xref: /linux/kernel/sys.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 
32 #include <linux/compat.h>
33 #include <linux/syscalls.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/io.h>
37 #include <asm/unistd.h>
38 
39 #ifndef SET_UNALIGN_CTL
40 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
41 #endif
42 #ifndef GET_UNALIGN_CTL
43 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
44 #endif
45 #ifndef SET_FPEMU_CTL
46 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
47 #endif
48 #ifndef GET_FPEMU_CTL
49 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
50 #endif
51 #ifndef SET_FPEXC_CTL
52 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
53 #endif
54 #ifndef GET_FPEXC_CTL
55 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
56 #endif
57 
58 /*
59  * this is where the system-wide overflow UID and GID are defined, for
60  * architectures that now have 32-bit UID/GID but didn't in the past
61  */
62 
63 int overflowuid = DEFAULT_OVERFLOWUID;
64 int overflowgid = DEFAULT_OVERFLOWGID;
65 
66 #ifdef CONFIG_UID16
67 EXPORT_SYMBOL(overflowuid);
68 EXPORT_SYMBOL(overflowgid);
69 #endif
70 
71 /*
72  * the same as above, but for filesystems which can only store a 16-bit
73  * UID and GID. as such, this is needed on all architectures
74  */
75 
76 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
77 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
78 
79 EXPORT_SYMBOL(fs_overflowuid);
80 EXPORT_SYMBOL(fs_overflowgid);
81 
82 /*
83  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
84  */
85 
86 int C_A_D = 1;
87 int cad_pid = 1;
88 
89 /*
90  *	Notifier list for kernel code which wants to be called
91  *	at shutdown. This is used to stop any idling DMA operations
92  *	and the like.
93  */
94 
95 static struct notifier_block *reboot_notifier_list;
96 static DEFINE_RWLOCK(notifier_lock);
97 
98 /**
99  *	notifier_chain_register	- Add notifier to a notifier chain
100  *	@list: Pointer to root list pointer
101  *	@n: New entry in notifier chain
102  *
103  *	Adds a notifier to a notifier chain.
104  *
105  *	Currently always returns zero.
106  */
107 
108 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
109 {
110 	write_lock(&notifier_lock);
111 	while(*list)
112 	{
113 		if(n->priority > (*list)->priority)
114 			break;
115 		list= &((*list)->next);
116 	}
117 	n->next = *list;
118 	*list=n;
119 	write_unlock(&notifier_lock);
120 	return 0;
121 }
122 
123 EXPORT_SYMBOL(notifier_chain_register);
124 
125 /**
126  *	notifier_chain_unregister - Remove notifier from a notifier chain
127  *	@nl: Pointer to root list pointer
128  *	@n: New entry in notifier chain
129  *
130  *	Removes a notifier from a notifier chain.
131  *
132  *	Returns zero on success, or %-ENOENT on failure.
133  */
134 
135 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
136 {
137 	write_lock(&notifier_lock);
138 	while((*nl)!=NULL)
139 	{
140 		if((*nl)==n)
141 		{
142 			*nl=n->next;
143 			write_unlock(&notifier_lock);
144 			return 0;
145 		}
146 		nl=&((*nl)->next);
147 	}
148 	write_unlock(&notifier_lock);
149 	return -ENOENT;
150 }
151 
152 EXPORT_SYMBOL(notifier_chain_unregister);
153 
154 /**
155  *	notifier_call_chain - Call functions in a notifier chain
156  *	@n: Pointer to root pointer of notifier chain
157  *	@val: Value passed unmodified to notifier function
158  *	@v: Pointer passed unmodified to notifier function
159  *
160  *	Calls each function in a notifier chain in turn.
161  *
162  *	If the return value of the notifier can be and'd
163  *	with %NOTIFY_STOP_MASK, then notifier_call_chain
164  *	will return immediately, with the return value of
165  *	the notifier function which halted execution.
166  *	Otherwise, the return value is the return value
167  *	of the last notifier function called.
168  */
169 
170 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
171 {
172 	int ret=NOTIFY_DONE;
173 	struct notifier_block *nb = *n;
174 
175 	while(nb)
176 	{
177 		ret=nb->notifier_call(nb,val,v);
178 		if(ret&NOTIFY_STOP_MASK)
179 		{
180 			return ret;
181 		}
182 		nb=nb->next;
183 	}
184 	return ret;
185 }
186 
187 EXPORT_SYMBOL(notifier_call_chain);
188 
189 /**
190  *	register_reboot_notifier - Register function to be called at reboot time
191  *	@nb: Info about notifier function to be called
192  *
193  *	Registers a function with the list of functions
194  *	to be called at reboot time.
195  *
196  *	Currently always returns zero, as notifier_chain_register
197  *	always returns zero.
198  */
199 
200 int register_reboot_notifier(struct notifier_block * nb)
201 {
202 	return notifier_chain_register(&reboot_notifier_list, nb);
203 }
204 
205 EXPORT_SYMBOL(register_reboot_notifier);
206 
207 /**
208  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
209  *	@nb: Hook to be unregistered
210  *
211  *	Unregisters a previously registered reboot
212  *	notifier function.
213  *
214  *	Returns zero on success, or %-ENOENT on failure.
215  */
216 
217 int unregister_reboot_notifier(struct notifier_block * nb)
218 {
219 	return notifier_chain_unregister(&reboot_notifier_list, nb);
220 }
221 
222 EXPORT_SYMBOL(unregister_reboot_notifier);
223 
224 static int set_one_prio(struct task_struct *p, int niceval, int error)
225 {
226 	int no_nice;
227 
228 	if (p->uid != current->euid &&
229 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
230 		error = -EPERM;
231 		goto out;
232 	}
233 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
234 		error = -EACCES;
235 		goto out;
236 	}
237 	no_nice = security_task_setnice(p, niceval);
238 	if (no_nice) {
239 		error = no_nice;
240 		goto out;
241 	}
242 	if (error == -ESRCH)
243 		error = 0;
244 	set_user_nice(p, niceval);
245 out:
246 	return error;
247 }
248 
249 asmlinkage long sys_setpriority(int which, int who, int niceval)
250 {
251 	struct task_struct *g, *p;
252 	struct user_struct *user;
253 	int error = -EINVAL;
254 
255 	if (which > 2 || which < 0)
256 		goto out;
257 
258 	/* normalize: avoid signed division (rounding problems) */
259 	error = -ESRCH;
260 	if (niceval < -20)
261 		niceval = -20;
262 	if (niceval > 19)
263 		niceval = 19;
264 
265 	read_lock(&tasklist_lock);
266 	switch (which) {
267 		case PRIO_PROCESS:
268 			if (!who)
269 				who = current->pid;
270 			p = find_task_by_pid(who);
271 			if (p)
272 				error = set_one_prio(p, niceval, error);
273 			break;
274 		case PRIO_PGRP:
275 			if (!who)
276 				who = process_group(current);
277 			do_each_task_pid(who, PIDTYPE_PGID, p) {
278 				error = set_one_prio(p, niceval, error);
279 			} while_each_task_pid(who, PIDTYPE_PGID, p);
280 			break;
281 		case PRIO_USER:
282 			user = current->user;
283 			if (!who)
284 				who = current->uid;
285 			else
286 				if ((who != current->uid) && !(user = find_user(who)))
287 					goto out_unlock;	/* No processes for this user */
288 
289 			do_each_thread(g, p)
290 				if (p->uid == who)
291 					error = set_one_prio(p, niceval, error);
292 			while_each_thread(g, p);
293 			if (who != current->uid)
294 				free_uid(user);		/* For find_user() */
295 			break;
296 	}
297 out_unlock:
298 	read_unlock(&tasklist_lock);
299 out:
300 	return error;
301 }
302 
303 /*
304  * Ugh. To avoid negative return values, "getpriority()" will
305  * not return the normal nice-value, but a negated value that
306  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
307  * to stay compatible.
308  */
309 asmlinkage long sys_getpriority(int which, int who)
310 {
311 	struct task_struct *g, *p;
312 	struct user_struct *user;
313 	long niceval, retval = -ESRCH;
314 
315 	if (which > 2 || which < 0)
316 		return -EINVAL;
317 
318 	read_lock(&tasklist_lock);
319 	switch (which) {
320 		case PRIO_PROCESS:
321 			if (!who)
322 				who = current->pid;
323 			p = find_task_by_pid(who);
324 			if (p) {
325 				niceval = 20 - task_nice(p);
326 				if (niceval > retval)
327 					retval = niceval;
328 			}
329 			break;
330 		case PRIO_PGRP:
331 			if (!who)
332 				who = process_group(current);
333 			do_each_task_pid(who, PIDTYPE_PGID, p) {
334 				niceval = 20 - task_nice(p);
335 				if (niceval > retval)
336 					retval = niceval;
337 			} while_each_task_pid(who, PIDTYPE_PGID, p);
338 			break;
339 		case PRIO_USER:
340 			user = current->user;
341 			if (!who)
342 				who = current->uid;
343 			else
344 				if ((who != current->uid) && !(user = find_user(who)))
345 					goto out_unlock;	/* No processes for this user */
346 
347 			do_each_thread(g, p)
348 				if (p->uid == who) {
349 					niceval = 20 - task_nice(p);
350 					if (niceval > retval)
351 						retval = niceval;
352 				}
353 			while_each_thread(g, p);
354 			if (who != current->uid)
355 				free_uid(user);		/* for find_user() */
356 			break;
357 	}
358 out_unlock:
359 	read_unlock(&tasklist_lock);
360 
361 	return retval;
362 }
363 
364 
365 /*
366  * Reboot system call: for obvious reasons only root may call it,
367  * and even root needs to set up some magic numbers in the registers
368  * so that some mistake won't make this reboot the whole machine.
369  * You can also set the meaning of the ctrl-alt-del-key here.
370  *
371  * reboot doesn't sync: do that yourself before calling this.
372  */
373 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
374 {
375 	char buffer[256];
376 
377 	/* We only trust the superuser with rebooting the system. */
378 	if (!capable(CAP_SYS_BOOT))
379 		return -EPERM;
380 
381 	/* For safety, we require "magic" arguments. */
382 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
383 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
384 	                magic2 != LINUX_REBOOT_MAGIC2A &&
385 			magic2 != LINUX_REBOOT_MAGIC2B &&
386 	                magic2 != LINUX_REBOOT_MAGIC2C))
387 		return -EINVAL;
388 
389 	lock_kernel();
390 	switch (cmd) {
391 	case LINUX_REBOOT_CMD_RESTART:
392 		notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
393 		system_state = SYSTEM_RESTART;
394 		device_shutdown();
395 		printk(KERN_EMERG "Restarting system.\n");
396 		machine_restart(NULL);
397 		break;
398 
399 	case LINUX_REBOOT_CMD_CAD_ON:
400 		C_A_D = 1;
401 		break;
402 
403 	case LINUX_REBOOT_CMD_CAD_OFF:
404 		C_A_D = 0;
405 		break;
406 
407 	case LINUX_REBOOT_CMD_HALT:
408 		notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
409 		system_state = SYSTEM_HALT;
410 		device_suspend(PMSG_SUSPEND);
411 		device_shutdown();
412 		printk(KERN_EMERG "System halted.\n");
413 		machine_halt();
414 		unlock_kernel();
415 		do_exit(0);
416 		break;
417 
418 	case LINUX_REBOOT_CMD_POWER_OFF:
419 		notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
420 		system_state = SYSTEM_POWER_OFF;
421 		device_suspend(PMSG_SUSPEND);
422 		device_shutdown();
423 		printk(KERN_EMERG "Power down.\n");
424 		machine_power_off();
425 		unlock_kernel();
426 		do_exit(0);
427 		break;
428 
429 	case LINUX_REBOOT_CMD_RESTART2:
430 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
431 			unlock_kernel();
432 			return -EFAULT;
433 		}
434 		buffer[sizeof(buffer) - 1] = '\0';
435 
436 		notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
437 		system_state = SYSTEM_RESTART;
438 		device_suspend(PMSG_FREEZE);
439 		device_shutdown();
440 		printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
441 		machine_restart(buffer);
442 		break;
443 
444 #ifdef CONFIG_KEXEC
445 	case LINUX_REBOOT_CMD_KEXEC:
446 	{
447 		struct kimage *image;
448 		image = xchg(&kexec_image, 0);
449 		if (!image) {
450 			unlock_kernel();
451 			return -EINVAL;
452 		}
453 		notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
454 		system_state = SYSTEM_RESTART;
455 		device_shutdown();
456 		printk(KERN_EMERG "Starting new kernel\n");
457 		machine_shutdown();
458 		machine_kexec(image);
459 		break;
460 	}
461 #endif
462 #ifdef CONFIG_SOFTWARE_SUSPEND
463 	case LINUX_REBOOT_CMD_SW_SUSPEND:
464 		{
465 			int ret = software_suspend();
466 			unlock_kernel();
467 			return ret;
468 		}
469 #endif
470 
471 	default:
472 		unlock_kernel();
473 		return -EINVAL;
474 	}
475 	unlock_kernel();
476 	return 0;
477 }
478 
479 static void deferred_cad(void *dummy)
480 {
481 	notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
482 	machine_restart(NULL);
483 }
484 
485 /*
486  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
487  * As it's called within an interrupt, it may NOT sync: the only choice
488  * is whether to reboot at once, or just ignore the ctrl-alt-del.
489  */
490 void ctrl_alt_del(void)
491 {
492 	static DECLARE_WORK(cad_work, deferred_cad, NULL);
493 
494 	if (C_A_D)
495 		schedule_work(&cad_work);
496 	else
497 		kill_proc(cad_pid, SIGINT, 1);
498 }
499 
500 
501 /*
502  * Unprivileged users may change the real gid to the effective gid
503  * or vice versa.  (BSD-style)
504  *
505  * If you set the real gid at all, or set the effective gid to a value not
506  * equal to the real gid, then the saved gid is set to the new effective gid.
507  *
508  * This makes it possible for a setgid program to completely drop its
509  * privileges, which is often a useful assertion to make when you are doing
510  * a security audit over a program.
511  *
512  * The general idea is that a program which uses just setregid() will be
513  * 100% compatible with BSD.  A program which uses just setgid() will be
514  * 100% compatible with POSIX with saved IDs.
515  *
516  * SMP: There are not races, the GIDs are checked only by filesystem
517  *      operations (as far as semantic preservation is concerned).
518  */
519 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
520 {
521 	int old_rgid = current->gid;
522 	int old_egid = current->egid;
523 	int new_rgid = old_rgid;
524 	int new_egid = old_egid;
525 	int retval;
526 
527 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
528 	if (retval)
529 		return retval;
530 
531 	if (rgid != (gid_t) -1) {
532 		if ((old_rgid == rgid) ||
533 		    (current->egid==rgid) ||
534 		    capable(CAP_SETGID))
535 			new_rgid = rgid;
536 		else
537 			return -EPERM;
538 	}
539 	if (egid != (gid_t) -1) {
540 		if ((old_rgid == egid) ||
541 		    (current->egid == egid) ||
542 		    (current->sgid == egid) ||
543 		    capable(CAP_SETGID))
544 			new_egid = egid;
545 		else {
546 			return -EPERM;
547 		}
548 	}
549 	if (new_egid != old_egid)
550 	{
551 		current->mm->dumpable = suid_dumpable;
552 		smp_wmb();
553 	}
554 	if (rgid != (gid_t) -1 ||
555 	    (egid != (gid_t) -1 && egid != old_rgid))
556 		current->sgid = new_egid;
557 	current->fsgid = new_egid;
558 	current->egid = new_egid;
559 	current->gid = new_rgid;
560 	key_fsgid_changed(current);
561 	return 0;
562 }
563 
564 /*
565  * setgid() is implemented like SysV w/ SAVED_IDS
566  *
567  * SMP: Same implicit races as above.
568  */
569 asmlinkage long sys_setgid(gid_t gid)
570 {
571 	int old_egid = current->egid;
572 	int retval;
573 
574 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
575 	if (retval)
576 		return retval;
577 
578 	if (capable(CAP_SETGID))
579 	{
580 		if(old_egid != gid)
581 		{
582 			current->mm->dumpable = suid_dumpable;
583 			smp_wmb();
584 		}
585 		current->gid = current->egid = current->sgid = current->fsgid = gid;
586 	}
587 	else if ((gid == current->gid) || (gid == current->sgid))
588 	{
589 		if(old_egid != gid)
590 		{
591 			current->mm->dumpable = suid_dumpable;
592 			smp_wmb();
593 		}
594 		current->egid = current->fsgid = gid;
595 	}
596 	else
597 		return -EPERM;
598 
599 	key_fsgid_changed(current);
600 	return 0;
601 }
602 
603 static int set_user(uid_t new_ruid, int dumpclear)
604 {
605 	struct user_struct *new_user;
606 
607 	new_user = alloc_uid(new_ruid);
608 	if (!new_user)
609 		return -EAGAIN;
610 
611 	if (atomic_read(&new_user->processes) >=
612 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
613 			new_user != &root_user) {
614 		free_uid(new_user);
615 		return -EAGAIN;
616 	}
617 
618 	switch_uid(new_user);
619 
620 	if(dumpclear)
621 	{
622 		current->mm->dumpable = suid_dumpable;
623 		smp_wmb();
624 	}
625 	current->uid = new_ruid;
626 	return 0;
627 }
628 
629 /*
630  * Unprivileged users may change the real uid to the effective uid
631  * or vice versa.  (BSD-style)
632  *
633  * If you set the real uid at all, or set the effective uid to a value not
634  * equal to the real uid, then the saved uid is set to the new effective uid.
635  *
636  * This makes it possible for a setuid program to completely drop its
637  * privileges, which is often a useful assertion to make when you are doing
638  * a security audit over a program.
639  *
640  * The general idea is that a program which uses just setreuid() will be
641  * 100% compatible with BSD.  A program which uses just setuid() will be
642  * 100% compatible with POSIX with saved IDs.
643  */
644 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
645 {
646 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
647 	int retval;
648 
649 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
650 	if (retval)
651 		return retval;
652 
653 	new_ruid = old_ruid = current->uid;
654 	new_euid = old_euid = current->euid;
655 	old_suid = current->suid;
656 
657 	if (ruid != (uid_t) -1) {
658 		new_ruid = ruid;
659 		if ((old_ruid != ruid) &&
660 		    (current->euid != ruid) &&
661 		    !capable(CAP_SETUID))
662 			return -EPERM;
663 	}
664 
665 	if (euid != (uid_t) -1) {
666 		new_euid = euid;
667 		if ((old_ruid != euid) &&
668 		    (current->euid != euid) &&
669 		    (current->suid != euid) &&
670 		    !capable(CAP_SETUID))
671 			return -EPERM;
672 	}
673 
674 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
675 		return -EAGAIN;
676 
677 	if (new_euid != old_euid)
678 	{
679 		current->mm->dumpable = suid_dumpable;
680 		smp_wmb();
681 	}
682 	current->fsuid = current->euid = new_euid;
683 	if (ruid != (uid_t) -1 ||
684 	    (euid != (uid_t) -1 && euid != old_ruid))
685 		current->suid = current->euid;
686 	current->fsuid = current->euid;
687 
688 	key_fsuid_changed(current);
689 
690 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
691 }
692 
693 
694 
695 /*
696  * setuid() is implemented like SysV with SAVED_IDS
697  *
698  * Note that SAVED_ID's is deficient in that a setuid root program
699  * like sendmail, for example, cannot set its uid to be a normal
700  * user and then switch back, because if you're root, setuid() sets
701  * the saved uid too.  If you don't like this, blame the bright people
702  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
703  * will allow a root program to temporarily drop privileges and be able to
704  * regain them by swapping the real and effective uid.
705  */
706 asmlinkage long sys_setuid(uid_t uid)
707 {
708 	int old_euid = current->euid;
709 	int old_ruid, old_suid, new_ruid, new_suid;
710 	int retval;
711 
712 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
713 	if (retval)
714 		return retval;
715 
716 	old_ruid = new_ruid = current->uid;
717 	old_suid = current->suid;
718 	new_suid = old_suid;
719 
720 	if (capable(CAP_SETUID)) {
721 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
722 			return -EAGAIN;
723 		new_suid = uid;
724 	} else if ((uid != current->uid) && (uid != new_suid))
725 		return -EPERM;
726 
727 	if (old_euid != uid)
728 	{
729 		current->mm->dumpable = suid_dumpable;
730 		smp_wmb();
731 	}
732 	current->fsuid = current->euid = uid;
733 	current->suid = new_suid;
734 
735 	key_fsuid_changed(current);
736 
737 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
738 }
739 
740 
741 /*
742  * This function implements a generic ability to update ruid, euid,
743  * and suid.  This allows you to implement the 4.4 compatible seteuid().
744  */
745 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
746 {
747 	int old_ruid = current->uid;
748 	int old_euid = current->euid;
749 	int old_suid = current->suid;
750 	int retval;
751 
752 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
753 	if (retval)
754 		return retval;
755 
756 	if (!capable(CAP_SETUID)) {
757 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
758 		    (ruid != current->euid) && (ruid != current->suid))
759 			return -EPERM;
760 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
761 		    (euid != current->euid) && (euid != current->suid))
762 			return -EPERM;
763 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
764 		    (suid != current->euid) && (suid != current->suid))
765 			return -EPERM;
766 	}
767 	if (ruid != (uid_t) -1) {
768 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
769 			return -EAGAIN;
770 	}
771 	if (euid != (uid_t) -1) {
772 		if (euid != current->euid)
773 		{
774 			current->mm->dumpable = suid_dumpable;
775 			smp_wmb();
776 		}
777 		current->euid = euid;
778 	}
779 	current->fsuid = current->euid;
780 	if (suid != (uid_t) -1)
781 		current->suid = suid;
782 
783 	key_fsuid_changed(current);
784 
785 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
786 }
787 
788 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
789 {
790 	int retval;
791 
792 	if (!(retval = put_user(current->uid, ruid)) &&
793 	    !(retval = put_user(current->euid, euid)))
794 		retval = put_user(current->suid, suid);
795 
796 	return retval;
797 }
798 
799 /*
800  * Same as above, but for rgid, egid, sgid.
801  */
802 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
803 {
804 	int retval;
805 
806 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
807 	if (retval)
808 		return retval;
809 
810 	if (!capable(CAP_SETGID)) {
811 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
812 		    (rgid != current->egid) && (rgid != current->sgid))
813 			return -EPERM;
814 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
815 		    (egid != current->egid) && (egid != current->sgid))
816 			return -EPERM;
817 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
818 		    (sgid != current->egid) && (sgid != current->sgid))
819 			return -EPERM;
820 	}
821 	if (egid != (gid_t) -1) {
822 		if (egid != current->egid)
823 		{
824 			current->mm->dumpable = suid_dumpable;
825 			smp_wmb();
826 		}
827 		current->egid = egid;
828 	}
829 	current->fsgid = current->egid;
830 	if (rgid != (gid_t) -1)
831 		current->gid = rgid;
832 	if (sgid != (gid_t) -1)
833 		current->sgid = sgid;
834 
835 	key_fsgid_changed(current);
836 	return 0;
837 }
838 
839 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
840 {
841 	int retval;
842 
843 	if (!(retval = put_user(current->gid, rgid)) &&
844 	    !(retval = put_user(current->egid, egid)))
845 		retval = put_user(current->sgid, sgid);
846 
847 	return retval;
848 }
849 
850 
851 /*
852  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
853  * is used for "access()" and for the NFS daemon (letting nfsd stay at
854  * whatever uid it wants to). It normally shadows "euid", except when
855  * explicitly set by setfsuid() or for access..
856  */
857 asmlinkage long sys_setfsuid(uid_t uid)
858 {
859 	int old_fsuid;
860 
861 	old_fsuid = current->fsuid;
862 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
863 		return old_fsuid;
864 
865 	if (uid == current->uid || uid == current->euid ||
866 	    uid == current->suid || uid == current->fsuid ||
867 	    capable(CAP_SETUID))
868 	{
869 		if (uid != old_fsuid)
870 		{
871 			current->mm->dumpable = suid_dumpable;
872 			smp_wmb();
873 		}
874 		current->fsuid = uid;
875 	}
876 
877 	key_fsuid_changed(current);
878 
879 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
880 
881 	return old_fsuid;
882 }
883 
884 /*
885  * Samma p� svenska..
886  */
887 asmlinkage long sys_setfsgid(gid_t gid)
888 {
889 	int old_fsgid;
890 
891 	old_fsgid = current->fsgid;
892 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
893 		return old_fsgid;
894 
895 	if (gid == current->gid || gid == current->egid ||
896 	    gid == current->sgid || gid == current->fsgid ||
897 	    capable(CAP_SETGID))
898 	{
899 		if (gid != old_fsgid)
900 		{
901 			current->mm->dumpable = suid_dumpable;
902 			smp_wmb();
903 		}
904 		current->fsgid = gid;
905 		key_fsgid_changed(current);
906 	}
907 	return old_fsgid;
908 }
909 
910 asmlinkage long sys_times(struct tms __user * tbuf)
911 {
912 	/*
913 	 *	In the SMP world we might just be unlucky and have one of
914 	 *	the times increment as we use it. Since the value is an
915 	 *	atomically safe type this is just fine. Conceptually its
916 	 *	as if the syscall took an instant longer to occur.
917 	 */
918 	if (tbuf) {
919 		struct tms tmp;
920 		cputime_t utime, stime, cutime, cstime;
921 
922 #ifdef CONFIG_SMP
923 		if (thread_group_empty(current)) {
924 			/*
925 			 * Single thread case without the use of any locks.
926 			 *
927 			 * We may race with release_task if two threads are
928 			 * executing. However, release task first adds up the
929 			 * counters (__exit_signal) before  removing the task
930 			 * from the process tasklist (__unhash_process).
931 			 * __exit_signal also acquires and releases the
932 			 * siglock which results in the proper memory ordering
933 			 * so that the list modifications are always visible
934 			 * after the counters have been updated.
935 			 *
936 			 * If the counters have been updated by the second thread
937 			 * but the thread has not yet been removed from the list
938 			 * then the other branch will be executing which will
939 			 * block on tasklist_lock until the exit handling of the
940 			 * other task is finished.
941 			 *
942 			 * This also implies that the sighand->siglock cannot
943 			 * be held by another processor. So we can also
944 			 * skip acquiring that lock.
945 			 */
946 			utime = cputime_add(current->signal->utime, current->utime);
947 			stime = cputime_add(current->signal->utime, current->stime);
948 			cutime = current->signal->cutime;
949 			cstime = current->signal->cstime;
950 		} else
951 #endif
952 		{
953 
954 			/* Process with multiple threads */
955 			struct task_struct *tsk = current;
956 			struct task_struct *t;
957 
958 			read_lock(&tasklist_lock);
959 			utime = tsk->signal->utime;
960 			stime = tsk->signal->stime;
961 			t = tsk;
962 			do {
963 				utime = cputime_add(utime, t->utime);
964 				stime = cputime_add(stime, t->stime);
965 				t = next_thread(t);
966 			} while (t != tsk);
967 
968 			/*
969 			 * While we have tasklist_lock read-locked, no dying thread
970 			 * can be updating current->signal->[us]time.  Instead,
971 			 * we got their counts included in the live thread loop.
972 			 * However, another thread can come in right now and
973 			 * do a wait call that updates current->signal->c[us]time.
974 			 * To make sure we always see that pair updated atomically,
975 			 * we take the siglock around fetching them.
976 			 */
977 			spin_lock_irq(&tsk->sighand->siglock);
978 			cutime = tsk->signal->cutime;
979 			cstime = tsk->signal->cstime;
980 			spin_unlock_irq(&tsk->sighand->siglock);
981 			read_unlock(&tasklist_lock);
982 		}
983 		tmp.tms_utime = cputime_to_clock_t(utime);
984 		tmp.tms_stime = cputime_to_clock_t(stime);
985 		tmp.tms_cutime = cputime_to_clock_t(cutime);
986 		tmp.tms_cstime = cputime_to_clock_t(cstime);
987 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
988 			return -EFAULT;
989 	}
990 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
991 }
992 
993 /*
994  * This needs some heavy checking ...
995  * I just haven't the stomach for it. I also don't fully
996  * understand sessions/pgrp etc. Let somebody who does explain it.
997  *
998  * OK, I think I have the protection semantics right.... this is really
999  * only important on a multi-user system anyway, to make sure one user
1000  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1001  *
1002  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1003  * LBT 04.03.94
1004  */
1005 
1006 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1007 {
1008 	struct task_struct *p;
1009 	int err = -EINVAL;
1010 
1011 	if (!pid)
1012 		pid = current->pid;
1013 	if (!pgid)
1014 		pgid = pid;
1015 	if (pgid < 0)
1016 		return -EINVAL;
1017 
1018 	/* From this point forward we keep holding onto the tasklist lock
1019 	 * so that our parent does not change from under us. -DaveM
1020 	 */
1021 	write_lock_irq(&tasklist_lock);
1022 
1023 	err = -ESRCH;
1024 	p = find_task_by_pid(pid);
1025 	if (!p)
1026 		goto out;
1027 
1028 	err = -EINVAL;
1029 	if (!thread_group_leader(p))
1030 		goto out;
1031 
1032 	if (p->parent == current || p->real_parent == current) {
1033 		err = -EPERM;
1034 		if (p->signal->session != current->signal->session)
1035 			goto out;
1036 		err = -EACCES;
1037 		if (p->did_exec)
1038 			goto out;
1039 	} else {
1040 		err = -ESRCH;
1041 		if (p != current)
1042 			goto out;
1043 	}
1044 
1045 	err = -EPERM;
1046 	if (p->signal->leader)
1047 		goto out;
1048 
1049 	if (pgid != pid) {
1050 		struct task_struct *p;
1051 
1052 		do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1053 			if (p->signal->session == current->signal->session)
1054 				goto ok_pgid;
1055 		} while_each_task_pid(pgid, PIDTYPE_PGID, p);
1056 		goto out;
1057 	}
1058 
1059 ok_pgid:
1060 	err = security_task_setpgid(p, pgid);
1061 	if (err)
1062 		goto out;
1063 
1064 	if (process_group(p) != pgid) {
1065 		detach_pid(p, PIDTYPE_PGID);
1066 		p->signal->pgrp = pgid;
1067 		attach_pid(p, PIDTYPE_PGID, pgid);
1068 	}
1069 
1070 	err = 0;
1071 out:
1072 	/* All paths lead to here, thus we are safe. -DaveM */
1073 	write_unlock_irq(&tasklist_lock);
1074 	return err;
1075 }
1076 
1077 asmlinkage long sys_getpgid(pid_t pid)
1078 {
1079 	if (!pid) {
1080 		return process_group(current);
1081 	} else {
1082 		int retval;
1083 		struct task_struct *p;
1084 
1085 		read_lock(&tasklist_lock);
1086 		p = find_task_by_pid(pid);
1087 
1088 		retval = -ESRCH;
1089 		if (p) {
1090 			retval = security_task_getpgid(p);
1091 			if (!retval)
1092 				retval = process_group(p);
1093 		}
1094 		read_unlock(&tasklist_lock);
1095 		return retval;
1096 	}
1097 }
1098 
1099 #ifdef __ARCH_WANT_SYS_GETPGRP
1100 
1101 asmlinkage long sys_getpgrp(void)
1102 {
1103 	/* SMP - assuming writes are word atomic this is fine */
1104 	return process_group(current);
1105 }
1106 
1107 #endif
1108 
1109 asmlinkage long sys_getsid(pid_t pid)
1110 {
1111 	if (!pid) {
1112 		return current->signal->session;
1113 	} else {
1114 		int retval;
1115 		struct task_struct *p;
1116 
1117 		read_lock(&tasklist_lock);
1118 		p = find_task_by_pid(pid);
1119 
1120 		retval = -ESRCH;
1121 		if(p) {
1122 			retval = security_task_getsid(p);
1123 			if (!retval)
1124 				retval = p->signal->session;
1125 		}
1126 		read_unlock(&tasklist_lock);
1127 		return retval;
1128 	}
1129 }
1130 
1131 asmlinkage long sys_setsid(void)
1132 {
1133 	struct pid *pid;
1134 	int err = -EPERM;
1135 
1136 	if (!thread_group_leader(current))
1137 		return -EINVAL;
1138 
1139 	down(&tty_sem);
1140 	write_lock_irq(&tasklist_lock);
1141 
1142 	pid = find_pid(PIDTYPE_PGID, current->pid);
1143 	if (pid)
1144 		goto out;
1145 
1146 	current->signal->leader = 1;
1147 	__set_special_pids(current->pid, current->pid);
1148 	current->signal->tty = NULL;
1149 	current->signal->tty_old_pgrp = 0;
1150 	err = process_group(current);
1151 out:
1152 	write_unlock_irq(&tasklist_lock);
1153 	up(&tty_sem);
1154 	return err;
1155 }
1156 
1157 /*
1158  * Supplementary group IDs
1159  */
1160 
1161 /* init to 2 - one for init_task, one to ensure it is never freed */
1162 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1163 
1164 struct group_info *groups_alloc(int gidsetsize)
1165 {
1166 	struct group_info *group_info;
1167 	int nblocks;
1168 	int i;
1169 
1170 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1171 	/* Make sure we always allocate at least one indirect block pointer */
1172 	nblocks = nblocks ? : 1;
1173 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1174 	if (!group_info)
1175 		return NULL;
1176 	group_info->ngroups = gidsetsize;
1177 	group_info->nblocks = nblocks;
1178 	atomic_set(&group_info->usage, 1);
1179 
1180 	if (gidsetsize <= NGROUPS_SMALL) {
1181 		group_info->blocks[0] = group_info->small_block;
1182 	} else {
1183 		for (i = 0; i < nblocks; i++) {
1184 			gid_t *b;
1185 			b = (void *)__get_free_page(GFP_USER);
1186 			if (!b)
1187 				goto out_undo_partial_alloc;
1188 			group_info->blocks[i] = b;
1189 		}
1190 	}
1191 	return group_info;
1192 
1193 out_undo_partial_alloc:
1194 	while (--i >= 0) {
1195 		free_page((unsigned long)group_info->blocks[i]);
1196 	}
1197 	kfree(group_info);
1198 	return NULL;
1199 }
1200 
1201 EXPORT_SYMBOL(groups_alloc);
1202 
1203 void groups_free(struct group_info *group_info)
1204 {
1205 	if (group_info->blocks[0] != group_info->small_block) {
1206 		int i;
1207 		for (i = 0; i < group_info->nblocks; i++)
1208 			free_page((unsigned long)group_info->blocks[i]);
1209 	}
1210 	kfree(group_info);
1211 }
1212 
1213 EXPORT_SYMBOL(groups_free);
1214 
1215 /* export the group_info to a user-space array */
1216 static int groups_to_user(gid_t __user *grouplist,
1217     struct group_info *group_info)
1218 {
1219 	int i;
1220 	int count = group_info->ngroups;
1221 
1222 	for (i = 0; i < group_info->nblocks; i++) {
1223 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1224 		int off = i * NGROUPS_PER_BLOCK;
1225 		int len = cp_count * sizeof(*grouplist);
1226 
1227 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1228 			return -EFAULT;
1229 
1230 		count -= cp_count;
1231 	}
1232 	return 0;
1233 }
1234 
1235 /* fill a group_info from a user-space array - it must be allocated already */
1236 static int groups_from_user(struct group_info *group_info,
1237     gid_t __user *grouplist)
1238  {
1239 	int i;
1240 	int count = group_info->ngroups;
1241 
1242 	for (i = 0; i < group_info->nblocks; i++) {
1243 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1244 		int off = i * NGROUPS_PER_BLOCK;
1245 		int len = cp_count * sizeof(*grouplist);
1246 
1247 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1248 			return -EFAULT;
1249 
1250 		count -= cp_count;
1251 	}
1252 	return 0;
1253 }
1254 
1255 /* a simple Shell sort */
1256 static void groups_sort(struct group_info *group_info)
1257 {
1258 	int base, max, stride;
1259 	int gidsetsize = group_info->ngroups;
1260 
1261 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1262 		; /* nothing */
1263 	stride /= 3;
1264 
1265 	while (stride) {
1266 		max = gidsetsize - stride;
1267 		for (base = 0; base < max; base++) {
1268 			int left = base;
1269 			int right = left + stride;
1270 			gid_t tmp = GROUP_AT(group_info, right);
1271 
1272 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1273 				GROUP_AT(group_info, right) =
1274 				    GROUP_AT(group_info, left);
1275 				right = left;
1276 				left -= stride;
1277 			}
1278 			GROUP_AT(group_info, right) = tmp;
1279 		}
1280 		stride /= 3;
1281 	}
1282 }
1283 
1284 /* a simple bsearch */
1285 int groups_search(struct group_info *group_info, gid_t grp)
1286 {
1287 	int left, right;
1288 
1289 	if (!group_info)
1290 		return 0;
1291 
1292 	left = 0;
1293 	right = group_info->ngroups;
1294 	while (left < right) {
1295 		int mid = (left+right)/2;
1296 		int cmp = grp - GROUP_AT(group_info, mid);
1297 		if (cmp > 0)
1298 			left = mid + 1;
1299 		else if (cmp < 0)
1300 			right = mid;
1301 		else
1302 			return 1;
1303 	}
1304 	return 0;
1305 }
1306 
1307 /* validate and set current->group_info */
1308 int set_current_groups(struct group_info *group_info)
1309 {
1310 	int retval;
1311 	struct group_info *old_info;
1312 
1313 	retval = security_task_setgroups(group_info);
1314 	if (retval)
1315 		return retval;
1316 
1317 	groups_sort(group_info);
1318 	get_group_info(group_info);
1319 
1320 	task_lock(current);
1321 	old_info = current->group_info;
1322 	current->group_info = group_info;
1323 	task_unlock(current);
1324 
1325 	put_group_info(old_info);
1326 
1327 	return 0;
1328 }
1329 
1330 EXPORT_SYMBOL(set_current_groups);
1331 
1332 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1333 {
1334 	int i = 0;
1335 
1336 	/*
1337 	 *	SMP: Nobody else can change our grouplist. Thus we are
1338 	 *	safe.
1339 	 */
1340 
1341 	if (gidsetsize < 0)
1342 		return -EINVAL;
1343 
1344 	/* no need to grab task_lock here; it cannot change */
1345 	get_group_info(current->group_info);
1346 	i = current->group_info->ngroups;
1347 	if (gidsetsize) {
1348 		if (i > gidsetsize) {
1349 			i = -EINVAL;
1350 			goto out;
1351 		}
1352 		if (groups_to_user(grouplist, current->group_info)) {
1353 			i = -EFAULT;
1354 			goto out;
1355 		}
1356 	}
1357 out:
1358 	put_group_info(current->group_info);
1359 	return i;
1360 }
1361 
1362 /*
1363  *	SMP: Our groups are copy-on-write. We can set them safely
1364  *	without another task interfering.
1365  */
1366 
1367 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1368 {
1369 	struct group_info *group_info;
1370 	int retval;
1371 
1372 	if (!capable(CAP_SETGID))
1373 		return -EPERM;
1374 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1375 		return -EINVAL;
1376 
1377 	group_info = groups_alloc(gidsetsize);
1378 	if (!group_info)
1379 		return -ENOMEM;
1380 	retval = groups_from_user(group_info, grouplist);
1381 	if (retval) {
1382 		put_group_info(group_info);
1383 		return retval;
1384 	}
1385 
1386 	retval = set_current_groups(group_info);
1387 	put_group_info(group_info);
1388 
1389 	return retval;
1390 }
1391 
1392 /*
1393  * Check whether we're fsgid/egid or in the supplemental group..
1394  */
1395 int in_group_p(gid_t grp)
1396 {
1397 	int retval = 1;
1398 	if (grp != current->fsgid) {
1399 		get_group_info(current->group_info);
1400 		retval = groups_search(current->group_info, grp);
1401 		put_group_info(current->group_info);
1402 	}
1403 	return retval;
1404 }
1405 
1406 EXPORT_SYMBOL(in_group_p);
1407 
1408 int in_egroup_p(gid_t grp)
1409 {
1410 	int retval = 1;
1411 	if (grp != current->egid) {
1412 		get_group_info(current->group_info);
1413 		retval = groups_search(current->group_info, grp);
1414 		put_group_info(current->group_info);
1415 	}
1416 	return retval;
1417 }
1418 
1419 EXPORT_SYMBOL(in_egroup_p);
1420 
1421 DECLARE_RWSEM(uts_sem);
1422 
1423 EXPORT_SYMBOL(uts_sem);
1424 
1425 asmlinkage long sys_newuname(struct new_utsname __user * name)
1426 {
1427 	int errno = 0;
1428 
1429 	down_read(&uts_sem);
1430 	if (copy_to_user(name,&system_utsname,sizeof *name))
1431 		errno = -EFAULT;
1432 	up_read(&uts_sem);
1433 	return errno;
1434 }
1435 
1436 asmlinkage long sys_sethostname(char __user *name, int len)
1437 {
1438 	int errno;
1439 	char tmp[__NEW_UTS_LEN];
1440 
1441 	if (!capable(CAP_SYS_ADMIN))
1442 		return -EPERM;
1443 	if (len < 0 || len > __NEW_UTS_LEN)
1444 		return -EINVAL;
1445 	down_write(&uts_sem);
1446 	errno = -EFAULT;
1447 	if (!copy_from_user(tmp, name, len)) {
1448 		memcpy(system_utsname.nodename, tmp, len);
1449 		system_utsname.nodename[len] = 0;
1450 		errno = 0;
1451 	}
1452 	up_write(&uts_sem);
1453 	return errno;
1454 }
1455 
1456 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1457 
1458 asmlinkage long sys_gethostname(char __user *name, int len)
1459 {
1460 	int i, errno;
1461 
1462 	if (len < 0)
1463 		return -EINVAL;
1464 	down_read(&uts_sem);
1465 	i = 1 + strlen(system_utsname.nodename);
1466 	if (i > len)
1467 		i = len;
1468 	errno = 0;
1469 	if (copy_to_user(name, system_utsname.nodename, i))
1470 		errno = -EFAULT;
1471 	up_read(&uts_sem);
1472 	return errno;
1473 }
1474 
1475 #endif
1476 
1477 /*
1478  * Only setdomainname; getdomainname can be implemented by calling
1479  * uname()
1480  */
1481 asmlinkage long sys_setdomainname(char __user *name, int len)
1482 {
1483 	int errno;
1484 	char tmp[__NEW_UTS_LEN];
1485 
1486 	if (!capable(CAP_SYS_ADMIN))
1487 		return -EPERM;
1488 	if (len < 0 || len > __NEW_UTS_LEN)
1489 		return -EINVAL;
1490 
1491 	down_write(&uts_sem);
1492 	errno = -EFAULT;
1493 	if (!copy_from_user(tmp, name, len)) {
1494 		memcpy(system_utsname.domainname, tmp, len);
1495 		system_utsname.domainname[len] = 0;
1496 		errno = 0;
1497 	}
1498 	up_write(&uts_sem);
1499 	return errno;
1500 }
1501 
1502 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1503 {
1504 	if (resource >= RLIM_NLIMITS)
1505 		return -EINVAL;
1506 	else {
1507 		struct rlimit value;
1508 		task_lock(current->group_leader);
1509 		value = current->signal->rlim[resource];
1510 		task_unlock(current->group_leader);
1511 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1512 	}
1513 }
1514 
1515 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1516 
1517 /*
1518  *	Back compatibility for getrlimit. Needed for some apps.
1519  */
1520 
1521 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1522 {
1523 	struct rlimit x;
1524 	if (resource >= RLIM_NLIMITS)
1525 		return -EINVAL;
1526 
1527 	task_lock(current->group_leader);
1528 	x = current->signal->rlim[resource];
1529 	task_unlock(current->group_leader);
1530 	if(x.rlim_cur > 0x7FFFFFFF)
1531 		x.rlim_cur = 0x7FFFFFFF;
1532 	if(x.rlim_max > 0x7FFFFFFF)
1533 		x.rlim_max = 0x7FFFFFFF;
1534 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1535 }
1536 
1537 #endif
1538 
1539 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1540 {
1541 	struct rlimit new_rlim, *old_rlim;
1542 	int retval;
1543 
1544 	if (resource >= RLIM_NLIMITS)
1545 		return -EINVAL;
1546 	if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1547 		return -EFAULT;
1548        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1549                return -EINVAL;
1550 	old_rlim = current->signal->rlim + resource;
1551 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1552 	    !capable(CAP_SYS_RESOURCE))
1553 		return -EPERM;
1554 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1555 			return -EPERM;
1556 
1557 	retval = security_task_setrlimit(resource, &new_rlim);
1558 	if (retval)
1559 		return retval;
1560 
1561 	task_lock(current->group_leader);
1562 	*old_rlim = new_rlim;
1563 	task_unlock(current->group_leader);
1564 
1565 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1566 	    (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1567 	     new_rlim.rlim_cur <= cputime_to_secs(
1568 		     current->signal->it_prof_expires))) {
1569 		cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1570 		read_lock(&tasklist_lock);
1571 		spin_lock_irq(&current->sighand->siglock);
1572 		set_process_cpu_timer(current, CPUCLOCK_PROF,
1573 				      &cputime, NULL);
1574 		spin_unlock_irq(&current->sighand->siglock);
1575 		read_unlock(&tasklist_lock);
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 /*
1582  * It would make sense to put struct rusage in the task_struct,
1583  * except that would make the task_struct be *really big*.  After
1584  * task_struct gets moved into malloc'ed memory, it would
1585  * make sense to do this.  It will make moving the rest of the information
1586  * a lot simpler!  (Which we're not doing right now because we're not
1587  * measuring them yet).
1588  *
1589  * This expects to be called with tasklist_lock read-locked or better,
1590  * and the siglock not locked.  It may momentarily take the siglock.
1591  *
1592  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1593  * races with threads incrementing their own counters.  But since word
1594  * reads are atomic, we either get new values or old values and we don't
1595  * care which for the sums.  We always take the siglock to protect reading
1596  * the c* fields from p->signal from races with exit.c updating those
1597  * fields when reaping, so a sample either gets all the additions of a
1598  * given child after it's reaped, or none so this sample is before reaping.
1599  */
1600 
1601 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1602 {
1603 	struct task_struct *t;
1604 	unsigned long flags;
1605 	cputime_t utime, stime;
1606 
1607 	memset((char *) r, 0, sizeof *r);
1608 
1609 	if (unlikely(!p->signal))
1610 		return;
1611 
1612 	switch (who) {
1613 		case RUSAGE_CHILDREN:
1614 			spin_lock_irqsave(&p->sighand->siglock, flags);
1615 			utime = p->signal->cutime;
1616 			stime = p->signal->cstime;
1617 			r->ru_nvcsw = p->signal->cnvcsw;
1618 			r->ru_nivcsw = p->signal->cnivcsw;
1619 			r->ru_minflt = p->signal->cmin_flt;
1620 			r->ru_majflt = p->signal->cmaj_flt;
1621 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1622 			cputime_to_timeval(utime, &r->ru_utime);
1623 			cputime_to_timeval(stime, &r->ru_stime);
1624 			break;
1625 		case RUSAGE_SELF:
1626 			spin_lock_irqsave(&p->sighand->siglock, flags);
1627 			utime = stime = cputime_zero;
1628 			goto sum_group;
1629 		case RUSAGE_BOTH:
1630 			spin_lock_irqsave(&p->sighand->siglock, flags);
1631 			utime = p->signal->cutime;
1632 			stime = p->signal->cstime;
1633 			r->ru_nvcsw = p->signal->cnvcsw;
1634 			r->ru_nivcsw = p->signal->cnivcsw;
1635 			r->ru_minflt = p->signal->cmin_flt;
1636 			r->ru_majflt = p->signal->cmaj_flt;
1637 		sum_group:
1638 			utime = cputime_add(utime, p->signal->utime);
1639 			stime = cputime_add(stime, p->signal->stime);
1640 			r->ru_nvcsw += p->signal->nvcsw;
1641 			r->ru_nivcsw += p->signal->nivcsw;
1642 			r->ru_minflt += p->signal->min_flt;
1643 			r->ru_majflt += p->signal->maj_flt;
1644 			t = p;
1645 			do {
1646 				utime = cputime_add(utime, t->utime);
1647 				stime = cputime_add(stime, t->stime);
1648 				r->ru_nvcsw += t->nvcsw;
1649 				r->ru_nivcsw += t->nivcsw;
1650 				r->ru_minflt += t->min_flt;
1651 				r->ru_majflt += t->maj_flt;
1652 				t = next_thread(t);
1653 			} while (t != p);
1654 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1655 			cputime_to_timeval(utime, &r->ru_utime);
1656 			cputime_to_timeval(stime, &r->ru_stime);
1657 			break;
1658 		default:
1659 			BUG();
1660 	}
1661 }
1662 
1663 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1664 {
1665 	struct rusage r;
1666 	read_lock(&tasklist_lock);
1667 	k_getrusage(p, who, &r);
1668 	read_unlock(&tasklist_lock);
1669 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1670 }
1671 
1672 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1673 {
1674 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1675 		return -EINVAL;
1676 	return getrusage(current, who, ru);
1677 }
1678 
1679 asmlinkage long sys_umask(int mask)
1680 {
1681 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1682 	return mask;
1683 }
1684 
1685 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1686 			  unsigned long arg4, unsigned long arg5)
1687 {
1688 	long error;
1689 	int sig;
1690 
1691 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1692 	if (error)
1693 		return error;
1694 
1695 	switch (option) {
1696 		case PR_SET_PDEATHSIG:
1697 			sig = arg2;
1698 			if (!valid_signal(sig)) {
1699 				error = -EINVAL;
1700 				break;
1701 			}
1702 			current->pdeath_signal = sig;
1703 			break;
1704 		case PR_GET_PDEATHSIG:
1705 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1706 			break;
1707 		case PR_GET_DUMPABLE:
1708 			if (current->mm->dumpable)
1709 				error = 1;
1710 			break;
1711 		case PR_SET_DUMPABLE:
1712 			if (arg2 < 0 || arg2 > 2) {
1713 				error = -EINVAL;
1714 				break;
1715 			}
1716 			current->mm->dumpable = arg2;
1717 			break;
1718 
1719 		case PR_SET_UNALIGN:
1720 			error = SET_UNALIGN_CTL(current, arg2);
1721 			break;
1722 		case PR_GET_UNALIGN:
1723 			error = GET_UNALIGN_CTL(current, arg2);
1724 			break;
1725 		case PR_SET_FPEMU:
1726 			error = SET_FPEMU_CTL(current, arg2);
1727 			break;
1728 		case PR_GET_FPEMU:
1729 			error = GET_FPEMU_CTL(current, arg2);
1730 			break;
1731 		case PR_SET_FPEXC:
1732 			error = SET_FPEXC_CTL(current, arg2);
1733 			break;
1734 		case PR_GET_FPEXC:
1735 			error = GET_FPEXC_CTL(current, arg2);
1736 			break;
1737 		case PR_GET_TIMING:
1738 			error = PR_TIMING_STATISTICAL;
1739 			break;
1740 		case PR_SET_TIMING:
1741 			if (arg2 == PR_TIMING_STATISTICAL)
1742 				error = 0;
1743 			else
1744 				error = -EINVAL;
1745 			break;
1746 
1747 		case PR_GET_KEEPCAPS:
1748 			if (current->keep_capabilities)
1749 				error = 1;
1750 			break;
1751 		case PR_SET_KEEPCAPS:
1752 			if (arg2 != 0 && arg2 != 1) {
1753 				error = -EINVAL;
1754 				break;
1755 			}
1756 			current->keep_capabilities = arg2;
1757 			break;
1758 		case PR_SET_NAME: {
1759 			struct task_struct *me = current;
1760 			unsigned char ncomm[sizeof(me->comm)];
1761 
1762 			ncomm[sizeof(me->comm)-1] = 0;
1763 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1764 						sizeof(me->comm)-1) < 0)
1765 				return -EFAULT;
1766 			set_task_comm(me, ncomm);
1767 			return 0;
1768 		}
1769 		case PR_GET_NAME: {
1770 			struct task_struct *me = current;
1771 			unsigned char tcomm[sizeof(me->comm)];
1772 
1773 			get_task_comm(tcomm, me);
1774 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1775 				return -EFAULT;
1776 			return 0;
1777 		}
1778 		default:
1779 			error = -EINVAL;
1780 			break;
1781 	}
1782 	return error;
1783 }
1784