gid = krgid; 820 if (egid != (gid_t) -1) 821 new->egid = kegid; 822 if (sgid != (gid_t) -1) 823 new->sgid = ksgid; 824 new->fsgid = new->egid; 825 826 retval = security_task_fix_setgid(new, old, LSM_SETID_RES); 827 if (retval < 0) 828 goto error; 829 830 return commit_creds(new); 831 832 error: 833 abort_creds(new); 834 return retval; 835 } 836 837 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 838 { 839 return __sys_setresgid(rgid, egid, sgid); 840 } 841 842 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp) 843 { 844 const struct cred *cred = current_cred(); 845 int retval; 846 gid_t rgid, egid, sgid; 847 848 rgid = from_kgid_munged(cred->user_ns, cred->gid); 849 egid = from_kgid_munged(cred->user_ns, cred->egid); 850 sgid = from_kgid_munged(cred->user_ns, cred->sgid); 851 852 retval = put_user(rgid, rgidp); 853 if (!retval) { 854 retval = put_user(egid, egidp); 855 if (!retval) 856 retval = put_user(sgid, sgidp); 857 } 858 859 return retval; 860 } 861 862 863 /* 864 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 865 * is used for "access()" and for the NFS daemon (letting nfsd stay at 866 * whatever uid it wants to). It normally shadows "euid", except when 867 * explicitly set by setfsuid() or for access.. 868 */ 869 long __sys_setfsuid(uid_t uid) 870 { 871 const struct cred *old; 872 struct cred *new; 873 uid_t old_fsuid; 874 kuid_t kuid; 875 876 old = current_cred(); 877 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid); 878 879 kuid = make_kuid(old->user_ns, uid); 880 if (!uid_valid(kuid)) 881 return old_fsuid; 882 883 new = prepare_creds(); 884 if (!new) 885 return old_fsuid; 886 887 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) || 888 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) || 889 ns_capable_setid(old->user_ns, CAP_SETUID)) { 890 if (!uid_eq(kuid, old->fsuid)) { 891 new->fsuid = kuid; 892 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 893 goto change_okay; 894 } 895 } 896 897 abort_creds(new); 898 return old_fsuid; 899 900 change_okay: 901 commit_creds(new); 902 return old_fsuid; 903 } 904 905 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 906 { 907 return __sys_setfsuid(uid); 908 } 909 910 /* 911 * Samma på svenska.. 912 */ 913 long __sys_setfsgid(gid_t gid) 914 { 915 const struct cred *old; 916 struct cred *new; 917 gid_t old_fsgid; 918 kgid_t kgid; 919 920 old = current_cred(); 921 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid); 922 923 kgid = make_kgid(old->user_ns, gid); 924 if (!gid_valid(kgid)) 925 return old_fsgid; 926 927 new = prepare_creds(); 928 if (!new) 929 return old_fsgid; 930 931 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) || 932 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) || 933 ns_capable_setid(old->user_ns, CAP_SETGID)) { 934 if (!gid_eq(kgid, old->fsgid)) { 935 new->fsgid = kgid; 936 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0) 937 goto change_okay; 938 } 939 } 940 941 abort_creds(new); 942 return old_fsgid; 943 944 change_okay: 945 commit_creds(new); 946 return old_fsgid; 947 } 948 949 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 950 { 951 return __sys_setfsgid(gid); 952 } 953 #endif /* CONFIG_MULTIUSER */ 954 955 /** 956 * sys_getpid - return the thread group id of the current process 957 * 958 * Note, despite the name, this returns the tgid not the pid. The tgid and 959 * the pid are identical unless CLONE_THREAD was specified on clone() in 960 * which case the tgid is the same in all threads of the same group. 961 * 962 * This is SMP safe as current->tgid does not change. 963 */ 964 SYSCALL_DEFINE0(getpid) 965 { 966 return task_tgid_vnr(current); 967 } 968 969 /* Thread ID - the internal kernel "pid" */ 970 SYSCALL_DEFINE0(gettid) 971 { 972 return task_pid_vnr(current); 973 } 974 975 /* 976 * Accessing ->real_parent is not SMP-safe, it could 977 * change from under us. However, we can use a stale 978 * value of ->real_parent under rcu_read_lock(), see 979 * release_task()->call_rcu(delayed_put_task_struct). 980 */ 981 SYSCALL_DEFINE0(getppid) 982 { 983 int pid; 984 985 rcu_read_lock(); 986 pid = task_tgid_vnr(rcu_dereference(current->real_parent)); 987 rcu_read_unlock(); 988 989 return pid; 990 } 991 992 SYSCALL_DEFINE0(getuid) 993 { 994 /* Only we change this so SMP safe */ 995 return from_kuid_munged(current_user_ns(), current_uid()); 996 } 997 998 SYSCALL_DEFINE0(geteuid) 999 { 1000 /* Only we change this so SMP safe */ 1001 return from_kuid_munged(current_user_ns(), current_euid()); 1002 } 1003 1004 SYSCALL_DEFINE0(getgid) 1005 { 1006 /* Only we change this so SMP safe */ 1007 return from_kgid_munged(current_user_ns(), current_gid()); 1008 } 1009 1010 SYSCALL_DEFINE0(getegid) 1011 { 1012 /* Only we change this so SMP safe */ 1013 return from_kgid_munged(current_user_ns(), current_egid()); 1014 } 1015 1016 static void do_sys_times(struct tms *tms) 1017 { 1018 u64 tgutime, tgstime, cutime, cstime; 1019 1020 thread_group_cputime_adjusted(current, &tgutime, &tgstime); 1021 cutime = current->signal->cutime; 1022 cstime = current->signal->cstime; 1023 tms->tms_utime = nsec_to_clock_t(tgutime); 1024 tms->tms_stime = nsec_to_clock_t(tgstime); 1025 tms->tms_cutime = nsec_to_clock_t(cutime); 1026 tms->tms_cstime = nsec_to_clock_t(cstime); 1027 } 1028 1029 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 1030 { 1031 if (tbuf) { 1032 struct tms tmp; 1033 1034 do_sys_times(&tmp); 1035 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 1036 return -EFAULT; 1037 } 1038 force_successful_syscall_return(); 1039 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 1040 } 1041 1042 #ifdef CONFIG_COMPAT 1043 static compat_clock_t clock_t_to_compat_clock_t(clock_t x) 1044 { 1045 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x)); 1046 } 1047 1048 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf) 1049 { 1050 if (tbuf) { 1051 struct tms tms; 1052 struct compat_tms tmp; 1053 1054 do_sys_times(&tms); 1055 /* Convert our struct tms to the compat version. */ 1056 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime); 1057 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime); 1058 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime); 1059 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime); 1060 if (copy_to_user(tbuf, &tmp, sizeof(tmp))) 1061 return -EFAULT; 1062 } 1063 force_successful_syscall_return(); 1064 return compat_jiffies_to_clock_t(jiffies); 1065 } 1066 #endif 1067 1068 /* 1069 * This needs some heavy checking ... 1070 * I just haven't the stomach for it. I also don't fully 1071 * understand sessions/pgrp etc. Let somebody who does explain it. 1072 * 1073 * OK, I think I have the protection semantics right.... this is really 1074 * only important on a multi-user system anyway, to make sure one user 1075 * can't send a signal to a process owned by another. -TYT, 12/12/91 1076 * 1077 * !PF_FORKNOEXEC check to conform completely to POSIX. 1078 */ 1079 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 1080 { 1081 struct task_struct *p; 1082 struct task_struct *group_leader = current->group_leader; 1083 struct pid *pgrp; 1084 int err; 1085 1086 if (!pid) 1087 pid = task_pid_vnr(group_leader); 1088 if (!pgid) 1089 pgid = pid; 1090 if (pgid < 0) 1091 return -EINVAL; 1092 rcu_read_lock(); 1093 1094 /* From this point forward we keep holding onto the tasklist lock 1095 * so that our parent does not change from under us. -DaveM 1096 */ 1097 write_lock_irq(&tasklist_lock); 1098 1099 err = -ESRCH; 1100 p = find_task_by_vpid(pid); 1101 if (!p) 1102 goto out; 1103 1104 err = -EINVAL; 1105 if (!thread_group_leader(p)) 1106 goto out; 1107 1108 if (same_thread_group(p->real_parent, group_leader)) { 1109 err = -EPERM; 1110 if (task_session(p) != task_session(group_leader)) 1111 goto out; 1112 err = -EACCES; 1113 if (!(p->flags & PF_FORKNOEXEC)) 1114 goto out; 1115 } else { 1116 err = -ESRCH; 1117 if (p != group_leader) 1118 goto out; 1119 } 1120 1121 err = -EPERM; 1122 if (p->signal->leader) 1123 goto out; 1124 1125 pgrp = task_pid(p); 1126 if (pgid != pid) { 1127 struct task_struct *g; 1128 1129 pgrp = find_vpid(pgid); 1130 g = pid_task(pgrp, PIDTYPE_PGID); 1131 if (!g || task_session(g) != task_session(group_leader)) 1132 goto out; 1133 } 1134 1135 err = security_task_setpgid(p, pgid); 1136 if (err) 1137 goto out; 1138 1139 if (task_pgrp(p) != pgrp) 1140 change_pid(p, PIDTYPE_PGID, pgrp); 1141 1142 err = 0; 1143 out: 1144 /* All paths lead to here, thus we are safe. -DaveM */ 1145 write_unlock_irq(&tasklist_lock); 1146 rcu_read_unlock(); 1147 return err; 1148 } 1149 1150 static int do_getpgid(pid_t pid) 1151 { 1152 struct task_struct *p; 1153 struct pid *grp; 1154 int retval; 1155 1156 rcu_read_lock(); 1157 if (!pid) 1158 grp = task_pgrp(current); 1159 else { 1160 retval = -ESRCH; 1161 p = find_task_by_vpid(pid); 1162 if (!p) 1163 goto out; 1164 grp = task_pgrp(p); 1165 if (!grp) 1166 goto out; 1167 1168 retval = security_task_getpgid(p); 1169 if (retval) 1170 goto out; 1171 } 1172 retval = pid_vnr(grp); 1173 out: 1174 rcu_read_unlock(); 1175 return retval; 1176 } 1177 1178 SYSCALL_DEFINE1(getpgid, pid_t, pid) 1179 { 1180 return do_getpgid(pid); 1181 } 1182 1183 #ifdef __ARCH_WANT_SYS_GETPGRP 1184 1185 SYSCALL_DEFINE0(getpgrp) 1186 { 1187 return do_getpgid(0); 1188 } 1189 1190 #endif 1191 1192 SYSCALL_DEFINE1(getsid, pid_t, pid) 1193 { 1194 struct task_struct *p; 1195 struct pid *sid; 1196 int retval; 1197 1198 rcu_read_lock(); 1199 if (!pid) 1200 sid = task_session(current); 1201 else { 1202 retval = -ESRCH; 1203 p = find_task_by_vpid(pid); 1204 if (!p) 1205 goto out; 1206 sid = task_session(p); 1207 if (!sid) 1208 goto out; 1209 1210 retval = security_task_getsid(p); 1211 if (retval) 1212 goto out; 1213 } 1214 retval = pid_vnr(sid); 1215 out: 1216 rcu_read_unlock(); 1217 return retval; 1218 } 1219 1220 static void set_special_pids(struct pid *pid) 1221 { 1222 struct task_struct *curr = current->group_leader; 1223 1224 if (task_session(curr) != pid) 1225 change_pid(curr, PIDTYPE_SID, pid); 1226 1227 if (task_pgrp(curr) != pid) 1228 change_pid(curr, PIDTYPE_PGID, pid); 1229 } 1230 1231 int ksys_setsid(void) 1232 { 1233 struct task_struct *group_leader = current->group_leader; 1234 struct pid *sid = task_pid(group_leader); 1235 pid_t session = pid_vnr(sid); 1236 int err = -EPERM; 1237 1238 write_lock_irq(&tasklist_lock); 1239 /* Fail if I am already a session leader */ 1240 if (group_leader->signal->leader) 1241 goto out; 1242 1243 /* Fail if a process group id already exists that equals the 1244 * proposed session id. 1245 */ 1246 if (pid_task(sid, PIDTYPE_PGID)) 1247 goto out; 1248 1249 group_leader->signal->leader = 1; 1250 set_special_pids(sid); 1251 1252 proc_clear_tty(group_leader); 1253 1254 err = session; 1255 out: 1256 write_unlock_irq(&tasklist_lock); 1257 if (err > 0) { 1258 proc_sid_connector(group_leader); 1259 sched_autogroup_create_attach(group_leader); 1260 } 1261 return err; 1262 } 1263 1264 SYSCALL_DEFINE0(setsid) 1265 { 1266 return ksys_setsid(); 1267 } 1268 1269 DECLARE_RWSEM(uts_sem); 1270 1271 #ifdef COMPAT_UTS_MACHINE 1272 #define override_architecture(name) \ 1273 (personality(current->personality) == PER_LINUX32 && \ 1274 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ 1275 sizeof(COMPAT_UTS_MACHINE))) 1276 #else 1277 #define override_architecture(name) 0 1278 #endif 1279 1280 /* 1281 * Work around broken programs that cannot handle "Linux 3.0". 1282 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 1283 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be 1284 * 2.6.60. 1285 */ 1286 static int override_release(char __user *release, size_t len) 1287 { 1288 int ret = 0; 1289 1290 if (current->personality & UNAME26) { 1291 const char *rest = UTS_RELEASE; 1292 char buf[65] = { 0 }; 1293 int ndots = 0; 1294 unsigned v; 1295 size_t copy; 1296 1297 while (*rest) { 1298 if (*rest == '.' && ++ndots >= 3) 1299 break; 1300 if (!isdigit(*rest) && *rest != '.') 1301 break; 1302 rest++; 1303 } 1304 v = LINUX_VERSION_PATCHLEVEL + 60; 1305 copy = clamp_t(size_t, len, 1, sizeof(buf)); 1306 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest); 1307 ret = copy_to_user(release, buf, copy + 1); 1308 } 1309 return ret; 1310 } 1311 1312 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1313 { 1314 struct new_utsname tmp; 1315 1316 down_read(&uts_sem); 1317 memcpy(&tmp, utsname(), sizeof(tmp)); 1318 up_read(&uts_sem); 1319 if (copy_to_user(name, &tmp, sizeof(tmp))) 1320 return -EFAULT; 1321 1322 if (override_release(name->release, sizeof(name->release))) 1323 return -EFAULT; 1324 if (override_architecture(name)) 1325 return -EFAULT; 1326 return 0; 1327 } 1328 1329 #ifdef __ARCH_WANT_SYS_OLD_UNAME 1330 /* 1331 * Old cruft 1332 */ 1333 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) 1334 { 1335 struct old_utsname tmp; 1336 1337 if (!name) 1338 return -EFAULT; 1339 1340 down_read(&uts_sem); 1341 memcpy(&tmp, utsname(), sizeof(tmp)); 1342 up_read(&uts_sem); 1343 if (copy_to_user(name, &tmp, sizeof(tmp))) 1344 return -EFAULT; 1345 1346 if (override_release(name->release, sizeof(name->release))) 1347 return -EFAULT; 1348 if (override_architecture(name)) 1349 return -EFAULT; 1350 return 0; 1351 } 1352 1353 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) 1354 { 1355 struct oldold_utsname tmp; 1356 1357 if (!name) 1358 return -EFAULT; 1359 1360 memset(&tmp, 0, sizeof(tmp)); 1361 1362 down_read(&uts_sem); 1363 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN); 1364 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN); 1365 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN); 1366 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN); 1367 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN); 1368 up_read(&uts_sem); 1369 if (copy_to_user(name, &tmp, sizeof(tmp))) 1370 return -EFAULT; 1371 1372 if (override_architecture(name)) 1373 return -EFAULT; 1374 if (override_release(name->release, sizeof(name->release))) 1375 return -EFAULT; 1376 return 0; 1377 } 1378 #endif 1379 1380 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1381 { 1382 int errno; 1383 char tmp[__NEW_UTS_LEN]; 1384 1385 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1386 return -EPERM; 1387 1388 if (len < 0 || len > __NEW_UTS_LEN) 1389 return -EINVAL; 1390 errno = -EFAULT; 1391 if (!copy_from_user(tmp, name, len)) { 1392 struct new_utsname *u; 1393 1394 add_device_randomness(tmp, len); 1395 down_write(&uts_sem); 1396 u = utsname(); 1397 memcpy(u->nodename, tmp, len); 1398 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1399 errno = 0; 1400 uts_proc_notify(UTS_PROC_HOSTNAME); 1401 up_write(&uts_sem); 1402 } 1403 return errno; 1404 } 1405 1406 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1407 1408 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1409 { 1410 int i; 1411 struct new_utsname *u; 1412 char tmp[__NEW_UTS_LEN + 1]; 1413 1414 if (len < 0) 1415 return -EINVAL; 1416 down_read(&uts_sem); 1417 u = utsname(); 1418 i = 1 + strlen(u->nodename); 1419 if (i > len) 1420 i = len; 1421 memcpy(tmp, u->nodename, i); 1422 up_read(&uts_sem); 1423 if (copy_to_user(name, tmp, i)) 1424 return -EFAULT; 1425 return 0; 1426 } 1427 1428 #endif 1429 1430 /* 1431 * Only setdomainname; getdomainname can be implemented by calling 1432 * uname() 1433 */ 1434 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1435 { 1436 int errno; 1437 char tmp[__NEW_UTS_LEN]; 1438 1439 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1440 return -EPERM; 1441 if (len < 0 || len > __NEW_UTS_LEN) 1442 return -EINVAL; 1443 1444 errno = -EFAULT; 1445 if (!copy_from_user(tmp, name, len)) { 1446 struct new_utsname *u; 1447 1448 add_device_randomness(tmp, len); 1449 down_write(&uts_sem); 1450 u = utsname(); 1451 memcpy(u->domainname, tmp, len); 1452 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1453 errno = 0; 1454 uts_proc_notify(UTS_PROC_DOMAINNAME); 1455 up_write(&uts_sem); 1456 } 1457 return errno; 1458 } 1459 1460 /* make sure you are allowed to change @tsk limits before calling this */ 1461 static int do_prlimit(struct task_struct *tsk, unsigned int resource, 1462 struct rlimit *new_rlim, struct rlimit *old_rlim) 1463 { 1464 struct rlimit *rlim; 1465 int retval = 0; 1466 1467 if (resource >= RLIM_NLIMITS) 1468 return -EINVAL; 1469 resource = array_index_nospec(resource, RLIM_NLIMITS); 1470 1471 if (new_rlim) { 1472 if (new_rlim->rlim_cur > new_rlim->rlim_max) 1473 return -EINVAL; 1474 if (resource == RLIMIT_NOFILE && 1475 new_rlim->rlim_max > sysctl_nr_open) 1476 return -EPERM; 1477 } 1478 1479 /* Holding a refcount on tsk protects tsk->signal from disappearing. */ 1480 rlim = tsk->signal->rlim + resource; 1481 task_lock(tsk->group_leader); 1482 if (new_rlim) { 1483 /* 1484 * Keep the capable check against init_user_ns until cgroups can 1485 * contain all limits. 1486 */ 1487 if (new_rlim->rlim_max > rlim->rlim_max && 1488 !capable(CAP_SYS_RESOURCE)) 1489 retval = -EPERM; 1490 if (!retval) 1491 retval = security_task_setrlimit(tsk, resource, new_rlim); 1492 } 1493 if (!retval) { 1494 if (old_rlim) 1495 *old_rlim = *rlim; 1496 if (new_rlim) 1497 *rlim = *new_rlim; 1498 } 1499 task_unlock(tsk->group_leader); 1500 1501 /* 1502 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not 1503 * infinite. In case of RLIM_INFINITY the posix CPU timer code 1504 * ignores the rlimit. 1505 */ 1506 if (!retval && new_rlim && resource == RLIMIT_CPU && 1507 new_rlim->rlim_cur != RLIM_INFINITY && 1508 IS_ENABLED(CONFIG_POSIX_TIMERS)) { 1509 /* 1510 * update_rlimit_cpu can fail if the task is exiting, but there 1511 * may be other tasks in the thread group that are not exiting, 1512 * and they need their cpu timers adjusted. 1513 * 1514 * The group_leader is the last task to be released, so if we 1515 * cannot update_rlimit_cpu on it, then the entire process is 1516 * exiting and we do not need to update at all. 1517 */ 1518 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur); 1519 } 1520 1521 return retval; 1522 } 1523 1524 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1525 { 1526 struct rlimit value; 1527 int ret; 1528 1529 ret = do_prlimit(current, resource, NULL, &value); 1530 if (!ret) 1531 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1532 1533 return ret; 1534 } 1535 1536 #ifdef CONFIG_COMPAT 1537 1538 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource, 1539 struct compat_rlimit __user *, rlim) 1540 { 1541 struct rlimit r; 1542 struct compat_rlimit r32; 1543 1544 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit))) 1545 return -EFAULT; 1546 1547 if (r32.rlim_cur == COMPAT_RLIM_INFINITY) 1548 r.rlim_cur = RLIM_INFINITY; 1549 else 1550 r.rlim_cur = r32.rlim_cur; 1551 if (r32.rlim_max == COMPAT_RLIM_INFINITY) 1552 r.rlim_max = RLIM_INFINITY; 1553 else 1554 r.rlim_max = r32.rlim_max; 1555 return do_prlimit(current, resource, &r, NULL); 1556 } 1557 1558 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource, 1559 struct compat_rlimit __user *, rlim) 1560 { 1561 struct rlimit r; 1562 int ret; 1563 1564 ret = do_prlimit(current, resource, NULL, &r); 1565 if (!ret) { 1566 struct compat_rlimit r32; 1567 if (r.rlim_cur > COMPAT_RLIM_INFINITY) 1568 r32.rlim_cur = COMPAT_RLIM_INFINITY; 1569 else 1570 r32.rlim_cur = r.rlim_cur; 1571 if (r.rlim_max > COMPAT_RLIM_INFINITY) 1572 r32.rlim_max = COMPAT_RLIM_INFINITY; 1573 else 1574 r32.rlim_max = r.rlim_max; 1575 1576 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit))) 1577 return -EFAULT; 1578 } 1579 return ret; 1580 } 1581 1582 #endif 1583 1584 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1585 1586 /* 1587 * Back compatibility for getrlimit. Needed for some apps. 1588 */ 1589 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1590 struct rlimit __user *, rlim) 1591 { 1592 struct rlimit x; 1593 if (resource >= RLIM_NLIMITS) 1594 return -EINVAL; 1595 1596 resource = array_index_nospec(resource, RLIM_NLIMITS); 1597 task_lock(current->group_leader); 1598 x = current->signal->rlim[resource]; 1599 task_unlock(current->group_leader); 1600 if (x.rlim_cur > 0x7FFFFFFF) 1601 x.rlim_cur = 0x7FFFFFFF; 1602 if (x.rlim_max > 0x7FFFFFFF) 1603 x.rlim_max = 0x7FFFFFFF; 1604 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0; 1605 } 1606 1607 #ifdef CONFIG_COMPAT 1608 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1609 struct compat_rlimit __user *, rlim) 1610 { 1611 struct rlimit r; 1612 1613 if (resource >= RLIM_NLIMITS) 1614 return -EINVAL; 1615 1616 resource = array_index_nospec(resource, RLIM_NLIMITS); 1617 task_lock(current->group_leader); 1618 r = current->signal->rlim[resource]; 1619 task_unlock(current->group_leader); 1620 if (r.rlim_cur > 0x7FFFFFFF) 1621 r.rlim_cur = 0x7FFFFFFF; 1622 if (r.rlim_max > 0x7FFFFFFF) 1623 r.rlim_max = 0x7FFFFFFF; 1624 1625 if (put_user(r.rlim_cur, &rlim->rlim_cur) || 1626 put_user(r.rlim_max, &rlim->rlim_max)) 1627 return -EFAULT; 1628 return 0; 1629 } 1630 #endif 1631 1632 #endif 1633 1634 static inline bool rlim64_is_infinity(__u64 rlim64) 1635 { 1636 #if BITS_PER_LONG < 64 1637 return rlim64 >= ULONG_MAX; 1638 #else 1639 return rlim64 == RLIM64_INFINITY; 1640 #endif 1641 } 1642 1643 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) 1644 { 1645 if (rlim->rlim_cur == RLIM_INFINITY) 1646 rlim64->rlim_cur = RLIM64_INFINITY; 1647 else 1648 rlim64->rlim_cur = rlim->rlim_cur; 1649 if (rlim->rlim_max == RLIM_INFINITY) 1650 rlim64->rlim_max = RLIM64_INFINITY; 1651 else 1652 rlim64->rlim_max = rlim->rlim_max; 1653 } 1654 1655 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) 1656 { 1657 if (rlim64_is_infinity(rlim64->rlim_cur)) 1658 rlim->rlim_cur = RLIM_INFINITY; 1659 else 1660 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; 1661 if (rlim64_is_infinity(rlim64->rlim_max)) 1662 rlim->rlim_max = RLIM_INFINITY; 1663 else 1664 rlim->rlim_max = (unsigned long)rlim64->rlim_max; 1665 } 1666 1667 /* rcu lock must be held */ 1668 static int check_prlimit_permission(struct task_struct *task, 1669 unsigned int flags) 1670 { 1671 const struct cred *cred = current_cred(), *tcred; 1672 bool id_match; 1673 1674 if (current == task) 1675 return 0; 1676 1677 tcred = __task_cred(task); 1678 id_match = (uid_eq(cred->uid, tcred->euid) && 1679 uid_eq(cred->uid, tcred->suid) && 1680 uid_eq(cred->uid, tcred->uid) && 1681 gid_eq(cred->gid, tcred->egid) && 1682 gid_eq(cred->gid, tcred->sgid) && 1683 gid_eq(cred->gid, tcred->gid)); 1684 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE)) 1685 return -EPERM; 1686 1687 return security_task_prlimit(cred, tcred, flags); 1688 } 1689 1690 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, 1691 const struct rlimit64 __user *, new_rlim, 1692 struct rlimit64 __user *, old_rlim) 1693 { 1694 struct rlimit64 old64, new64; 1695 struct rlimit old, new; 1696 struct task_struct *tsk; 1697 unsigned int checkflags = 0; 1698 int ret; 1699 1700 if (old_rlim) 1701 checkflags |= LSM_PRLIMIT_READ; 1702 1703 if (new_rlim) { 1704 if (copy_from_user(&new64, new_rlim, sizeof(new64))) 1705 return -EFAULT; 1706 rlim64_to_rlim(&new64, &new); 1707 checkflags |= LSM_PRLIMIT_WRITE; 1708 } 1709 1710 rcu_read_lock(); 1711 tsk = pid ? find_task_by_vpid(pid) : current; 1712 if (!tsk) { 1713 rcu_read_unlock(); 1714 return -ESRCH; 1715 } 1716 ret = check_prlimit_permission(tsk, checkflags); 1717 if (ret) { 1718 rcu_read_unlock(); 1719 return ret; 1720 } 1721 get_task_struct(tsk); 1722 rcu_read_unlock(); 1723 1724 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, 1725 old_rlim ? &old : NULL); 1726 1727 if (!ret && old_rlim) { 1728 rlim_to_rlim64(&old, &old64); 1729 if (copy_to_user(old_rlim, &old64, sizeof(old64))) 1730 ret = -EFAULT; 1731 } 1732 1733 put_task_struct(tsk); 1734 return ret; 1735 } 1736 1737 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1738 { 1739 struct rlimit new_rlim; 1740 1741 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1742 return -EFAULT; 1743 return do_prlimit(current, resource, &new_rlim, NULL); 1744 } 1745 1746 /* 1747 * It would make sense to put struct rusage in the task_struct, 1748 * except that would make the task_struct be *really big*. After 1749 * task_struct gets moved into malloc'ed memory, it would 1750 * make sense to do this. It will make moving the rest of the information 1751 * a lot simpler! (Which we're not doing right now because we're not 1752 * measuring them yet). 1753 * 1754 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1755 * races with threads incrementing their own counters. But since word 1756 * reads are atomic, we either get new values or old values and we don't 1757 * care which for the sums. We always take the siglock to protect reading 1758 * the c* fields from p->signal from races with exit.c updating those 1759 * fields when reaping, so a sample either gets all the additions of a 1760 * given child after it's reaped, or none so this sample is before reaping. 1761 * 1762 * Locking: 1763 * We need to take the siglock for CHILDEREN, SELF and BOTH 1764 * for the cases current multithreaded, non-current single threaded 1765 * non-current multithreaded. Thread traversal is now safe with 1766 * the siglock held. 1767 * Strictly speaking, we donot need to take the siglock if we are current and 1768 * single threaded, as no one else can take our signal_struct away, no one 1769 * else can reap the children to update signal->c* counters, and no one else 1770 * can race with the signal-> fields. If we do not take any lock, the 1771 * signal-> fields could be read out of order while another thread was just 1772 * exiting. So we should place a read memory barrier when we avoid the lock. 1773 * On the writer side, write memory barrier is implied in __exit_signal 1774 * as __exit_signal releases the siglock spinlock after updating the signal-> 1775 * fields. But we don't do this yet to keep things simple. 1776 * 1777 */ 1778 1779 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1780 { 1781 r->ru_nvcsw += t->nvcsw; 1782 r->ru_nivcsw += t->nivcsw; 1783 r->ru_minflt += t->min_flt; 1784 r->ru_majflt += t->maj_flt; 1785 r->ru_inblock += task_io_get_inblock(t); 1786 r->ru_oublock += task_io_get_oublock(t); 1787 } 1788 1789 void getrusage(struct task_struct *p, int who, struct rusage *r) 1790 { 1791 struct task_struct *t; 1792 unsigned long flags; 1793 u64 tgutime, tgstime, utime, stime; 1794 unsigned long maxrss; 1795 struct mm_struct *mm; 1796 struct signal_struct *sig = p->signal; 1797 unsigned int seq = 0; 1798 1799 retry: 1800 memset(r, 0, sizeof(*r)); 1801 utime = stime = 0; 1802 maxrss = 0; 1803 1804 if (who == RUSAGE_THREAD) { 1805 task_cputime_adjusted(current, &utime, &stime); 1806 accumulate_thread_rusage(p, r); 1807 maxrss = sig->maxrss; 1808 goto out_thread; 1809 } 1810 1811 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 1812 1813 switch (who) { 1814 case RUSAGE_BOTH: 1815 case RUSAGE_CHILDREN: 1816 utime = sig->cutime; 1817 stime = sig->cstime; 1818 r->ru_nvcsw = sig->cnvcsw; 1819 r->ru_nivcsw = sig->cnivcsw; 1820 r->ru_minflt = sig->cmin_flt; 1821 r->ru_majflt = sig->cmaj_flt; 1822 r->ru_inblock = sig->cinblock; 1823 r->ru_oublock = sig->coublock; 1824 maxrss = sig->cmaxrss; 1825 1826 if (who == RUSAGE_CHILDREN) 1827 break; 1828 fallthrough; 1829 1830 case RUSAGE_SELF: 1831 r->ru_nvcsw += sig->nvcsw; 1832 r->ru_nivcsw += sig->nivcsw; 1833 r->ru_minflt += sig->min_flt; 1834 r->ru_majflt += sig->maj_flt; 1835 r->ru_inblock += sig->inblock; 1836 r->ru_oublock += sig->oublock; 1837 if (maxrss < sig->maxrss) 1838 maxrss = sig->maxrss; 1839 1840 rcu_read_lock(); 1841 __for_each_thread(sig, t) 1842 accumulate_thread_rusage(t, r); 1843 rcu_read_unlock(); 1844 1845 break; 1846 1847 default: 1848 BUG(); 1849 } 1850 1851 if (need_seqretry(&sig->stats_lock, seq)) { 1852 seq = 1; 1853 goto retry; 1854 } 1855 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 1856 1857 if (who == RUSAGE_CHILDREN) 1858 goto out_children; 1859 1860 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1861 utime += tgutime; 1862 stime += tgstime; 1863 1864 out_thread: 1865 mm = get_task_mm(p); 1866 if (mm) { 1867 setmax_mm_hiwater_rss(&maxrss, mm); 1868 mmput(mm); 1869 } 1870 1871 out_children: 1872 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ 1873 r->ru_utime = ns_to_kernel_old_timeval(utime); 1874 r->ru_stime = ns_to_kernel_old_timeval(stime); 1875 } 1876 1877 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1878 { 1879 struct rusage r; 1880 1881 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1882 who != RUSAGE_THREAD) 1883 return -EINVAL; 1884 1885 getrusage(current, who, &r); 1886 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1887 } 1888 1889 #ifdef CONFIG_COMPAT 1890 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru) 1891 { 1892 struct rusage r; 1893 1894 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1895 who != RUSAGE_THREAD) 1896 return -EINVAL; 1897 1898 getrusage(current, who, &r); 1899 return put_compat_rusage(&r, ru); 1900 } 1901 #endif 1902 1903 SYSCALL_DEFINE1(umask, int, mask) 1904 { 1905 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1906 return mask; 1907 } 1908 1909 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd) 1910 { 1911 struct fd exe; 1912 struct inode *inode; 1913 int err; 1914 1915 exe = fdget(fd); 1916 if (!exe.file) 1917 return -EBADF; 1918 1919 inode = file_inode(exe.file); 1920 1921 /* 1922 * Because the original mm->exe_file points to executable file, make 1923 * sure that this one is executable as well, to avoid breaking an 1924 * overall picture. 1925 */ 1926 err = -EACCES; 1927 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path)) 1928 goto exit; 1929 1930 err = file_permission(exe.file, MAY_EXEC); 1931 if (err) 1932 goto exit; 1933 1934 err = replace_mm_exe_file(mm, exe.file); 1935 exit: 1936 fdput(exe); 1937 return err; 1938 } 1939 1940 /* 1941 * Check arithmetic relations of passed addresses. 1942 * 1943 * WARNING: we don't require any capability here so be very careful 1944 * in what is allowed for modification from userspace. 1945 */ 1946 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map) 1947 { 1948 unsigned long mmap_max_addr = TASK_SIZE; 1949 int error = -EINVAL, i; 1950 1951 static const unsigned char offsets[] = { 1952 offsetof(struct prctl_mm_map, start_code), 1953 offsetof(struct prctl_mm_map, end_code), 1954 offsetof(struct prctl_mm_map, start_data), 1955 offsetof(struct prctl_mm_map, end_data), 1956 offsetof(struct prctl_mm_map, start_brk), 1957 offsetof(struct prctl_mm_map, brk), 1958 offsetof(struct prctl_mm_map, start_stack), 1959 offsetof(struct prctl_mm_map, arg_start), 1960 offsetof(struct prctl_mm_map, arg_end), 1961 offsetof(struct prctl_mm_map, env_start), 1962 offsetof(struct prctl_mm_map, env_end), 1963 }; 1964 1965 /* 1966 * Make sure the members are not somewhere outside 1967 * of allowed address space. 1968 */ 1969 for (i = 0; i < ARRAY_SIZE(offsets); i++) { 1970 u64 val = *(u64 *)((char *)prctl_map + offsets[i]); 1971 1972 if ((unsigned long)val >= mmap_max_addr || 1973 (unsigned long)val < mmap_min_addr) 1974 goto out; 1975 } 1976 1977 /* 1978 * Make sure the pairs are ordered. 1979 */ 1980 #define __prctl_check_order(__m1, __op, __m2) \ 1981 ((unsigned long)prctl_map->__m1 __op \ 1982 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL 1983 error = __prctl_check_order(start_code, <, end_code); 1984 error |= __prctl_check_order(start_data,<=, end_data); 1985 error |= __prctl_check_order(start_brk, <=, brk); 1986 error |= __prctl_check_order(arg_start, <=, arg_end); 1987 error |= __prctl_check_order(env_start, <=, env_end); 1988 if (error) 1989 goto out; 1990 #undef __prctl_check_order 1991 1992 error = -EINVAL; 1993 1994 /* 1995 * Neither we should allow to override limits if they set. 1996 */ 1997 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk, 1998 prctl_map->start_brk, prctl_map->end_data, 1999 prctl_map->start_data)) 2000 goto out; 2001 2002 error = 0; 2003 out: 2004 return error; 2005 } 2006 2007 #ifdef CONFIG_CHECKPOINT_RESTORE 2008 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size) 2009 { 2010 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, }; 2011 unsigned long user_auxv[AT_VECTOR_SIZE]; 2012 struct mm_struct *mm = current->mm; 2013 int error; 2014 2015 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 2016 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256); 2017 2018 if (opt == PR_SET_MM_MAP_SIZE) 2019 return put_user((unsigned int)sizeof(prctl_map), 2020 (unsigned int __user *)addr); 2021 2022 if (data_size != sizeof(prctl_map)) 2023 return -EINVAL; 2024 2025 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map))) 2026 return -EFAULT; 2027 2028 error = validate_prctl_map_addr(&prctl_map); 2029 if (error) 2030 return error; 2031 2032 if (prctl_map.auxv_size) { 2033 /* 2034 * Someone is trying to cheat the auxv vector. 2035 */ 2036 if (!prctl_map.auxv || 2037 prctl_map.auxv_size > sizeof(mm->saved_auxv)) 2038 return -EINVAL; 2039 2040 memset(user_auxv, 0, sizeof(user_auxv)); 2041 if (copy_from_user(user_auxv, 2042 (const void __user *)prctl_map.auxv, 2043 prctl_map.auxv_size)) 2044 return -EFAULT; 2045 2046 /* Last entry must be AT_NULL as specification requires */ 2047 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL; 2048 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL; 2049 } 2050 2051 if (prctl_map.exe_fd != (u32)-1) { 2052 /* 2053 * Check if the current user is checkpoint/restore capable. 2054 * At the time of this writing, it checks for CAP_SYS_ADMIN 2055 * or CAP_CHECKPOINT_RESTORE. 2056 * Note that a user with access to ptrace can masquerade an 2057 * arbitrary program as any executable, even setuid ones. 2058 * This may have implications in the tomoyo subsystem. 2059 */ 2060 if (!checkpoint_restore_ns_capable(current_user_ns())) 2061 return -EPERM; 2062 2063 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd); 2064 if (error) 2065 return error; 2066 } 2067 2068 /* 2069 * arg_lock protects concurrent updates but we still need mmap_lock for 2070 * read to exclude races with sys_brk. 2071 */ 2072 mmap_read_lock(mm); 2073 2074 /* 2075 * We don't validate if these members are pointing to 2076 * real present VMAs because application may have correspond 2077 * VMAs already unmapped and kernel uses these members for statistics 2078 * output in procfs mostly, except 2079 * 2080 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups 2081 * for VMAs when updating these members so anything wrong written 2082 * here cause kernel to swear at userspace program but won't lead 2083 * to any problem in kernel itself 2084 */ 2085 2086 spin_lock(&mm->arg_lock); 2087 mm->start_code = prctl_map.start_code; 2088 mm->end_code = prctl_map.end_code; 2089 mm->start_data = prctl_map.start_data; 2090 mm->end_data = prctl_map.end_data; 2091 mm->start_brk = prctl_map.start_brk; 2092 mm->brk = prctl_map.brk; 2093 mm->start_stack = prctl_map.start_stack; 2094 mm->arg_start = prctl_map.arg_start; 2095 mm->arg_end = prctl_map.arg_end; 2096 mm->env_start = prctl_map.env_start; 2097 mm->env_end = prctl_map.env_end; 2098 spin_unlock(&mm->arg_lock); 2099 2100 /* 2101 * Note this update of @saved_auxv is lockless thus 2102 * if someone reads this member in procfs while we're 2103 * updating -- it may get partly updated results. It's 2104 * known and acceptable trade off: we leave it as is to 2105 * not introduce additional locks here making the kernel 2106 * more complex. 2107 */ 2108 if (prctl_map.auxv_size) 2109 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv)); 2110 2111 mmap_read_unlock(mm); 2112 return 0; 2113 } 2114 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2115 2116 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr, 2117 unsigned long len) 2118 { 2119 /* 2120 * This doesn't move the auxiliary vector itself since it's pinned to 2121 * mm_struct, but it permits filling the vector with new values. It's 2122 * up to the caller to provide sane values here, otherwise userspace 2123 * tools which use this vector might be unhappy. 2124 */ 2125 unsigned long user_auxv[AT_VECTOR_SIZE] = {}; 2126 2127 if (len > sizeof(user_auxv)) 2128 return -EINVAL; 2129 2130 if (copy_from_user(user_auxv, (const void __user *)addr, len)) 2131 return -EFAULT; 2132 2133 /* Make sure the last entry is always AT_NULL */ 2134 user_auxv[AT_VECTOR_SIZE - 2] = 0; 2135 user_auxv[AT_VECTOR_SIZE - 1] = 0; 2136 2137 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 2138 2139 task_lock(current); 2140 memcpy(mm->saved_auxv, user_auxv, len); 2141 task_unlock(current); 2142 2143 return 0; 2144 } 2145 2146 static int prctl_set_mm(int opt, unsigned long addr, 2147 unsigned long arg4, unsigned long arg5) 2148 { 2149 struct mm_struct *mm = current->mm; 2150 struct prctl_mm_map prctl_map = { 2151 .auxv = NULL, 2152 .auxv_size = 0, 2153 .exe_fd = -1, 2154 }; 2155 struct vm_area_struct *vma; 2156 int error; 2157 2158 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV && 2159 opt != PR_SET_MM_MAP && 2160 opt != PR_SET_MM_MAP_SIZE))) 2161 return -EINVAL; 2162 2163 #ifdef CONFIG_CHECKPOINT_RESTORE 2164 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE) 2165 return prctl_set_mm_map(opt, (const void __user *)addr, arg4); 2166 #endif 2167 2168 if (!capable(CAP_SYS_RESOURCE)) 2169 return -EPERM; 2170 2171 if (opt == PR_SET_MM_EXE_FILE) 2172 return prctl_set_mm_exe_file(mm, (unsigned int)addr); 2173 2174 if (opt == PR_SET_MM_AUXV) 2175 return prctl_set_auxv(mm, addr, arg4); 2176 2177 if (addr >= TASK_SIZE || addr < mmap_min_addr) 2178 return -EINVAL; 2179 2180 error = -EINVAL; 2181 2182 /* 2183 * arg_lock protects concurrent updates of arg boundaries, we need 2184 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr 2185 * validation. 2186 */ 2187 mmap_read_lock(mm); 2188 vma = find_vma(mm, addr); 2189 2190 spin_lock(&mm->arg_lock); 2191 prctl_map.start_code = mm->start_code; 2192 prctl_map.end_code = mm->end_code; 2193 prctl_map.start_data = mm->start_data; 2194 prctl_map.end_data = mm->end_data; 2195 prctl_map.start_brk = mm->start_brk; 2196 prctl_map.brk = mm->brk; 2197 prctl_map.start_stack = mm->start_stack; 2198 prctl_map.arg_start = mm->arg_start; 2199 prctl_map.arg_end = mm->arg_end; 2200 prctl_map.env_start = mm->env_start; 2201 prctl_map.env_end = mm->env_end; 2202 2203 switch (opt) { 2204 case PR_SET_MM_START_CODE: 2205 prctl_map.start_code = addr; 2206 break; 2207 case PR_SET_MM_END_CODE: 2208 prctl_map.end_code = addr; 2209 break; 2210 case PR_SET_MM_START_DATA: 2211 prctl_map.start_data = addr; 2212 break; 2213 case PR_SET_MM_END_DATA: 2214 prctl_map.end_data = addr; 2215 break; 2216 case PR_SET_MM_START_STACK: 2217 prctl_map.start_stack = addr; 2218 break; 2219 case PR_SET_MM_START_BRK: 2220 prctl_map.start_brk = addr; 2221 break; 2222 case PR_SET_MM_BRK: 2223 prctl_map.brk = addr; 2224 break; 2225 case PR_SET_MM_ARG_START: 2226 prctl_map.arg_start = addr; 2227 break; 2228 case PR_SET_MM_ARG_END: 2229 prctl_map.arg_end = addr; 2230 break; 2231 case PR_SET_MM_ENV_START: 2232 prctl_map.env_start = addr; 2233 break; 2234 case PR_SET_MM_ENV_END: 2235 prctl_map.env_end = addr; 2236 break; 2237 default: 2238 goto out; 2239 } 2240 2241 error = validate_prctl_map_addr(&prctl_map); 2242 if (error) 2243 goto out; 2244 2245 switch (opt) { 2246 /* 2247 * If command line arguments and environment 2248 * are placed somewhere else on stack, we can 2249 * set them up here, ARG_START/END to setup 2250 * command line arguments and ENV_START/END 2251 * for environment. 2252 */ 2253 case PR_SET_MM_START_STACK: 2254 case PR_SET_MM_ARG_START: 2255 case PR_SET_MM_ARG_END: 2256 case PR_SET_MM_ENV_START: 2257 case PR_SET_MM_ENV_END: 2258 if (!vma) { 2259 error = -EFAULT; 2260 goto out; 2261 } 2262 } 2263 2264 mm->start_code = prctl_map.start_code; 2265 mm->end_code = prctl_map.end_code; 2266 mm->start_data = prctl_map.start_data; 2267 mm->end_data = prctl_map.end_data; 2268 mm->start_brk = prctl_map.start_brk; 2269 mm->brk = prctl_map.brk; 2270 mm->start_stack = prctl_map.start_stack; 2271 mm->arg_start = prctl_map.arg_start; 2272 mm->arg_end = prctl_map.arg_end; 2273 mm->env_start = prctl_map.env_start; 2274 mm->env_end = prctl_map.env_end; 2275 2276 error = 0; 2277 out: 2278 spin_unlock(&mm->arg_lock); 2279 mmap_read_unlock(mm); 2280 return error; 2281 } 2282 2283 #ifdef CONFIG_CHECKPOINT_RESTORE 2284 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) 2285 { 2286 return put_user(me->clear_child_tid, tid_addr); 2287 } 2288 #else 2289 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) 2290 { 2291 return -EINVAL; 2292 } 2293 #endif 2294 2295 static int propagate_has_child_subreaper(struct task_struct *p, void *data) 2296 { 2297 /* 2298 * If task has has_child_subreaper - all its descendants 2299 * already have these flag too and new descendants will 2300 * inherit it on fork, skip them. 2301 * 2302 * If we've found child_reaper - skip descendants in 2303 * it's subtree as they will never get out pidns. 2304 */ 2305 if (p->signal->has_child_subreaper || 2306 is_child_reaper(task_pid(p))) 2307 return 0; 2308 2309 p->signal->has_child_subreaper = 1; 2310 return 1; 2311 } 2312 2313 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which) 2314 { 2315 return -EINVAL; 2316 } 2317 2318 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which, 2319 unsigned long ctrl) 2320 { 2321 return -EINVAL; 2322 } 2323 2324 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE) 2325 2326 #ifdef CONFIG_ANON_VMA_NAME 2327 2328 #define ANON_VMA_NAME_MAX_LEN 80 2329 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]" 2330 2331 static inline bool is_valid_name_char(char ch) 2332 { 2333 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */ 2334 return ch > 0x1f && ch < 0x7f && 2335 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch); 2336 } 2337 2338 static int prctl_set_vma(unsigned long opt, unsigned long addr, 2339 unsigned long size, unsigned long arg) 2340 { 2341 struct mm_struct *mm = current->mm; 2342 const char __user *uname; 2343 struct anon_vma_name *anon_name = NULL; 2344 int error; 2345 2346 switch (opt) { 2347 case PR_SET_VMA_ANON_NAME: 2348 uname = (const char __user *)arg; 2349 if (uname) { 2350 char *name, *pch; 2351 2352 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN); 2353 if (IS_ERR(name)) 2354 return PTR_ERR(name); 2355 2356 for (pch = name; *pch != '\0'; pch++) { 2357 if (!is_valid_name_char(*pch)) { 2358 kfree(name); 2359 return -EINVAL; 2360 } 2361 } 2362 /* anon_vma has its own copy */ 2363 anon_name = anon_vma_name_alloc(name); 2364 kfree(name); 2365 if (!anon_name) 2366 return -ENOMEM; 2367 2368 } 2369 2370 mmap_write_lock(mm); 2371 error = madvise_set_anon_name(mm, addr, size, anon_name); 2372 mmap_write_unlock(mm); 2373 anon_vma_name_put(anon_name); 2374 break; 2375 default: 2376 error = -EINVAL; 2377 } 2378 2379 return error; 2380 } 2381 2382 #else /* CONFIG_ANON_VMA_NAME */ 2383 static int prctl_set_vma(unsigned long opt, unsigned long start, 2384 unsigned long size, unsigned long arg) 2385 { 2386 return -EINVAL; 2387 } 2388 #endif /* CONFIG_ANON_VMA_NAME */ 2389 2390 static inline unsigned long get_current_mdwe(void) 2391 { 2392 unsigned long ret = 0; 2393 2394 if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags)) 2395 ret |= PR_MDWE_REFUSE_EXEC_GAIN; 2396 if (test_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags)) 2397 ret |= PR_MDWE_NO_INHERIT; 2398 2399 return ret; 2400 } 2401 2402 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3, 2403 unsigned long arg4, unsigned long arg5) 2404 { 2405 unsigned long current_bits; 2406 2407 if (arg3 || arg4 || arg5) 2408 return -EINVAL; 2409 2410 if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT)) 2411 return -EINVAL; 2412 2413 /* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */ 2414 if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN)) 2415 return -EINVAL; 2416 2417 /* 2418 * EOPNOTSUPP might be more appropriate here in principle, but 2419 * existing userspace depends on EINVAL specifically. 2420 */ 2421 if (!arch_memory_deny_write_exec_supported()) 2422 return -EINVAL; 2423 2424 current_bits = get_current_mdwe(); 2425 if (current_bits && current_bits != bits) 2426 return -EPERM; /* Cannot unset the flags */ 2427 2428 if (bits & PR_MDWE_NO_INHERIT) 2429 set_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags); 2430 if (bits & PR_MDWE_REFUSE_EXEC_GAIN) 2431 set_bit(MMF_HAS_MDWE, ¤t->mm->flags); 2432 2433 return 0; 2434 } 2435 2436 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3, 2437 unsigned long arg4, unsigned long arg5) 2438 { 2439 if (arg2 || arg3 || arg4 || arg5) 2440 return -EINVAL; 2441 return get_current_mdwe(); 2442 } 2443 2444 static int prctl_get_auxv(void __user *addr, unsigned long len) 2445 { 2446 struct mm_struct *mm = current->mm; 2447 unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len); 2448 2449 if (size && copy_to_user(addr, mm->saved_auxv, size)) 2450 return -EFAULT; 2451 return sizeof(mm->saved_auxv); 2452 } 2453 2454 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 2455 unsigned long, arg4, unsigned long, arg5) 2456 { 2457 struct task_struct *me = current; 2458 unsigned char comm[sizeof(me->comm)]; 2459 long error; 2460 2461 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 2462 if (error != -ENOSYS) 2463 return error; 2464 2465 error = 0; 2466 switch (option) { 2467 case PR_SET_PDEATHSIG: 2468 if (!valid_signal(arg2)) { 2469 error = -EINVAL; 2470 break; 2471 } 2472 me->pdeath_signal = arg2; 2473 break; 2474 case PR_GET_PDEATHSIG: 2475 error = put_user(me->pdeath_signal, (int __user *)arg2); 2476 break; 2477 case PR_GET_DUMPABLE: 2478 error = get_dumpable(me->mm); 2479 break; 2480 case PR_SET_DUMPABLE: 2481 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) { 2482 error = -EINVAL; 2483 break; 2484 } 2485 set_dumpable(me->mm, arg2); 2486 break; 2487 2488 case PR_SET_UNALIGN: 2489 error = SET_UNALIGN_CTL(me, arg2); 2490 break; 2491 case PR_GET_UNALIGN: 2492 error = GET_UNALIGN_CTL(me, arg2); 2493 break; 2494 case PR_SET_FPEMU: 2495 error = SET_FPEMU_CTL(me, arg2); 2496 break; 2497 case PR_GET_FPEMU: 2498 error = GET_FPEMU_CTL(me, arg2); 2499 break; 2500 case PR_SET_FPEXC: 2501 error = SET_FPEXC_CTL(me, arg2); 2502 break; 2503 case PR_GET_FPEXC: 2504 error = GET_FPEXC_CTL(me, arg2); 2505 break; 2506 case PR_GET_TIMING: 2507 error = PR_TIMING_STATISTICAL; 2508 break; 2509 case PR_SET_TIMING: 2510 if (arg2 != PR_TIMING_STATISTICAL) 2511 error = -EINVAL; 2512 break; 2513 case PR_SET_NAME: 2514 comm[sizeof(me->comm) - 1] = 0; 2515 if (strncpy_from_user(comm, (char __user *)arg2, 2516 sizeof(me->comm) - 1) < 0) 2517 return -EFAULT; 2518 set_task_comm(me, comm); 2519 proc_comm_connector(me); 2520 break; 2521 case PR_GET_NAME: 2522 get_task_comm(comm, me); 2523 if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) 2524 return -EFAULT; 2525 break; 2526 case PR_GET_ENDIAN: 2527 error = GET_ENDIAN(me, arg2); 2528 break; 2529 case PR_SET_ENDIAN: 2530 error = SET_ENDIAN(me, arg2); 2531 break; 2532 case PR_GET_SECCOMP: 2533 error = prctl_get_seccomp(); 2534 break; 2535 case PR_SET_SECCOMP: 2536 error = prctl_set_seccomp(arg2, (char __user *)arg3); 2537 break; 2538 case PR_GET_TSC: 2539 error = GET_TSC_CTL(arg2); 2540 break; 2541 case PR_SET_TSC: 2542 error = SET_TSC_CTL(arg2); 2543 break; 2544 case PR_TASK_PERF_EVENTS_DISABLE: 2545 error = perf_event_task_disable(); 2546 break; 2547 case PR_TASK_PERF_EVENTS_ENABLE: 2548 error = perf_event_task_enable(); 2549 break; 2550 case PR_GET_TIMERSLACK: 2551 if (current->timer_slack_ns > ULONG_MAX) 2552 error = ULONG_MAX; 2553 else 2554 error = current->timer_slack_ns; 2555 break; 2556 case PR_SET_TIMERSLACK: 2557 if (arg2 <= 0) 2558 current->timer_slack_ns = 2559 current->default_timer_slack_ns; 2560 else 2561 current->timer_slack_ns = arg2; 2562 break; 2563 case PR_MCE_KILL: 2564 if (arg4 | arg5) 2565 return -EINVAL; 2566 switch (arg2) { 2567 case PR_MCE_KILL_CLEAR: 2568 if (arg3 != 0) 2569 return -EINVAL; 2570 current->flags &= ~PF_MCE_PROCESS; 2571 break; 2572 case PR_MCE_KILL_SET: 2573 current->flags |= PF_MCE_PROCESS; 2574 if (arg3 == PR_MCE_KILL_EARLY) 2575 current->flags |= PF_MCE_EARLY; 2576 else if (arg3 == PR_MCE_KILL_LATE) 2577 current->flags &= ~PF_MCE_EARLY; 2578 else if (arg3 == PR_MCE_KILL_DEFAULT) 2579 current->flags &= 2580 ~(PF_MCE_EARLY|PF_MCE_PROCESS); 2581 else 2582 return -EINVAL; 2583 break; 2584 default: 2585 return -EINVAL; 2586 } 2587 break; 2588 case PR_MCE_KILL_GET: 2589 if (arg2 | arg3 | arg4 | arg5) 2590 return -EINVAL; 2591 if (current->flags & PF_MCE_PROCESS) 2592 error = (current->flags & PF_MCE_EARLY) ? 2593 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; 2594 else 2595 error = PR_MCE_KILL_DEFAULT; 2596 break; 2597 case PR_SET_MM: 2598 error = prctl_set_mm(arg2, arg3, arg4, arg5); 2599 break; 2600 case PR_GET_TID_ADDRESS: 2601 error = prctl_get_tid_address(me, (int __user * __user *)arg2); 2602 break; 2603 case PR_SET_CHILD_SUBREAPER: 2604 me->signal->is_child_subreaper = !!arg2; 2605 if (!arg2) 2606 break; 2607 2608 walk_process_tree(me, propagate_has_child_subreaper, NULL); 2609 break; 2610 case PR_GET_CHILD_SUBREAPER: 2611 error = put_user(me->signal->is_child_subreaper, 2612 (int __user *)arg2); 2613 break; 2614 case PR_SET_NO_NEW_PRIVS: 2615 if (arg2 != 1 || arg3 || arg4 || arg5) 2616 return -EINVAL; 2617 2618 task_set_no_new_privs(current); 2619 break; 2620 case PR_GET_NO_NEW_PRIVS: 2621 if (arg2 || arg3 || arg4 || arg5) 2622 return -EINVAL; 2623 return task_no_new_privs(current) ? 1 : 0; 2624 case PR_GET_THP_DISABLE: 2625 if (arg2 || arg3 || arg4 || arg5) 2626 return -EINVAL; 2627 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags); 2628 break; 2629 case PR_SET_THP_DISABLE: 2630 if (arg3 || arg4 || arg5) 2631 return -EINVAL; 2632 if (mmap_write_lock_killable(me->mm)) 2633 return -EINTR; 2634 if (arg2) 2635 set_bit(MMF_DISABLE_THP, &me->mm->flags); 2636 else 2637 clear_bit(MMF_DISABLE_THP, &me->mm->flags); 2638 mmap_write_unlock(me->mm); 2639 break; 2640 case PR_MPX_ENABLE_MANAGEMENT: 2641 case PR_MPX_DISABLE_MANAGEMENT: 2642 /* No longer implemented: */ 2643 return -EINVAL; 2644 case PR_SET_FP_MODE: 2645 error = SET_FP_MODE(me, arg2); 2646 break; 2647 case PR_GET_FP_MODE: 2648 error = GET_FP_MODE(me); 2649 break; 2650 case PR_SVE_SET_VL: 2651 error = SVE_SET_VL(arg2); 2652 break; 2653 case PR_SVE_GET_VL: 2654 error = SVE_GET_VL(); 2655 break; 2656 case PR_SME_SET_VL: 2657 error = SME_SET_VL(arg2); 2658 break; 2659 case PR_SME_GET_VL: 2660 error = SME_GET_VL(); 2661 break; 2662 case PR_GET_SPECULATION_CTRL: 2663 if (arg3 || arg4 || arg5) 2664 return -EINVAL; 2665 error = arch_prctl_spec_ctrl_get(me, arg2); 2666 break; 2667 case PR_SET_SPECULATION_CTRL: 2668 if (arg4 || arg5) 2669 return -EINVAL; 2670 error = arch_prctl_spec_ctrl_set(me, arg2, arg3); 2671 break; 2672 case PR_PAC_RESET_KEYS: 2673 if (arg3 || arg4 || arg5) 2674 return -EINVAL; 2675 error = PAC_RESET_KEYS(me, arg2); 2676 break; 2677 case PR_PAC_SET_ENABLED_KEYS: 2678 if (arg4 || arg5) 2679 return -EINVAL; 2680 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3); 2681 break; 2682 case PR_PAC_GET_ENABLED_KEYS: 2683 if (arg2 || arg3 || arg4 || arg5) 2684 return -EINVAL; 2685 error = PAC_GET_ENABLED_KEYS(me); 2686 break; 2687 case PR_SET_TAGGED_ADDR_CTRL: 2688 if (arg3 || arg4 || arg5) 2689 return -EINVAL; 2690 error = SET_TAGGED_ADDR_CTRL(arg2); 2691 break; 2692 case PR_GET_TAGGED_ADDR_CTRL: 2693 if (arg2 || arg3 || arg4 || arg5) 2694 return -EINVAL; 2695 error = GET_TAGGED_ADDR_CTRL(); 2696 break; 2697 case PR_SET_IO_FLUSHER: 2698 if (!capable(CAP_SYS_RESOURCE)) 2699 return -EPERM; 2700 2701 if (arg3 || arg4 || arg5) 2702 return -EINVAL; 2703 2704 if (arg2 == 1) 2705 current->flags |= PR_IO_FLUSHER; 2706 else if (!arg2) 2707 current->flags &= ~PR_IO_FLUSHER; 2708 else 2709 return -EINVAL; 2710 break; 2711 case PR_GET_IO_FLUSHER: 2712 if (!capable(CAP_SYS_RESOURCE)) 2713 return -EPERM; 2714 2715 if (arg2 || arg3 || arg4 || arg5) 2716 return -EINVAL; 2717 2718 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER; 2719 break; 2720 case PR_SET_SYSCALL_USER_DISPATCH: 2721 error = set_syscall_user_dispatch(arg2, arg3, arg4, 2722 (char __user *) arg5); 2723 break; 2724 #ifdef CONFIG_SCHED_CORE 2725 case PR_SCHED_CORE: 2726 error = sched_core_share_pid(arg2, arg3, arg4, arg5); 2727 break; 2728 #endif 2729 case PR_SET_MDWE: 2730 error = prctl_set_mdwe(arg2, arg3, arg4, arg5); 2731 break; 2732 case PR_GET_MDWE: 2733 error = prctl_get_mdwe(arg2, arg3, arg4, arg5); 2734 break; 2735 case PR_PPC_GET_DEXCR: 2736 if (arg3 || arg4 || arg5) 2737 return -EINVAL; 2738 error = PPC_GET_DEXCR_ASPECT(me, arg2); 2739 break; 2740 case PR_PPC_SET_DEXCR: 2741 if (arg4 || arg5) 2742 return -EINVAL; 2743 error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3); 2744 break; 2745 case PR_SET_VMA: 2746 error = prctl_set_vma(arg2, arg3, arg4, arg5); 2747 break; 2748 case PR_GET_AUXV: 2749 if (arg4 || arg5) 2750 return -EINVAL; 2751 error = prctl_get_auxv((void __user *)arg2, arg3); 2752 break; 2753 #ifdef CONFIG_KSM 2754 case PR_SET_MEMORY_MERGE: 2755 if (arg3 || arg4 || arg5) 2756 return -EINVAL; 2757 if (mmap_write_lock_killable(me->mm)) 2758 return -EINTR; 2759 2760 if (arg2) 2761 error = ksm_enable_merge_any(me->mm); 2762 else 2763 error = ksm_disable_merge_any(me->mm); 2764 mmap_write_unlock(me->mm); 2765 break; 2766 case PR_GET_MEMORY_MERGE: 2767 if (arg2 || arg3 || arg4 || arg5) 2768 return -EINVAL; 2769 2770 error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags); 2771 break; 2772 #endif 2773 case PR_RISCV_V_SET_CONTROL: 2774 error = RISCV_V_SET_CONTROL(arg2); 2775 break; 2776 case PR_RISCV_V_GET_CONTROL: 2777 error = RISCV_V_GET_CONTROL(); 2778 break; 2779 default: 2780 error = -EINVAL; 2781 break; 2782 } 2783 return error; 2784 } 2785 2786 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 2787 struct getcpu_cache __user *, unused) 2788 { 2789 int err = 0; 2790 int cpu = raw_smp_processor_id(); 2791 2792 if (cpup) 2793 err |= put_user(cpu, cpup); 2794 if (nodep) 2795 err |= put_user(cpu_to_node(cpu), nodep); 2796 return err ? -EFAULT : 0; 2797 } 2798 2799 /** 2800 * do_sysinfo - fill in sysinfo struct 2801 * @info: pointer to buffer to fill 2802 */ 2803 static int do_sysinfo(struct sysinfo *info) 2804 { 2805 unsigned long mem_total, sav_total; 2806 unsigned int mem_unit, bitcount; 2807 struct timespec64 tp; 2808 2809 memset(info, 0, sizeof(struct sysinfo)); 2810 2811 ktime_get_boottime_ts64(&tp); 2812 timens_add_boottime(&tp); 2813 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); 2814 2815 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); 2816 2817 info->procs = nr_threads; 2818 2819 si_meminfo(info); 2820 si_swapinfo(info); 2821 2822 /* 2823 * If the sum of all the available memory (i.e. ram + swap) 2824 * is less than can be stored in a 32 bit unsigned long then 2825 * we can be binary compatible with 2.2.x kernels. If not, 2826 * well, in that case 2.2.x was broken anyways... 2827 * 2828 * -Erik Andersen <andersee@debian.org> 2829 */ 2830 2831 mem_total = info->totalram + info->totalswap; 2832 if (mem_total < info->totalram || mem_total < info->totalswap) 2833 goto out; 2834 bitcount = 0; 2835 mem_unit = info->mem_unit; 2836 while (mem_unit > 1) { 2837 bitcount++; 2838 mem_unit >>= 1; 2839 sav_total = mem_total; 2840 mem_total <<= 1; 2841 if (mem_total < sav_total) 2842 goto out; 2843 } 2844 2845 /* 2846 * If mem_total did not overflow, multiply all memory values by 2847 * info->mem_unit and set it to 1. This leaves things compatible 2848 * with 2.2.x, and also retains compatibility with earlier 2.4.x 2849 * kernels... 2850 */ 2851 2852 info->mem_unit = 1; 2853 info->totalram <<= bitcount; 2854 info->freeram <<= bitcount; 2855 info->sharedram <<= bitcount; 2856 info->bufferram <<= bitcount; 2857 info->totalswap <<= bitcount; 2858 info->freeswap <<= bitcount; 2859 info->totalhigh <<= bitcount; 2860 info->freehigh <<= bitcount; 2861 2862 out: 2863 return 0; 2864 } 2865 2866 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) 2867 { 2868 struct sysinfo val; 2869 2870 do_sysinfo(&val); 2871 2872 if (copy_to_user(info, &val, sizeof(struct sysinfo))) 2873 return -EFAULT; 2874 2875 return 0; 2876 } 2877 2878 #ifdef CONFIG_COMPAT 2879 struct compat_sysinfo { 2880 s32 uptime; 2881 u32 loads[3]; 2882 u32 totalram; 2883 u32 freeram; 2884 u32 sharedram; 2885 u32 bufferram; 2886 u32 totalswap; 2887 u32 freeswap; 2888 u16 procs; 2889 u16 pad; 2890 u32 totalhigh; 2891 u32 freehigh; 2892 u32 mem_unit; 2893 char _f[20-2*sizeof(u32)-sizeof(int)]; 2894 }; 2895 2896 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info) 2897 { 2898 struct sysinfo s; 2899 struct compat_sysinfo s_32; 2900 2901 do_sysinfo(&s); 2902 2903 /* Check to see if any memory value is too large for 32-bit and scale 2904 * down if needed 2905 */ 2906 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) { 2907 int bitcount = 0; 2908 2909 while (s.mem_unit < PAGE_SIZE) { 2910 s.mem_unit <<= 1; 2911 bitcount++; 2912 } 2913 2914 s.totalram >>= bitcount; 2915 s.freeram >>= bitcount; 2916 s.sharedram >>= bitcount; 2917 s.bufferram >>= bitcount; 2918 s.totalswap >>= bitcount; 2919 s.freeswap >>= bitcount; 2920 s.totalhigh >>= bitcount; 2921 s.freehigh >>= bitcount; 2922 } 2923 2924 memset(&s_32, 0, sizeof(s_32)); 2925 s_32.uptime = s.uptime; 2926 s_32.loads[0] = s.loads[0]; 2927 s_32.loads[1] = s.loads[1]; 2928 s_32.loads[2] = s.loads[2]; 2929 s_32.totalram = s.totalram; 2930 s_32.freeram = s.freeram; 2931 s_32.sharedram = s.sharedram; 2932 s_32.bufferram = s.bufferram; 2933 s_32.totalswap = s.totalswap; 2934 s_32.freeswap = s.freeswap; 2935 s_32.procs = s.procs; 2936 s_32.totalhigh = s.totalhigh; 2937 s_32.freehigh = s.freehigh; 2938 s_32.mem_unit = s.mem_unit; 2939 if (copy_to_user(info, &s_32, sizeof(s_32))) 2940 return -EFAULT; 2941 return 0; 2942 } 2943 #endif /* CONFIG_COMPAT */ 2944