xref: /linux/kernel/sys.c (revision daa121128a2d2ac6006159e2c47676e4fcd21eab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/ksm.h>
19 #include <linux/perf_event.h>
20 #include <linux/resource.h>
21 #include <linux/kernel.h>
22 #include <linux/workqueue.h>
23 #include <linux/capability.h>
24 #include <linux/device.h>
25 #include <linux/key.h>
26 #include <linux/times.h>
27 #include <linux/posix-timers.h>
28 #include <linux/security.h>
29 #include <linux/random.h>
30 #include <linux/suspend.h>
31 #include <linux/tty.h>
32 #include <linux/signal.h>
33 #include <linux/cn_proc.h>
34 #include <linux/getcpu.h>
35 #include <linux/task_io_accounting_ops.h>
36 #include <linux/seccomp.h>
37 #include <linux/cpu.h>
38 #include <linux/personality.h>
39 #include <linux/ptrace.h>
40 #include <linux/fs_struct.h>
41 #include <linux/file.h>
42 #include <linux/mount.h>
43 #include <linux/gfp.h>
44 #include <linux/syscore_ops.h>
45 #include <linux/version.h>
46 #include <linux/ctype.h>
47 #include <linux/syscall_user_dispatch.h>
48 
49 #include <linux/compat.h>
50 #include <linux/syscalls.h>
51 #include <linux/kprobes.h>
52 #include <linux/user_namespace.h>
53 #include <linux/time_namespace.h>
54 #include <linux/binfmts.h>
55 
56 #include <linux/sched.h>
57 #include <linux/sched/autogroup.h>
58 #include <linux/sched/loadavg.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/mm.h>
61 #include <linux/sched/coredump.h>
62 #include <linux/sched/task.h>
63 #include <linux/sched/cputime.h>
64 #include <linux/rcupdate.h>
65 #include <linux/uidgid.h>
66 #include <linux/cred.h>
67 
68 #include <linux/nospec.h>
69 
70 #include <linux/kmsg_dump.h>
71 /* Move somewhere else to avoid recompiling? */
72 #include <generated/utsrelease.h>
73 
74 #include <linux/uaccess.h>
75 #include <asm/io.h>
76 #include <asm/unistd.h>
77 
78 #include "uid16.h"
79 
80 #ifndef SET_UNALIGN_CTL
81 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
82 #endif
83 #ifndef GET_UNALIGN_CTL
84 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef SET_FPEMU_CTL
87 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef GET_FPEMU_CTL
90 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef SET_FPEXC_CTL
93 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
94 #endif
95 #ifndef GET_FPEXC_CTL
96 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
97 #endif
98 #ifndef GET_ENDIAN
99 # define GET_ENDIAN(a, b)	(-EINVAL)
100 #endif
101 #ifndef SET_ENDIAN
102 # define SET_ENDIAN(a, b)	(-EINVAL)
103 #endif
104 #ifndef GET_TSC_CTL
105 # define GET_TSC_CTL(a)		(-EINVAL)
106 #endif
107 #ifndef SET_TSC_CTL
108 # define SET_TSC_CTL(a)		(-EINVAL)
109 #endif
110 #ifndef GET_FP_MODE
111 # define GET_FP_MODE(a)		(-EINVAL)
112 #endif
113 #ifndef SET_FP_MODE
114 # define SET_FP_MODE(a,b)	(-EINVAL)
115 #endif
116 #ifndef SVE_SET_VL
117 # define SVE_SET_VL(a)		(-EINVAL)
118 #endif
119 #ifndef SVE_GET_VL
120 # define SVE_GET_VL()		(-EINVAL)
121 #endif
122 #ifndef SME_SET_VL
123 # define SME_SET_VL(a)		(-EINVAL)
124 #endif
125 #ifndef SME_GET_VL
126 # define SME_GET_VL()		(-EINVAL)
127 #endif
128 #ifndef PAC_RESET_KEYS
129 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
130 #endif
131 #ifndef PAC_SET_ENABLED_KEYS
132 # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
133 #endif
134 #ifndef PAC_GET_ENABLED_KEYS
135 # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
136 #endif
137 #ifndef SET_TAGGED_ADDR_CTRL
138 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
139 #endif
140 #ifndef GET_TAGGED_ADDR_CTRL
141 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
142 #endif
143 #ifndef RISCV_V_SET_CONTROL
144 # define RISCV_V_SET_CONTROL(a)		(-EINVAL)
145 #endif
146 #ifndef RISCV_V_GET_CONTROL
147 # define RISCV_V_GET_CONTROL()		(-EINVAL)
148 #endif
149 #ifndef PPC_GET_DEXCR_ASPECT
150 # define PPC_GET_DEXCR_ASPECT(a, b)	(-EINVAL)
151 #endif
152 #ifndef PPC_SET_DEXCR_ASPECT
153 # define PPC_SET_DEXCR_ASPECT(a, b, c)	(-EINVAL)
154 #endif
155 
156 /*
157  * this is where the system-wide overflow UID and GID are defined, for
158  * architectures that now have 32-bit UID/GID but didn't in the past
159  */
160 
161 int overflowuid = DEFAULT_OVERFLOWUID;
162 int overflowgid = DEFAULT_OVERFLOWGID;
163 
164 EXPORT_SYMBOL(overflowuid);
165 EXPORT_SYMBOL(overflowgid);
166 
167 /*
168  * the same as above, but for filesystems which can only store a 16-bit
169  * UID and GID. as such, this is needed on all architectures
170  */
171 
172 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
173 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
174 
175 EXPORT_SYMBOL(fs_overflowuid);
176 EXPORT_SYMBOL(fs_overflowgid);
177 
178 /*
179  * Returns true if current's euid is same as p's uid or euid,
180  * or has CAP_SYS_NICE to p's user_ns.
181  *
182  * Called with rcu_read_lock, creds are safe
183  */
184 static bool set_one_prio_perm(struct task_struct *p)
185 {
186 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
187 
188 	if (uid_eq(pcred->uid,  cred->euid) ||
189 	    uid_eq(pcred->euid, cred->euid))
190 		return true;
191 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
192 		return true;
193 	return false;
194 }
195 
196 /*
197  * set the priority of a task
198  * - the caller must hold the RCU read lock
199  */
200 static int set_one_prio(struct task_struct *p, int niceval, int error)
201 {
202 	int no_nice;
203 
204 	if (!set_one_prio_perm(p)) {
205 		error = -EPERM;
206 		goto out;
207 	}
208 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
209 		error = -EACCES;
210 		goto out;
211 	}
212 	no_nice = security_task_setnice(p, niceval);
213 	if (no_nice) {
214 		error = no_nice;
215 		goto out;
216 	}
217 	if (error == -ESRCH)
218 		error = 0;
219 	set_user_nice(p, niceval);
220 out:
221 	return error;
222 }
223 
224 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
225 {
226 	struct task_struct *g, *p;
227 	struct user_struct *user;
228 	const struct cred *cred = current_cred();
229 	int error = -EINVAL;
230 	struct pid *pgrp;
231 	kuid_t uid;
232 
233 	if (which > PRIO_USER || which < PRIO_PROCESS)
234 		goto out;
235 
236 	/* normalize: avoid signed division (rounding problems) */
237 	error = -ESRCH;
238 	if (niceval < MIN_NICE)
239 		niceval = MIN_NICE;
240 	if (niceval > MAX_NICE)
241 		niceval = MAX_NICE;
242 
243 	rcu_read_lock();
244 	switch (which) {
245 	case PRIO_PROCESS:
246 		if (who)
247 			p = find_task_by_vpid(who);
248 		else
249 			p = current;
250 		if (p)
251 			error = set_one_prio(p, niceval, error);
252 		break;
253 	case PRIO_PGRP:
254 		if (who)
255 			pgrp = find_vpid(who);
256 		else
257 			pgrp = task_pgrp(current);
258 		read_lock(&tasklist_lock);
259 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
260 			error = set_one_prio(p, niceval, error);
261 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
262 		read_unlock(&tasklist_lock);
263 		break;
264 	case PRIO_USER:
265 		uid = make_kuid(cred->user_ns, who);
266 		user = cred->user;
267 		if (!who)
268 			uid = cred->uid;
269 		else if (!uid_eq(uid, cred->uid)) {
270 			user = find_user(uid);
271 			if (!user)
272 				goto out_unlock;	/* No processes for this user */
273 		}
274 		for_each_process_thread(g, p) {
275 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
276 				error = set_one_prio(p, niceval, error);
277 		}
278 		if (!uid_eq(uid, cred->uid))
279 			free_uid(user);		/* For find_user() */
280 		break;
281 	}
282 out_unlock:
283 	rcu_read_unlock();
284 out:
285 	return error;
286 }
287 
288 /*
289  * Ugh. To avoid negative return values, "getpriority()" will
290  * not return the normal nice-value, but a negated value that
291  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
292  * to stay compatible.
293  */
294 SYSCALL_DEFINE2(getpriority, int, which, int, who)
295 {
296 	struct task_struct *g, *p;
297 	struct user_struct *user;
298 	const struct cred *cred = current_cred();
299 	long niceval, retval = -ESRCH;
300 	struct pid *pgrp;
301 	kuid_t uid;
302 
303 	if (which > PRIO_USER || which < PRIO_PROCESS)
304 		return -EINVAL;
305 
306 	rcu_read_lock();
307 	switch (which) {
308 	case PRIO_PROCESS:
309 		if (who)
310 			p = find_task_by_vpid(who);
311 		else
312 			p = current;
313 		if (p) {
314 			niceval = nice_to_rlimit(task_nice(p));
315 			if (niceval > retval)
316 				retval = niceval;
317 		}
318 		break;
319 	case PRIO_PGRP:
320 		if (who)
321 			pgrp = find_vpid(who);
322 		else
323 			pgrp = task_pgrp(current);
324 		read_lock(&tasklist_lock);
325 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
326 			niceval = nice_to_rlimit(task_nice(p));
327 			if (niceval > retval)
328 				retval = niceval;
329 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
330 		read_unlock(&tasklist_lock);
331 		break;
332 	case PRIO_USER:
333 		uid = make_kuid(cred->user_ns, who);
334 		user = cred->user;
335 		if (!who)
336 			uid = cred->uid;
337 		else if (!uid_eq(uid, cred->uid)) {
338 			user = find_user(uid);
339 			if (!user)
340 				goto out_unlock;	/* No processes for this user */
341 		}
342 		for_each_process_thread(g, p) {
343 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
344 				niceval = nice_to_rlimit(task_nice(p));
345 				if (niceval > retval)
346 					retval = niceval;
347 			}
348 		}
349 		if (!uid_eq(uid, cred->uid))
350 			free_uid(user);		/* for find_user() */
351 		break;
352 	}
353 out_unlock:
354 	rcu_read_unlock();
355 
356 	return retval;
357 }
358 
359 /*
360  * Unprivileged users may change the real gid to the effective gid
361  * or vice versa.  (BSD-style)
362  *
363  * If you set the real gid at all, or set the effective gid to a value not
364  * equal to the real gid, then the saved gid is set to the new effective gid.
365  *
366  * This makes it possible for a setgid program to completely drop its
367  * privileges, which is often a useful assertion to make when you are doing
368  * a security audit over a program.
369  *
370  * The general idea is that a program which uses just setregid() will be
371  * 100% compatible with BSD.  A program which uses just setgid() will be
372  * 100% compatible with POSIX with saved IDs.
373  *
374  * SMP: There are not races, the GIDs are checked only by filesystem
375  *      operations (as far as semantic preservation is concerned).
376  */
377 #ifdef CONFIG_MULTIUSER
378 long __sys_setregid(gid_t rgid, gid_t egid)
379 {
380 	struct user_namespace *ns = current_user_ns();
381 	const struct cred *old;
382 	struct cred *new;
383 	int retval;
384 	kgid_t krgid, kegid;
385 
386 	krgid = make_kgid(ns, rgid);
387 	kegid = make_kgid(ns, egid);
388 
389 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
390 		return -EINVAL;
391 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
392 		return -EINVAL;
393 
394 	new = prepare_creds();
395 	if (!new)
396 		return -ENOMEM;
397 	old = current_cred();
398 
399 	retval = -EPERM;
400 	if (rgid != (gid_t) -1) {
401 		if (gid_eq(old->gid, krgid) ||
402 		    gid_eq(old->egid, krgid) ||
403 		    ns_capable_setid(old->user_ns, CAP_SETGID))
404 			new->gid = krgid;
405 		else
406 			goto error;
407 	}
408 	if (egid != (gid_t) -1) {
409 		if (gid_eq(old->gid, kegid) ||
410 		    gid_eq(old->egid, kegid) ||
411 		    gid_eq(old->sgid, kegid) ||
412 		    ns_capable_setid(old->user_ns, CAP_SETGID))
413 			new->egid = kegid;
414 		else
415 			goto error;
416 	}
417 
418 	if (rgid != (gid_t) -1 ||
419 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
420 		new->sgid = new->egid;
421 	new->fsgid = new->egid;
422 
423 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
424 	if (retval < 0)
425 		goto error;
426 
427 	return commit_creds(new);
428 
429 error:
430 	abort_creds(new);
431 	return retval;
432 }
433 
434 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
435 {
436 	return __sys_setregid(rgid, egid);
437 }
438 
439 /*
440  * setgid() is implemented like SysV w/ SAVED_IDS
441  *
442  * SMP: Same implicit races as above.
443  */
444 long __sys_setgid(gid_t gid)
445 {
446 	struct user_namespace *ns = current_user_ns();
447 	const struct cred *old;
448 	struct cred *new;
449 	int retval;
450 	kgid_t kgid;
451 
452 	kgid = make_kgid(ns, gid);
453 	if (!gid_valid(kgid))
454 		return -EINVAL;
455 
456 	new = prepare_creds();
457 	if (!new)
458 		return -ENOMEM;
459 	old = current_cred();
460 
461 	retval = -EPERM;
462 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
463 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
464 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
465 		new->egid = new->fsgid = kgid;
466 	else
467 		goto error;
468 
469 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
470 	if (retval < 0)
471 		goto error;
472 
473 	return commit_creds(new);
474 
475 error:
476 	abort_creds(new);
477 	return retval;
478 }
479 
480 SYSCALL_DEFINE1(setgid, gid_t, gid)
481 {
482 	return __sys_setgid(gid);
483 }
484 
485 /*
486  * change the user struct in a credentials set to match the new UID
487  */
488 static int set_user(struct cred *new)
489 {
490 	struct user_struct *new_user;
491 
492 	new_user = alloc_uid(new->uid);
493 	if (!new_user)
494 		return -EAGAIN;
495 
496 	free_uid(new->user);
497 	new->user = new_user;
498 	return 0;
499 }
500 
501 static void flag_nproc_exceeded(struct cred *new)
502 {
503 	if (new->ucounts == current_ucounts())
504 		return;
505 
506 	/*
507 	 * We don't fail in case of NPROC limit excess here because too many
508 	 * poorly written programs don't check set*uid() return code, assuming
509 	 * it never fails if called by root.  We may still enforce NPROC limit
510 	 * for programs doing set*uid()+execve() by harmlessly deferring the
511 	 * failure to the execve() stage.
512 	 */
513 	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
514 			new->user != INIT_USER)
515 		current->flags |= PF_NPROC_EXCEEDED;
516 	else
517 		current->flags &= ~PF_NPROC_EXCEEDED;
518 }
519 
520 /*
521  * Unprivileged users may change the real uid to the effective uid
522  * or vice versa.  (BSD-style)
523  *
524  * If you set the real uid at all, or set the effective uid to a value not
525  * equal to the real uid, then the saved uid is set to the new effective uid.
526  *
527  * This makes it possible for a setuid program to completely drop its
528  * privileges, which is often a useful assertion to make when you are doing
529  * a security audit over a program.
530  *
531  * The general idea is that a program which uses just setreuid() will be
532  * 100% compatible with BSD.  A program which uses just setuid() will be
533  * 100% compatible with POSIX with saved IDs.
534  */
535 long __sys_setreuid(uid_t ruid, uid_t euid)
536 {
537 	struct user_namespace *ns = current_user_ns();
538 	const struct cred *old;
539 	struct cred *new;
540 	int retval;
541 	kuid_t kruid, keuid;
542 
543 	kruid = make_kuid(ns, ruid);
544 	keuid = make_kuid(ns, euid);
545 
546 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
547 		return -EINVAL;
548 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
549 		return -EINVAL;
550 
551 	new = prepare_creds();
552 	if (!new)
553 		return -ENOMEM;
554 	old = current_cred();
555 
556 	retval = -EPERM;
557 	if (ruid != (uid_t) -1) {
558 		new->uid = kruid;
559 		if (!uid_eq(old->uid, kruid) &&
560 		    !uid_eq(old->euid, kruid) &&
561 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
562 			goto error;
563 	}
564 
565 	if (euid != (uid_t) -1) {
566 		new->euid = keuid;
567 		if (!uid_eq(old->uid, keuid) &&
568 		    !uid_eq(old->euid, keuid) &&
569 		    !uid_eq(old->suid, keuid) &&
570 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
571 			goto error;
572 	}
573 
574 	if (!uid_eq(new->uid, old->uid)) {
575 		retval = set_user(new);
576 		if (retval < 0)
577 			goto error;
578 	}
579 	if (ruid != (uid_t) -1 ||
580 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
581 		new->suid = new->euid;
582 	new->fsuid = new->euid;
583 
584 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
585 	if (retval < 0)
586 		goto error;
587 
588 	retval = set_cred_ucounts(new);
589 	if (retval < 0)
590 		goto error;
591 
592 	flag_nproc_exceeded(new);
593 	return commit_creds(new);
594 
595 error:
596 	abort_creds(new);
597 	return retval;
598 }
599 
600 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
601 {
602 	return __sys_setreuid(ruid, euid);
603 }
604 
605 /*
606  * setuid() is implemented like SysV with SAVED_IDS
607  *
608  * Note that SAVED_ID's is deficient in that a setuid root program
609  * like sendmail, for example, cannot set its uid to be a normal
610  * user and then switch back, because if you're root, setuid() sets
611  * the saved uid too.  If you don't like this, blame the bright people
612  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
613  * will allow a root program to temporarily drop privileges and be able to
614  * regain them by swapping the real and effective uid.
615  */
616 long __sys_setuid(uid_t uid)
617 {
618 	struct user_namespace *ns = current_user_ns();
619 	const struct cred *old;
620 	struct cred *new;
621 	int retval;
622 	kuid_t kuid;
623 
624 	kuid = make_kuid(ns, uid);
625 	if (!uid_valid(kuid))
626 		return -EINVAL;
627 
628 	new = prepare_creds();
629 	if (!new)
630 		return -ENOMEM;
631 	old = current_cred();
632 
633 	retval = -EPERM;
634 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
635 		new->suid = new->uid = kuid;
636 		if (!uid_eq(kuid, old->uid)) {
637 			retval = set_user(new);
638 			if (retval < 0)
639 				goto error;
640 		}
641 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
642 		goto error;
643 	}
644 
645 	new->fsuid = new->euid = kuid;
646 
647 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
648 	if (retval < 0)
649 		goto error;
650 
651 	retval = set_cred_ucounts(new);
652 	if (retval < 0)
653 		goto error;
654 
655 	flag_nproc_exceeded(new);
656 	return commit_creds(new);
657 
658 error:
659 	abort_creds(new);
660 	return retval;
661 }
662 
663 SYSCALL_DEFINE1(setuid, uid_t, uid)
664 {
665 	return __sys_setuid(uid);
666 }
667 
668 
669 /*
670  * This function implements a generic ability to update ruid, euid,
671  * and suid.  This allows you to implement the 4.4 compatible seteuid().
672  */
673 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
674 {
675 	struct user_namespace *ns = current_user_ns();
676 	const struct cred *old;
677 	struct cred *new;
678 	int retval;
679 	kuid_t kruid, keuid, ksuid;
680 	bool ruid_new, euid_new, suid_new;
681 
682 	kruid = make_kuid(ns, ruid);
683 	keuid = make_kuid(ns, euid);
684 	ksuid = make_kuid(ns, suid);
685 
686 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
687 		return -EINVAL;
688 
689 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
690 		return -EINVAL;
691 
692 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
693 		return -EINVAL;
694 
695 	old = current_cred();
696 
697 	/* check for no-op */
698 	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
699 	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
700 				    uid_eq(keuid, old->fsuid))) &&
701 	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
702 		return 0;
703 
704 	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
705 		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
706 	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
707 		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
708 	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
709 		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
710 	if ((ruid_new || euid_new || suid_new) &&
711 	    !ns_capable_setid(old->user_ns, CAP_SETUID))
712 		return -EPERM;
713 
714 	new = prepare_creds();
715 	if (!new)
716 		return -ENOMEM;
717 
718 	if (ruid != (uid_t) -1) {
719 		new->uid = kruid;
720 		if (!uid_eq(kruid, old->uid)) {
721 			retval = set_user(new);
722 			if (retval < 0)
723 				goto error;
724 		}
725 	}
726 	if (euid != (uid_t) -1)
727 		new->euid = keuid;
728 	if (suid != (uid_t) -1)
729 		new->suid = ksuid;
730 	new->fsuid = new->euid;
731 
732 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
733 	if (retval < 0)
734 		goto error;
735 
736 	retval = set_cred_ucounts(new);
737 	if (retval < 0)
738 		goto error;
739 
740 	flag_nproc_exceeded(new);
741 	return commit_creds(new);
742 
743 error:
744 	abort_creds(new);
745 	return retval;
746 }
747 
748 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
749 {
750 	return __sys_setresuid(ruid, euid, suid);
751 }
752 
753 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
754 {
755 	const struct cred *cred = current_cred();
756 	int retval;
757 	uid_t ruid, euid, suid;
758 
759 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
760 	euid = from_kuid_munged(cred->user_ns, cred->euid);
761 	suid = from_kuid_munged(cred->user_ns, cred->suid);
762 
763 	retval = put_user(ruid, ruidp);
764 	if (!retval) {
765 		retval = put_user(euid, euidp);
766 		if (!retval)
767 			return put_user(suid, suidp);
768 	}
769 	return retval;
770 }
771 
772 /*
773  * Same as above, but for rgid, egid, sgid.
774  */
775 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
776 {
777 	struct user_namespace *ns = current_user_ns();
778 	const struct cred *old;
779 	struct cred *new;
780 	int retval;
781 	kgid_t krgid, kegid, ksgid;
782 	bool rgid_new, egid_new, sgid_new;
783 
784 	krgid = make_kgid(ns, rgid);
785 	kegid = make_kgid(ns, egid);
786 	ksgid = make_kgid(ns, sgid);
787 
788 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
789 		return -EINVAL;
790 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
791 		return -EINVAL;
792 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
793 		return -EINVAL;
794 
795 	old = current_cred();
796 
797 	/* check for no-op */
798 	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
799 	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
800 				    gid_eq(kegid, old->fsgid))) &&
801 	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
802 		return 0;
803 
804 	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
805 		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
806 	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
807 		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
808 	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
809 		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
810 	if ((rgid_new || egid_new || sgid_new) &&
811 	    !ns_capable_setid(old->user_ns, CAP_SETGID))
812 		return -EPERM;
813 
814 	new = prepare_creds();
815 	if (!new)
816 		return -ENOMEM;
817 
818 	if (rgid != (gid_t) -1)
819 		new->gid = krgid;
820 	if (egid != (gid_t) -1)
821 		new->egid = kegid;
822 	if (sgid != (gid_t) -1)
823 		new->sgid = ksgid;
824 	new->fsgid = new->egid;
825 
826 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
827 	if (retval < 0)
828 		goto error;
829 
830 	return commit_creds(new);
831 
832 error:
833 	abort_creds(new);
834 	return retval;
835 }
836 
837 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
838 {
839 	return __sys_setresgid(rgid, egid, sgid);
840 }
841 
842 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
843 {
844 	const struct cred *cred = current_cred();
845 	int retval;
846 	gid_t rgid, egid, sgid;
847 
848 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
849 	egid = from_kgid_munged(cred->user_ns, cred->egid);
850 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
851 
852 	retval = put_user(rgid, rgidp);
853 	if (!retval) {
854 		retval = put_user(egid, egidp);
855 		if (!retval)
856 			retval = put_user(sgid, sgidp);
857 	}
858 
859 	return retval;
860 }
861 
862 
863 /*
864  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
865  * is used for "access()" and for the NFS daemon (letting nfsd stay at
866  * whatever uid it wants to). It normally shadows "euid", except when
867  * explicitly set by setfsuid() or for access..
868  */
869 long __sys_setfsuid(uid_t uid)
870 {
871 	const struct cred *old;
872 	struct cred *new;
873 	uid_t old_fsuid;
874 	kuid_t kuid;
875 
876 	old = current_cred();
877 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
878 
879 	kuid = make_kuid(old->user_ns, uid);
880 	if (!uid_valid(kuid))
881 		return old_fsuid;
882 
883 	new = prepare_creds();
884 	if (!new)
885 		return old_fsuid;
886 
887 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
888 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
889 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
890 		if (!uid_eq(kuid, old->fsuid)) {
891 			new->fsuid = kuid;
892 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
893 				goto change_okay;
894 		}
895 	}
896 
897 	abort_creds(new);
898 	return old_fsuid;
899 
900 change_okay:
901 	commit_creds(new);
902 	return old_fsuid;
903 }
904 
905 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
906 {
907 	return __sys_setfsuid(uid);
908 }
909 
910 /*
911  * Samma på svenska..
912  */
913 long __sys_setfsgid(gid_t gid)
914 {
915 	const struct cred *old;
916 	struct cred *new;
917 	gid_t old_fsgid;
918 	kgid_t kgid;
919 
920 	old = current_cred();
921 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
922 
923 	kgid = make_kgid(old->user_ns, gid);
924 	if (!gid_valid(kgid))
925 		return old_fsgid;
926 
927 	new = prepare_creds();
928 	if (!new)
929 		return old_fsgid;
930 
931 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
932 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
933 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
934 		if (!gid_eq(kgid, old->fsgid)) {
935 			new->fsgid = kgid;
936 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
937 				goto change_okay;
938 		}
939 	}
940 
941 	abort_creds(new);
942 	return old_fsgid;
943 
944 change_okay:
945 	commit_creds(new);
946 	return old_fsgid;
947 }
948 
949 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
950 {
951 	return __sys_setfsgid(gid);
952 }
953 #endif /* CONFIG_MULTIUSER */
954 
955 /**
956  * sys_getpid - return the thread group id of the current process
957  *
958  * Note, despite the name, this returns the tgid not the pid.  The tgid and
959  * the pid are identical unless CLONE_THREAD was specified on clone() in
960  * which case the tgid is the same in all threads of the same group.
961  *
962  * This is SMP safe as current->tgid does not change.
963  */
964 SYSCALL_DEFINE0(getpid)
965 {
966 	return task_tgid_vnr(current);
967 }
968 
969 /* Thread ID - the internal kernel "pid" */
970 SYSCALL_DEFINE0(gettid)
971 {
972 	return task_pid_vnr(current);
973 }
974 
975 /*
976  * Accessing ->real_parent is not SMP-safe, it could
977  * change from under us. However, we can use a stale
978  * value of ->real_parent under rcu_read_lock(), see
979  * release_task()->call_rcu(delayed_put_task_struct).
980  */
981 SYSCALL_DEFINE0(getppid)
982 {
983 	int pid;
984 
985 	rcu_read_lock();
986 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
987 	rcu_read_unlock();
988 
989 	return pid;
990 }
991 
992 SYSCALL_DEFINE0(getuid)
993 {
994 	/* Only we change this so SMP safe */
995 	return from_kuid_munged(current_user_ns(), current_uid());
996 }
997 
998 SYSCALL_DEFINE0(geteuid)
999 {
1000 	/* Only we change this so SMP safe */
1001 	return from_kuid_munged(current_user_ns(), current_euid());
1002 }
1003 
1004 SYSCALL_DEFINE0(getgid)
1005 {
1006 	/* Only we change this so SMP safe */
1007 	return from_kgid_munged(current_user_ns(), current_gid());
1008 }
1009 
1010 SYSCALL_DEFINE0(getegid)
1011 {
1012 	/* Only we change this so SMP safe */
1013 	return from_kgid_munged(current_user_ns(), current_egid());
1014 }
1015 
1016 static void do_sys_times(struct tms *tms)
1017 {
1018 	u64 tgutime, tgstime, cutime, cstime;
1019 
1020 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1021 	cutime = current->signal->cutime;
1022 	cstime = current->signal->cstime;
1023 	tms->tms_utime = nsec_to_clock_t(tgutime);
1024 	tms->tms_stime = nsec_to_clock_t(tgstime);
1025 	tms->tms_cutime = nsec_to_clock_t(cutime);
1026 	tms->tms_cstime = nsec_to_clock_t(cstime);
1027 }
1028 
1029 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1030 {
1031 	if (tbuf) {
1032 		struct tms tmp;
1033 
1034 		do_sys_times(&tmp);
1035 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1036 			return -EFAULT;
1037 	}
1038 	force_successful_syscall_return();
1039 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1040 }
1041 
1042 #ifdef CONFIG_COMPAT
1043 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1044 {
1045 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1046 }
1047 
1048 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1049 {
1050 	if (tbuf) {
1051 		struct tms tms;
1052 		struct compat_tms tmp;
1053 
1054 		do_sys_times(&tms);
1055 		/* Convert our struct tms to the compat version. */
1056 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1057 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1058 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1059 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1060 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1061 			return -EFAULT;
1062 	}
1063 	force_successful_syscall_return();
1064 	return compat_jiffies_to_clock_t(jiffies);
1065 }
1066 #endif
1067 
1068 /*
1069  * This needs some heavy checking ...
1070  * I just haven't the stomach for it. I also don't fully
1071  * understand sessions/pgrp etc. Let somebody who does explain it.
1072  *
1073  * OK, I think I have the protection semantics right.... this is really
1074  * only important on a multi-user system anyway, to make sure one user
1075  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1076  *
1077  * !PF_FORKNOEXEC check to conform completely to POSIX.
1078  */
1079 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1080 {
1081 	struct task_struct *p;
1082 	struct task_struct *group_leader = current->group_leader;
1083 	struct pid *pgrp;
1084 	int err;
1085 
1086 	if (!pid)
1087 		pid = task_pid_vnr(group_leader);
1088 	if (!pgid)
1089 		pgid = pid;
1090 	if (pgid < 0)
1091 		return -EINVAL;
1092 	rcu_read_lock();
1093 
1094 	/* From this point forward we keep holding onto the tasklist lock
1095 	 * so that our parent does not change from under us. -DaveM
1096 	 */
1097 	write_lock_irq(&tasklist_lock);
1098 
1099 	err = -ESRCH;
1100 	p = find_task_by_vpid(pid);
1101 	if (!p)
1102 		goto out;
1103 
1104 	err = -EINVAL;
1105 	if (!thread_group_leader(p))
1106 		goto out;
1107 
1108 	if (same_thread_group(p->real_parent, group_leader)) {
1109 		err = -EPERM;
1110 		if (task_session(p) != task_session(group_leader))
1111 			goto out;
1112 		err = -EACCES;
1113 		if (!(p->flags & PF_FORKNOEXEC))
1114 			goto out;
1115 	} else {
1116 		err = -ESRCH;
1117 		if (p != group_leader)
1118 			goto out;
1119 	}
1120 
1121 	err = -EPERM;
1122 	if (p->signal->leader)
1123 		goto out;
1124 
1125 	pgrp = task_pid(p);
1126 	if (pgid != pid) {
1127 		struct task_struct *g;
1128 
1129 		pgrp = find_vpid(pgid);
1130 		g = pid_task(pgrp, PIDTYPE_PGID);
1131 		if (!g || task_session(g) != task_session(group_leader))
1132 			goto out;
1133 	}
1134 
1135 	err = security_task_setpgid(p, pgid);
1136 	if (err)
1137 		goto out;
1138 
1139 	if (task_pgrp(p) != pgrp)
1140 		change_pid(p, PIDTYPE_PGID, pgrp);
1141 
1142 	err = 0;
1143 out:
1144 	/* All paths lead to here, thus we are safe. -DaveM */
1145 	write_unlock_irq(&tasklist_lock);
1146 	rcu_read_unlock();
1147 	return err;
1148 }
1149 
1150 static int do_getpgid(pid_t pid)
1151 {
1152 	struct task_struct *p;
1153 	struct pid *grp;
1154 	int retval;
1155 
1156 	rcu_read_lock();
1157 	if (!pid)
1158 		grp = task_pgrp(current);
1159 	else {
1160 		retval = -ESRCH;
1161 		p = find_task_by_vpid(pid);
1162 		if (!p)
1163 			goto out;
1164 		grp = task_pgrp(p);
1165 		if (!grp)
1166 			goto out;
1167 
1168 		retval = security_task_getpgid(p);
1169 		if (retval)
1170 			goto out;
1171 	}
1172 	retval = pid_vnr(grp);
1173 out:
1174 	rcu_read_unlock();
1175 	return retval;
1176 }
1177 
1178 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1179 {
1180 	return do_getpgid(pid);
1181 }
1182 
1183 #ifdef __ARCH_WANT_SYS_GETPGRP
1184 
1185 SYSCALL_DEFINE0(getpgrp)
1186 {
1187 	return do_getpgid(0);
1188 }
1189 
1190 #endif
1191 
1192 SYSCALL_DEFINE1(getsid, pid_t, pid)
1193 {
1194 	struct task_struct *p;
1195 	struct pid *sid;
1196 	int retval;
1197 
1198 	rcu_read_lock();
1199 	if (!pid)
1200 		sid = task_session(current);
1201 	else {
1202 		retval = -ESRCH;
1203 		p = find_task_by_vpid(pid);
1204 		if (!p)
1205 			goto out;
1206 		sid = task_session(p);
1207 		if (!sid)
1208 			goto out;
1209 
1210 		retval = security_task_getsid(p);
1211 		if (retval)
1212 			goto out;
1213 	}
1214 	retval = pid_vnr(sid);
1215 out:
1216 	rcu_read_unlock();
1217 	return retval;
1218 }
1219 
1220 static void set_special_pids(struct pid *pid)
1221 {
1222 	struct task_struct *curr = current->group_leader;
1223 
1224 	if (task_session(curr) != pid)
1225 		change_pid(curr, PIDTYPE_SID, pid);
1226 
1227 	if (task_pgrp(curr) != pid)
1228 		change_pid(curr, PIDTYPE_PGID, pid);
1229 }
1230 
1231 int ksys_setsid(void)
1232 {
1233 	struct task_struct *group_leader = current->group_leader;
1234 	struct pid *sid = task_pid(group_leader);
1235 	pid_t session = pid_vnr(sid);
1236 	int err = -EPERM;
1237 
1238 	write_lock_irq(&tasklist_lock);
1239 	/* Fail if I am already a session leader */
1240 	if (group_leader->signal->leader)
1241 		goto out;
1242 
1243 	/* Fail if a process group id already exists that equals the
1244 	 * proposed session id.
1245 	 */
1246 	if (pid_task(sid, PIDTYPE_PGID))
1247 		goto out;
1248 
1249 	group_leader->signal->leader = 1;
1250 	set_special_pids(sid);
1251 
1252 	proc_clear_tty(group_leader);
1253 
1254 	err = session;
1255 out:
1256 	write_unlock_irq(&tasklist_lock);
1257 	if (err > 0) {
1258 		proc_sid_connector(group_leader);
1259 		sched_autogroup_create_attach(group_leader);
1260 	}
1261 	return err;
1262 }
1263 
1264 SYSCALL_DEFINE0(setsid)
1265 {
1266 	return ksys_setsid();
1267 }
1268 
1269 DECLARE_RWSEM(uts_sem);
1270 
1271 #ifdef COMPAT_UTS_MACHINE
1272 #define override_architecture(name) \
1273 	(personality(current->personality) == PER_LINUX32 && \
1274 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1275 		      sizeof(COMPAT_UTS_MACHINE)))
1276 #else
1277 #define override_architecture(name)	0
1278 #endif
1279 
1280 /*
1281  * Work around broken programs that cannot handle "Linux 3.0".
1282  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1283  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1284  * 2.6.60.
1285  */
1286 static int override_release(char __user *release, size_t len)
1287 {
1288 	int ret = 0;
1289 
1290 	if (current->personality & UNAME26) {
1291 		const char *rest = UTS_RELEASE;
1292 		char buf[65] = { 0 };
1293 		int ndots = 0;
1294 		unsigned v;
1295 		size_t copy;
1296 
1297 		while (*rest) {
1298 			if (*rest == '.' && ++ndots >= 3)
1299 				break;
1300 			if (!isdigit(*rest) && *rest != '.')
1301 				break;
1302 			rest++;
1303 		}
1304 		v = LINUX_VERSION_PATCHLEVEL + 60;
1305 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1306 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1307 		ret = copy_to_user(release, buf, copy + 1);
1308 	}
1309 	return ret;
1310 }
1311 
1312 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1313 {
1314 	struct new_utsname tmp;
1315 
1316 	down_read(&uts_sem);
1317 	memcpy(&tmp, utsname(), sizeof(tmp));
1318 	up_read(&uts_sem);
1319 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1320 		return -EFAULT;
1321 
1322 	if (override_release(name->release, sizeof(name->release)))
1323 		return -EFAULT;
1324 	if (override_architecture(name))
1325 		return -EFAULT;
1326 	return 0;
1327 }
1328 
1329 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1330 /*
1331  * Old cruft
1332  */
1333 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1334 {
1335 	struct old_utsname tmp;
1336 
1337 	if (!name)
1338 		return -EFAULT;
1339 
1340 	down_read(&uts_sem);
1341 	memcpy(&tmp, utsname(), sizeof(tmp));
1342 	up_read(&uts_sem);
1343 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1344 		return -EFAULT;
1345 
1346 	if (override_release(name->release, sizeof(name->release)))
1347 		return -EFAULT;
1348 	if (override_architecture(name))
1349 		return -EFAULT;
1350 	return 0;
1351 }
1352 
1353 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1354 {
1355 	struct oldold_utsname tmp;
1356 
1357 	if (!name)
1358 		return -EFAULT;
1359 
1360 	memset(&tmp, 0, sizeof(tmp));
1361 
1362 	down_read(&uts_sem);
1363 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1364 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1365 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1366 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1367 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1368 	up_read(&uts_sem);
1369 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1370 		return -EFAULT;
1371 
1372 	if (override_architecture(name))
1373 		return -EFAULT;
1374 	if (override_release(name->release, sizeof(name->release)))
1375 		return -EFAULT;
1376 	return 0;
1377 }
1378 #endif
1379 
1380 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1381 {
1382 	int errno;
1383 	char tmp[__NEW_UTS_LEN];
1384 
1385 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1386 		return -EPERM;
1387 
1388 	if (len < 0 || len > __NEW_UTS_LEN)
1389 		return -EINVAL;
1390 	errno = -EFAULT;
1391 	if (!copy_from_user(tmp, name, len)) {
1392 		struct new_utsname *u;
1393 
1394 		add_device_randomness(tmp, len);
1395 		down_write(&uts_sem);
1396 		u = utsname();
1397 		memcpy(u->nodename, tmp, len);
1398 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1399 		errno = 0;
1400 		uts_proc_notify(UTS_PROC_HOSTNAME);
1401 		up_write(&uts_sem);
1402 	}
1403 	return errno;
1404 }
1405 
1406 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1407 
1408 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1409 {
1410 	int i;
1411 	struct new_utsname *u;
1412 	char tmp[__NEW_UTS_LEN + 1];
1413 
1414 	if (len < 0)
1415 		return -EINVAL;
1416 	down_read(&uts_sem);
1417 	u = utsname();
1418 	i = 1 + strlen(u->nodename);
1419 	if (i > len)
1420 		i = len;
1421 	memcpy(tmp, u->nodename, i);
1422 	up_read(&uts_sem);
1423 	if (copy_to_user(name, tmp, i))
1424 		return -EFAULT;
1425 	return 0;
1426 }
1427 
1428 #endif
1429 
1430 /*
1431  * Only setdomainname; getdomainname can be implemented by calling
1432  * uname()
1433  */
1434 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1435 {
1436 	int errno;
1437 	char tmp[__NEW_UTS_LEN];
1438 
1439 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1440 		return -EPERM;
1441 	if (len < 0 || len > __NEW_UTS_LEN)
1442 		return -EINVAL;
1443 
1444 	errno = -EFAULT;
1445 	if (!copy_from_user(tmp, name, len)) {
1446 		struct new_utsname *u;
1447 
1448 		add_device_randomness(tmp, len);
1449 		down_write(&uts_sem);
1450 		u = utsname();
1451 		memcpy(u->domainname, tmp, len);
1452 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1453 		errno = 0;
1454 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1455 		up_write(&uts_sem);
1456 	}
1457 	return errno;
1458 }
1459 
1460 /* make sure you are allowed to change @tsk limits before calling this */
1461 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1462 		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1463 {
1464 	struct rlimit *rlim;
1465 	int retval = 0;
1466 
1467 	if (resource >= RLIM_NLIMITS)
1468 		return -EINVAL;
1469 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1470 
1471 	if (new_rlim) {
1472 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1473 			return -EINVAL;
1474 		if (resource == RLIMIT_NOFILE &&
1475 				new_rlim->rlim_max > sysctl_nr_open)
1476 			return -EPERM;
1477 	}
1478 
1479 	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1480 	rlim = tsk->signal->rlim + resource;
1481 	task_lock(tsk->group_leader);
1482 	if (new_rlim) {
1483 		/*
1484 		 * Keep the capable check against init_user_ns until cgroups can
1485 		 * contain all limits.
1486 		 */
1487 		if (new_rlim->rlim_max > rlim->rlim_max &&
1488 				!capable(CAP_SYS_RESOURCE))
1489 			retval = -EPERM;
1490 		if (!retval)
1491 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1492 	}
1493 	if (!retval) {
1494 		if (old_rlim)
1495 			*old_rlim = *rlim;
1496 		if (new_rlim)
1497 			*rlim = *new_rlim;
1498 	}
1499 	task_unlock(tsk->group_leader);
1500 
1501 	/*
1502 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1503 	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1504 	 * ignores the rlimit.
1505 	 */
1506 	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1507 	    new_rlim->rlim_cur != RLIM_INFINITY &&
1508 	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1509 		/*
1510 		 * update_rlimit_cpu can fail if the task is exiting, but there
1511 		 * may be other tasks in the thread group that are not exiting,
1512 		 * and they need their cpu timers adjusted.
1513 		 *
1514 		 * The group_leader is the last task to be released, so if we
1515 		 * cannot update_rlimit_cpu on it, then the entire process is
1516 		 * exiting and we do not need to update at all.
1517 		 */
1518 		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1519 	}
1520 
1521 	return retval;
1522 }
1523 
1524 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1525 {
1526 	struct rlimit value;
1527 	int ret;
1528 
1529 	ret = do_prlimit(current, resource, NULL, &value);
1530 	if (!ret)
1531 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1532 
1533 	return ret;
1534 }
1535 
1536 #ifdef CONFIG_COMPAT
1537 
1538 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1539 		       struct compat_rlimit __user *, rlim)
1540 {
1541 	struct rlimit r;
1542 	struct compat_rlimit r32;
1543 
1544 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1545 		return -EFAULT;
1546 
1547 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1548 		r.rlim_cur = RLIM_INFINITY;
1549 	else
1550 		r.rlim_cur = r32.rlim_cur;
1551 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1552 		r.rlim_max = RLIM_INFINITY;
1553 	else
1554 		r.rlim_max = r32.rlim_max;
1555 	return do_prlimit(current, resource, &r, NULL);
1556 }
1557 
1558 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1559 		       struct compat_rlimit __user *, rlim)
1560 {
1561 	struct rlimit r;
1562 	int ret;
1563 
1564 	ret = do_prlimit(current, resource, NULL, &r);
1565 	if (!ret) {
1566 		struct compat_rlimit r32;
1567 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1568 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1569 		else
1570 			r32.rlim_cur = r.rlim_cur;
1571 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1572 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1573 		else
1574 			r32.rlim_max = r.rlim_max;
1575 
1576 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1577 			return -EFAULT;
1578 	}
1579 	return ret;
1580 }
1581 
1582 #endif
1583 
1584 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1585 
1586 /*
1587  *	Back compatibility for getrlimit. Needed for some apps.
1588  */
1589 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1590 		struct rlimit __user *, rlim)
1591 {
1592 	struct rlimit x;
1593 	if (resource >= RLIM_NLIMITS)
1594 		return -EINVAL;
1595 
1596 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1597 	task_lock(current->group_leader);
1598 	x = current->signal->rlim[resource];
1599 	task_unlock(current->group_leader);
1600 	if (x.rlim_cur > 0x7FFFFFFF)
1601 		x.rlim_cur = 0x7FFFFFFF;
1602 	if (x.rlim_max > 0x7FFFFFFF)
1603 		x.rlim_max = 0x7FFFFFFF;
1604 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1605 }
1606 
1607 #ifdef CONFIG_COMPAT
1608 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1609 		       struct compat_rlimit __user *, rlim)
1610 {
1611 	struct rlimit r;
1612 
1613 	if (resource >= RLIM_NLIMITS)
1614 		return -EINVAL;
1615 
1616 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1617 	task_lock(current->group_leader);
1618 	r = current->signal->rlim[resource];
1619 	task_unlock(current->group_leader);
1620 	if (r.rlim_cur > 0x7FFFFFFF)
1621 		r.rlim_cur = 0x7FFFFFFF;
1622 	if (r.rlim_max > 0x7FFFFFFF)
1623 		r.rlim_max = 0x7FFFFFFF;
1624 
1625 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1626 	    put_user(r.rlim_max, &rlim->rlim_max))
1627 		return -EFAULT;
1628 	return 0;
1629 }
1630 #endif
1631 
1632 #endif
1633 
1634 static inline bool rlim64_is_infinity(__u64 rlim64)
1635 {
1636 #if BITS_PER_LONG < 64
1637 	return rlim64 >= ULONG_MAX;
1638 #else
1639 	return rlim64 == RLIM64_INFINITY;
1640 #endif
1641 }
1642 
1643 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1644 {
1645 	if (rlim->rlim_cur == RLIM_INFINITY)
1646 		rlim64->rlim_cur = RLIM64_INFINITY;
1647 	else
1648 		rlim64->rlim_cur = rlim->rlim_cur;
1649 	if (rlim->rlim_max == RLIM_INFINITY)
1650 		rlim64->rlim_max = RLIM64_INFINITY;
1651 	else
1652 		rlim64->rlim_max = rlim->rlim_max;
1653 }
1654 
1655 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1656 {
1657 	if (rlim64_is_infinity(rlim64->rlim_cur))
1658 		rlim->rlim_cur = RLIM_INFINITY;
1659 	else
1660 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1661 	if (rlim64_is_infinity(rlim64->rlim_max))
1662 		rlim->rlim_max = RLIM_INFINITY;
1663 	else
1664 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1665 }
1666 
1667 /* rcu lock must be held */
1668 static int check_prlimit_permission(struct task_struct *task,
1669 				    unsigned int flags)
1670 {
1671 	const struct cred *cred = current_cred(), *tcred;
1672 	bool id_match;
1673 
1674 	if (current == task)
1675 		return 0;
1676 
1677 	tcred = __task_cred(task);
1678 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1679 		    uid_eq(cred->uid, tcred->suid) &&
1680 		    uid_eq(cred->uid, tcred->uid)  &&
1681 		    gid_eq(cred->gid, tcred->egid) &&
1682 		    gid_eq(cred->gid, tcred->sgid) &&
1683 		    gid_eq(cred->gid, tcred->gid));
1684 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1685 		return -EPERM;
1686 
1687 	return security_task_prlimit(cred, tcred, flags);
1688 }
1689 
1690 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1691 		const struct rlimit64 __user *, new_rlim,
1692 		struct rlimit64 __user *, old_rlim)
1693 {
1694 	struct rlimit64 old64, new64;
1695 	struct rlimit old, new;
1696 	struct task_struct *tsk;
1697 	unsigned int checkflags = 0;
1698 	int ret;
1699 
1700 	if (old_rlim)
1701 		checkflags |= LSM_PRLIMIT_READ;
1702 
1703 	if (new_rlim) {
1704 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1705 			return -EFAULT;
1706 		rlim64_to_rlim(&new64, &new);
1707 		checkflags |= LSM_PRLIMIT_WRITE;
1708 	}
1709 
1710 	rcu_read_lock();
1711 	tsk = pid ? find_task_by_vpid(pid) : current;
1712 	if (!tsk) {
1713 		rcu_read_unlock();
1714 		return -ESRCH;
1715 	}
1716 	ret = check_prlimit_permission(tsk, checkflags);
1717 	if (ret) {
1718 		rcu_read_unlock();
1719 		return ret;
1720 	}
1721 	get_task_struct(tsk);
1722 	rcu_read_unlock();
1723 
1724 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1725 			old_rlim ? &old : NULL);
1726 
1727 	if (!ret && old_rlim) {
1728 		rlim_to_rlim64(&old, &old64);
1729 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1730 			ret = -EFAULT;
1731 	}
1732 
1733 	put_task_struct(tsk);
1734 	return ret;
1735 }
1736 
1737 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1738 {
1739 	struct rlimit new_rlim;
1740 
1741 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1742 		return -EFAULT;
1743 	return do_prlimit(current, resource, &new_rlim, NULL);
1744 }
1745 
1746 /*
1747  * It would make sense to put struct rusage in the task_struct,
1748  * except that would make the task_struct be *really big*.  After
1749  * task_struct gets moved into malloc'ed memory, it would
1750  * make sense to do this.  It will make moving the rest of the information
1751  * a lot simpler!  (Which we're not doing right now because we're not
1752  * measuring them yet).
1753  *
1754  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1755  * races with threads incrementing their own counters.  But since word
1756  * reads are atomic, we either get new values or old values and we don't
1757  * care which for the sums.  We always take the siglock to protect reading
1758  * the c* fields from p->signal from races with exit.c updating those
1759  * fields when reaping, so a sample either gets all the additions of a
1760  * given child after it's reaped, or none so this sample is before reaping.
1761  *
1762  * Locking:
1763  * We need to take the siglock for CHILDEREN, SELF and BOTH
1764  * for  the cases current multithreaded, non-current single threaded
1765  * non-current multithreaded.  Thread traversal is now safe with
1766  * the siglock held.
1767  * Strictly speaking, we donot need to take the siglock if we are current and
1768  * single threaded,  as no one else can take our signal_struct away, no one
1769  * else can  reap the  children to update signal->c* counters, and no one else
1770  * can race with the signal-> fields. If we do not take any lock, the
1771  * signal-> fields could be read out of order while another thread was just
1772  * exiting. So we should  place a read memory barrier when we avoid the lock.
1773  * On the writer side,  write memory barrier is implied in  __exit_signal
1774  * as __exit_signal releases  the siglock spinlock after updating the signal->
1775  * fields. But we don't do this yet to keep things simple.
1776  *
1777  */
1778 
1779 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1780 {
1781 	r->ru_nvcsw += t->nvcsw;
1782 	r->ru_nivcsw += t->nivcsw;
1783 	r->ru_minflt += t->min_flt;
1784 	r->ru_majflt += t->maj_flt;
1785 	r->ru_inblock += task_io_get_inblock(t);
1786 	r->ru_oublock += task_io_get_oublock(t);
1787 }
1788 
1789 void getrusage(struct task_struct *p, int who, struct rusage *r)
1790 {
1791 	struct task_struct *t;
1792 	unsigned long flags;
1793 	u64 tgutime, tgstime, utime, stime;
1794 	unsigned long maxrss;
1795 	struct mm_struct *mm;
1796 	struct signal_struct *sig = p->signal;
1797 	unsigned int seq = 0;
1798 
1799 retry:
1800 	memset(r, 0, sizeof(*r));
1801 	utime = stime = 0;
1802 	maxrss = 0;
1803 
1804 	if (who == RUSAGE_THREAD) {
1805 		task_cputime_adjusted(current, &utime, &stime);
1806 		accumulate_thread_rusage(p, r);
1807 		maxrss = sig->maxrss;
1808 		goto out_thread;
1809 	}
1810 
1811 	flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1812 
1813 	switch (who) {
1814 	case RUSAGE_BOTH:
1815 	case RUSAGE_CHILDREN:
1816 		utime = sig->cutime;
1817 		stime = sig->cstime;
1818 		r->ru_nvcsw = sig->cnvcsw;
1819 		r->ru_nivcsw = sig->cnivcsw;
1820 		r->ru_minflt = sig->cmin_flt;
1821 		r->ru_majflt = sig->cmaj_flt;
1822 		r->ru_inblock = sig->cinblock;
1823 		r->ru_oublock = sig->coublock;
1824 		maxrss = sig->cmaxrss;
1825 
1826 		if (who == RUSAGE_CHILDREN)
1827 			break;
1828 		fallthrough;
1829 
1830 	case RUSAGE_SELF:
1831 		r->ru_nvcsw += sig->nvcsw;
1832 		r->ru_nivcsw += sig->nivcsw;
1833 		r->ru_minflt += sig->min_flt;
1834 		r->ru_majflt += sig->maj_flt;
1835 		r->ru_inblock += sig->inblock;
1836 		r->ru_oublock += sig->oublock;
1837 		if (maxrss < sig->maxrss)
1838 			maxrss = sig->maxrss;
1839 
1840 		rcu_read_lock();
1841 		__for_each_thread(sig, t)
1842 			accumulate_thread_rusage(t, r);
1843 		rcu_read_unlock();
1844 
1845 		break;
1846 
1847 	default:
1848 		BUG();
1849 	}
1850 
1851 	if (need_seqretry(&sig->stats_lock, seq)) {
1852 		seq = 1;
1853 		goto retry;
1854 	}
1855 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1856 
1857 	if (who == RUSAGE_CHILDREN)
1858 		goto out_children;
1859 
1860 	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1861 	utime += tgutime;
1862 	stime += tgstime;
1863 
1864 out_thread:
1865 	mm = get_task_mm(p);
1866 	if (mm) {
1867 		setmax_mm_hiwater_rss(&maxrss, mm);
1868 		mmput(mm);
1869 	}
1870 
1871 out_children:
1872 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1873 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1874 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1875 }
1876 
1877 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1878 {
1879 	struct rusage r;
1880 
1881 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1882 	    who != RUSAGE_THREAD)
1883 		return -EINVAL;
1884 
1885 	getrusage(current, who, &r);
1886 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1887 }
1888 
1889 #ifdef CONFIG_COMPAT
1890 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1891 {
1892 	struct rusage r;
1893 
1894 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1895 	    who != RUSAGE_THREAD)
1896 		return -EINVAL;
1897 
1898 	getrusage(current, who, &r);
1899 	return put_compat_rusage(&r, ru);
1900 }
1901 #endif
1902 
1903 SYSCALL_DEFINE1(umask, int, mask)
1904 {
1905 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1906 	return mask;
1907 }
1908 
1909 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1910 {
1911 	struct fd exe;
1912 	struct inode *inode;
1913 	int err;
1914 
1915 	exe = fdget(fd);
1916 	if (!exe.file)
1917 		return -EBADF;
1918 
1919 	inode = file_inode(exe.file);
1920 
1921 	/*
1922 	 * Because the original mm->exe_file points to executable file, make
1923 	 * sure that this one is executable as well, to avoid breaking an
1924 	 * overall picture.
1925 	 */
1926 	err = -EACCES;
1927 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1928 		goto exit;
1929 
1930 	err = file_permission(exe.file, MAY_EXEC);
1931 	if (err)
1932 		goto exit;
1933 
1934 	err = replace_mm_exe_file(mm, exe.file);
1935 exit:
1936 	fdput(exe);
1937 	return err;
1938 }
1939 
1940 /*
1941  * Check arithmetic relations of passed addresses.
1942  *
1943  * WARNING: we don't require any capability here so be very careful
1944  * in what is allowed for modification from userspace.
1945  */
1946 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1947 {
1948 	unsigned long mmap_max_addr = TASK_SIZE;
1949 	int error = -EINVAL, i;
1950 
1951 	static const unsigned char offsets[] = {
1952 		offsetof(struct prctl_mm_map, start_code),
1953 		offsetof(struct prctl_mm_map, end_code),
1954 		offsetof(struct prctl_mm_map, start_data),
1955 		offsetof(struct prctl_mm_map, end_data),
1956 		offsetof(struct prctl_mm_map, start_brk),
1957 		offsetof(struct prctl_mm_map, brk),
1958 		offsetof(struct prctl_mm_map, start_stack),
1959 		offsetof(struct prctl_mm_map, arg_start),
1960 		offsetof(struct prctl_mm_map, arg_end),
1961 		offsetof(struct prctl_mm_map, env_start),
1962 		offsetof(struct prctl_mm_map, env_end),
1963 	};
1964 
1965 	/*
1966 	 * Make sure the members are not somewhere outside
1967 	 * of allowed address space.
1968 	 */
1969 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1970 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1971 
1972 		if ((unsigned long)val >= mmap_max_addr ||
1973 		    (unsigned long)val < mmap_min_addr)
1974 			goto out;
1975 	}
1976 
1977 	/*
1978 	 * Make sure the pairs are ordered.
1979 	 */
1980 #define __prctl_check_order(__m1, __op, __m2)				\
1981 	((unsigned long)prctl_map->__m1 __op				\
1982 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1983 	error  = __prctl_check_order(start_code, <, end_code);
1984 	error |= __prctl_check_order(start_data,<=, end_data);
1985 	error |= __prctl_check_order(start_brk, <=, brk);
1986 	error |= __prctl_check_order(arg_start, <=, arg_end);
1987 	error |= __prctl_check_order(env_start, <=, env_end);
1988 	if (error)
1989 		goto out;
1990 #undef __prctl_check_order
1991 
1992 	error = -EINVAL;
1993 
1994 	/*
1995 	 * Neither we should allow to override limits if they set.
1996 	 */
1997 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1998 			      prctl_map->start_brk, prctl_map->end_data,
1999 			      prctl_map->start_data))
2000 			goto out;
2001 
2002 	error = 0;
2003 out:
2004 	return error;
2005 }
2006 
2007 #ifdef CONFIG_CHECKPOINT_RESTORE
2008 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2009 {
2010 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2011 	unsigned long user_auxv[AT_VECTOR_SIZE];
2012 	struct mm_struct *mm = current->mm;
2013 	int error;
2014 
2015 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2016 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2017 
2018 	if (opt == PR_SET_MM_MAP_SIZE)
2019 		return put_user((unsigned int)sizeof(prctl_map),
2020 				(unsigned int __user *)addr);
2021 
2022 	if (data_size != sizeof(prctl_map))
2023 		return -EINVAL;
2024 
2025 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2026 		return -EFAULT;
2027 
2028 	error = validate_prctl_map_addr(&prctl_map);
2029 	if (error)
2030 		return error;
2031 
2032 	if (prctl_map.auxv_size) {
2033 		/*
2034 		 * Someone is trying to cheat the auxv vector.
2035 		 */
2036 		if (!prctl_map.auxv ||
2037 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2038 			return -EINVAL;
2039 
2040 		memset(user_auxv, 0, sizeof(user_auxv));
2041 		if (copy_from_user(user_auxv,
2042 				   (const void __user *)prctl_map.auxv,
2043 				   prctl_map.auxv_size))
2044 			return -EFAULT;
2045 
2046 		/* Last entry must be AT_NULL as specification requires */
2047 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2048 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2049 	}
2050 
2051 	if (prctl_map.exe_fd != (u32)-1) {
2052 		/*
2053 		 * Check if the current user is checkpoint/restore capable.
2054 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2055 		 * or CAP_CHECKPOINT_RESTORE.
2056 		 * Note that a user with access to ptrace can masquerade an
2057 		 * arbitrary program as any executable, even setuid ones.
2058 		 * This may have implications in the tomoyo subsystem.
2059 		 */
2060 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2061 			return -EPERM;
2062 
2063 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2064 		if (error)
2065 			return error;
2066 	}
2067 
2068 	/*
2069 	 * arg_lock protects concurrent updates but we still need mmap_lock for
2070 	 * read to exclude races with sys_brk.
2071 	 */
2072 	mmap_read_lock(mm);
2073 
2074 	/*
2075 	 * We don't validate if these members are pointing to
2076 	 * real present VMAs because application may have correspond
2077 	 * VMAs already unmapped and kernel uses these members for statistics
2078 	 * output in procfs mostly, except
2079 	 *
2080 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2081 	 *    for VMAs when updating these members so anything wrong written
2082 	 *    here cause kernel to swear at userspace program but won't lead
2083 	 *    to any problem in kernel itself
2084 	 */
2085 
2086 	spin_lock(&mm->arg_lock);
2087 	mm->start_code	= prctl_map.start_code;
2088 	mm->end_code	= prctl_map.end_code;
2089 	mm->start_data	= prctl_map.start_data;
2090 	mm->end_data	= prctl_map.end_data;
2091 	mm->start_brk	= prctl_map.start_brk;
2092 	mm->brk		= prctl_map.brk;
2093 	mm->start_stack	= prctl_map.start_stack;
2094 	mm->arg_start	= prctl_map.arg_start;
2095 	mm->arg_end	= prctl_map.arg_end;
2096 	mm->env_start	= prctl_map.env_start;
2097 	mm->env_end	= prctl_map.env_end;
2098 	spin_unlock(&mm->arg_lock);
2099 
2100 	/*
2101 	 * Note this update of @saved_auxv is lockless thus
2102 	 * if someone reads this member in procfs while we're
2103 	 * updating -- it may get partly updated results. It's
2104 	 * known and acceptable trade off: we leave it as is to
2105 	 * not introduce additional locks here making the kernel
2106 	 * more complex.
2107 	 */
2108 	if (prctl_map.auxv_size)
2109 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2110 
2111 	mmap_read_unlock(mm);
2112 	return 0;
2113 }
2114 #endif /* CONFIG_CHECKPOINT_RESTORE */
2115 
2116 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2117 			  unsigned long len)
2118 {
2119 	/*
2120 	 * This doesn't move the auxiliary vector itself since it's pinned to
2121 	 * mm_struct, but it permits filling the vector with new values.  It's
2122 	 * up to the caller to provide sane values here, otherwise userspace
2123 	 * tools which use this vector might be unhappy.
2124 	 */
2125 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2126 
2127 	if (len > sizeof(user_auxv))
2128 		return -EINVAL;
2129 
2130 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2131 		return -EFAULT;
2132 
2133 	/* Make sure the last entry is always AT_NULL */
2134 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2135 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2136 
2137 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2138 
2139 	task_lock(current);
2140 	memcpy(mm->saved_auxv, user_auxv, len);
2141 	task_unlock(current);
2142 
2143 	return 0;
2144 }
2145 
2146 static int prctl_set_mm(int opt, unsigned long addr,
2147 			unsigned long arg4, unsigned long arg5)
2148 {
2149 	struct mm_struct *mm = current->mm;
2150 	struct prctl_mm_map prctl_map = {
2151 		.auxv = NULL,
2152 		.auxv_size = 0,
2153 		.exe_fd = -1,
2154 	};
2155 	struct vm_area_struct *vma;
2156 	int error;
2157 
2158 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2159 			      opt != PR_SET_MM_MAP &&
2160 			      opt != PR_SET_MM_MAP_SIZE)))
2161 		return -EINVAL;
2162 
2163 #ifdef CONFIG_CHECKPOINT_RESTORE
2164 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2165 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2166 #endif
2167 
2168 	if (!capable(CAP_SYS_RESOURCE))
2169 		return -EPERM;
2170 
2171 	if (opt == PR_SET_MM_EXE_FILE)
2172 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2173 
2174 	if (opt == PR_SET_MM_AUXV)
2175 		return prctl_set_auxv(mm, addr, arg4);
2176 
2177 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2178 		return -EINVAL;
2179 
2180 	error = -EINVAL;
2181 
2182 	/*
2183 	 * arg_lock protects concurrent updates of arg boundaries, we need
2184 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2185 	 * validation.
2186 	 */
2187 	mmap_read_lock(mm);
2188 	vma = find_vma(mm, addr);
2189 
2190 	spin_lock(&mm->arg_lock);
2191 	prctl_map.start_code	= mm->start_code;
2192 	prctl_map.end_code	= mm->end_code;
2193 	prctl_map.start_data	= mm->start_data;
2194 	prctl_map.end_data	= mm->end_data;
2195 	prctl_map.start_brk	= mm->start_brk;
2196 	prctl_map.brk		= mm->brk;
2197 	prctl_map.start_stack	= mm->start_stack;
2198 	prctl_map.arg_start	= mm->arg_start;
2199 	prctl_map.arg_end	= mm->arg_end;
2200 	prctl_map.env_start	= mm->env_start;
2201 	prctl_map.env_end	= mm->env_end;
2202 
2203 	switch (opt) {
2204 	case PR_SET_MM_START_CODE:
2205 		prctl_map.start_code = addr;
2206 		break;
2207 	case PR_SET_MM_END_CODE:
2208 		prctl_map.end_code = addr;
2209 		break;
2210 	case PR_SET_MM_START_DATA:
2211 		prctl_map.start_data = addr;
2212 		break;
2213 	case PR_SET_MM_END_DATA:
2214 		prctl_map.end_data = addr;
2215 		break;
2216 	case PR_SET_MM_START_STACK:
2217 		prctl_map.start_stack = addr;
2218 		break;
2219 	case PR_SET_MM_START_BRK:
2220 		prctl_map.start_brk = addr;
2221 		break;
2222 	case PR_SET_MM_BRK:
2223 		prctl_map.brk = addr;
2224 		break;
2225 	case PR_SET_MM_ARG_START:
2226 		prctl_map.arg_start = addr;
2227 		break;
2228 	case PR_SET_MM_ARG_END:
2229 		prctl_map.arg_end = addr;
2230 		break;
2231 	case PR_SET_MM_ENV_START:
2232 		prctl_map.env_start = addr;
2233 		break;
2234 	case PR_SET_MM_ENV_END:
2235 		prctl_map.env_end = addr;
2236 		break;
2237 	default:
2238 		goto out;
2239 	}
2240 
2241 	error = validate_prctl_map_addr(&prctl_map);
2242 	if (error)
2243 		goto out;
2244 
2245 	switch (opt) {
2246 	/*
2247 	 * If command line arguments and environment
2248 	 * are placed somewhere else on stack, we can
2249 	 * set them up here, ARG_START/END to setup
2250 	 * command line arguments and ENV_START/END
2251 	 * for environment.
2252 	 */
2253 	case PR_SET_MM_START_STACK:
2254 	case PR_SET_MM_ARG_START:
2255 	case PR_SET_MM_ARG_END:
2256 	case PR_SET_MM_ENV_START:
2257 	case PR_SET_MM_ENV_END:
2258 		if (!vma) {
2259 			error = -EFAULT;
2260 			goto out;
2261 		}
2262 	}
2263 
2264 	mm->start_code	= prctl_map.start_code;
2265 	mm->end_code	= prctl_map.end_code;
2266 	mm->start_data	= prctl_map.start_data;
2267 	mm->end_data	= prctl_map.end_data;
2268 	mm->start_brk	= prctl_map.start_brk;
2269 	mm->brk		= prctl_map.brk;
2270 	mm->start_stack	= prctl_map.start_stack;
2271 	mm->arg_start	= prctl_map.arg_start;
2272 	mm->arg_end	= prctl_map.arg_end;
2273 	mm->env_start	= prctl_map.env_start;
2274 	mm->env_end	= prctl_map.env_end;
2275 
2276 	error = 0;
2277 out:
2278 	spin_unlock(&mm->arg_lock);
2279 	mmap_read_unlock(mm);
2280 	return error;
2281 }
2282 
2283 #ifdef CONFIG_CHECKPOINT_RESTORE
2284 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2285 {
2286 	return put_user(me->clear_child_tid, tid_addr);
2287 }
2288 #else
2289 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2290 {
2291 	return -EINVAL;
2292 }
2293 #endif
2294 
2295 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2296 {
2297 	/*
2298 	 * If task has has_child_subreaper - all its descendants
2299 	 * already have these flag too and new descendants will
2300 	 * inherit it on fork, skip them.
2301 	 *
2302 	 * If we've found child_reaper - skip descendants in
2303 	 * it's subtree as they will never get out pidns.
2304 	 */
2305 	if (p->signal->has_child_subreaper ||
2306 	    is_child_reaper(task_pid(p)))
2307 		return 0;
2308 
2309 	p->signal->has_child_subreaper = 1;
2310 	return 1;
2311 }
2312 
2313 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2314 {
2315 	return -EINVAL;
2316 }
2317 
2318 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2319 				    unsigned long ctrl)
2320 {
2321 	return -EINVAL;
2322 }
2323 
2324 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2325 
2326 #ifdef CONFIG_ANON_VMA_NAME
2327 
2328 #define ANON_VMA_NAME_MAX_LEN		80
2329 #define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2330 
2331 static inline bool is_valid_name_char(char ch)
2332 {
2333 	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2334 	return ch > 0x1f && ch < 0x7f &&
2335 		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2336 }
2337 
2338 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2339 			 unsigned long size, unsigned long arg)
2340 {
2341 	struct mm_struct *mm = current->mm;
2342 	const char __user *uname;
2343 	struct anon_vma_name *anon_name = NULL;
2344 	int error;
2345 
2346 	switch (opt) {
2347 	case PR_SET_VMA_ANON_NAME:
2348 		uname = (const char __user *)arg;
2349 		if (uname) {
2350 			char *name, *pch;
2351 
2352 			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2353 			if (IS_ERR(name))
2354 				return PTR_ERR(name);
2355 
2356 			for (pch = name; *pch != '\0'; pch++) {
2357 				if (!is_valid_name_char(*pch)) {
2358 					kfree(name);
2359 					return -EINVAL;
2360 				}
2361 			}
2362 			/* anon_vma has its own copy */
2363 			anon_name = anon_vma_name_alloc(name);
2364 			kfree(name);
2365 			if (!anon_name)
2366 				return -ENOMEM;
2367 
2368 		}
2369 
2370 		mmap_write_lock(mm);
2371 		error = madvise_set_anon_name(mm, addr, size, anon_name);
2372 		mmap_write_unlock(mm);
2373 		anon_vma_name_put(anon_name);
2374 		break;
2375 	default:
2376 		error = -EINVAL;
2377 	}
2378 
2379 	return error;
2380 }
2381 
2382 #else /* CONFIG_ANON_VMA_NAME */
2383 static int prctl_set_vma(unsigned long opt, unsigned long start,
2384 			 unsigned long size, unsigned long arg)
2385 {
2386 	return -EINVAL;
2387 }
2388 #endif /* CONFIG_ANON_VMA_NAME */
2389 
2390 static inline unsigned long get_current_mdwe(void)
2391 {
2392 	unsigned long ret = 0;
2393 
2394 	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2395 		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2396 	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2397 		ret |= PR_MDWE_NO_INHERIT;
2398 
2399 	return ret;
2400 }
2401 
2402 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2403 				 unsigned long arg4, unsigned long arg5)
2404 {
2405 	unsigned long current_bits;
2406 
2407 	if (arg3 || arg4 || arg5)
2408 		return -EINVAL;
2409 
2410 	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2411 		return -EINVAL;
2412 
2413 	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2414 	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2415 		return -EINVAL;
2416 
2417 	/*
2418 	 * EOPNOTSUPP might be more appropriate here in principle, but
2419 	 * existing userspace depends on EINVAL specifically.
2420 	 */
2421 	if (!arch_memory_deny_write_exec_supported())
2422 		return -EINVAL;
2423 
2424 	current_bits = get_current_mdwe();
2425 	if (current_bits && current_bits != bits)
2426 		return -EPERM; /* Cannot unset the flags */
2427 
2428 	if (bits & PR_MDWE_NO_INHERIT)
2429 		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2430 	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2431 		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2432 
2433 	return 0;
2434 }
2435 
2436 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2437 				 unsigned long arg4, unsigned long arg5)
2438 {
2439 	if (arg2 || arg3 || arg4 || arg5)
2440 		return -EINVAL;
2441 	return get_current_mdwe();
2442 }
2443 
2444 static int prctl_get_auxv(void __user *addr, unsigned long len)
2445 {
2446 	struct mm_struct *mm = current->mm;
2447 	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2448 
2449 	if (size && copy_to_user(addr, mm->saved_auxv, size))
2450 		return -EFAULT;
2451 	return sizeof(mm->saved_auxv);
2452 }
2453 
2454 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2455 		unsigned long, arg4, unsigned long, arg5)
2456 {
2457 	struct task_struct *me = current;
2458 	unsigned char comm[sizeof(me->comm)];
2459 	long error;
2460 
2461 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2462 	if (error != -ENOSYS)
2463 		return error;
2464 
2465 	error = 0;
2466 	switch (option) {
2467 	case PR_SET_PDEATHSIG:
2468 		if (!valid_signal(arg2)) {
2469 			error = -EINVAL;
2470 			break;
2471 		}
2472 		me->pdeath_signal = arg2;
2473 		break;
2474 	case PR_GET_PDEATHSIG:
2475 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2476 		break;
2477 	case PR_GET_DUMPABLE:
2478 		error = get_dumpable(me->mm);
2479 		break;
2480 	case PR_SET_DUMPABLE:
2481 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2482 			error = -EINVAL;
2483 			break;
2484 		}
2485 		set_dumpable(me->mm, arg2);
2486 		break;
2487 
2488 	case PR_SET_UNALIGN:
2489 		error = SET_UNALIGN_CTL(me, arg2);
2490 		break;
2491 	case PR_GET_UNALIGN:
2492 		error = GET_UNALIGN_CTL(me, arg2);
2493 		break;
2494 	case PR_SET_FPEMU:
2495 		error = SET_FPEMU_CTL(me, arg2);
2496 		break;
2497 	case PR_GET_FPEMU:
2498 		error = GET_FPEMU_CTL(me, arg2);
2499 		break;
2500 	case PR_SET_FPEXC:
2501 		error = SET_FPEXC_CTL(me, arg2);
2502 		break;
2503 	case PR_GET_FPEXC:
2504 		error = GET_FPEXC_CTL(me, arg2);
2505 		break;
2506 	case PR_GET_TIMING:
2507 		error = PR_TIMING_STATISTICAL;
2508 		break;
2509 	case PR_SET_TIMING:
2510 		if (arg2 != PR_TIMING_STATISTICAL)
2511 			error = -EINVAL;
2512 		break;
2513 	case PR_SET_NAME:
2514 		comm[sizeof(me->comm) - 1] = 0;
2515 		if (strncpy_from_user(comm, (char __user *)arg2,
2516 				      sizeof(me->comm) - 1) < 0)
2517 			return -EFAULT;
2518 		set_task_comm(me, comm);
2519 		proc_comm_connector(me);
2520 		break;
2521 	case PR_GET_NAME:
2522 		get_task_comm(comm, me);
2523 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2524 			return -EFAULT;
2525 		break;
2526 	case PR_GET_ENDIAN:
2527 		error = GET_ENDIAN(me, arg2);
2528 		break;
2529 	case PR_SET_ENDIAN:
2530 		error = SET_ENDIAN(me, arg2);
2531 		break;
2532 	case PR_GET_SECCOMP:
2533 		error = prctl_get_seccomp();
2534 		break;
2535 	case PR_SET_SECCOMP:
2536 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2537 		break;
2538 	case PR_GET_TSC:
2539 		error = GET_TSC_CTL(arg2);
2540 		break;
2541 	case PR_SET_TSC:
2542 		error = SET_TSC_CTL(arg2);
2543 		break;
2544 	case PR_TASK_PERF_EVENTS_DISABLE:
2545 		error = perf_event_task_disable();
2546 		break;
2547 	case PR_TASK_PERF_EVENTS_ENABLE:
2548 		error = perf_event_task_enable();
2549 		break;
2550 	case PR_GET_TIMERSLACK:
2551 		if (current->timer_slack_ns > ULONG_MAX)
2552 			error = ULONG_MAX;
2553 		else
2554 			error = current->timer_slack_ns;
2555 		break;
2556 	case PR_SET_TIMERSLACK:
2557 		if (arg2 <= 0)
2558 			current->timer_slack_ns =
2559 					current->default_timer_slack_ns;
2560 		else
2561 			current->timer_slack_ns = arg2;
2562 		break;
2563 	case PR_MCE_KILL:
2564 		if (arg4 | arg5)
2565 			return -EINVAL;
2566 		switch (arg2) {
2567 		case PR_MCE_KILL_CLEAR:
2568 			if (arg3 != 0)
2569 				return -EINVAL;
2570 			current->flags &= ~PF_MCE_PROCESS;
2571 			break;
2572 		case PR_MCE_KILL_SET:
2573 			current->flags |= PF_MCE_PROCESS;
2574 			if (arg3 == PR_MCE_KILL_EARLY)
2575 				current->flags |= PF_MCE_EARLY;
2576 			else if (arg3 == PR_MCE_KILL_LATE)
2577 				current->flags &= ~PF_MCE_EARLY;
2578 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2579 				current->flags &=
2580 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2581 			else
2582 				return -EINVAL;
2583 			break;
2584 		default:
2585 			return -EINVAL;
2586 		}
2587 		break;
2588 	case PR_MCE_KILL_GET:
2589 		if (arg2 | arg3 | arg4 | arg5)
2590 			return -EINVAL;
2591 		if (current->flags & PF_MCE_PROCESS)
2592 			error = (current->flags & PF_MCE_EARLY) ?
2593 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2594 		else
2595 			error = PR_MCE_KILL_DEFAULT;
2596 		break;
2597 	case PR_SET_MM:
2598 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2599 		break;
2600 	case PR_GET_TID_ADDRESS:
2601 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2602 		break;
2603 	case PR_SET_CHILD_SUBREAPER:
2604 		me->signal->is_child_subreaper = !!arg2;
2605 		if (!arg2)
2606 			break;
2607 
2608 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2609 		break;
2610 	case PR_GET_CHILD_SUBREAPER:
2611 		error = put_user(me->signal->is_child_subreaper,
2612 				 (int __user *)arg2);
2613 		break;
2614 	case PR_SET_NO_NEW_PRIVS:
2615 		if (arg2 != 1 || arg3 || arg4 || arg5)
2616 			return -EINVAL;
2617 
2618 		task_set_no_new_privs(current);
2619 		break;
2620 	case PR_GET_NO_NEW_PRIVS:
2621 		if (arg2 || arg3 || arg4 || arg5)
2622 			return -EINVAL;
2623 		return task_no_new_privs(current) ? 1 : 0;
2624 	case PR_GET_THP_DISABLE:
2625 		if (arg2 || arg3 || arg4 || arg5)
2626 			return -EINVAL;
2627 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2628 		break;
2629 	case PR_SET_THP_DISABLE:
2630 		if (arg3 || arg4 || arg5)
2631 			return -EINVAL;
2632 		if (mmap_write_lock_killable(me->mm))
2633 			return -EINTR;
2634 		if (arg2)
2635 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2636 		else
2637 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2638 		mmap_write_unlock(me->mm);
2639 		break;
2640 	case PR_MPX_ENABLE_MANAGEMENT:
2641 	case PR_MPX_DISABLE_MANAGEMENT:
2642 		/* No longer implemented: */
2643 		return -EINVAL;
2644 	case PR_SET_FP_MODE:
2645 		error = SET_FP_MODE(me, arg2);
2646 		break;
2647 	case PR_GET_FP_MODE:
2648 		error = GET_FP_MODE(me);
2649 		break;
2650 	case PR_SVE_SET_VL:
2651 		error = SVE_SET_VL(arg2);
2652 		break;
2653 	case PR_SVE_GET_VL:
2654 		error = SVE_GET_VL();
2655 		break;
2656 	case PR_SME_SET_VL:
2657 		error = SME_SET_VL(arg2);
2658 		break;
2659 	case PR_SME_GET_VL:
2660 		error = SME_GET_VL();
2661 		break;
2662 	case PR_GET_SPECULATION_CTRL:
2663 		if (arg3 || arg4 || arg5)
2664 			return -EINVAL;
2665 		error = arch_prctl_spec_ctrl_get(me, arg2);
2666 		break;
2667 	case PR_SET_SPECULATION_CTRL:
2668 		if (arg4 || arg5)
2669 			return -EINVAL;
2670 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2671 		break;
2672 	case PR_PAC_RESET_KEYS:
2673 		if (arg3 || arg4 || arg5)
2674 			return -EINVAL;
2675 		error = PAC_RESET_KEYS(me, arg2);
2676 		break;
2677 	case PR_PAC_SET_ENABLED_KEYS:
2678 		if (arg4 || arg5)
2679 			return -EINVAL;
2680 		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2681 		break;
2682 	case PR_PAC_GET_ENABLED_KEYS:
2683 		if (arg2 || arg3 || arg4 || arg5)
2684 			return -EINVAL;
2685 		error = PAC_GET_ENABLED_KEYS(me);
2686 		break;
2687 	case PR_SET_TAGGED_ADDR_CTRL:
2688 		if (arg3 || arg4 || arg5)
2689 			return -EINVAL;
2690 		error = SET_TAGGED_ADDR_CTRL(arg2);
2691 		break;
2692 	case PR_GET_TAGGED_ADDR_CTRL:
2693 		if (arg2 || arg3 || arg4 || arg5)
2694 			return -EINVAL;
2695 		error = GET_TAGGED_ADDR_CTRL();
2696 		break;
2697 	case PR_SET_IO_FLUSHER:
2698 		if (!capable(CAP_SYS_RESOURCE))
2699 			return -EPERM;
2700 
2701 		if (arg3 || arg4 || arg5)
2702 			return -EINVAL;
2703 
2704 		if (arg2 == 1)
2705 			current->flags |= PR_IO_FLUSHER;
2706 		else if (!arg2)
2707 			current->flags &= ~PR_IO_FLUSHER;
2708 		else
2709 			return -EINVAL;
2710 		break;
2711 	case PR_GET_IO_FLUSHER:
2712 		if (!capable(CAP_SYS_RESOURCE))
2713 			return -EPERM;
2714 
2715 		if (arg2 || arg3 || arg4 || arg5)
2716 			return -EINVAL;
2717 
2718 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2719 		break;
2720 	case PR_SET_SYSCALL_USER_DISPATCH:
2721 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2722 						  (char __user *) arg5);
2723 		break;
2724 #ifdef CONFIG_SCHED_CORE
2725 	case PR_SCHED_CORE:
2726 		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2727 		break;
2728 #endif
2729 	case PR_SET_MDWE:
2730 		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2731 		break;
2732 	case PR_GET_MDWE:
2733 		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2734 		break;
2735 	case PR_PPC_GET_DEXCR:
2736 		if (arg3 || arg4 || arg5)
2737 			return -EINVAL;
2738 		error = PPC_GET_DEXCR_ASPECT(me, arg2);
2739 		break;
2740 	case PR_PPC_SET_DEXCR:
2741 		if (arg4 || arg5)
2742 			return -EINVAL;
2743 		error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2744 		break;
2745 	case PR_SET_VMA:
2746 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2747 		break;
2748 	case PR_GET_AUXV:
2749 		if (arg4 || arg5)
2750 			return -EINVAL;
2751 		error = prctl_get_auxv((void __user *)arg2, arg3);
2752 		break;
2753 #ifdef CONFIG_KSM
2754 	case PR_SET_MEMORY_MERGE:
2755 		if (arg3 || arg4 || arg5)
2756 			return -EINVAL;
2757 		if (mmap_write_lock_killable(me->mm))
2758 			return -EINTR;
2759 
2760 		if (arg2)
2761 			error = ksm_enable_merge_any(me->mm);
2762 		else
2763 			error = ksm_disable_merge_any(me->mm);
2764 		mmap_write_unlock(me->mm);
2765 		break;
2766 	case PR_GET_MEMORY_MERGE:
2767 		if (arg2 || arg3 || arg4 || arg5)
2768 			return -EINVAL;
2769 
2770 		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2771 		break;
2772 #endif
2773 	case PR_RISCV_V_SET_CONTROL:
2774 		error = RISCV_V_SET_CONTROL(arg2);
2775 		break;
2776 	case PR_RISCV_V_GET_CONTROL:
2777 		error = RISCV_V_GET_CONTROL();
2778 		break;
2779 	default:
2780 		error = -EINVAL;
2781 		break;
2782 	}
2783 	return error;
2784 }
2785 
2786 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2787 		struct getcpu_cache __user *, unused)
2788 {
2789 	int err = 0;
2790 	int cpu = raw_smp_processor_id();
2791 
2792 	if (cpup)
2793 		err |= put_user(cpu, cpup);
2794 	if (nodep)
2795 		err |= put_user(cpu_to_node(cpu), nodep);
2796 	return err ? -EFAULT : 0;
2797 }
2798 
2799 /**
2800  * do_sysinfo - fill in sysinfo struct
2801  * @info: pointer to buffer to fill
2802  */
2803 static int do_sysinfo(struct sysinfo *info)
2804 {
2805 	unsigned long mem_total, sav_total;
2806 	unsigned int mem_unit, bitcount;
2807 	struct timespec64 tp;
2808 
2809 	memset(info, 0, sizeof(struct sysinfo));
2810 
2811 	ktime_get_boottime_ts64(&tp);
2812 	timens_add_boottime(&tp);
2813 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2814 
2815 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2816 
2817 	info->procs = nr_threads;
2818 
2819 	si_meminfo(info);
2820 	si_swapinfo(info);
2821 
2822 	/*
2823 	 * If the sum of all the available memory (i.e. ram + swap)
2824 	 * is less than can be stored in a 32 bit unsigned long then
2825 	 * we can be binary compatible with 2.2.x kernels.  If not,
2826 	 * well, in that case 2.2.x was broken anyways...
2827 	 *
2828 	 *  -Erik Andersen <andersee@debian.org>
2829 	 */
2830 
2831 	mem_total = info->totalram + info->totalswap;
2832 	if (mem_total < info->totalram || mem_total < info->totalswap)
2833 		goto out;
2834 	bitcount = 0;
2835 	mem_unit = info->mem_unit;
2836 	while (mem_unit > 1) {
2837 		bitcount++;
2838 		mem_unit >>= 1;
2839 		sav_total = mem_total;
2840 		mem_total <<= 1;
2841 		if (mem_total < sav_total)
2842 			goto out;
2843 	}
2844 
2845 	/*
2846 	 * If mem_total did not overflow, multiply all memory values by
2847 	 * info->mem_unit and set it to 1.  This leaves things compatible
2848 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2849 	 * kernels...
2850 	 */
2851 
2852 	info->mem_unit = 1;
2853 	info->totalram <<= bitcount;
2854 	info->freeram <<= bitcount;
2855 	info->sharedram <<= bitcount;
2856 	info->bufferram <<= bitcount;
2857 	info->totalswap <<= bitcount;
2858 	info->freeswap <<= bitcount;
2859 	info->totalhigh <<= bitcount;
2860 	info->freehigh <<= bitcount;
2861 
2862 out:
2863 	return 0;
2864 }
2865 
2866 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2867 {
2868 	struct sysinfo val;
2869 
2870 	do_sysinfo(&val);
2871 
2872 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2873 		return -EFAULT;
2874 
2875 	return 0;
2876 }
2877 
2878 #ifdef CONFIG_COMPAT
2879 struct compat_sysinfo {
2880 	s32 uptime;
2881 	u32 loads[3];
2882 	u32 totalram;
2883 	u32 freeram;
2884 	u32 sharedram;
2885 	u32 bufferram;
2886 	u32 totalswap;
2887 	u32 freeswap;
2888 	u16 procs;
2889 	u16 pad;
2890 	u32 totalhigh;
2891 	u32 freehigh;
2892 	u32 mem_unit;
2893 	char _f[20-2*sizeof(u32)-sizeof(int)];
2894 };
2895 
2896 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2897 {
2898 	struct sysinfo s;
2899 	struct compat_sysinfo s_32;
2900 
2901 	do_sysinfo(&s);
2902 
2903 	/* Check to see if any memory value is too large for 32-bit and scale
2904 	 *  down if needed
2905 	 */
2906 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2907 		int bitcount = 0;
2908 
2909 		while (s.mem_unit < PAGE_SIZE) {
2910 			s.mem_unit <<= 1;
2911 			bitcount++;
2912 		}
2913 
2914 		s.totalram >>= bitcount;
2915 		s.freeram >>= bitcount;
2916 		s.sharedram >>= bitcount;
2917 		s.bufferram >>= bitcount;
2918 		s.totalswap >>= bitcount;
2919 		s.freeswap >>= bitcount;
2920 		s.totalhigh >>= bitcount;
2921 		s.freehigh >>= bitcount;
2922 	}
2923 
2924 	memset(&s_32, 0, sizeof(s_32));
2925 	s_32.uptime = s.uptime;
2926 	s_32.loads[0] = s.loads[0];
2927 	s_32.loads[1] = s.loads[1];
2928 	s_32.loads[2] = s.loads[2];
2929 	s_32.totalram = s.totalram;
2930 	s_32.freeram = s.freeram;
2931 	s_32.sharedram = s.sharedram;
2932 	s_32.bufferram = s.bufferram;
2933 	s_32.totalswap = s.totalswap;
2934 	s_32.freeswap = s.freeswap;
2935 	s_32.procs = s.procs;
2936 	s_32.totalhigh = s.totalhigh;
2937 	s_32.freehigh = s.freehigh;
2938 	s_32.mem_unit = s.mem_unit;
2939 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2940 		return -EFAULT;
2941 	return 0;
2942 }
2943 #endif /* CONFIG_COMPAT */
2944