1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/config.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/utsname.h> 11 #include <linux/mman.h> 12 #include <linux/smp_lock.h> 13 #include <linux/notifier.h> 14 #include <linux/reboot.h> 15 #include <linux/prctl.h> 16 #include <linux/init.h> 17 #include <linux/highuid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kexec.h> 21 #include <linux/workqueue.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 32 #include <linux/compat.h> 33 #include <linux/syscalls.h> 34 35 #include <asm/uaccess.h> 36 #include <asm/io.h> 37 #include <asm/unistd.h> 38 39 #ifndef SET_UNALIGN_CTL 40 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 41 #endif 42 #ifndef GET_UNALIGN_CTL 43 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 44 #endif 45 #ifndef SET_FPEMU_CTL 46 # define SET_FPEMU_CTL(a,b) (-EINVAL) 47 #endif 48 #ifndef GET_FPEMU_CTL 49 # define GET_FPEMU_CTL(a,b) (-EINVAL) 50 #endif 51 #ifndef SET_FPEXC_CTL 52 # define SET_FPEXC_CTL(a,b) (-EINVAL) 53 #endif 54 #ifndef GET_FPEXC_CTL 55 # define GET_FPEXC_CTL(a,b) (-EINVAL) 56 #endif 57 58 /* 59 * this is where the system-wide overflow UID and GID are defined, for 60 * architectures that now have 32-bit UID/GID but didn't in the past 61 */ 62 63 int overflowuid = DEFAULT_OVERFLOWUID; 64 int overflowgid = DEFAULT_OVERFLOWGID; 65 66 #ifdef CONFIG_UID16 67 EXPORT_SYMBOL(overflowuid); 68 EXPORT_SYMBOL(overflowgid); 69 #endif 70 71 /* 72 * the same as above, but for filesystems which can only store a 16-bit 73 * UID and GID. as such, this is needed on all architectures 74 */ 75 76 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 77 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 78 79 EXPORT_SYMBOL(fs_overflowuid); 80 EXPORT_SYMBOL(fs_overflowgid); 81 82 /* 83 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 84 */ 85 86 int C_A_D = 1; 87 int cad_pid = 1; 88 89 /* 90 * Notifier list for kernel code which wants to be called 91 * at shutdown. This is used to stop any idling DMA operations 92 * and the like. 93 */ 94 95 static struct notifier_block *reboot_notifier_list; 96 static DEFINE_RWLOCK(notifier_lock); 97 98 /** 99 * notifier_chain_register - Add notifier to a notifier chain 100 * @list: Pointer to root list pointer 101 * @n: New entry in notifier chain 102 * 103 * Adds a notifier to a notifier chain. 104 * 105 * Currently always returns zero. 106 */ 107 108 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n) 109 { 110 write_lock(¬ifier_lock); 111 while(*list) 112 { 113 if(n->priority > (*list)->priority) 114 break; 115 list= &((*list)->next); 116 } 117 n->next = *list; 118 *list=n; 119 write_unlock(¬ifier_lock); 120 return 0; 121 } 122 123 EXPORT_SYMBOL(notifier_chain_register); 124 125 /** 126 * notifier_chain_unregister - Remove notifier from a notifier chain 127 * @nl: Pointer to root list pointer 128 * @n: New entry in notifier chain 129 * 130 * Removes a notifier from a notifier chain. 131 * 132 * Returns zero on success, or %-ENOENT on failure. 133 */ 134 135 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n) 136 { 137 write_lock(¬ifier_lock); 138 while((*nl)!=NULL) 139 { 140 if((*nl)==n) 141 { 142 *nl=n->next; 143 write_unlock(¬ifier_lock); 144 return 0; 145 } 146 nl=&((*nl)->next); 147 } 148 write_unlock(¬ifier_lock); 149 return -ENOENT; 150 } 151 152 EXPORT_SYMBOL(notifier_chain_unregister); 153 154 /** 155 * notifier_call_chain - Call functions in a notifier chain 156 * @n: Pointer to root pointer of notifier chain 157 * @val: Value passed unmodified to notifier function 158 * @v: Pointer passed unmodified to notifier function 159 * 160 * Calls each function in a notifier chain in turn. 161 * 162 * If the return value of the notifier can be and'd 163 * with %NOTIFY_STOP_MASK, then notifier_call_chain 164 * will return immediately, with the return value of 165 * the notifier function which halted execution. 166 * Otherwise, the return value is the return value 167 * of the last notifier function called. 168 */ 169 170 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v) 171 { 172 int ret=NOTIFY_DONE; 173 struct notifier_block *nb = *n; 174 175 while(nb) 176 { 177 ret=nb->notifier_call(nb,val,v); 178 if(ret&NOTIFY_STOP_MASK) 179 { 180 return ret; 181 } 182 nb=nb->next; 183 } 184 return ret; 185 } 186 187 EXPORT_SYMBOL(notifier_call_chain); 188 189 /** 190 * register_reboot_notifier - Register function to be called at reboot time 191 * @nb: Info about notifier function to be called 192 * 193 * Registers a function with the list of functions 194 * to be called at reboot time. 195 * 196 * Currently always returns zero, as notifier_chain_register 197 * always returns zero. 198 */ 199 200 int register_reboot_notifier(struct notifier_block * nb) 201 { 202 return notifier_chain_register(&reboot_notifier_list, nb); 203 } 204 205 EXPORT_SYMBOL(register_reboot_notifier); 206 207 /** 208 * unregister_reboot_notifier - Unregister previously registered reboot notifier 209 * @nb: Hook to be unregistered 210 * 211 * Unregisters a previously registered reboot 212 * notifier function. 213 * 214 * Returns zero on success, or %-ENOENT on failure. 215 */ 216 217 int unregister_reboot_notifier(struct notifier_block * nb) 218 { 219 return notifier_chain_unregister(&reboot_notifier_list, nb); 220 } 221 222 EXPORT_SYMBOL(unregister_reboot_notifier); 223 224 static int set_one_prio(struct task_struct *p, int niceval, int error) 225 { 226 int no_nice; 227 228 if (p->uid != current->euid && 229 p->euid != current->euid && !capable(CAP_SYS_NICE)) { 230 error = -EPERM; 231 goto out; 232 } 233 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 234 error = -EACCES; 235 goto out; 236 } 237 no_nice = security_task_setnice(p, niceval); 238 if (no_nice) { 239 error = no_nice; 240 goto out; 241 } 242 if (error == -ESRCH) 243 error = 0; 244 set_user_nice(p, niceval); 245 out: 246 return error; 247 } 248 249 asmlinkage long sys_setpriority(int which, int who, int niceval) 250 { 251 struct task_struct *g, *p; 252 struct user_struct *user; 253 int error = -EINVAL; 254 255 if (which > 2 || which < 0) 256 goto out; 257 258 /* normalize: avoid signed division (rounding problems) */ 259 error = -ESRCH; 260 if (niceval < -20) 261 niceval = -20; 262 if (niceval > 19) 263 niceval = 19; 264 265 read_lock(&tasklist_lock); 266 switch (which) { 267 case PRIO_PROCESS: 268 if (!who) 269 who = current->pid; 270 p = find_task_by_pid(who); 271 if (p) 272 error = set_one_prio(p, niceval, error); 273 break; 274 case PRIO_PGRP: 275 if (!who) 276 who = process_group(current); 277 do_each_task_pid(who, PIDTYPE_PGID, p) { 278 error = set_one_prio(p, niceval, error); 279 } while_each_task_pid(who, PIDTYPE_PGID, p); 280 break; 281 case PRIO_USER: 282 user = current->user; 283 if (!who) 284 who = current->uid; 285 else 286 if ((who != current->uid) && !(user = find_user(who))) 287 goto out_unlock; /* No processes for this user */ 288 289 do_each_thread(g, p) 290 if (p->uid == who) 291 error = set_one_prio(p, niceval, error); 292 while_each_thread(g, p); 293 if (who != current->uid) 294 free_uid(user); /* For find_user() */ 295 break; 296 } 297 out_unlock: 298 read_unlock(&tasklist_lock); 299 out: 300 return error; 301 } 302 303 /* 304 * Ugh. To avoid negative return values, "getpriority()" will 305 * not return the normal nice-value, but a negated value that 306 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 307 * to stay compatible. 308 */ 309 asmlinkage long sys_getpriority(int which, int who) 310 { 311 struct task_struct *g, *p; 312 struct user_struct *user; 313 long niceval, retval = -ESRCH; 314 315 if (which > 2 || which < 0) 316 return -EINVAL; 317 318 read_lock(&tasklist_lock); 319 switch (which) { 320 case PRIO_PROCESS: 321 if (!who) 322 who = current->pid; 323 p = find_task_by_pid(who); 324 if (p) { 325 niceval = 20 - task_nice(p); 326 if (niceval > retval) 327 retval = niceval; 328 } 329 break; 330 case PRIO_PGRP: 331 if (!who) 332 who = process_group(current); 333 do_each_task_pid(who, PIDTYPE_PGID, p) { 334 niceval = 20 - task_nice(p); 335 if (niceval > retval) 336 retval = niceval; 337 } while_each_task_pid(who, PIDTYPE_PGID, p); 338 break; 339 case PRIO_USER: 340 user = current->user; 341 if (!who) 342 who = current->uid; 343 else 344 if ((who != current->uid) && !(user = find_user(who))) 345 goto out_unlock; /* No processes for this user */ 346 347 do_each_thread(g, p) 348 if (p->uid == who) { 349 niceval = 20 - task_nice(p); 350 if (niceval > retval) 351 retval = niceval; 352 } 353 while_each_thread(g, p); 354 if (who != current->uid) 355 free_uid(user); /* for find_user() */ 356 break; 357 } 358 out_unlock: 359 read_unlock(&tasklist_lock); 360 361 return retval; 362 } 363 364 365 /* 366 * Reboot system call: for obvious reasons only root may call it, 367 * and even root needs to set up some magic numbers in the registers 368 * so that some mistake won't make this reboot the whole machine. 369 * You can also set the meaning of the ctrl-alt-del-key here. 370 * 371 * reboot doesn't sync: do that yourself before calling this. 372 */ 373 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 374 { 375 char buffer[256]; 376 377 /* We only trust the superuser with rebooting the system. */ 378 if (!capable(CAP_SYS_BOOT)) 379 return -EPERM; 380 381 /* For safety, we require "magic" arguments. */ 382 if (magic1 != LINUX_REBOOT_MAGIC1 || 383 (magic2 != LINUX_REBOOT_MAGIC2 && 384 magic2 != LINUX_REBOOT_MAGIC2A && 385 magic2 != LINUX_REBOOT_MAGIC2B && 386 magic2 != LINUX_REBOOT_MAGIC2C)) 387 return -EINVAL; 388 389 lock_kernel(); 390 switch (cmd) { 391 case LINUX_REBOOT_CMD_RESTART: 392 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL); 393 system_state = SYSTEM_RESTART; 394 device_shutdown(); 395 printk(KERN_EMERG "Restarting system.\n"); 396 machine_restart(NULL); 397 break; 398 399 case LINUX_REBOOT_CMD_CAD_ON: 400 C_A_D = 1; 401 break; 402 403 case LINUX_REBOOT_CMD_CAD_OFF: 404 C_A_D = 0; 405 break; 406 407 case LINUX_REBOOT_CMD_HALT: 408 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL); 409 system_state = SYSTEM_HALT; 410 device_suspend(PMSG_SUSPEND); 411 device_shutdown(); 412 printk(KERN_EMERG "System halted.\n"); 413 machine_halt(); 414 unlock_kernel(); 415 do_exit(0); 416 break; 417 418 case LINUX_REBOOT_CMD_POWER_OFF: 419 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL); 420 system_state = SYSTEM_POWER_OFF; 421 device_suspend(PMSG_SUSPEND); 422 device_shutdown(); 423 printk(KERN_EMERG "Power down.\n"); 424 machine_power_off(); 425 unlock_kernel(); 426 do_exit(0); 427 break; 428 429 case LINUX_REBOOT_CMD_RESTART2: 430 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 431 unlock_kernel(); 432 return -EFAULT; 433 } 434 buffer[sizeof(buffer) - 1] = '\0'; 435 436 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer); 437 system_state = SYSTEM_RESTART; 438 device_suspend(PMSG_FREEZE); 439 device_shutdown(); 440 printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer); 441 machine_restart(buffer); 442 break; 443 444 #ifdef CONFIG_KEXEC 445 case LINUX_REBOOT_CMD_KEXEC: 446 { 447 struct kimage *image; 448 image = xchg(&kexec_image, 0); 449 if (!image) { 450 unlock_kernel(); 451 return -EINVAL; 452 } 453 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL); 454 system_state = SYSTEM_RESTART; 455 device_shutdown(); 456 printk(KERN_EMERG "Starting new kernel\n"); 457 machine_shutdown(); 458 machine_kexec(image); 459 break; 460 } 461 #endif 462 #ifdef CONFIG_SOFTWARE_SUSPEND 463 case LINUX_REBOOT_CMD_SW_SUSPEND: 464 { 465 int ret = software_suspend(); 466 unlock_kernel(); 467 return ret; 468 } 469 #endif 470 471 default: 472 unlock_kernel(); 473 return -EINVAL; 474 } 475 unlock_kernel(); 476 return 0; 477 } 478 479 static void deferred_cad(void *dummy) 480 { 481 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL); 482 machine_restart(NULL); 483 } 484 485 /* 486 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 487 * As it's called within an interrupt, it may NOT sync: the only choice 488 * is whether to reboot at once, or just ignore the ctrl-alt-del. 489 */ 490 void ctrl_alt_del(void) 491 { 492 static DECLARE_WORK(cad_work, deferred_cad, NULL); 493 494 if (C_A_D) 495 schedule_work(&cad_work); 496 else 497 kill_proc(cad_pid, SIGINT, 1); 498 } 499 500 501 /* 502 * Unprivileged users may change the real gid to the effective gid 503 * or vice versa. (BSD-style) 504 * 505 * If you set the real gid at all, or set the effective gid to a value not 506 * equal to the real gid, then the saved gid is set to the new effective gid. 507 * 508 * This makes it possible for a setgid program to completely drop its 509 * privileges, which is often a useful assertion to make when you are doing 510 * a security audit over a program. 511 * 512 * The general idea is that a program which uses just setregid() will be 513 * 100% compatible with BSD. A program which uses just setgid() will be 514 * 100% compatible with POSIX with saved IDs. 515 * 516 * SMP: There are not races, the GIDs are checked only by filesystem 517 * operations (as far as semantic preservation is concerned). 518 */ 519 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 520 { 521 int old_rgid = current->gid; 522 int old_egid = current->egid; 523 int new_rgid = old_rgid; 524 int new_egid = old_egid; 525 int retval; 526 527 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 528 if (retval) 529 return retval; 530 531 if (rgid != (gid_t) -1) { 532 if ((old_rgid == rgid) || 533 (current->egid==rgid) || 534 capable(CAP_SETGID)) 535 new_rgid = rgid; 536 else 537 return -EPERM; 538 } 539 if (egid != (gid_t) -1) { 540 if ((old_rgid == egid) || 541 (current->egid == egid) || 542 (current->sgid == egid) || 543 capable(CAP_SETGID)) 544 new_egid = egid; 545 else { 546 return -EPERM; 547 } 548 } 549 if (new_egid != old_egid) 550 { 551 current->mm->dumpable = suid_dumpable; 552 smp_wmb(); 553 } 554 if (rgid != (gid_t) -1 || 555 (egid != (gid_t) -1 && egid != old_rgid)) 556 current->sgid = new_egid; 557 current->fsgid = new_egid; 558 current->egid = new_egid; 559 current->gid = new_rgid; 560 key_fsgid_changed(current); 561 return 0; 562 } 563 564 /* 565 * setgid() is implemented like SysV w/ SAVED_IDS 566 * 567 * SMP: Same implicit races as above. 568 */ 569 asmlinkage long sys_setgid(gid_t gid) 570 { 571 int old_egid = current->egid; 572 int retval; 573 574 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 575 if (retval) 576 return retval; 577 578 if (capable(CAP_SETGID)) 579 { 580 if(old_egid != gid) 581 { 582 current->mm->dumpable = suid_dumpable; 583 smp_wmb(); 584 } 585 current->gid = current->egid = current->sgid = current->fsgid = gid; 586 } 587 else if ((gid == current->gid) || (gid == current->sgid)) 588 { 589 if(old_egid != gid) 590 { 591 current->mm->dumpable = suid_dumpable; 592 smp_wmb(); 593 } 594 current->egid = current->fsgid = gid; 595 } 596 else 597 return -EPERM; 598 599 key_fsgid_changed(current); 600 return 0; 601 } 602 603 static int set_user(uid_t new_ruid, int dumpclear) 604 { 605 struct user_struct *new_user; 606 607 new_user = alloc_uid(new_ruid); 608 if (!new_user) 609 return -EAGAIN; 610 611 if (atomic_read(&new_user->processes) >= 612 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 613 new_user != &root_user) { 614 free_uid(new_user); 615 return -EAGAIN; 616 } 617 618 switch_uid(new_user); 619 620 if(dumpclear) 621 { 622 current->mm->dumpable = suid_dumpable; 623 smp_wmb(); 624 } 625 current->uid = new_ruid; 626 return 0; 627 } 628 629 /* 630 * Unprivileged users may change the real uid to the effective uid 631 * or vice versa. (BSD-style) 632 * 633 * If you set the real uid at all, or set the effective uid to a value not 634 * equal to the real uid, then the saved uid is set to the new effective uid. 635 * 636 * This makes it possible for a setuid program to completely drop its 637 * privileges, which is often a useful assertion to make when you are doing 638 * a security audit over a program. 639 * 640 * The general idea is that a program which uses just setreuid() will be 641 * 100% compatible with BSD. A program which uses just setuid() will be 642 * 100% compatible with POSIX with saved IDs. 643 */ 644 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 645 { 646 int old_ruid, old_euid, old_suid, new_ruid, new_euid; 647 int retval; 648 649 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 650 if (retval) 651 return retval; 652 653 new_ruid = old_ruid = current->uid; 654 new_euid = old_euid = current->euid; 655 old_suid = current->suid; 656 657 if (ruid != (uid_t) -1) { 658 new_ruid = ruid; 659 if ((old_ruid != ruid) && 660 (current->euid != ruid) && 661 !capable(CAP_SETUID)) 662 return -EPERM; 663 } 664 665 if (euid != (uid_t) -1) { 666 new_euid = euid; 667 if ((old_ruid != euid) && 668 (current->euid != euid) && 669 (current->suid != euid) && 670 !capable(CAP_SETUID)) 671 return -EPERM; 672 } 673 674 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) 675 return -EAGAIN; 676 677 if (new_euid != old_euid) 678 { 679 current->mm->dumpable = suid_dumpable; 680 smp_wmb(); 681 } 682 current->fsuid = current->euid = new_euid; 683 if (ruid != (uid_t) -1 || 684 (euid != (uid_t) -1 && euid != old_ruid)) 685 current->suid = current->euid; 686 current->fsuid = current->euid; 687 688 key_fsuid_changed(current); 689 690 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); 691 } 692 693 694 695 /* 696 * setuid() is implemented like SysV with SAVED_IDS 697 * 698 * Note that SAVED_ID's is deficient in that a setuid root program 699 * like sendmail, for example, cannot set its uid to be a normal 700 * user and then switch back, because if you're root, setuid() sets 701 * the saved uid too. If you don't like this, blame the bright people 702 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 703 * will allow a root program to temporarily drop privileges and be able to 704 * regain them by swapping the real and effective uid. 705 */ 706 asmlinkage long sys_setuid(uid_t uid) 707 { 708 int old_euid = current->euid; 709 int old_ruid, old_suid, new_ruid, new_suid; 710 int retval; 711 712 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 713 if (retval) 714 return retval; 715 716 old_ruid = new_ruid = current->uid; 717 old_suid = current->suid; 718 new_suid = old_suid; 719 720 if (capable(CAP_SETUID)) { 721 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) 722 return -EAGAIN; 723 new_suid = uid; 724 } else if ((uid != current->uid) && (uid != new_suid)) 725 return -EPERM; 726 727 if (old_euid != uid) 728 { 729 current->mm->dumpable = suid_dumpable; 730 smp_wmb(); 731 } 732 current->fsuid = current->euid = uid; 733 current->suid = new_suid; 734 735 key_fsuid_changed(current); 736 737 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); 738 } 739 740 741 /* 742 * This function implements a generic ability to update ruid, euid, 743 * and suid. This allows you to implement the 4.4 compatible seteuid(). 744 */ 745 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 746 { 747 int old_ruid = current->uid; 748 int old_euid = current->euid; 749 int old_suid = current->suid; 750 int retval; 751 752 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 753 if (retval) 754 return retval; 755 756 if (!capable(CAP_SETUID)) { 757 if ((ruid != (uid_t) -1) && (ruid != current->uid) && 758 (ruid != current->euid) && (ruid != current->suid)) 759 return -EPERM; 760 if ((euid != (uid_t) -1) && (euid != current->uid) && 761 (euid != current->euid) && (euid != current->suid)) 762 return -EPERM; 763 if ((suid != (uid_t) -1) && (suid != current->uid) && 764 (suid != current->euid) && (suid != current->suid)) 765 return -EPERM; 766 } 767 if (ruid != (uid_t) -1) { 768 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) 769 return -EAGAIN; 770 } 771 if (euid != (uid_t) -1) { 772 if (euid != current->euid) 773 { 774 current->mm->dumpable = suid_dumpable; 775 smp_wmb(); 776 } 777 current->euid = euid; 778 } 779 current->fsuid = current->euid; 780 if (suid != (uid_t) -1) 781 current->suid = suid; 782 783 key_fsuid_changed(current); 784 785 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); 786 } 787 788 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 789 { 790 int retval; 791 792 if (!(retval = put_user(current->uid, ruid)) && 793 !(retval = put_user(current->euid, euid))) 794 retval = put_user(current->suid, suid); 795 796 return retval; 797 } 798 799 /* 800 * Same as above, but for rgid, egid, sgid. 801 */ 802 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 803 { 804 int retval; 805 806 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 807 if (retval) 808 return retval; 809 810 if (!capable(CAP_SETGID)) { 811 if ((rgid != (gid_t) -1) && (rgid != current->gid) && 812 (rgid != current->egid) && (rgid != current->sgid)) 813 return -EPERM; 814 if ((egid != (gid_t) -1) && (egid != current->gid) && 815 (egid != current->egid) && (egid != current->sgid)) 816 return -EPERM; 817 if ((sgid != (gid_t) -1) && (sgid != current->gid) && 818 (sgid != current->egid) && (sgid != current->sgid)) 819 return -EPERM; 820 } 821 if (egid != (gid_t) -1) { 822 if (egid != current->egid) 823 { 824 current->mm->dumpable = suid_dumpable; 825 smp_wmb(); 826 } 827 current->egid = egid; 828 } 829 current->fsgid = current->egid; 830 if (rgid != (gid_t) -1) 831 current->gid = rgid; 832 if (sgid != (gid_t) -1) 833 current->sgid = sgid; 834 835 key_fsgid_changed(current); 836 return 0; 837 } 838 839 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 840 { 841 int retval; 842 843 if (!(retval = put_user(current->gid, rgid)) && 844 !(retval = put_user(current->egid, egid))) 845 retval = put_user(current->sgid, sgid); 846 847 return retval; 848 } 849 850 851 /* 852 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 853 * is used for "access()" and for the NFS daemon (letting nfsd stay at 854 * whatever uid it wants to). It normally shadows "euid", except when 855 * explicitly set by setfsuid() or for access.. 856 */ 857 asmlinkage long sys_setfsuid(uid_t uid) 858 { 859 int old_fsuid; 860 861 old_fsuid = current->fsuid; 862 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) 863 return old_fsuid; 864 865 if (uid == current->uid || uid == current->euid || 866 uid == current->suid || uid == current->fsuid || 867 capable(CAP_SETUID)) 868 { 869 if (uid != old_fsuid) 870 { 871 current->mm->dumpable = suid_dumpable; 872 smp_wmb(); 873 } 874 current->fsuid = uid; 875 } 876 877 key_fsuid_changed(current); 878 879 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); 880 881 return old_fsuid; 882 } 883 884 /* 885 * Samma p� svenska.. 886 */ 887 asmlinkage long sys_setfsgid(gid_t gid) 888 { 889 int old_fsgid; 890 891 old_fsgid = current->fsgid; 892 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 893 return old_fsgid; 894 895 if (gid == current->gid || gid == current->egid || 896 gid == current->sgid || gid == current->fsgid || 897 capable(CAP_SETGID)) 898 { 899 if (gid != old_fsgid) 900 { 901 current->mm->dumpable = suid_dumpable; 902 smp_wmb(); 903 } 904 current->fsgid = gid; 905 key_fsgid_changed(current); 906 } 907 return old_fsgid; 908 } 909 910 asmlinkage long sys_times(struct tms __user * tbuf) 911 { 912 /* 913 * In the SMP world we might just be unlucky and have one of 914 * the times increment as we use it. Since the value is an 915 * atomically safe type this is just fine. Conceptually its 916 * as if the syscall took an instant longer to occur. 917 */ 918 if (tbuf) { 919 struct tms tmp; 920 cputime_t utime, stime, cutime, cstime; 921 922 #ifdef CONFIG_SMP 923 if (thread_group_empty(current)) { 924 /* 925 * Single thread case without the use of any locks. 926 * 927 * We may race with release_task if two threads are 928 * executing. However, release task first adds up the 929 * counters (__exit_signal) before removing the task 930 * from the process tasklist (__unhash_process). 931 * __exit_signal also acquires and releases the 932 * siglock which results in the proper memory ordering 933 * so that the list modifications are always visible 934 * after the counters have been updated. 935 * 936 * If the counters have been updated by the second thread 937 * but the thread has not yet been removed from the list 938 * then the other branch will be executing which will 939 * block on tasklist_lock until the exit handling of the 940 * other task is finished. 941 * 942 * This also implies that the sighand->siglock cannot 943 * be held by another processor. So we can also 944 * skip acquiring that lock. 945 */ 946 utime = cputime_add(current->signal->utime, current->utime); 947 stime = cputime_add(current->signal->utime, current->stime); 948 cutime = current->signal->cutime; 949 cstime = current->signal->cstime; 950 } else 951 #endif 952 { 953 954 /* Process with multiple threads */ 955 struct task_struct *tsk = current; 956 struct task_struct *t; 957 958 read_lock(&tasklist_lock); 959 utime = tsk->signal->utime; 960 stime = tsk->signal->stime; 961 t = tsk; 962 do { 963 utime = cputime_add(utime, t->utime); 964 stime = cputime_add(stime, t->stime); 965 t = next_thread(t); 966 } while (t != tsk); 967 968 /* 969 * While we have tasklist_lock read-locked, no dying thread 970 * can be updating current->signal->[us]time. Instead, 971 * we got their counts included in the live thread loop. 972 * However, another thread can come in right now and 973 * do a wait call that updates current->signal->c[us]time. 974 * To make sure we always see that pair updated atomically, 975 * we take the siglock around fetching them. 976 */ 977 spin_lock_irq(&tsk->sighand->siglock); 978 cutime = tsk->signal->cutime; 979 cstime = tsk->signal->cstime; 980 spin_unlock_irq(&tsk->sighand->siglock); 981 read_unlock(&tasklist_lock); 982 } 983 tmp.tms_utime = cputime_to_clock_t(utime); 984 tmp.tms_stime = cputime_to_clock_t(stime); 985 tmp.tms_cutime = cputime_to_clock_t(cutime); 986 tmp.tms_cstime = cputime_to_clock_t(cstime); 987 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 988 return -EFAULT; 989 } 990 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 991 } 992 993 /* 994 * This needs some heavy checking ... 995 * I just haven't the stomach for it. I also don't fully 996 * understand sessions/pgrp etc. Let somebody who does explain it. 997 * 998 * OK, I think I have the protection semantics right.... this is really 999 * only important on a multi-user system anyway, to make sure one user 1000 * can't send a signal to a process owned by another. -TYT, 12/12/91 1001 * 1002 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 1003 * LBT 04.03.94 1004 */ 1005 1006 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 1007 { 1008 struct task_struct *p; 1009 int err = -EINVAL; 1010 1011 if (!pid) 1012 pid = current->pid; 1013 if (!pgid) 1014 pgid = pid; 1015 if (pgid < 0) 1016 return -EINVAL; 1017 1018 /* From this point forward we keep holding onto the tasklist lock 1019 * so that our parent does not change from under us. -DaveM 1020 */ 1021 write_lock_irq(&tasklist_lock); 1022 1023 err = -ESRCH; 1024 p = find_task_by_pid(pid); 1025 if (!p) 1026 goto out; 1027 1028 err = -EINVAL; 1029 if (!thread_group_leader(p)) 1030 goto out; 1031 1032 if (p->parent == current || p->real_parent == current) { 1033 err = -EPERM; 1034 if (p->signal->session != current->signal->session) 1035 goto out; 1036 err = -EACCES; 1037 if (p->did_exec) 1038 goto out; 1039 } else { 1040 err = -ESRCH; 1041 if (p != current) 1042 goto out; 1043 } 1044 1045 err = -EPERM; 1046 if (p->signal->leader) 1047 goto out; 1048 1049 if (pgid != pid) { 1050 struct task_struct *p; 1051 1052 do_each_task_pid(pgid, PIDTYPE_PGID, p) { 1053 if (p->signal->session == current->signal->session) 1054 goto ok_pgid; 1055 } while_each_task_pid(pgid, PIDTYPE_PGID, p); 1056 goto out; 1057 } 1058 1059 ok_pgid: 1060 err = security_task_setpgid(p, pgid); 1061 if (err) 1062 goto out; 1063 1064 if (process_group(p) != pgid) { 1065 detach_pid(p, PIDTYPE_PGID); 1066 p->signal->pgrp = pgid; 1067 attach_pid(p, PIDTYPE_PGID, pgid); 1068 } 1069 1070 err = 0; 1071 out: 1072 /* All paths lead to here, thus we are safe. -DaveM */ 1073 write_unlock_irq(&tasklist_lock); 1074 return err; 1075 } 1076 1077 asmlinkage long sys_getpgid(pid_t pid) 1078 { 1079 if (!pid) { 1080 return process_group(current); 1081 } else { 1082 int retval; 1083 struct task_struct *p; 1084 1085 read_lock(&tasklist_lock); 1086 p = find_task_by_pid(pid); 1087 1088 retval = -ESRCH; 1089 if (p) { 1090 retval = security_task_getpgid(p); 1091 if (!retval) 1092 retval = process_group(p); 1093 } 1094 read_unlock(&tasklist_lock); 1095 return retval; 1096 } 1097 } 1098 1099 #ifdef __ARCH_WANT_SYS_GETPGRP 1100 1101 asmlinkage long sys_getpgrp(void) 1102 { 1103 /* SMP - assuming writes are word atomic this is fine */ 1104 return process_group(current); 1105 } 1106 1107 #endif 1108 1109 asmlinkage long sys_getsid(pid_t pid) 1110 { 1111 if (!pid) { 1112 return current->signal->session; 1113 } else { 1114 int retval; 1115 struct task_struct *p; 1116 1117 read_lock(&tasklist_lock); 1118 p = find_task_by_pid(pid); 1119 1120 retval = -ESRCH; 1121 if(p) { 1122 retval = security_task_getsid(p); 1123 if (!retval) 1124 retval = p->signal->session; 1125 } 1126 read_unlock(&tasklist_lock); 1127 return retval; 1128 } 1129 } 1130 1131 asmlinkage long sys_setsid(void) 1132 { 1133 struct pid *pid; 1134 int err = -EPERM; 1135 1136 if (!thread_group_leader(current)) 1137 return -EINVAL; 1138 1139 down(&tty_sem); 1140 write_lock_irq(&tasklist_lock); 1141 1142 pid = find_pid(PIDTYPE_PGID, current->pid); 1143 if (pid) 1144 goto out; 1145 1146 current->signal->leader = 1; 1147 __set_special_pids(current->pid, current->pid); 1148 current->signal->tty = NULL; 1149 current->signal->tty_old_pgrp = 0; 1150 err = process_group(current); 1151 out: 1152 write_unlock_irq(&tasklist_lock); 1153 up(&tty_sem); 1154 return err; 1155 } 1156 1157 /* 1158 * Supplementary group IDs 1159 */ 1160 1161 /* init to 2 - one for init_task, one to ensure it is never freed */ 1162 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1163 1164 struct group_info *groups_alloc(int gidsetsize) 1165 { 1166 struct group_info *group_info; 1167 int nblocks; 1168 int i; 1169 1170 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1171 /* Make sure we always allocate at least one indirect block pointer */ 1172 nblocks = nblocks ? : 1; 1173 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1174 if (!group_info) 1175 return NULL; 1176 group_info->ngroups = gidsetsize; 1177 group_info->nblocks = nblocks; 1178 atomic_set(&group_info->usage, 1); 1179 1180 if (gidsetsize <= NGROUPS_SMALL) { 1181 group_info->blocks[0] = group_info->small_block; 1182 } else { 1183 for (i = 0; i < nblocks; i++) { 1184 gid_t *b; 1185 b = (void *)__get_free_page(GFP_USER); 1186 if (!b) 1187 goto out_undo_partial_alloc; 1188 group_info->blocks[i] = b; 1189 } 1190 } 1191 return group_info; 1192 1193 out_undo_partial_alloc: 1194 while (--i >= 0) { 1195 free_page((unsigned long)group_info->blocks[i]); 1196 } 1197 kfree(group_info); 1198 return NULL; 1199 } 1200 1201 EXPORT_SYMBOL(groups_alloc); 1202 1203 void groups_free(struct group_info *group_info) 1204 { 1205 if (group_info->blocks[0] != group_info->small_block) { 1206 int i; 1207 for (i = 0; i < group_info->nblocks; i++) 1208 free_page((unsigned long)group_info->blocks[i]); 1209 } 1210 kfree(group_info); 1211 } 1212 1213 EXPORT_SYMBOL(groups_free); 1214 1215 /* export the group_info to a user-space array */ 1216 static int groups_to_user(gid_t __user *grouplist, 1217 struct group_info *group_info) 1218 { 1219 int i; 1220 int count = group_info->ngroups; 1221 1222 for (i = 0; i < group_info->nblocks; i++) { 1223 int cp_count = min(NGROUPS_PER_BLOCK, count); 1224 int off = i * NGROUPS_PER_BLOCK; 1225 int len = cp_count * sizeof(*grouplist); 1226 1227 if (copy_to_user(grouplist+off, group_info->blocks[i], len)) 1228 return -EFAULT; 1229 1230 count -= cp_count; 1231 } 1232 return 0; 1233 } 1234 1235 /* fill a group_info from a user-space array - it must be allocated already */ 1236 static int groups_from_user(struct group_info *group_info, 1237 gid_t __user *grouplist) 1238 { 1239 int i; 1240 int count = group_info->ngroups; 1241 1242 for (i = 0; i < group_info->nblocks; i++) { 1243 int cp_count = min(NGROUPS_PER_BLOCK, count); 1244 int off = i * NGROUPS_PER_BLOCK; 1245 int len = cp_count * sizeof(*grouplist); 1246 1247 if (copy_from_user(group_info->blocks[i], grouplist+off, len)) 1248 return -EFAULT; 1249 1250 count -= cp_count; 1251 } 1252 return 0; 1253 } 1254 1255 /* a simple Shell sort */ 1256 static void groups_sort(struct group_info *group_info) 1257 { 1258 int base, max, stride; 1259 int gidsetsize = group_info->ngroups; 1260 1261 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1262 ; /* nothing */ 1263 stride /= 3; 1264 1265 while (stride) { 1266 max = gidsetsize - stride; 1267 for (base = 0; base < max; base++) { 1268 int left = base; 1269 int right = left + stride; 1270 gid_t tmp = GROUP_AT(group_info, right); 1271 1272 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1273 GROUP_AT(group_info, right) = 1274 GROUP_AT(group_info, left); 1275 right = left; 1276 left -= stride; 1277 } 1278 GROUP_AT(group_info, right) = tmp; 1279 } 1280 stride /= 3; 1281 } 1282 } 1283 1284 /* a simple bsearch */ 1285 int groups_search(struct group_info *group_info, gid_t grp) 1286 { 1287 int left, right; 1288 1289 if (!group_info) 1290 return 0; 1291 1292 left = 0; 1293 right = group_info->ngroups; 1294 while (left < right) { 1295 int mid = (left+right)/2; 1296 int cmp = grp - GROUP_AT(group_info, mid); 1297 if (cmp > 0) 1298 left = mid + 1; 1299 else if (cmp < 0) 1300 right = mid; 1301 else 1302 return 1; 1303 } 1304 return 0; 1305 } 1306 1307 /* validate and set current->group_info */ 1308 int set_current_groups(struct group_info *group_info) 1309 { 1310 int retval; 1311 struct group_info *old_info; 1312 1313 retval = security_task_setgroups(group_info); 1314 if (retval) 1315 return retval; 1316 1317 groups_sort(group_info); 1318 get_group_info(group_info); 1319 1320 task_lock(current); 1321 old_info = current->group_info; 1322 current->group_info = group_info; 1323 task_unlock(current); 1324 1325 put_group_info(old_info); 1326 1327 return 0; 1328 } 1329 1330 EXPORT_SYMBOL(set_current_groups); 1331 1332 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1333 { 1334 int i = 0; 1335 1336 /* 1337 * SMP: Nobody else can change our grouplist. Thus we are 1338 * safe. 1339 */ 1340 1341 if (gidsetsize < 0) 1342 return -EINVAL; 1343 1344 /* no need to grab task_lock here; it cannot change */ 1345 get_group_info(current->group_info); 1346 i = current->group_info->ngroups; 1347 if (gidsetsize) { 1348 if (i > gidsetsize) { 1349 i = -EINVAL; 1350 goto out; 1351 } 1352 if (groups_to_user(grouplist, current->group_info)) { 1353 i = -EFAULT; 1354 goto out; 1355 } 1356 } 1357 out: 1358 put_group_info(current->group_info); 1359 return i; 1360 } 1361 1362 /* 1363 * SMP: Our groups are copy-on-write. We can set them safely 1364 * without another task interfering. 1365 */ 1366 1367 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1368 { 1369 struct group_info *group_info; 1370 int retval; 1371 1372 if (!capable(CAP_SETGID)) 1373 return -EPERM; 1374 if ((unsigned)gidsetsize > NGROUPS_MAX) 1375 return -EINVAL; 1376 1377 group_info = groups_alloc(gidsetsize); 1378 if (!group_info) 1379 return -ENOMEM; 1380 retval = groups_from_user(group_info, grouplist); 1381 if (retval) { 1382 put_group_info(group_info); 1383 return retval; 1384 } 1385 1386 retval = set_current_groups(group_info); 1387 put_group_info(group_info); 1388 1389 return retval; 1390 } 1391 1392 /* 1393 * Check whether we're fsgid/egid or in the supplemental group.. 1394 */ 1395 int in_group_p(gid_t grp) 1396 { 1397 int retval = 1; 1398 if (grp != current->fsgid) { 1399 get_group_info(current->group_info); 1400 retval = groups_search(current->group_info, grp); 1401 put_group_info(current->group_info); 1402 } 1403 return retval; 1404 } 1405 1406 EXPORT_SYMBOL(in_group_p); 1407 1408 int in_egroup_p(gid_t grp) 1409 { 1410 int retval = 1; 1411 if (grp != current->egid) { 1412 get_group_info(current->group_info); 1413 retval = groups_search(current->group_info, grp); 1414 put_group_info(current->group_info); 1415 } 1416 return retval; 1417 } 1418 1419 EXPORT_SYMBOL(in_egroup_p); 1420 1421 DECLARE_RWSEM(uts_sem); 1422 1423 EXPORT_SYMBOL(uts_sem); 1424 1425 asmlinkage long sys_newuname(struct new_utsname __user * name) 1426 { 1427 int errno = 0; 1428 1429 down_read(&uts_sem); 1430 if (copy_to_user(name,&system_utsname,sizeof *name)) 1431 errno = -EFAULT; 1432 up_read(&uts_sem); 1433 return errno; 1434 } 1435 1436 asmlinkage long sys_sethostname(char __user *name, int len) 1437 { 1438 int errno; 1439 char tmp[__NEW_UTS_LEN]; 1440 1441 if (!capable(CAP_SYS_ADMIN)) 1442 return -EPERM; 1443 if (len < 0 || len > __NEW_UTS_LEN) 1444 return -EINVAL; 1445 down_write(&uts_sem); 1446 errno = -EFAULT; 1447 if (!copy_from_user(tmp, name, len)) { 1448 memcpy(system_utsname.nodename, tmp, len); 1449 system_utsname.nodename[len] = 0; 1450 errno = 0; 1451 } 1452 up_write(&uts_sem); 1453 return errno; 1454 } 1455 1456 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1457 1458 asmlinkage long sys_gethostname(char __user *name, int len) 1459 { 1460 int i, errno; 1461 1462 if (len < 0) 1463 return -EINVAL; 1464 down_read(&uts_sem); 1465 i = 1 + strlen(system_utsname.nodename); 1466 if (i > len) 1467 i = len; 1468 errno = 0; 1469 if (copy_to_user(name, system_utsname.nodename, i)) 1470 errno = -EFAULT; 1471 up_read(&uts_sem); 1472 return errno; 1473 } 1474 1475 #endif 1476 1477 /* 1478 * Only setdomainname; getdomainname can be implemented by calling 1479 * uname() 1480 */ 1481 asmlinkage long sys_setdomainname(char __user *name, int len) 1482 { 1483 int errno; 1484 char tmp[__NEW_UTS_LEN]; 1485 1486 if (!capable(CAP_SYS_ADMIN)) 1487 return -EPERM; 1488 if (len < 0 || len > __NEW_UTS_LEN) 1489 return -EINVAL; 1490 1491 down_write(&uts_sem); 1492 errno = -EFAULT; 1493 if (!copy_from_user(tmp, name, len)) { 1494 memcpy(system_utsname.domainname, tmp, len); 1495 system_utsname.domainname[len] = 0; 1496 errno = 0; 1497 } 1498 up_write(&uts_sem); 1499 return errno; 1500 } 1501 1502 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1503 { 1504 if (resource >= RLIM_NLIMITS) 1505 return -EINVAL; 1506 else { 1507 struct rlimit value; 1508 task_lock(current->group_leader); 1509 value = current->signal->rlim[resource]; 1510 task_unlock(current->group_leader); 1511 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1512 } 1513 } 1514 1515 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1516 1517 /* 1518 * Back compatibility for getrlimit. Needed for some apps. 1519 */ 1520 1521 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1522 { 1523 struct rlimit x; 1524 if (resource >= RLIM_NLIMITS) 1525 return -EINVAL; 1526 1527 task_lock(current->group_leader); 1528 x = current->signal->rlim[resource]; 1529 task_unlock(current->group_leader); 1530 if(x.rlim_cur > 0x7FFFFFFF) 1531 x.rlim_cur = 0x7FFFFFFF; 1532 if(x.rlim_max > 0x7FFFFFFF) 1533 x.rlim_max = 0x7FFFFFFF; 1534 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1535 } 1536 1537 #endif 1538 1539 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1540 { 1541 struct rlimit new_rlim, *old_rlim; 1542 int retval; 1543 1544 if (resource >= RLIM_NLIMITS) 1545 return -EINVAL; 1546 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1547 return -EFAULT; 1548 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1549 return -EINVAL; 1550 old_rlim = current->signal->rlim + resource; 1551 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1552 !capable(CAP_SYS_RESOURCE)) 1553 return -EPERM; 1554 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) 1555 return -EPERM; 1556 1557 retval = security_task_setrlimit(resource, &new_rlim); 1558 if (retval) 1559 return retval; 1560 1561 task_lock(current->group_leader); 1562 *old_rlim = new_rlim; 1563 task_unlock(current->group_leader); 1564 1565 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY && 1566 (cputime_eq(current->signal->it_prof_expires, cputime_zero) || 1567 new_rlim.rlim_cur <= cputime_to_secs( 1568 current->signal->it_prof_expires))) { 1569 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur); 1570 read_lock(&tasklist_lock); 1571 spin_lock_irq(¤t->sighand->siglock); 1572 set_process_cpu_timer(current, CPUCLOCK_PROF, 1573 &cputime, NULL); 1574 spin_unlock_irq(¤t->sighand->siglock); 1575 read_unlock(&tasklist_lock); 1576 } 1577 1578 return 0; 1579 } 1580 1581 /* 1582 * It would make sense to put struct rusage in the task_struct, 1583 * except that would make the task_struct be *really big*. After 1584 * task_struct gets moved into malloc'ed memory, it would 1585 * make sense to do this. It will make moving the rest of the information 1586 * a lot simpler! (Which we're not doing right now because we're not 1587 * measuring them yet). 1588 * 1589 * This expects to be called with tasklist_lock read-locked or better, 1590 * and the siglock not locked. It may momentarily take the siglock. 1591 * 1592 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1593 * races with threads incrementing their own counters. But since word 1594 * reads are atomic, we either get new values or old values and we don't 1595 * care which for the sums. We always take the siglock to protect reading 1596 * the c* fields from p->signal from races with exit.c updating those 1597 * fields when reaping, so a sample either gets all the additions of a 1598 * given child after it's reaped, or none so this sample is before reaping. 1599 */ 1600 1601 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1602 { 1603 struct task_struct *t; 1604 unsigned long flags; 1605 cputime_t utime, stime; 1606 1607 memset((char *) r, 0, sizeof *r); 1608 1609 if (unlikely(!p->signal)) 1610 return; 1611 1612 switch (who) { 1613 case RUSAGE_CHILDREN: 1614 spin_lock_irqsave(&p->sighand->siglock, flags); 1615 utime = p->signal->cutime; 1616 stime = p->signal->cstime; 1617 r->ru_nvcsw = p->signal->cnvcsw; 1618 r->ru_nivcsw = p->signal->cnivcsw; 1619 r->ru_minflt = p->signal->cmin_flt; 1620 r->ru_majflt = p->signal->cmaj_flt; 1621 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1622 cputime_to_timeval(utime, &r->ru_utime); 1623 cputime_to_timeval(stime, &r->ru_stime); 1624 break; 1625 case RUSAGE_SELF: 1626 spin_lock_irqsave(&p->sighand->siglock, flags); 1627 utime = stime = cputime_zero; 1628 goto sum_group; 1629 case RUSAGE_BOTH: 1630 spin_lock_irqsave(&p->sighand->siglock, flags); 1631 utime = p->signal->cutime; 1632 stime = p->signal->cstime; 1633 r->ru_nvcsw = p->signal->cnvcsw; 1634 r->ru_nivcsw = p->signal->cnivcsw; 1635 r->ru_minflt = p->signal->cmin_flt; 1636 r->ru_majflt = p->signal->cmaj_flt; 1637 sum_group: 1638 utime = cputime_add(utime, p->signal->utime); 1639 stime = cputime_add(stime, p->signal->stime); 1640 r->ru_nvcsw += p->signal->nvcsw; 1641 r->ru_nivcsw += p->signal->nivcsw; 1642 r->ru_minflt += p->signal->min_flt; 1643 r->ru_majflt += p->signal->maj_flt; 1644 t = p; 1645 do { 1646 utime = cputime_add(utime, t->utime); 1647 stime = cputime_add(stime, t->stime); 1648 r->ru_nvcsw += t->nvcsw; 1649 r->ru_nivcsw += t->nivcsw; 1650 r->ru_minflt += t->min_flt; 1651 r->ru_majflt += t->maj_flt; 1652 t = next_thread(t); 1653 } while (t != p); 1654 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1655 cputime_to_timeval(utime, &r->ru_utime); 1656 cputime_to_timeval(stime, &r->ru_stime); 1657 break; 1658 default: 1659 BUG(); 1660 } 1661 } 1662 1663 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1664 { 1665 struct rusage r; 1666 read_lock(&tasklist_lock); 1667 k_getrusage(p, who, &r); 1668 read_unlock(&tasklist_lock); 1669 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1670 } 1671 1672 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 1673 { 1674 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) 1675 return -EINVAL; 1676 return getrusage(current, who, ru); 1677 } 1678 1679 asmlinkage long sys_umask(int mask) 1680 { 1681 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1682 return mask; 1683 } 1684 1685 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 1686 unsigned long arg4, unsigned long arg5) 1687 { 1688 long error; 1689 int sig; 1690 1691 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1692 if (error) 1693 return error; 1694 1695 switch (option) { 1696 case PR_SET_PDEATHSIG: 1697 sig = arg2; 1698 if (!valid_signal(sig)) { 1699 error = -EINVAL; 1700 break; 1701 } 1702 current->pdeath_signal = sig; 1703 break; 1704 case PR_GET_PDEATHSIG: 1705 error = put_user(current->pdeath_signal, (int __user *)arg2); 1706 break; 1707 case PR_GET_DUMPABLE: 1708 if (current->mm->dumpable) 1709 error = 1; 1710 break; 1711 case PR_SET_DUMPABLE: 1712 if (arg2 < 0 || arg2 > 2) { 1713 error = -EINVAL; 1714 break; 1715 } 1716 current->mm->dumpable = arg2; 1717 break; 1718 1719 case PR_SET_UNALIGN: 1720 error = SET_UNALIGN_CTL(current, arg2); 1721 break; 1722 case PR_GET_UNALIGN: 1723 error = GET_UNALIGN_CTL(current, arg2); 1724 break; 1725 case PR_SET_FPEMU: 1726 error = SET_FPEMU_CTL(current, arg2); 1727 break; 1728 case PR_GET_FPEMU: 1729 error = GET_FPEMU_CTL(current, arg2); 1730 break; 1731 case PR_SET_FPEXC: 1732 error = SET_FPEXC_CTL(current, arg2); 1733 break; 1734 case PR_GET_FPEXC: 1735 error = GET_FPEXC_CTL(current, arg2); 1736 break; 1737 case PR_GET_TIMING: 1738 error = PR_TIMING_STATISTICAL; 1739 break; 1740 case PR_SET_TIMING: 1741 if (arg2 == PR_TIMING_STATISTICAL) 1742 error = 0; 1743 else 1744 error = -EINVAL; 1745 break; 1746 1747 case PR_GET_KEEPCAPS: 1748 if (current->keep_capabilities) 1749 error = 1; 1750 break; 1751 case PR_SET_KEEPCAPS: 1752 if (arg2 != 0 && arg2 != 1) { 1753 error = -EINVAL; 1754 break; 1755 } 1756 current->keep_capabilities = arg2; 1757 break; 1758 case PR_SET_NAME: { 1759 struct task_struct *me = current; 1760 unsigned char ncomm[sizeof(me->comm)]; 1761 1762 ncomm[sizeof(me->comm)-1] = 0; 1763 if (strncpy_from_user(ncomm, (char __user *)arg2, 1764 sizeof(me->comm)-1) < 0) 1765 return -EFAULT; 1766 set_task_comm(me, ncomm); 1767 return 0; 1768 } 1769 case PR_GET_NAME: { 1770 struct task_struct *me = current; 1771 unsigned char tcomm[sizeof(me->comm)]; 1772 1773 get_task_comm(tcomm, me); 1774 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) 1775 return -EFAULT; 1776 return 0; 1777 } 1778 default: 1779 error = -EINVAL; 1780 break; 1781 } 1782 return error; 1783 } 1784