xref: /linux/kernel/sys.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/dcookies.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 
34 #include <linux/compat.h>
35 #include <linux/syscalls.h>
36 #include <linux/kprobes.h>
37 
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/unistd.h>
41 
42 #ifndef SET_UNALIGN_CTL
43 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
44 #endif
45 #ifndef GET_UNALIGN_CTL
46 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
47 #endif
48 #ifndef SET_FPEMU_CTL
49 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
50 #endif
51 #ifndef GET_FPEMU_CTL
52 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
53 #endif
54 #ifndef SET_FPEXC_CTL
55 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
56 #endif
57 #ifndef GET_FPEXC_CTL
58 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
59 #endif
60 
61 /*
62  * this is where the system-wide overflow UID and GID are defined, for
63  * architectures that now have 32-bit UID/GID but didn't in the past
64  */
65 
66 int overflowuid = DEFAULT_OVERFLOWUID;
67 int overflowgid = DEFAULT_OVERFLOWGID;
68 
69 #ifdef CONFIG_UID16
70 EXPORT_SYMBOL(overflowuid);
71 EXPORT_SYMBOL(overflowgid);
72 #endif
73 
74 /*
75  * the same as above, but for filesystems which can only store a 16-bit
76  * UID and GID. as such, this is needed on all architectures
77  */
78 
79 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
80 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
81 
82 EXPORT_SYMBOL(fs_overflowuid);
83 EXPORT_SYMBOL(fs_overflowgid);
84 
85 /*
86  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
87  */
88 
89 int C_A_D = 1;
90 int cad_pid = 1;
91 
92 /*
93  *	Notifier list for kernel code which wants to be called
94  *	at shutdown. This is used to stop any idling DMA operations
95  *	and the like.
96  */
97 
98 static struct notifier_block *reboot_notifier_list;
99 static DEFINE_RWLOCK(notifier_lock);
100 
101 /**
102  *	notifier_chain_register	- Add notifier to a notifier chain
103  *	@list: Pointer to root list pointer
104  *	@n: New entry in notifier chain
105  *
106  *	Adds a notifier to a notifier chain.
107  *
108  *	Currently always returns zero.
109  */
110 
111 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
112 {
113 	write_lock(&notifier_lock);
114 	while(*list)
115 	{
116 		if(n->priority > (*list)->priority)
117 			break;
118 		list= &((*list)->next);
119 	}
120 	n->next = *list;
121 	*list=n;
122 	write_unlock(&notifier_lock);
123 	return 0;
124 }
125 
126 EXPORT_SYMBOL(notifier_chain_register);
127 
128 /**
129  *	notifier_chain_unregister - Remove notifier from a notifier chain
130  *	@nl: Pointer to root list pointer
131  *	@n: New entry in notifier chain
132  *
133  *	Removes a notifier from a notifier chain.
134  *
135  *	Returns zero on success, or %-ENOENT on failure.
136  */
137 
138 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
139 {
140 	write_lock(&notifier_lock);
141 	while((*nl)!=NULL)
142 	{
143 		if((*nl)==n)
144 		{
145 			*nl=n->next;
146 			write_unlock(&notifier_lock);
147 			return 0;
148 		}
149 		nl=&((*nl)->next);
150 	}
151 	write_unlock(&notifier_lock);
152 	return -ENOENT;
153 }
154 
155 EXPORT_SYMBOL(notifier_chain_unregister);
156 
157 /**
158  *	notifier_call_chain - Call functions in a notifier chain
159  *	@n: Pointer to root pointer of notifier chain
160  *	@val: Value passed unmodified to notifier function
161  *	@v: Pointer passed unmodified to notifier function
162  *
163  *	Calls each function in a notifier chain in turn.
164  *
165  *	If the return value of the notifier can be and'd
166  *	with %NOTIFY_STOP_MASK, then notifier_call_chain
167  *	will return immediately, with the return value of
168  *	the notifier function which halted execution.
169  *	Otherwise, the return value is the return value
170  *	of the last notifier function called.
171  */
172 
173 int __kprobes notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
174 {
175 	int ret=NOTIFY_DONE;
176 	struct notifier_block *nb = *n;
177 
178 	while(nb)
179 	{
180 		ret=nb->notifier_call(nb,val,v);
181 		if(ret&NOTIFY_STOP_MASK)
182 		{
183 			return ret;
184 		}
185 		nb=nb->next;
186 	}
187 	return ret;
188 }
189 
190 EXPORT_SYMBOL(notifier_call_chain);
191 
192 /**
193  *	register_reboot_notifier - Register function to be called at reboot time
194  *	@nb: Info about notifier function to be called
195  *
196  *	Registers a function with the list of functions
197  *	to be called at reboot time.
198  *
199  *	Currently always returns zero, as notifier_chain_register
200  *	always returns zero.
201  */
202 
203 int register_reboot_notifier(struct notifier_block * nb)
204 {
205 	return notifier_chain_register(&reboot_notifier_list, nb);
206 }
207 
208 EXPORT_SYMBOL(register_reboot_notifier);
209 
210 /**
211  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
212  *	@nb: Hook to be unregistered
213  *
214  *	Unregisters a previously registered reboot
215  *	notifier function.
216  *
217  *	Returns zero on success, or %-ENOENT on failure.
218  */
219 
220 int unregister_reboot_notifier(struct notifier_block * nb)
221 {
222 	return notifier_chain_unregister(&reboot_notifier_list, nb);
223 }
224 
225 EXPORT_SYMBOL(unregister_reboot_notifier);
226 
227 #ifndef CONFIG_SECURITY
228 int capable(int cap)
229 {
230         if (cap_raised(current->cap_effective, cap)) {
231 	       current->flags |= PF_SUPERPRIV;
232 	       return 1;
233         }
234         return 0;
235 }
236 EXPORT_SYMBOL(capable);
237 #endif
238 
239 static int set_one_prio(struct task_struct *p, int niceval, int error)
240 {
241 	int no_nice;
242 
243 	if (p->uid != current->euid &&
244 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
245 		error = -EPERM;
246 		goto out;
247 	}
248 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
249 		error = -EACCES;
250 		goto out;
251 	}
252 	no_nice = security_task_setnice(p, niceval);
253 	if (no_nice) {
254 		error = no_nice;
255 		goto out;
256 	}
257 	if (error == -ESRCH)
258 		error = 0;
259 	set_user_nice(p, niceval);
260 out:
261 	return error;
262 }
263 
264 asmlinkage long sys_setpriority(int which, int who, int niceval)
265 {
266 	struct task_struct *g, *p;
267 	struct user_struct *user;
268 	int error = -EINVAL;
269 
270 	if (which > 2 || which < 0)
271 		goto out;
272 
273 	/* normalize: avoid signed division (rounding problems) */
274 	error = -ESRCH;
275 	if (niceval < -20)
276 		niceval = -20;
277 	if (niceval > 19)
278 		niceval = 19;
279 
280 	read_lock(&tasklist_lock);
281 	switch (which) {
282 		case PRIO_PROCESS:
283 			if (!who)
284 				who = current->pid;
285 			p = find_task_by_pid(who);
286 			if (p)
287 				error = set_one_prio(p, niceval, error);
288 			break;
289 		case PRIO_PGRP:
290 			if (!who)
291 				who = process_group(current);
292 			do_each_task_pid(who, PIDTYPE_PGID, p) {
293 				error = set_one_prio(p, niceval, error);
294 			} while_each_task_pid(who, PIDTYPE_PGID, p);
295 			break;
296 		case PRIO_USER:
297 			user = current->user;
298 			if (!who)
299 				who = current->uid;
300 			else
301 				if ((who != current->uid) && !(user = find_user(who)))
302 					goto out_unlock;	/* No processes for this user */
303 
304 			do_each_thread(g, p)
305 				if (p->uid == who)
306 					error = set_one_prio(p, niceval, error);
307 			while_each_thread(g, p);
308 			if (who != current->uid)
309 				free_uid(user);		/* For find_user() */
310 			break;
311 	}
312 out_unlock:
313 	read_unlock(&tasklist_lock);
314 out:
315 	return error;
316 }
317 
318 /*
319  * Ugh. To avoid negative return values, "getpriority()" will
320  * not return the normal nice-value, but a negated value that
321  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
322  * to stay compatible.
323  */
324 asmlinkage long sys_getpriority(int which, int who)
325 {
326 	struct task_struct *g, *p;
327 	struct user_struct *user;
328 	long niceval, retval = -ESRCH;
329 
330 	if (which > 2 || which < 0)
331 		return -EINVAL;
332 
333 	read_lock(&tasklist_lock);
334 	switch (which) {
335 		case PRIO_PROCESS:
336 			if (!who)
337 				who = current->pid;
338 			p = find_task_by_pid(who);
339 			if (p) {
340 				niceval = 20 - task_nice(p);
341 				if (niceval > retval)
342 					retval = niceval;
343 			}
344 			break;
345 		case PRIO_PGRP:
346 			if (!who)
347 				who = process_group(current);
348 			do_each_task_pid(who, PIDTYPE_PGID, p) {
349 				niceval = 20 - task_nice(p);
350 				if (niceval > retval)
351 					retval = niceval;
352 			} while_each_task_pid(who, PIDTYPE_PGID, p);
353 			break;
354 		case PRIO_USER:
355 			user = current->user;
356 			if (!who)
357 				who = current->uid;
358 			else
359 				if ((who != current->uid) && !(user = find_user(who)))
360 					goto out_unlock;	/* No processes for this user */
361 
362 			do_each_thread(g, p)
363 				if (p->uid == who) {
364 					niceval = 20 - task_nice(p);
365 					if (niceval > retval)
366 						retval = niceval;
367 				}
368 			while_each_thread(g, p);
369 			if (who != current->uid)
370 				free_uid(user);		/* for find_user() */
371 			break;
372 	}
373 out_unlock:
374 	read_unlock(&tasklist_lock);
375 
376 	return retval;
377 }
378 
379 /**
380  *	emergency_restart - reboot the system
381  *
382  *	Without shutting down any hardware or taking any locks
383  *	reboot the system.  This is called when we know we are in
384  *	trouble so this is our best effort to reboot.  This is
385  *	safe to call in interrupt context.
386  */
387 void emergency_restart(void)
388 {
389 	machine_emergency_restart();
390 }
391 EXPORT_SYMBOL_GPL(emergency_restart);
392 
393 void kernel_restart_prepare(char *cmd)
394 {
395 	notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
396 	system_state = SYSTEM_RESTART;
397 	device_shutdown();
398 }
399 
400 /**
401  *	kernel_restart - reboot the system
402  *	@cmd: pointer to buffer containing command to execute for restart
403  *		or %NULL
404  *
405  *	Shutdown everything and perform a clean reboot.
406  *	This is not safe to call in interrupt context.
407  */
408 void kernel_restart(char *cmd)
409 {
410 	kernel_restart_prepare(cmd);
411 	if (!cmd) {
412 		printk(KERN_EMERG "Restarting system.\n");
413 	} else {
414 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
415 	}
416 	printk(".\n");
417 	machine_restart(cmd);
418 }
419 EXPORT_SYMBOL_GPL(kernel_restart);
420 
421 /**
422  *	kernel_kexec - reboot the system
423  *
424  *	Move into place and start executing a preloaded standalone
425  *	executable.  If nothing was preloaded return an error.
426  */
427 void kernel_kexec(void)
428 {
429 #ifdef CONFIG_KEXEC
430 	struct kimage *image;
431 	image = xchg(&kexec_image, NULL);
432 	if (!image) {
433 		return;
434 	}
435 	kernel_restart_prepare(NULL);
436 	printk(KERN_EMERG "Starting new kernel\n");
437 	machine_shutdown();
438 	machine_kexec(image);
439 #endif
440 }
441 EXPORT_SYMBOL_GPL(kernel_kexec);
442 
443 void kernel_shutdown_prepare(enum system_states state)
444 {
445 	notifier_call_chain(&reboot_notifier_list,
446 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
447 	system_state = state;
448 	device_shutdown();
449 }
450 /**
451  *	kernel_halt - halt the system
452  *
453  *	Shutdown everything and perform a clean system halt.
454  */
455 void kernel_halt(void)
456 {
457 	kernel_shutdown_prepare(SYSTEM_HALT);
458 	printk(KERN_EMERG "System halted.\n");
459 	machine_halt();
460 }
461 
462 EXPORT_SYMBOL_GPL(kernel_halt);
463 
464 /**
465  *	kernel_power_off - power_off the system
466  *
467  *	Shutdown everything and perform a clean system power_off.
468  */
469 void kernel_power_off(void)
470 {
471 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
472 	printk(KERN_EMERG "Power down.\n");
473 	machine_power_off();
474 }
475 EXPORT_SYMBOL_GPL(kernel_power_off);
476 /*
477  * Reboot system call: for obvious reasons only root may call it,
478  * and even root needs to set up some magic numbers in the registers
479  * so that some mistake won't make this reboot the whole machine.
480  * You can also set the meaning of the ctrl-alt-del-key here.
481  *
482  * reboot doesn't sync: do that yourself before calling this.
483  */
484 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
485 {
486 	char buffer[256];
487 
488 	/* We only trust the superuser with rebooting the system. */
489 	if (!capable(CAP_SYS_BOOT))
490 		return -EPERM;
491 
492 	/* For safety, we require "magic" arguments. */
493 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
494 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
495 	                magic2 != LINUX_REBOOT_MAGIC2A &&
496 			magic2 != LINUX_REBOOT_MAGIC2B &&
497 	                magic2 != LINUX_REBOOT_MAGIC2C))
498 		return -EINVAL;
499 
500 	/* Instead of trying to make the power_off code look like
501 	 * halt when pm_power_off is not set do it the easy way.
502 	 */
503 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
504 		cmd = LINUX_REBOOT_CMD_HALT;
505 
506 	lock_kernel();
507 	switch (cmd) {
508 	case LINUX_REBOOT_CMD_RESTART:
509 		kernel_restart(NULL);
510 		break;
511 
512 	case LINUX_REBOOT_CMD_CAD_ON:
513 		C_A_D = 1;
514 		break;
515 
516 	case LINUX_REBOOT_CMD_CAD_OFF:
517 		C_A_D = 0;
518 		break;
519 
520 	case LINUX_REBOOT_CMD_HALT:
521 		kernel_halt();
522 		unlock_kernel();
523 		do_exit(0);
524 		break;
525 
526 	case LINUX_REBOOT_CMD_POWER_OFF:
527 		kernel_power_off();
528 		unlock_kernel();
529 		do_exit(0);
530 		break;
531 
532 	case LINUX_REBOOT_CMD_RESTART2:
533 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
534 			unlock_kernel();
535 			return -EFAULT;
536 		}
537 		buffer[sizeof(buffer) - 1] = '\0';
538 
539 		kernel_restart(buffer);
540 		break;
541 
542 	case LINUX_REBOOT_CMD_KEXEC:
543 		kernel_kexec();
544 		unlock_kernel();
545 		return -EINVAL;
546 
547 #ifdef CONFIG_SOFTWARE_SUSPEND
548 	case LINUX_REBOOT_CMD_SW_SUSPEND:
549 		{
550 			int ret = software_suspend();
551 			unlock_kernel();
552 			return ret;
553 		}
554 #endif
555 
556 	default:
557 		unlock_kernel();
558 		return -EINVAL;
559 	}
560 	unlock_kernel();
561 	return 0;
562 }
563 
564 static void deferred_cad(void *dummy)
565 {
566 	kernel_restart(NULL);
567 }
568 
569 /*
570  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
571  * As it's called within an interrupt, it may NOT sync: the only choice
572  * is whether to reboot at once, or just ignore the ctrl-alt-del.
573  */
574 void ctrl_alt_del(void)
575 {
576 	static DECLARE_WORK(cad_work, deferred_cad, NULL);
577 
578 	if (C_A_D)
579 		schedule_work(&cad_work);
580 	else
581 		kill_proc(cad_pid, SIGINT, 1);
582 }
583 
584 
585 /*
586  * Unprivileged users may change the real gid to the effective gid
587  * or vice versa.  (BSD-style)
588  *
589  * If you set the real gid at all, or set the effective gid to a value not
590  * equal to the real gid, then the saved gid is set to the new effective gid.
591  *
592  * This makes it possible for a setgid program to completely drop its
593  * privileges, which is often a useful assertion to make when you are doing
594  * a security audit over a program.
595  *
596  * The general idea is that a program which uses just setregid() will be
597  * 100% compatible with BSD.  A program which uses just setgid() will be
598  * 100% compatible with POSIX with saved IDs.
599  *
600  * SMP: There are not races, the GIDs are checked only by filesystem
601  *      operations (as far as semantic preservation is concerned).
602  */
603 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
604 {
605 	int old_rgid = current->gid;
606 	int old_egid = current->egid;
607 	int new_rgid = old_rgid;
608 	int new_egid = old_egid;
609 	int retval;
610 
611 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
612 	if (retval)
613 		return retval;
614 
615 	if (rgid != (gid_t) -1) {
616 		if ((old_rgid == rgid) ||
617 		    (current->egid==rgid) ||
618 		    capable(CAP_SETGID))
619 			new_rgid = rgid;
620 		else
621 			return -EPERM;
622 	}
623 	if (egid != (gid_t) -1) {
624 		if ((old_rgid == egid) ||
625 		    (current->egid == egid) ||
626 		    (current->sgid == egid) ||
627 		    capable(CAP_SETGID))
628 			new_egid = egid;
629 		else {
630 			return -EPERM;
631 		}
632 	}
633 	if (new_egid != old_egid)
634 	{
635 		current->mm->dumpable = suid_dumpable;
636 		smp_wmb();
637 	}
638 	if (rgid != (gid_t) -1 ||
639 	    (egid != (gid_t) -1 && egid != old_rgid))
640 		current->sgid = new_egid;
641 	current->fsgid = new_egid;
642 	current->egid = new_egid;
643 	current->gid = new_rgid;
644 	key_fsgid_changed(current);
645 	proc_id_connector(current, PROC_EVENT_GID);
646 	return 0;
647 }
648 
649 /*
650  * setgid() is implemented like SysV w/ SAVED_IDS
651  *
652  * SMP: Same implicit races as above.
653  */
654 asmlinkage long sys_setgid(gid_t gid)
655 {
656 	int old_egid = current->egid;
657 	int retval;
658 
659 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
660 	if (retval)
661 		return retval;
662 
663 	if (capable(CAP_SETGID))
664 	{
665 		if(old_egid != gid)
666 		{
667 			current->mm->dumpable = suid_dumpable;
668 			smp_wmb();
669 		}
670 		current->gid = current->egid = current->sgid = current->fsgid = gid;
671 	}
672 	else if ((gid == current->gid) || (gid == current->sgid))
673 	{
674 		if(old_egid != gid)
675 		{
676 			current->mm->dumpable = suid_dumpable;
677 			smp_wmb();
678 		}
679 		current->egid = current->fsgid = gid;
680 	}
681 	else
682 		return -EPERM;
683 
684 	key_fsgid_changed(current);
685 	proc_id_connector(current, PROC_EVENT_GID);
686 	return 0;
687 }
688 
689 static int set_user(uid_t new_ruid, int dumpclear)
690 {
691 	struct user_struct *new_user;
692 
693 	new_user = alloc_uid(new_ruid);
694 	if (!new_user)
695 		return -EAGAIN;
696 
697 	if (atomic_read(&new_user->processes) >=
698 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
699 			new_user != &root_user) {
700 		free_uid(new_user);
701 		return -EAGAIN;
702 	}
703 
704 	switch_uid(new_user);
705 
706 	if(dumpclear)
707 	{
708 		current->mm->dumpable = suid_dumpable;
709 		smp_wmb();
710 	}
711 	current->uid = new_ruid;
712 	return 0;
713 }
714 
715 /*
716  * Unprivileged users may change the real uid to the effective uid
717  * or vice versa.  (BSD-style)
718  *
719  * If you set the real uid at all, or set the effective uid to a value not
720  * equal to the real uid, then the saved uid is set to the new effective uid.
721  *
722  * This makes it possible for a setuid program to completely drop its
723  * privileges, which is often a useful assertion to make when you are doing
724  * a security audit over a program.
725  *
726  * The general idea is that a program which uses just setreuid() will be
727  * 100% compatible with BSD.  A program which uses just setuid() will be
728  * 100% compatible with POSIX with saved IDs.
729  */
730 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
731 {
732 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
733 	int retval;
734 
735 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
736 	if (retval)
737 		return retval;
738 
739 	new_ruid = old_ruid = current->uid;
740 	new_euid = old_euid = current->euid;
741 	old_suid = current->suid;
742 
743 	if (ruid != (uid_t) -1) {
744 		new_ruid = ruid;
745 		if ((old_ruid != ruid) &&
746 		    (current->euid != ruid) &&
747 		    !capable(CAP_SETUID))
748 			return -EPERM;
749 	}
750 
751 	if (euid != (uid_t) -1) {
752 		new_euid = euid;
753 		if ((old_ruid != euid) &&
754 		    (current->euid != euid) &&
755 		    (current->suid != euid) &&
756 		    !capable(CAP_SETUID))
757 			return -EPERM;
758 	}
759 
760 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
761 		return -EAGAIN;
762 
763 	if (new_euid != old_euid)
764 	{
765 		current->mm->dumpable = suid_dumpable;
766 		smp_wmb();
767 	}
768 	current->fsuid = current->euid = new_euid;
769 	if (ruid != (uid_t) -1 ||
770 	    (euid != (uid_t) -1 && euid != old_ruid))
771 		current->suid = current->euid;
772 	current->fsuid = current->euid;
773 
774 	key_fsuid_changed(current);
775 	proc_id_connector(current, PROC_EVENT_UID);
776 
777 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
778 }
779 
780 
781 
782 /*
783  * setuid() is implemented like SysV with SAVED_IDS
784  *
785  * Note that SAVED_ID's is deficient in that a setuid root program
786  * like sendmail, for example, cannot set its uid to be a normal
787  * user and then switch back, because if you're root, setuid() sets
788  * the saved uid too.  If you don't like this, blame the bright people
789  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
790  * will allow a root program to temporarily drop privileges and be able to
791  * regain them by swapping the real and effective uid.
792  */
793 asmlinkage long sys_setuid(uid_t uid)
794 {
795 	int old_euid = current->euid;
796 	int old_ruid, old_suid, new_ruid, new_suid;
797 	int retval;
798 
799 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
800 	if (retval)
801 		return retval;
802 
803 	old_ruid = new_ruid = current->uid;
804 	old_suid = current->suid;
805 	new_suid = old_suid;
806 
807 	if (capable(CAP_SETUID)) {
808 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
809 			return -EAGAIN;
810 		new_suid = uid;
811 	} else if ((uid != current->uid) && (uid != new_suid))
812 		return -EPERM;
813 
814 	if (old_euid != uid)
815 	{
816 		current->mm->dumpable = suid_dumpable;
817 		smp_wmb();
818 	}
819 	current->fsuid = current->euid = uid;
820 	current->suid = new_suid;
821 
822 	key_fsuid_changed(current);
823 	proc_id_connector(current, PROC_EVENT_UID);
824 
825 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
826 }
827 
828 
829 /*
830  * This function implements a generic ability to update ruid, euid,
831  * and suid.  This allows you to implement the 4.4 compatible seteuid().
832  */
833 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
834 {
835 	int old_ruid = current->uid;
836 	int old_euid = current->euid;
837 	int old_suid = current->suid;
838 	int retval;
839 
840 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
841 	if (retval)
842 		return retval;
843 
844 	if (!capable(CAP_SETUID)) {
845 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
846 		    (ruid != current->euid) && (ruid != current->suid))
847 			return -EPERM;
848 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
849 		    (euid != current->euid) && (euid != current->suid))
850 			return -EPERM;
851 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
852 		    (suid != current->euid) && (suid != current->suid))
853 			return -EPERM;
854 	}
855 	if (ruid != (uid_t) -1) {
856 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
857 			return -EAGAIN;
858 	}
859 	if (euid != (uid_t) -1) {
860 		if (euid != current->euid)
861 		{
862 			current->mm->dumpable = suid_dumpable;
863 			smp_wmb();
864 		}
865 		current->euid = euid;
866 	}
867 	current->fsuid = current->euid;
868 	if (suid != (uid_t) -1)
869 		current->suid = suid;
870 
871 	key_fsuid_changed(current);
872 	proc_id_connector(current, PROC_EVENT_UID);
873 
874 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
875 }
876 
877 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
878 {
879 	int retval;
880 
881 	if (!(retval = put_user(current->uid, ruid)) &&
882 	    !(retval = put_user(current->euid, euid)))
883 		retval = put_user(current->suid, suid);
884 
885 	return retval;
886 }
887 
888 /*
889  * Same as above, but for rgid, egid, sgid.
890  */
891 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
892 {
893 	int retval;
894 
895 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
896 	if (retval)
897 		return retval;
898 
899 	if (!capable(CAP_SETGID)) {
900 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
901 		    (rgid != current->egid) && (rgid != current->sgid))
902 			return -EPERM;
903 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
904 		    (egid != current->egid) && (egid != current->sgid))
905 			return -EPERM;
906 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
907 		    (sgid != current->egid) && (sgid != current->sgid))
908 			return -EPERM;
909 	}
910 	if (egid != (gid_t) -1) {
911 		if (egid != current->egid)
912 		{
913 			current->mm->dumpable = suid_dumpable;
914 			smp_wmb();
915 		}
916 		current->egid = egid;
917 	}
918 	current->fsgid = current->egid;
919 	if (rgid != (gid_t) -1)
920 		current->gid = rgid;
921 	if (sgid != (gid_t) -1)
922 		current->sgid = sgid;
923 
924 	key_fsgid_changed(current);
925 	proc_id_connector(current, PROC_EVENT_GID);
926 	return 0;
927 }
928 
929 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
930 {
931 	int retval;
932 
933 	if (!(retval = put_user(current->gid, rgid)) &&
934 	    !(retval = put_user(current->egid, egid)))
935 		retval = put_user(current->sgid, sgid);
936 
937 	return retval;
938 }
939 
940 
941 /*
942  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
943  * is used for "access()" and for the NFS daemon (letting nfsd stay at
944  * whatever uid it wants to). It normally shadows "euid", except when
945  * explicitly set by setfsuid() or for access..
946  */
947 asmlinkage long sys_setfsuid(uid_t uid)
948 {
949 	int old_fsuid;
950 
951 	old_fsuid = current->fsuid;
952 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
953 		return old_fsuid;
954 
955 	if (uid == current->uid || uid == current->euid ||
956 	    uid == current->suid || uid == current->fsuid ||
957 	    capable(CAP_SETUID))
958 	{
959 		if (uid != old_fsuid)
960 		{
961 			current->mm->dumpable = suid_dumpable;
962 			smp_wmb();
963 		}
964 		current->fsuid = uid;
965 	}
966 
967 	key_fsuid_changed(current);
968 	proc_id_connector(current, PROC_EVENT_UID);
969 
970 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
971 
972 	return old_fsuid;
973 }
974 
975 /*
976  * Samma p� svenska..
977  */
978 asmlinkage long sys_setfsgid(gid_t gid)
979 {
980 	int old_fsgid;
981 
982 	old_fsgid = current->fsgid;
983 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
984 		return old_fsgid;
985 
986 	if (gid == current->gid || gid == current->egid ||
987 	    gid == current->sgid || gid == current->fsgid ||
988 	    capable(CAP_SETGID))
989 	{
990 		if (gid != old_fsgid)
991 		{
992 			current->mm->dumpable = suid_dumpable;
993 			smp_wmb();
994 		}
995 		current->fsgid = gid;
996 		key_fsgid_changed(current);
997 		proc_id_connector(current, PROC_EVENT_GID);
998 	}
999 	return old_fsgid;
1000 }
1001 
1002 asmlinkage long sys_times(struct tms __user * tbuf)
1003 {
1004 	/*
1005 	 *	In the SMP world we might just be unlucky and have one of
1006 	 *	the times increment as we use it. Since the value is an
1007 	 *	atomically safe type this is just fine. Conceptually its
1008 	 *	as if the syscall took an instant longer to occur.
1009 	 */
1010 	if (tbuf) {
1011 		struct tms tmp;
1012 		cputime_t utime, stime, cutime, cstime;
1013 
1014 #ifdef CONFIG_SMP
1015 		if (thread_group_empty(current)) {
1016 			/*
1017 			 * Single thread case without the use of any locks.
1018 			 *
1019 			 * We may race with release_task if two threads are
1020 			 * executing. However, release task first adds up the
1021 			 * counters (__exit_signal) before  removing the task
1022 			 * from the process tasklist (__unhash_process).
1023 			 * __exit_signal also acquires and releases the
1024 			 * siglock which results in the proper memory ordering
1025 			 * so that the list modifications are always visible
1026 			 * after the counters have been updated.
1027 			 *
1028 			 * If the counters have been updated by the second thread
1029 			 * but the thread has not yet been removed from the list
1030 			 * then the other branch will be executing which will
1031 			 * block on tasklist_lock until the exit handling of the
1032 			 * other task is finished.
1033 			 *
1034 			 * This also implies that the sighand->siglock cannot
1035 			 * be held by another processor. So we can also
1036 			 * skip acquiring that lock.
1037 			 */
1038 			utime = cputime_add(current->signal->utime, current->utime);
1039 			stime = cputime_add(current->signal->utime, current->stime);
1040 			cutime = current->signal->cutime;
1041 			cstime = current->signal->cstime;
1042 		} else
1043 #endif
1044 		{
1045 
1046 			/* Process with multiple threads */
1047 			struct task_struct *tsk = current;
1048 			struct task_struct *t;
1049 
1050 			read_lock(&tasklist_lock);
1051 			utime = tsk->signal->utime;
1052 			stime = tsk->signal->stime;
1053 			t = tsk;
1054 			do {
1055 				utime = cputime_add(utime, t->utime);
1056 				stime = cputime_add(stime, t->stime);
1057 				t = next_thread(t);
1058 			} while (t != tsk);
1059 
1060 			/*
1061 			 * While we have tasklist_lock read-locked, no dying thread
1062 			 * can be updating current->signal->[us]time.  Instead,
1063 			 * we got their counts included in the live thread loop.
1064 			 * However, another thread can come in right now and
1065 			 * do a wait call that updates current->signal->c[us]time.
1066 			 * To make sure we always see that pair updated atomically,
1067 			 * we take the siglock around fetching them.
1068 			 */
1069 			spin_lock_irq(&tsk->sighand->siglock);
1070 			cutime = tsk->signal->cutime;
1071 			cstime = tsk->signal->cstime;
1072 			spin_unlock_irq(&tsk->sighand->siglock);
1073 			read_unlock(&tasklist_lock);
1074 		}
1075 		tmp.tms_utime = cputime_to_clock_t(utime);
1076 		tmp.tms_stime = cputime_to_clock_t(stime);
1077 		tmp.tms_cutime = cputime_to_clock_t(cutime);
1078 		tmp.tms_cstime = cputime_to_clock_t(cstime);
1079 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1080 			return -EFAULT;
1081 	}
1082 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1083 }
1084 
1085 /*
1086  * This needs some heavy checking ...
1087  * I just haven't the stomach for it. I also don't fully
1088  * understand sessions/pgrp etc. Let somebody who does explain it.
1089  *
1090  * OK, I think I have the protection semantics right.... this is really
1091  * only important on a multi-user system anyway, to make sure one user
1092  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1093  *
1094  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1095  * LBT 04.03.94
1096  */
1097 
1098 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1099 {
1100 	struct task_struct *p;
1101 	struct task_struct *group_leader = current->group_leader;
1102 	int err = -EINVAL;
1103 
1104 	if (!pid)
1105 		pid = group_leader->pid;
1106 	if (!pgid)
1107 		pgid = pid;
1108 	if (pgid < 0)
1109 		return -EINVAL;
1110 
1111 	/* From this point forward we keep holding onto the tasklist lock
1112 	 * so that our parent does not change from under us. -DaveM
1113 	 */
1114 	write_lock_irq(&tasklist_lock);
1115 
1116 	err = -ESRCH;
1117 	p = find_task_by_pid(pid);
1118 	if (!p)
1119 		goto out;
1120 
1121 	err = -EINVAL;
1122 	if (!thread_group_leader(p))
1123 		goto out;
1124 
1125 	if (p->real_parent == group_leader) {
1126 		err = -EPERM;
1127 		if (p->signal->session != group_leader->signal->session)
1128 			goto out;
1129 		err = -EACCES;
1130 		if (p->did_exec)
1131 			goto out;
1132 	} else {
1133 		err = -ESRCH;
1134 		if (p != group_leader)
1135 			goto out;
1136 	}
1137 
1138 	err = -EPERM;
1139 	if (p->signal->leader)
1140 		goto out;
1141 
1142 	if (pgid != pid) {
1143 		struct task_struct *p;
1144 
1145 		do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1146 			if (p->signal->session == group_leader->signal->session)
1147 				goto ok_pgid;
1148 		} while_each_task_pid(pgid, PIDTYPE_PGID, p);
1149 		goto out;
1150 	}
1151 
1152 ok_pgid:
1153 	err = security_task_setpgid(p, pgid);
1154 	if (err)
1155 		goto out;
1156 
1157 	if (process_group(p) != pgid) {
1158 		detach_pid(p, PIDTYPE_PGID);
1159 		p->signal->pgrp = pgid;
1160 		attach_pid(p, PIDTYPE_PGID, pgid);
1161 	}
1162 
1163 	err = 0;
1164 out:
1165 	/* All paths lead to here, thus we are safe. -DaveM */
1166 	write_unlock_irq(&tasklist_lock);
1167 	return err;
1168 }
1169 
1170 asmlinkage long sys_getpgid(pid_t pid)
1171 {
1172 	if (!pid) {
1173 		return process_group(current);
1174 	} else {
1175 		int retval;
1176 		struct task_struct *p;
1177 
1178 		read_lock(&tasklist_lock);
1179 		p = find_task_by_pid(pid);
1180 
1181 		retval = -ESRCH;
1182 		if (p) {
1183 			retval = security_task_getpgid(p);
1184 			if (!retval)
1185 				retval = process_group(p);
1186 		}
1187 		read_unlock(&tasklist_lock);
1188 		return retval;
1189 	}
1190 }
1191 
1192 #ifdef __ARCH_WANT_SYS_GETPGRP
1193 
1194 asmlinkage long sys_getpgrp(void)
1195 {
1196 	/* SMP - assuming writes are word atomic this is fine */
1197 	return process_group(current);
1198 }
1199 
1200 #endif
1201 
1202 asmlinkage long sys_getsid(pid_t pid)
1203 {
1204 	if (!pid) {
1205 		return current->signal->session;
1206 	} else {
1207 		int retval;
1208 		struct task_struct *p;
1209 
1210 		read_lock(&tasklist_lock);
1211 		p = find_task_by_pid(pid);
1212 
1213 		retval = -ESRCH;
1214 		if(p) {
1215 			retval = security_task_getsid(p);
1216 			if (!retval)
1217 				retval = p->signal->session;
1218 		}
1219 		read_unlock(&tasklist_lock);
1220 		return retval;
1221 	}
1222 }
1223 
1224 asmlinkage long sys_setsid(void)
1225 {
1226 	struct task_struct *group_leader = current->group_leader;
1227 	struct pid *pid;
1228 	int err = -EPERM;
1229 
1230 	down(&tty_sem);
1231 	write_lock_irq(&tasklist_lock);
1232 
1233 	pid = find_pid(PIDTYPE_PGID, group_leader->pid);
1234 	if (pid)
1235 		goto out;
1236 
1237 	group_leader->signal->leader = 1;
1238 	__set_special_pids(group_leader->pid, group_leader->pid);
1239 	group_leader->signal->tty = NULL;
1240 	group_leader->signal->tty_old_pgrp = 0;
1241 	err = process_group(group_leader);
1242 out:
1243 	write_unlock_irq(&tasklist_lock);
1244 	up(&tty_sem);
1245 	return err;
1246 }
1247 
1248 /*
1249  * Supplementary group IDs
1250  */
1251 
1252 /* init to 2 - one for init_task, one to ensure it is never freed */
1253 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1254 
1255 struct group_info *groups_alloc(int gidsetsize)
1256 {
1257 	struct group_info *group_info;
1258 	int nblocks;
1259 	int i;
1260 
1261 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1262 	/* Make sure we always allocate at least one indirect block pointer */
1263 	nblocks = nblocks ? : 1;
1264 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1265 	if (!group_info)
1266 		return NULL;
1267 	group_info->ngroups = gidsetsize;
1268 	group_info->nblocks = nblocks;
1269 	atomic_set(&group_info->usage, 1);
1270 
1271 	if (gidsetsize <= NGROUPS_SMALL) {
1272 		group_info->blocks[0] = group_info->small_block;
1273 	} else {
1274 		for (i = 0; i < nblocks; i++) {
1275 			gid_t *b;
1276 			b = (void *)__get_free_page(GFP_USER);
1277 			if (!b)
1278 				goto out_undo_partial_alloc;
1279 			group_info->blocks[i] = b;
1280 		}
1281 	}
1282 	return group_info;
1283 
1284 out_undo_partial_alloc:
1285 	while (--i >= 0) {
1286 		free_page((unsigned long)group_info->blocks[i]);
1287 	}
1288 	kfree(group_info);
1289 	return NULL;
1290 }
1291 
1292 EXPORT_SYMBOL(groups_alloc);
1293 
1294 void groups_free(struct group_info *group_info)
1295 {
1296 	if (group_info->blocks[0] != group_info->small_block) {
1297 		int i;
1298 		for (i = 0; i < group_info->nblocks; i++)
1299 			free_page((unsigned long)group_info->blocks[i]);
1300 	}
1301 	kfree(group_info);
1302 }
1303 
1304 EXPORT_SYMBOL(groups_free);
1305 
1306 /* export the group_info to a user-space array */
1307 static int groups_to_user(gid_t __user *grouplist,
1308     struct group_info *group_info)
1309 {
1310 	int i;
1311 	int count = group_info->ngroups;
1312 
1313 	for (i = 0; i < group_info->nblocks; i++) {
1314 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1315 		int off = i * NGROUPS_PER_BLOCK;
1316 		int len = cp_count * sizeof(*grouplist);
1317 
1318 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1319 			return -EFAULT;
1320 
1321 		count -= cp_count;
1322 	}
1323 	return 0;
1324 }
1325 
1326 /* fill a group_info from a user-space array - it must be allocated already */
1327 static int groups_from_user(struct group_info *group_info,
1328     gid_t __user *grouplist)
1329  {
1330 	int i;
1331 	int count = group_info->ngroups;
1332 
1333 	for (i = 0; i < group_info->nblocks; i++) {
1334 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1335 		int off = i * NGROUPS_PER_BLOCK;
1336 		int len = cp_count * sizeof(*grouplist);
1337 
1338 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1339 			return -EFAULT;
1340 
1341 		count -= cp_count;
1342 	}
1343 	return 0;
1344 }
1345 
1346 /* a simple Shell sort */
1347 static void groups_sort(struct group_info *group_info)
1348 {
1349 	int base, max, stride;
1350 	int gidsetsize = group_info->ngroups;
1351 
1352 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1353 		; /* nothing */
1354 	stride /= 3;
1355 
1356 	while (stride) {
1357 		max = gidsetsize - stride;
1358 		for (base = 0; base < max; base++) {
1359 			int left = base;
1360 			int right = left + stride;
1361 			gid_t tmp = GROUP_AT(group_info, right);
1362 
1363 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1364 				GROUP_AT(group_info, right) =
1365 				    GROUP_AT(group_info, left);
1366 				right = left;
1367 				left -= stride;
1368 			}
1369 			GROUP_AT(group_info, right) = tmp;
1370 		}
1371 		stride /= 3;
1372 	}
1373 }
1374 
1375 /* a simple bsearch */
1376 int groups_search(struct group_info *group_info, gid_t grp)
1377 {
1378 	int left, right;
1379 
1380 	if (!group_info)
1381 		return 0;
1382 
1383 	left = 0;
1384 	right = group_info->ngroups;
1385 	while (left < right) {
1386 		int mid = (left+right)/2;
1387 		int cmp = grp - GROUP_AT(group_info, mid);
1388 		if (cmp > 0)
1389 			left = mid + 1;
1390 		else if (cmp < 0)
1391 			right = mid;
1392 		else
1393 			return 1;
1394 	}
1395 	return 0;
1396 }
1397 
1398 /* validate and set current->group_info */
1399 int set_current_groups(struct group_info *group_info)
1400 {
1401 	int retval;
1402 	struct group_info *old_info;
1403 
1404 	retval = security_task_setgroups(group_info);
1405 	if (retval)
1406 		return retval;
1407 
1408 	groups_sort(group_info);
1409 	get_group_info(group_info);
1410 
1411 	task_lock(current);
1412 	old_info = current->group_info;
1413 	current->group_info = group_info;
1414 	task_unlock(current);
1415 
1416 	put_group_info(old_info);
1417 
1418 	return 0;
1419 }
1420 
1421 EXPORT_SYMBOL(set_current_groups);
1422 
1423 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1424 {
1425 	int i = 0;
1426 
1427 	/*
1428 	 *	SMP: Nobody else can change our grouplist. Thus we are
1429 	 *	safe.
1430 	 */
1431 
1432 	if (gidsetsize < 0)
1433 		return -EINVAL;
1434 
1435 	/* no need to grab task_lock here; it cannot change */
1436 	get_group_info(current->group_info);
1437 	i = current->group_info->ngroups;
1438 	if (gidsetsize) {
1439 		if (i > gidsetsize) {
1440 			i = -EINVAL;
1441 			goto out;
1442 		}
1443 		if (groups_to_user(grouplist, current->group_info)) {
1444 			i = -EFAULT;
1445 			goto out;
1446 		}
1447 	}
1448 out:
1449 	put_group_info(current->group_info);
1450 	return i;
1451 }
1452 
1453 /*
1454  *	SMP: Our groups are copy-on-write. We can set them safely
1455  *	without another task interfering.
1456  */
1457 
1458 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1459 {
1460 	struct group_info *group_info;
1461 	int retval;
1462 
1463 	if (!capable(CAP_SETGID))
1464 		return -EPERM;
1465 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1466 		return -EINVAL;
1467 
1468 	group_info = groups_alloc(gidsetsize);
1469 	if (!group_info)
1470 		return -ENOMEM;
1471 	retval = groups_from_user(group_info, grouplist);
1472 	if (retval) {
1473 		put_group_info(group_info);
1474 		return retval;
1475 	}
1476 
1477 	retval = set_current_groups(group_info);
1478 	put_group_info(group_info);
1479 
1480 	return retval;
1481 }
1482 
1483 /*
1484  * Check whether we're fsgid/egid or in the supplemental group..
1485  */
1486 int in_group_p(gid_t grp)
1487 {
1488 	int retval = 1;
1489 	if (grp != current->fsgid) {
1490 		get_group_info(current->group_info);
1491 		retval = groups_search(current->group_info, grp);
1492 		put_group_info(current->group_info);
1493 	}
1494 	return retval;
1495 }
1496 
1497 EXPORT_SYMBOL(in_group_p);
1498 
1499 int in_egroup_p(gid_t grp)
1500 {
1501 	int retval = 1;
1502 	if (grp != current->egid) {
1503 		get_group_info(current->group_info);
1504 		retval = groups_search(current->group_info, grp);
1505 		put_group_info(current->group_info);
1506 	}
1507 	return retval;
1508 }
1509 
1510 EXPORT_SYMBOL(in_egroup_p);
1511 
1512 DECLARE_RWSEM(uts_sem);
1513 
1514 EXPORT_SYMBOL(uts_sem);
1515 
1516 asmlinkage long sys_newuname(struct new_utsname __user * name)
1517 {
1518 	int errno = 0;
1519 
1520 	down_read(&uts_sem);
1521 	if (copy_to_user(name,&system_utsname,sizeof *name))
1522 		errno = -EFAULT;
1523 	up_read(&uts_sem);
1524 	return errno;
1525 }
1526 
1527 asmlinkage long sys_sethostname(char __user *name, int len)
1528 {
1529 	int errno;
1530 	char tmp[__NEW_UTS_LEN];
1531 
1532 	if (!capable(CAP_SYS_ADMIN))
1533 		return -EPERM;
1534 	if (len < 0 || len > __NEW_UTS_LEN)
1535 		return -EINVAL;
1536 	down_write(&uts_sem);
1537 	errno = -EFAULT;
1538 	if (!copy_from_user(tmp, name, len)) {
1539 		memcpy(system_utsname.nodename, tmp, len);
1540 		system_utsname.nodename[len] = 0;
1541 		errno = 0;
1542 	}
1543 	up_write(&uts_sem);
1544 	return errno;
1545 }
1546 
1547 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1548 
1549 asmlinkage long sys_gethostname(char __user *name, int len)
1550 {
1551 	int i, errno;
1552 
1553 	if (len < 0)
1554 		return -EINVAL;
1555 	down_read(&uts_sem);
1556 	i = 1 + strlen(system_utsname.nodename);
1557 	if (i > len)
1558 		i = len;
1559 	errno = 0;
1560 	if (copy_to_user(name, system_utsname.nodename, i))
1561 		errno = -EFAULT;
1562 	up_read(&uts_sem);
1563 	return errno;
1564 }
1565 
1566 #endif
1567 
1568 /*
1569  * Only setdomainname; getdomainname can be implemented by calling
1570  * uname()
1571  */
1572 asmlinkage long sys_setdomainname(char __user *name, int len)
1573 {
1574 	int errno;
1575 	char tmp[__NEW_UTS_LEN];
1576 
1577 	if (!capable(CAP_SYS_ADMIN))
1578 		return -EPERM;
1579 	if (len < 0 || len > __NEW_UTS_LEN)
1580 		return -EINVAL;
1581 
1582 	down_write(&uts_sem);
1583 	errno = -EFAULT;
1584 	if (!copy_from_user(tmp, name, len)) {
1585 		memcpy(system_utsname.domainname, tmp, len);
1586 		system_utsname.domainname[len] = 0;
1587 		errno = 0;
1588 	}
1589 	up_write(&uts_sem);
1590 	return errno;
1591 }
1592 
1593 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1594 {
1595 	if (resource >= RLIM_NLIMITS)
1596 		return -EINVAL;
1597 	else {
1598 		struct rlimit value;
1599 		task_lock(current->group_leader);
1600 		value = current->signal->rlim[resource];
1601 		task_unlock(current->group_leader);
1602 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1603 	}
1604 }
1605 
1606 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1607 
1608 /*
1609  *	Back compatibility for getrlimit. Needed for some apps.
1610  */
1611 
1612 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1613 {
1614 	struct rlimit x;
1615 	if (resource >= RLIM_NLIMITS)
1616 		return -EINVAL;
1617 
1618 	task_lock(current->group_leader);
1619 	x = current->signal->rlim[resource];
1620 	task_unlock(current->group_leader);
1621 	if(x.rlim_cur > 0x7FFFFFFF)
1622 		x.rlim_cur = 0x7FFFFFFF;
1623 	if(x.rlim_max > 0x7FFFFFFF)
1624 		x.rlim_max = 0x7FFFFFFF;
1625 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1626 }
1627 
1628 #endif
1629 
1630 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1631 {
1632 	struct rlimit new_rlim, *old_rlim;
1633 	int retval;
1634 
1635 	if (resource >= RLIM_NLIMITS)
1636 		return -EINVAL;
1637 	if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1638 		return -EFAULT;
1639        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1640                return -EINVAL;
1641 	old_rlim = current->signal->rlim + resource;
1642 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1643 	    !capable(CAP_SYS_RESOURCE))
1644 		return -EPERM;
1645 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1646 			return -EPERM;
1647 
1648 	retval = security_task_setrlimit(resource, &new_rlim);
1649 	if (retval)
1650 		return retval;
1651 
1652 	task_lock(current->group_leader);
1653 	*old_rlim = new_rlim;
1654 	task_unlock(current->group_leader);
1655 
1656 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1657 	    (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1658 	     new_rlim.rlim_cur <= cputime_to_secs(
1659 		     current->signal->it_prof_expires))) {
1660 		cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1661 		read_lock(&tasklist_lock);
1662 		spin_lock_irq(&current->sighand->siglock);
1663 		set_process_cpu_timer(current, CPUCLOCK_PROF,
1664 				      &cputime, NULL);
1665 		spin_unlock_irq(&current->sighand->siglock);
1666 		read_unlock(&tasklist_lock);
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 /*
1673  * It would make sense to put struct rusage in the task_struct,
1674  * except that would make the task_struct be *really big*.  After
1675  * task_struct gets moved into malloc'ed memory, it would
1676  * make sense to do this.  It will make moving the rest of the information
1677  * a lot simpler!  (Which we're not doing right now because we're not
1678  * measuring them yet).
1679  *
1680  * This expects to be called with tasklist_lock read-locked or better,
1681  * and the siglock not locked.  It may momentarily take the siglock.
1682  *
1683  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1684  * races with threads incrementing their own counters.  But since word
1685  * reads are atomic, we either get new values or old values and we don't
1686  * care which for the sums.  We always take the siglock to protect reading
1687  * the c* fields from p->signal from races with exit.c updating those
1688  * fields when reaping, so a sample either gets all the additions of a
1689  * given child after it's reaped, or none so this sample is before reaping.
1690  */
1691 
1692 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1693 {
1694 	struct task_struct *t;
1695 	unsigned long flags;
1696 	cputime_t utime, stime;
1697 
1698 	memset((char *) r, 0, sizeof *r);
1699 
1700 	if (unlikely(!p->signal))
1701 		return;
1702 
1703 	utime = stime = cputime_zero;
1704 
1705 	switch (who) {
1706 		case RUSAGE_BOTH:
1707 		case RUSAGE_CHILDREN:
1708 			spin_lock_irqsave(&p->sighand->siglock, flags);
1709 			utime = p->signal->cutime;
1710 			stime = p->signal->cstime;
1711 			r->ru_nvcsw = p->signal->cnvcsw;
1712 			r->ru_nivcsw = p->signal->cnivcsw;
1713 			r->ru_minflt = p->signal->cmin_flt;
1714 			r->ru_majflt = p->signal->cmaj_flt;
1715 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1716 
1717 			if (who == RUSAGE_CHILDREN)
1718 				break;
1719 
1720 		case RUSAGE_SELF:
1721 			utime = cputime_add(utime, p->signal->utime);
1722 			stime = cputime_add(stime, p->signal->stime);
1723 			r->ru_nvcsw += p->signal->nvcsw;
1724 			r->ru_nivcsw += p->signal->nivcsw;
1725 			r->ru_minflt += p->signal->min_flt;
1726 			r->ru_majflt += p->signal->maj_flt;
1727 			t = p;
1728 			do {
1729 				utime = cputime_add(utime, t->utime);
1730 				stime = cputime_add(stime, t->stime);
1731 				r->ru_nvcsw += t->nvcsw;
1732 				r->ru_nivcsw += t->nivcsw;
1733 				r->ru_minflt += t->min_flt;
1734 				r->ru_majflt += t->maj_flt;
1735 				t = next_thread(t);
1736 			} while (t != p);
1737 			break;
1738 
1739 		default:
1740 			BUG();
1741 	}
1742 
1743 	cputime_to_timeval(utime, &r->ru_utime);
1744 	cputime_to_timeval(stime, &r->ru_stime);
1745 }
1746 
1747 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1748 {
1749 	struct rusage r;
1750 	read_lock(&tasklist_lock);
1751 	k_getrusage(p, who, &r);
1752 	read_unlock(&tasklist_lock);
1753 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1754 }
1755 
1756 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1757 {
1758 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1759 		return -EINVAL;
1760 	return getrusage(current, who, ru);
1761 }
1762 
1763 asmlinkage long sys_umask(int mask)
1764 {
1765 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1766 	return mask;
1767 }
1768 
1769 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1770 			  unsigned long arg4, unsigned long arg5)
1771 {
1772 	long error;
1773 
1774 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1775 	if (error)
1776 		return error;
1777 
1778 	switch (option) {
1779 		case PR_SET_PDEATHSIG:
1780 			if (!valid_signal(arg2)) {
1781 				error = -EINVAL;
1782 				break;
1783 			}
1784 			current->pdeath_signal = arg2;
1785 			break;
1786 		case PR_GET_PDEATHSIG:
1787 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1788 			break;
1789 		case PR_GET_DUMPABLE:
1790 			error = current->mm->dumpable;
1791 			break;
1792 		case PR_SET_DUMPABLE:
1793 			if (arg2 < 0 || arg2 > 2) {
1794 				error = -EINVAL;
1795 				break;
1796 			}
1797 			current->mm->dumpable = arg2;
1798 			break;
1799 
1800 		case PR_SET_UNALIGN:
1801 			error = SET_UNALIGN_CTL(current, arg2);
1802 			break;
1803 		case PR_GET_UNALIGN:
1804 			error = GET_UNALIGN_CTL(current, arg2);
1805 			break;
1806 		case PR_SET_FPEMU:
1807 			error = SET_FPEMU_CTL(current, arg2);
1808 			break;
1809 		case PR_GET_FPEMU:
1810 			error = GET_FPEMU_CTL(current, arg2);
1811 			break;
1812 		case PR_SET_FPEXC:
1813 			error = SET_FPEXC_CTL(current, arg2);
1814 			break;
1815 		case PR_GET_FPEXC:
1816 			error = GET_FPEXC_CTL(current, arg2);
1817 			break;
1818 		case PR_GET_TIMING:
1819 			error = PR_TIMING_STATISTICAL;
1820 			break;
1821 		case PR_SET_TIMING:
1822 			if (arg2 == PR_TIMING_STATISTICAL)
1823 				error = 0;
1824 			else
1825 				error = -EINVAL;
1826 			break;
1827 
1828 		case PR_GET_KEEPCAPS:
1829 			if (current->keep_capabilities)
1830 				error = 1;
1831 			break;
1832 		case PR_SET_KEEPCAPS:
1833 			if (arg2 != 0 && arg2 != 1) {
1834 				error = -EINVAL;
1835 				break;
1836 			}
1837 			current->keep_capabilities = arg2;
1838 			break;
1839 		case PR_SET_NAME: {
1840 			struct task_struct *me = current;
1841 			unsigned char ncomm[sizeof(me->comm)];
1842 
1843 			ncomm[sizeof(me->comm)-1] = 0;
1844 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1845 						sizeof(me->comm)-1) < 0)
1846 				return -EFAULT;
1847 			set_task_comm(me, ncomm);
1848 			return 0;
1849 		}
1850 		case PR_GET_NAME: {
1851 			struct task_struct *me = current;
1852 			unsigned char tcomm[sizeof(me->comm)];
1853 
1854 			get_task_comm(tcomm, me);
1855 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1856 				return -EFAULT;
1857 			return 0;
1858 		}
1859 		default:
1860 			error = -EINVAL;
1861 			break;
1862 	}
1863 	return error;
1864 }
1865