xref: /linux/kernel/sys.c (revision c80544dc0b87bb65038355e7aafdc30be16b26ab)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 
37 #include <linux/compat.h>
38 #include <linux/syscalls.h>
39 #include <linux/kprobes.h>
40 #include <linux/user_namespace.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/unistd.h>
45 
46 #ifndef SET_UNALIGN_CTL
47 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
48 #endif
49 #ifndef GET_UNALIGN_CTL
50 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
51 #endif
52 #ifndef SET_FPEMU_CTL
53 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
54 #endif
55 #ifndef GET_FPEMU_CTL
56 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
57 #endif
58 #ifndef SET_FPEXC_CTL
59 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
60 #endif
61 #ifndef GET_FPEXC_CTL
62 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
63 #endif
64 #ifndef GET_ENDIAN
65 # define GET_ENDIAN(a,b)	(-EINVAL)
66 #endif
67 #ifndef SET_ENDIAN
68 # define SET_ENDIAN(a,b)	(-EINVAL)
69 #endif
70 
71 /*
72  * this is where the system-wide overflow UID and GID are defined, for
73  * architectures that now have 32-bit UID/GID but didn't in the past
74  */
75 
76 int overflowuid = DEFAULT_OVERFLOWUID;
77 int overflowgid = DEFAULT_OVERFLOWGID;
78 
79 #ifdef CONFIG_UID16
80 EXPORT_SYMBOL(overflowuid);
81 EXPORT_SYMBOL(overflowgid);
82 #endif
83 
84 /*
85  * the same as above, but for filesystems which can only store a 16-bit
86  * UID and GID. as such, this is needed on all architectures
87  */
88 
89 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
90 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
91 
92 EXPORT_SYMBOL(fs_overflowuid);
93 EXPORT_SYMBOL(fs_overflowgid);
94 
95 /*
96  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
97  */
98 
99 int C_A_D = 1;
100 struct pid *cad_pid;
101 EXPORT_SYMBOL(cad_pid);
102 
103 /*
104  * If set, this is used for preparing the system to power off.
105  */
106 
107 void (*pm_power_off_prepare)(void);
108 
109 /*
110  *	Notifier list for kernel code which wants to be called
111  *	at shutdown. This is used to stop any idling DMA operations
112  *	and the like.
113  */
114 
115 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
116 
117 /*
118  *	Notifier chain core routines.  The exported routines below
119  *	are layered on top of these, with appropriate locking added.
120  */
121 
122 static int notifier_chain_register(struct notifier_block **nl,
123 		struct notifier_block *n)
124 {
125 	while ((*nl) != NULL) {
126 		if (n->priority > (*nl)->priority)
127 			break;
128 		nl = &((*nl)->next);
129 	}
130 	n->next = *nl;
131 	rcu_assign_pointer(*nl, n);
132 	return 0;
133 }
134 
135 static int notifier_chain_unregister(struct notifier_block **nl,
136 		struct notifier_block *n)
137 {
138 	while ((*nl) != NULL) {
139 		if ((*nl) == n) {
140 			rcu_assign_pointer(*nl, n->next);
141 			return 0;
142 		}
143 		nl = &((*nl)->next);
144 	}
145 	return -ENOENT;
146 }
147 
148 /**
149  * notifier_call_chain - Informs the registered notifiers about an event.
150  *	@nl:		Pointer to head of the blocking notifier chain
151  *	@val:		Value passed unmodified to notifier function
152  *	@v:		Pointer passed unmodified to notifier function
153  *	@nr_to_call:	Number of notifier functions to be called. Don't care
154  *		     	value of this parameter is -1.
155  *	@nr_calls:	Records the number of notifications sent. Don't care
156  *		   	value of this field is NULL.
157  * 	@returns:	notifier_call_chain returns the value returned by the
158  *			last notifier function called.
159  */
160 
161 static int __kprobes notifier_call_chain(struct notifier_block **nl,
162 					unsigned long val, void *v,
163 					int nr_to_call,	int *nr_calls)
164 {
165 	int ret = NOTIFY_DONE;
166 	struct notifier_block *nb, *next_nb;
167 
168 	nb = rcu_dereference(*nl);
169 
170 	while (nb && nr_to_call) {
171 		next_nb = rcu_dereference(nb->next);
172 		ret = nb->notifier_call(nb, val, v);
173 
174 		if (nr_calls)
175 			(*nr_calls)++;
176 
177 		if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
178 			break;
179 		nb = next_nb;
180 		nr_to_call--;
181 	}
182 	return ret;
183 }
184 
185 /*
186  *	Atomic notifier chain routines.  Registration and unregistration
187  *	use a spinlock, and call_chain is synchronized by RCU (no locks).
188  */
189 
190 /**
191  *	atomic_notifier_chain_register - Add notifier to an atomic notifier chain
192  *	@nh: Pointer to head of the atomic notifier chain
193  *	@n: New entry in notifier chain
194  *
195  *	Adds a notifier to an atomic notifier chain.
196  *
197  *	Currently always returns zero.
198  */
199 
200 int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
201 		struct notifier_block *n)
202 {
203 	unsigned long flags;
204 	int ret;
205 
206 	spin_lock_irqsave(&nh->lock, flags);
207 	ret = notifier_chain_register(&nh->head, n);
208 	spin_unlock_irqrestore(&nh->lock, flags);
209 	return ret;
210 }
211 
212 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
213 
214 /**
215  *	atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
216  *	@nh: Pointer to head of the atomic notifier chain
217  *	@n: Entry to remove from notifier chain
218  *
219  *	Removes a notifier from an atomic notifier chain.
220  *
221  *	Returns zero on success or %-ENOENT on failure.
222  */
223 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
224 		struct notifier_block *n)
225 {
226 	unsigned long flags;
227 	int ret;
228 
229 	spin_lock_irqsave(&nh->lock, flags);
230 	ret = notifier_chain_unregister(&nh->head, n);
231 	spin_unlock_irqrestore(&nh->lock, flags);
232 	synchronize_rcu();
233 	return ret;
234 }
235 
236 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
237 
238 /**
239  *	__atomic_notifier_call_chain - Call functions in an atomic notifier chain
240  *	@nh: Pointer to head of the atomic notifier chain
241  *	@val: Value passed unmodified to notifier function
242  *	@v: Pointer passed unmodified to notifier function
243  *	@nr_to_call: See the comment for notifier_call_chain.
244  *	@nr_calls: See the comment for notifier_call_chain.
245  *
246  *	Calls each function in a notifier chain in turn.  The functions
247  *	run in an atomic context, so they must not block.
248  *	This routine uses RCU to synchronize with changes to the chain.
249  *
250  *	If the return value of the notifier can be and'ed
251  *	with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
252  *	will return immediately, with the return value of
253  *	the notifier function which halted execution.
254  *	Otherwise the return value is the return value
255  *	of the last notifier function called.
256  */
257 
258 int __kprobes __atomic_notifier_call_chain(struct atomic_notifier_head *nh,
259 					unsigned long val, void *v,
260 					int nr_to_call, int *nr_calls)
261 {
262 	int ret;
263 
264 	rcu_read_lock();
265 	ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
266 	rcu_read_unlock();
267 	return ret;
268 }
269 
270 EXPORT_SYMBOL_GPL(__atomic_notifier_call_chain);
271 
272 int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
273 		unsigned long val, void *v)
274 {
275 	return __atomic_notifier_call_chain(nh, val, v, -1, NULL);
276 }
277 
278 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
279 /*
280  *	Blocking notifier chain routines.  All access to the chain is
281  *	synchronized by an rwsem.
282  */
283 
284 /**
285  *	blocking_notifier_chain_register - Add notifier to a blocking notifier chain
286  *	@nh: Pointer to head of the blocking notifier chain
287  *	@n: New entry in notifier chain
288  *
289  *	Adds a notifier to a blocking notifier chain.
290  *	Must be called in process context.
291  *
292  *	Currently always returns zero.
293  */
294 
295 int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
296 		struct notifier_block *n)
297 {
298 	int ret;
299 
300 	/*
301 	 * This code gets used during boot-up, when task switching is
302 	 * not yet working and interrupts must remain disabled.  At
303 	 * such times we must not call down_write().
304 	 */
305 	if (unlikely(system_state == SYSTEM_BOOTING))
306 		return notifier_chain_register(&nh->head, n);
307 
308 	down_write(&nh->rwsem);
309 	ret = notifier_chain_register(&nh->head, n);
310 	up_write(&nh->rwsem);
311 	return ret;
312 }
313 
314 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
315 
316 /**
317  *	blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
318  *	@nh: Pointer to head of the blocking notifier chain
319  *	@n: Entry to remove from notifier chain
320  *
321  *	Removes a notifier from a blocking notifier chain.
322  *	Must be called from process context.
323  *
324  *	Returns zero on success or %-ENOENT on failure.
325  */
326 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
327 		struct notifier_block *n)
328 {
329 	int ret;
330 
331 	/*
332 	 * This code gets used during boot-up, when task switching is
333 	 * not yet working and interrupts must remain disabled.  At
334 	 * such times we must not call down_write().
335 	 */
336 	if (unlikely(system_state == SYSTEM_BOOTING))
337 		return notifier_chain_unregister(&nh->head, n);
338 
339 	down_write(&nh->rwsem);
340 	ret = notifier_chain_unregister(&nh->head, n);
341 	up_write(&nh->rwsem);
342 	return ret;
343 }
344 
345 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
346 
347 /**
348  *	__blocking_notifier_call_chain - Call functions in a blocking notifier chain
349  *	@nh: Pointer to head of the blocking notifier chain
350  *	@val: Value passed unmodified to notifier function
351  *	@v: Pointer passed unmodified to notifier function
352  *	@nr_to_call: See comment for notifier_call_chain.
353  *	@nr_calls: See comment for notifier_call_chain.
354  *
355  *	Calls each function in a notifier chain in turn.  The functions
356  *	run in a process context, so they are allowed to block.
357  *
358  *	If the return value of the notifier can be and'ed
359  *	with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
360  *	will return immediately, with the return value of
361  *	the notifier function which halted execution.
362  *	Otherwise the return value is the return value
363  *	of the last notifier function called.
364  */
365 
366 int __blocking_notifier_call_chain(struct blocking_notifier_head *nh,
367 				   unsigned long val, void *v,
368 				   int nr_to_call, int *nr_calls)
369 {
370 	int ret = NOTIFY_DONE;
371 
372 	/*
373 	 * We check the head outside the lock, but if this access is
374 	 * racy then it does not matter what the result of the test
375 	 * is, we re-check the list after having taken the lock anyway:
376 	 */
377 	if (rcu_dereference(nh->head)) {
378 		down_read(&nh->rwsem);
379 		ret = notifier_call_chain(&nh->head, val, v, nr_to_call,
380 					nr_calls);
381 		up_read(&nh->rwsem);
382 	}
383 	return ret;
384 }
385 EXPORT_SYMBOL_GPL(__blocking_notifier_call_chain);
386 
387 int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
388 		unsigned long val, void *v)
389 {
390 	return __blocking_notifier_call_chain(nh, val, v, -1, NULL);
391 }
392 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
393 
394 /*
395  *	Raw notifier chain routines.  There is no protection;
396  *	the caller must provide it.  Use at your own risk!
397  */
398 
399 /**
400  *	raw_notifier_chain_register - Add notifier to a raw notifier chain
401  *	@nh: Pointer to head of the raw notifier chain
402  *	@n: New entry in notifier chain
403  *
404  *	Adds a notifier to a raw notifier chain.
405  *	All locking must be provided by the caller.
406  *
407  *	Currently always returns zero.
408  */
409 
410 int raw_notifier_chain_register(struct raw_notifier_head *nh,
411 		struct notifier_block *n)
412 {
413 	return notifier_chain_register(&nh->head, n);
414 }
415 
416 EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
417 
418 /**
419  *	raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
420  *	@nh: Pointer to head of the raw notifier chain
421  *	@n: Entry to remove from notifier chain
422  *
423  *	Removes a notifier from a raw notifier chain.
424  *	All locking must be provided by the caller.
425  *
426  *	Returns zero on success or %-ENOENT on failure.
427  */
428 int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
429 		struct notifier_block *n)
430 {
431 	return notifier_chain_unregister(&nh->head, n);
432 }
433 
434 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
435 
436 /**
437  *	__raw_notifier_call_chain - Call functions in a raw notifier chain
438  *	@nh: Pointer to head of the raw notifier chain
439  *	@val: Value passed unmodified to notifier function
440  *	@v: Pointer passed unmodified to notifier function
441  *	@nr_to_call: See comment for notifier_call_chain.
442  *	@nr_calls: See comment for notifier_call_chain
443  *
444  *	Calls each function in a notifier chain in turn.  The functions
445  *	run in an undefined context.
446  *	All locking must be provided by the caller.
447  *
448  *	If the return value of the notifier can be and'ed
449  *	with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
450  *	will return immediately, with the return value of
451  *	the notifier function which halted execution.
452  *	Otherwise the return value is the return value
453  *	of the last notifier function called.
454  */
455 
456 int __raw_notifier_call_chain(struct raw_notifier_head *nh,
457 			      unsigned long val, void *v,
458 			      int nr_to_call, int *nr_calls)
459 {
460 	return notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
461 }
462 
463 EXPORT_SYMBOL_GPL(__raw_notifier_call_chain);
464 
465 int raw_notifier_call_chain(struct raw_notifier_head *nh,
466 		unsigned long val, void *v)
467 {
468 	return __raw_notifier_call_chain(nh, val, v, -1, NULL);
469 }
470 
471 EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
472 
473 /*
474  *	SRCU notifier chain routines.    Registration and unregistration
475  *	use a mutex, and call_chain is synchronized by SRCU (no locks).
476  */
477 
478 /**
479  *	srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
480  *	@nh: Pointer to head of the SRCU notifier chain
481  *	@n: New entry in notifier chain
482  *
483  *	Adds a notifier to an SRCU notifier chain.
484  *	Must be called in process context.
485  *
486  *	Currently always returns zero.
487  */
488 
489 int srcu_notifier_chain_register(struct srcu_notifier_head *nh,
490 		struct notifier_block *n)
491 {
492 	int ret;
493 
494 	/*
495 	 * This code gets used during boot-up, when task switching is
496 	 * not yet working and interrupts must remain disabled.  At
497 	 * such times we must not call mutex_lock().
498 	 */
499 	if (unlikely(system_state == SYSTEM_BOOTING))
500 		return notifier_chain_register(&nh->head, n);
501 
502 	mutex_lock(&nh->mutex);
503 	ret = notifier_chain_register(&nh->head, n);
504 	mutex_unlock(&nh->mutex);
505 	return ret;
506 }
507 
508 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register);
509 
510 /**
511  *	srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
512  *	@nh: Pointer to head of the SRCU notifier chain
513  *	@n: Entry to remove from notifier chain
514  *
515  *	Removes a notifier from an SRCU notifier chain.
516  *	Must be called from process context.
517  *
518  *	Returns zero on success or %-ENOENT on failure.
519  */
520 int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh,
521 		struct notifier_block *n)
522 {
523 	int ret;
524 
525 	/*
526 	 * This code gets used during boot-up, when task switching is
527 	 * not yet working and interrupts must remain disabled.  At
528 	 * such times we must not call mutex_lock().
529 	 */
530 	if (unlikely(system_state == SYSTEM_BOOTING))
531 		return notifier_chain_unregister(&nh->head, n);
532 
533 	mutex_lock(&nh->mutex);
534 	ret = notifier_chain_unregister(&nh->head, n);
535 	mutex_unlock(&nh->mutex);
536 	synchronize_srcu(&nh->srcu);
537 	return ret;
538 }
539 
540 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister);
541 
542 /**
543  *	__srcu_notifier_call_chain - Call functions in an SRCU notifier chain
544  *	@nh: Pointer to head of the SRCU notifier chain
545  *	@val: Value passed unmodified to notifier function
546  *	@v: Pointer passed unmodified to notifier function
547  *	@nr_to_call: See comment for notifier_call_chain.
548  *	@nr_calls: See comment for notifier_call_chain
549  *
550  *	Calls each function in a notifier chain in turn.  The functions
551  *	run in a process context, so they are allowed to block.
552  *
553  *	If the return value of the notifier can be and'ed
554  *	with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
555  *	will return immediately, with the return value of
556  *	the notifier function which halted execution.
557  *	Otherwise the return value is the return value
558  *	of the last notifier function called.
559  */
560 
561 int __srcu_notifier_call_chain(struct srcu_notifier_head *nh,
562 			       unsigned long val, void *v,
563 			       int nr_to_call, int *nr_calls)
564 {
565 	int ret;
566 	int idx;
567 
568 	idx = srcu_read_lock(&nh->srcu);
569 	ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
570 	srcu_read_unlock(&nh->srcu, idx);
571 	return ret;
572 }
573 EXPORT_SYMBOL_GPL(__srcu_notifier_call_chain);
574 
575 int srcu_notifier_call_chain(struct srcu_notifier_head *nh,
576 		unsigned long val, void *v)
577 {
578 	return __srcu_notifier_call_chain(nh, val, v, -1, NULL);
579 }
580 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain);
581 
582 /**
583  *	srcu_init_notifier_head - Initialize an SRCU notifier head
584  *	@nh: Pointer to head of the srcu notifier chain
585  *
586  *	Unlike other sorts of notifier heads, SRCU notifier heads require
587  *	dynamic initialization.  Be sure to call this routine before
588  *	calling any of the other SRCU notifier routines for this head.
589  *
590  *	If an SRCU notifier head is deallocated, it must first be cleaned
591  *	up by calling srcu_cleanup_notifier_head().  Otherwise the head's
592  *	per-cpu data (used by the SRCU mechanism) will leak.
593  */
594 
595 void srcu_init_notifier_head(struct srcu_notifier_head *nh)
596 {
597 	mutex_init(&nh->mutex);
598 	if (init_srcu_struct(&nh->srcu) < 0)
599 		BUG();
600 	nh->head = NULL;
601 }
602 
603 EXPORT_SYMBOL_GPL(srcu_init_notifier_head);
604 
605 /**
606  *	register_reboot_notifier - Register function to be called at reboot time
607  *	@nb: Info about notifier function to be called
608  *
609  *	Registers a function with the list of functions
610  *	to be called at reboot time.
611  *
612  *	Currently always returns zero, as blocking_notifier_chain_register()
613  *	always returns zero.
614  */
615 
616 int register_reboot_notifier(struct notifier_block * nb)
617 {
618 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
619 }
620 
621 EXPORT_SYMBOL(register_reboot_notifier);
622 
623 /**
624  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
625  *	@nb: Hook to be unregistered
626  *
627  *	Unregisters a previously registered reboot
628  *	notifier function.
629  *
630  *	Returns zero on success, or %-ENOENT on failure.
631  */
632 
633 int unregister_reboot_notifier(struct notifier_block * nb)
634 {
635 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
636 }
637 
638 EXPORT_SYMBOL(unregister_reboot_notifier);
639 
640 static int set_one_prio(struct task_struct *p, int niceval, int error)
641 {
642 	int no_nice;
643 
644 	if (p->uid != current->euid &&
645 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
646 		error = -EPERM;
647 		goto out;
648 	}
649 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
650 		error = -EACCES;
651 		goto out;
652 	}
653 	no_nice = security_task_setnice(p, niceval);
654 	if (no_nice) {
655 		error = no_nice;
656 		goto out;
657 	}
658 	if (error == -ESRCH)
659 		error = 0;
660 	set_user_nice(p, niceval);
661 out:
662 	return error;
663 }
664 
665 asmlinkage long sys_setpriority(int which, int who, int niceval)
666 {
667 	struct task_struct *g, *p;
668 	struct user_struct *user;
669 	int error = -EINVAL;
670 	struct pid *pgrp;
671 
672 	if (which > PRIO_USER || which < PRIO_PROCESS)
673 		goto out;
674 
675 	/* normalize: avoid signed division (rounding problems) */
676 	error = -ESRCH;
677 	if (niceval < -20)
678 		niceval = -20;
679 	if (niceval > 19)
680 		niceval = 19;
681 
682 	read_lock(&tasklist_lock);
683 	switch (which) {
684 		case PRIO_PROCESS:
685 			if (who)
686 				p = find_task_by_pid(who);
687 			else
688 				p = current;
689 			if (p)
690 				error = set_one_prio(p, niceval, error);
691 			break;
692 		case PRIO_PGRP:
693 			if (who)
694 				pgrp = find_pid(who);
695 			else
696 				pgrp = task_pgrp(current);
697 			do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
698 				error = set_one_prio(p, niceval, error);
699 			} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
700 			break;
701 		case PRIO_USER:
702 			user = current->user;
703 			if (!who)
704 				who = current->uid;
705 			else
706 				if ((who != current->uid) && !(user = find_user(who)))
707 					goto out_unlock;	/* No processes for this user */
708 
709 			do_each_thread(g, p)
710 				if (p->uid == who)
711 					error = set_one_prio(p, niceval, error);
712 			while_each_thread(g, p);
713 			if (who != current->uid)
714 				free_uid(user);		/* For find_user() */
715 			break;
716 	}
717 out_unlock:
718 	read_unlock(&tasklist_lock);
719 out:
720 	return error;
721 }
722 
723 /*
724  * Ugh. To avoid negative return values, "getpriority()" will
725  * not return the normal nice-value, but a negated value that
726  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
727  * to stay compatible.
728  */
729 asmlinkage long sys_getpriority(int which, int who)
730 {
731 	struct task_struct *g, *p;
732 	struct user_struct *user;
733 	long niceval, retval = -ESRCH;
734 	struct pid *pgrp;
735 
736 	if (which > PRIO_USER || which < PRIO_PROCESS)
737 		return -EINVAL;
738 
739 	read_lock(&tasklist_lock);
740 	switch (which) {
741 		case PRIO_PROCESS:
742 			if (who)
743 				p = find_task_by_pid(who);
744 			else
745 				p = current;
746 			if (p) {
747 				niceval = 20 - task_nice(p);
748 				if (niceval > retval)
749 					retval = niceval;
750 			}
751 			break;
752 		case PRIO_PGRP:
753 			if (who)
754 				pgrp = find_pid(who);
755 			else
756 				pgrp = task_pgrp(current);
757 			do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
758 				niceval = 20 - task_nice(p);
759 				if (niceval > retval)
760 					retval = niceval;
761 			} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
762 			break;
763 		case PRIO_USER:
764 			user = current->user;
765 			if (!who)
766 				who = current->uid;
767 			else
768 				if ((who != current->uid) && !(user = find_user(who)))
769 					goto out_unlock;	/* No processes for this user */
770 
771 			do_each_thread(g, p)
772 				if (p->uid == who) {
773 					niceval = 20 - task_nice(p);
774 					if (niceval > retval)
775 						retval = niceval;
776 				}
777 			while_each_thread(g, p);
778 			if (who != current->uid)
779 				free_uid(user);		/* for find_user() */
780 			break;
781 	}
782 out_unlock:
783 	read_unlock(&tasklist_lock);
784 
785 	return retval;
786 }
787 
788 /**
789  *	emergency_restart - reboot the system
790  *
791  *	Without shutting down any hardware or taking any locks
792  *	reboot the system.  This is called when we know we are in
793  *	trouble so this is our best effort to reboot.  This is
794  *	safe to call in interrupt context.
795  */
796 void emergency_restart(void)
797 {
798 	machine_emergency_restart();
799 }
800 EXPORT_SYMBOL_GPL(emergency_restart);
801 
802 static void kernel_restart_prepare(char *cmd)
803 {
804 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
805 	system_state = SYSTEM_RESTART;
806 	device_shutdown();
807 	sysdev_shutdown();
808 }
809 
810 /**
811  *	kernel_restart - reboot the system
812  *	@cmd: pointer to buffer containing command to execute for restart
813  *		or %NULL
814  *
815  *	Shutdown everything and perform a clean reboot.
816  *	This is not safe to call in interrupt context.
817  */
818 void kernel_restart(char *cmd)
819 {
820 	kernel_restart_prepare(cmd);
821 	if (!cmd)
822 		printk(KERN_EMERG "Restarting system.\n");
823 	else
824 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
825 	machine_restart(cmd);
826 }
827 EXPORT_SYMBOL_GPL(kernel_restart);
828 
829 /**
830  *	kernel_kexec - reboot the system
831  *
832  *	Move into place and start executing a preloaded standalone
833  *	executable.  If nothing was preloaded return an error.
834  */
835 static void kernel_kexec(void)
836 {
837 #ifdef CONFIG_KEXEC
838 	struct kimage *image;
839 	image = xchg(&kexec_image, NULL);
840 	if (!image)
841 		return;
842 	kernel_restart_prepare(NULL);
843 	printk(KERN_EMERG "Starting new kernel\n");
844 	machine_shutdown();
845 	machine_kexec(image);
846 #endif
847 }
848 
849 void kernel_shutdown_prepare(enum system_states state)
850 {
851 	blocking_notifier_call_chain(&reboot_notifier_list,
852 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
853 	system_state = state;
854 	device_shutdown();
855 }
856 /**
857  *	kernel_halt - halt the system
858  *
859  *	Shutdown everything and perform a clean system halt.
860  */
861 void kernel_halt(void)
862 {
863 	kernel_shutdown_prepare(SYSTEM_HALT);
864 	sysdev_shutdown();
865 	printk(KERN_EMERG "System halted.\n");
866 	machine_halt();
867 }
868 
869 EXPORT_SYMBOL_GPL(kernel_halt);
870 
871 /**
872  *	kernel_power_off - power_off the system
873  *
874  *	Shutdown everything and perform a clean system power_off.
875  */
876 void kernel_power_off(void)
877 {
878 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
879 	if (pm_power_off_prepare)
880 		pm_power_off_prepare();
881 	disable_nonboot_cpus();
882 	sysdev_shutdown();
883 	printk(KERN_EMERG "Power down.\n");
884 	machine_power_off();
885 }
886 EXPORT_SYMBOL_GPL(kernel_power_off);
887 /*
888  * Reboot system call: for obvious reasons only root may call it,
889  * and even root needs to set up some magic numbers in the registers
890  * so that some mistake won't make this reboot the whole machine.
891  * You can also set the meaning of the ctrl-alt-del-key here.
892  *
893  * reboot doesn't sync: do that yourself before calling this.
894  */
895 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
896 {
897 	char buffer[256];
898 
899 	/* We only trust the superuser with rebooting the system. */
900 	if (!capable(CAP_SYS_BOOT))
901 		return -EPERM;
902 
903 	/* For safety, we require "magic" arguments. */
904 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
905 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
906 	                magic2 != LINUX_REBOOT_MAGIC2A &&
907 			magic2 != LINUX_REBOOT_MAGIC2B &&
908 	                magic2 != LINUX_REBOOT_MAGIC2C))
909 		return -EINVAL;
910 
911 	/* Instead of trying to make the power_off code look like
912 	 * halt when pm_power_off is not set do it the easy way.
913 	 */
914 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
915 		cmd = LINUX_REBOOT_CMD_HALT;
916 
917 	lock_kernel();
918 	switch (cmd) {
919 	case LINUX_REBOOT_CMD_RESTART:
920 		kernel_restart(NULL);
921 		break;
922 
923 	case LINUX_REBOOT_CMD_CAD_ON:
924 		C_A_D = 1;
925 		break;
926 
927 	case LINUX_REBOOT_CMD_CAD_OFF:
928 		C_A_D = 0;
929 		break;
930 
931 	case LINUX_REBOOT_CMD_HALT:
932 		kernel_halt();
933 		unlock_kernel();
934 		do_exit(0);
935 		break;
936 
937 	case LINUX_REBOOT_CMD_POWER_OFF:
938 		kernel_power_off();
939 		unlock_kernel();
940 		do_exit(0);
941 		break;
942 
943 	case LINUX_REBOOT_CMD_RESTART2:
944 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
945 			unlock_kernel();
946 			return -EFAULT;
947 		}
948 		buffer[sizeof(buffer) - 1] = '\0';
949 
950 		kernel_restart(buffer);
951 		break;
952 
953 	case LINUX_REBOOT_CMD_KEXEC:
954 		kernel_kexec();
955 		unlock_kernel();
956 		return -EINVAL;
957 
958 #ifdef CONFIG_HIBERNATION
959 	case LINUX_REBOOT_CMD_SW_SUSPEND:
960 		{
961 			int ret = hibernate();
962 			unlock_kernel();
963 			return ret;
964 		}
965 #endif
966 
967 	default:
968 		unlock_kernel();
969 		return -EINVAL;
970 	}
971 	unlock_kernel();
972 	return 0;
973 }
974 
975 static void deferred_cad(struct work_struct *dummy)
976 {
977 	kernel_restart(NULL);
978 }
979 
980 /*
981  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
982  * As it's called within an interrupt, it may NOT sync: the only choice
983  * is whether to reboot at once, or just ignore the ctrl-alt-del.
984  */
985 void ctrl_alt_del(void)
986 {
987 	static DECLARE_WORK(cad_work, deferred_cad);
988 
989 	if (C_A_D)
990 		schedule_work(&cad_work);
991 	else
992 		kill_cad_pid(SIGINT, 1);
993 }
994 
995 /*
996  * Unprivileged users may change the real gid to the effective gid
997  * or vice versa.  (BSD-style)
998  *
999  * If you set the real gid at all, or set the effective gid to a value not
1000  * equal to the real gid, then the saved gid is set to the new effective gid.
1001  *
1002  * This makes it possible for a setgid program to completely drop its
1003  * privileges, which is often a useful assertion to make when you are doing
1004  * a security audit over a program.
1005  *
1006  * The general idea is that a program which uses just setregid() will be
1007  * 100% compatible with BSD.  A program which uses just setgid() will be
1008  * 100% compatible with POSIX with saved IDs.
1009  *
1010  * SMP: There are not races, the GIDs are checked only by filesystem
1011  *      operations (as far as semantic preservation is concerned).
1012  */
1013 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
1014 {
1015 	int old_rgid = current->gid;
1016 	int old_egid = current->egid;
1017 	int new_rgid = old_rgid;
1018 	int new_egid = old_egid;
1019 	int retval;
1020 
1021 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
1022 	if (retval)
1023 		return retval;
1024 
1025 	if (rgid != (gid_t) -1) {
1026 		if ((old_rgid == rgid) ||
1027 		    (current->egid==rgid) ||
1028 		    capable(CAP_SETGID))
1029 			new_rgid = rgid;
1030 		else
1031 			return -EPERM;
1032 	}
1033 	if (egid != (gid_t) -1) {
1034 		if ((old_rgid == egid) ||
1035 		    (current->egid == egid) ||
1036 		    (current->sgid == egid) ||
1037 		    capable(CAP_SETGID))
1038 			new_egid = egid;
1039 		else
1040 			return -EPERM;
1041 	}
1042 	if (new_egid != old_egid) {
1043 		set_dumpable(current->mm, suid_dumpable);
1044 		smp_wmb();
1045 	}
1046 	if (rgid != (gid_t) -1 ||
1047 	    (egid != (gid_t) -1 && egid != old_rgid))
1048 		current->sgid = new_egid;
1049 	current->fsgid = new_egid;
1050 	current->egid = new_egid;
1051 	current->gid = new_rgid;
1052 	key_fsgid_changed(current);
1053 	proc_id_connector(current, PROC_EVENT_GID);
1054 	return 0;
1055 }
1056 
1057 /*
1058  * setgid() is implemented like SysV w/ SAVED_IDS
1059  *
1060  * SMP: Same implicit races as above.
1061  */
1062 asmlinkage long sys_setgid(gid_t gid)
1063 {
1064 	int old_egid = current->egid;
1065 	int retval;
1066 
1067 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
1068 	if (retval)
1069 		return retval;
1070 
1071 	if (capable(CAP_SETGID)) {
1072 		if (old_egid != gid) {
1073 			set_dumpable(current->mm, suid_dumpable);
1074 			smp_wmb();
1075 		}
1076 		current->gid = current->egid = current->sgid = current->fsgid = gid;
1077 	} else if ((gid == current->gid) || (gid == current->sgid)) {
1078 		if (old_egid != gid) {
1079 			set_dumpable(current->mm, suid_dumpable);
1080 			smp_wmb();
1081 		}
1082 		current->egid = current->fsgid = gid;
1083 	}
1084 	else
1085 		return -EPERM;
1086 
1087 	key_fsgid_changed(current);
1088 	proc_id_connector(current, PROC_EVENT_GID);
1089 	return 0;
1090 }
1091 
1092 static int set_user(uid_t new_ruid, int dumpclear)
1093 {
1094 	struct user_struct *new_user;
1095 
1096 	new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
1097 	if (!new_user)
1098 		return -EAGAIN;
1099 
1100 	if (atomic_read(&new_user->processes) >=
1101 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
1102 			new_user != current->nsproxy->user_ns->root_user) {
1103 		free_uid(new_user);
1104 		return -EAGAIN;
1105 	}
1106 
1107 	switch_uid(new_user);
1108 
1109 	if (dumpclear) {
1110 		set_dumpable(current->mm, suid_dumpable);
1111 		smp_wmb();
1112 	}
1113 	current->uid = new_ruid;
1114 	return 0;
1115 }
1116 
1117 /*
1118  * Unprivileged users may change the real uid to the effective uid
1119  * or vice versa.  (BSD-style)
1120  *
1121  * If you set the real uid at all, or set the effective uid to a value not
1122  * equal to the real uid, then the saved uid is set to the new effective uid.
1123  *
1124  * This makes it possible for a setuid program to completely drop its
1125  * privileges, which is often a useful assertion to make when you are doing
1126  * a security audit over a program.
1127  *
1128  * The general idea is that a program which uses just setreuid() will be
1129  * 100% compatible with BSD.  A program which uses just setuid() will be
1130  * 100% compatible with POSIX with saved IDs.
1131  */
1132 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
1133 {
1134 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
1135 	int retval;
1136 
1137 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
1138 	if (retval)
1139 		return retval;
1140 
1141 	new_ruid = old_ruid = current->uid;
1142 	new_euid = old_euid = current->euid;
1143 	old_suid = current->suid;
1144 
1145 	if (ruid != (uid_t) -1) {
1146 		new_ruid = ruid;
1147 		if ((old_ruid != ruid) &&
1148 		    (current->euid != ruid) &&
1149 		    !capable(CAP_SETUID))
1150 			return -EPERM;
1151 	}
1152 
1153 	if (euid != (uid_t) -1) {
1154 		new_euid = euid;
1155 		if ((old_ruid != euid) &&
1156 		    (current->euid != euid) &&
1157 		    (current->suid != euid) &&
1158 		    !capable(CAP_SETUID))
1159 			return -EPERM;
1160 	}
1161 
1162 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
1163 		return -EAGAIN;
1164 
1165 	if (new_euid != old_euid) {
1166 		set_dumpable(current->mm, suid_dumpable);
1167 		smp_wmb();
1168 	}
1169 	current->fsuid = current->euid = new_euid;
1170 	if (ruid != (uid_t) -1 ||
1171 	    (euid != (uid_t) -1 && euid != old_ruid))
1172 		current->suid = current->euid;
1173 	current->fsuid = current->euid;
1174 
1175 	key_fsuid_changed(current);
1176 	proc_id_connector(current, PROC_EVENT_UID);
1177 
1178 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
1179 }
1180 
1181 
1182 
1183 /*
1184  * setuid() is implemented like SysV with SAVED_IDS
1185  *
1186  * Note that SAVED_ID's is deficient in that a setuid root program
1187  * like sendmail, for example, cannot set its uid to be a normal
1188  * user and then switch back, because if you're root, setuid() sets
1189  * the saved uid too.  If you don't like this, blame the bright people
1190  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
1191  * will allow a root program to temporarily drop privileges and be able to
1192  * regain them by swapping the real and effective uid.
1193  */
1194 asmlinkage long sys_setuid(uid_t uid)
1195 {
1196 	int old_euid = current->euid;
1197 	int old_ruid, old_suid, new_suid;
1198 	int retval;
1199 
1200 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
1201 	if (retval)
1202 		return retval;
1203 
1204 	old_ruid = current->uid;
1205 	old_suid = current->suid;
1206 	new_suid = old_suid;
1207 
1208 	if (capable(CAP_SETUID)) {
1209 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
1210 			return -EAGAIN;
1211 		new_suid = uid;
1212 	} else if ((uid != current->uid) && (uid != new_suid))
1213 		return -EPERM;
1214 
1215 	if (old_euid != uid) {
1216 		set_dumpable(current->mm, suid_dumpable);
1217 		smp_wmb();
1218 	}
1219 	current->fsuid = current->euid = uid;
1220 	current->suid = new_suid;
1221 
1222 	key_fsuid_changed(current);
1223 	proc_id_connector(current, PROC_EVENT_UID);
1224 
1225 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
1226 }
1227 
1228 
1229 /*
1230  * This function implements a generic ability to update ruid, euid,
1231  * and suid.  This allows you to implement the 4.4 compatible seteuid().
1232  */
1233 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1234 {
1235 	int old_ruid = current->uid;
1236 	int old_euid = current->euid;
1237 	int old_suid = current->suid;
1238 	int retval;
1239 
1240 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
1241 	if (retval)
1242 		return retval;
1243 
1244 	if (!capable(CAP_SETUID)) {
1245 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
1246 		    (ruid != current->euid) && (ruid != current->suid))
1247 			return -EPERM;
1248 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
1249 		    (euid != current->euid) && (euid != current->suid))
1250 			return -EPERM;
1251 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
1252 		    (suid != current->euid) && (suid != current->suid))
1253 			return -EPERM;
1254 	}
1255 	if (ruid != (uid_t) -1) {
1256 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
1257 			return -EAGAIN;
1258 	}
1259 	if (euid != (uid_t) -1) {
1260 		if (euid != current->euid) {
1261 			set_dumpable(current->mm, suid_dumpable);
1262 			smp_wmb();
1263 		}
1264 		current->euid = euid;
1265 	}
1266 	current->fsuid = current->euid;
1267 	if (suid != (uid_t) -1)
1268 		current->suid = suid;
1269 
1270 	key_fsuid_changed(current);
1271 	proc_id_connector(current, PROC_EVENT_UID);
1272 
1273 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
1274 }
1275 
1276 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
1277 {
1278 	int retval;
1279 
1280 	if (!(retval = put_user(current->uid, ruid)) &&
1281 	    !(retval = put_user(current->euid, euid)))
1282 		retval = put_user(current->suid, suid);
1283 
1284 	return retval;
1285 }
1286 
1287 /*
1288  * Same as above, but for rgid, egid, sgid.
1289  */
1290 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1291 {
1292 	int retval;
1293 
1294 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
1295 	if (retval)
1296 		return retval;
1297 
1298 	if (!capable(CAP_SETGID)) {
1299 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
1300 		    (rgid != current->egid) && (rgid != current->sgid))
1301 			return -EPERM;
1302 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
1303 		    (egid != current->egid) && (egid != current->sgid))
1304 			return -EPERM;
1305 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
1306 		    (sgid != current->egid) && (sgid != current->sgid))
1307 			return -EPERM;
1308 	}
1309 	if (egid != (gid_t) -1) {
1310 		if (egid != current->egid) {
1311 			set_dumpable(current->mm, suid_dumpable);
1312 			smp_wmb();
1313 		}
1314 		current->egid = egid;
1315 	}
1316 	current->fsgid = current->egid;
1317 	if (rgid != (gid_t) -1)
1318 		current->gid = rgid;
1319 	if (sgid != (gid_t) -1)
1320 		current->sgid = sgid;
1321 
1322 	key_fsgid_changed(current);
1323 	proc_id_connector(current, PROC_EVENT_GID);
1324 	return 0;
1325 }
1326 
1327 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
1328 {
1329 	int retval;
1330 
1331 	if (!(retval = put_user(current->gid, rgid)) &&
1332 	    !(retval = put_user(current->egid, egid)))
1333 		retval = put_user(current->sgid, sgid);
1334 
1335 	return retval;
1336 }
1337 
1338 
1339 /*
1340  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1341  * is used for "access()" and for the NFS daemon (letting nfsd stay at
1342  * whatever uid it wants to). It normally shadows "euid", except when
1343  * explicitly set by setfsuid() or for access..
1344  */
1345 asmlinkage long sys_setfsuid(uid_t uid)
1346 {
1347 	int old_fsuid;
1348 
1349 	old_fsuid = current->fsuid;
1350 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
1351 		return old_fsuid;
1352 
1353 	if (uid == current->uid || uid == current->euid ||
1354 	    uid == current->suid || uid == current->fsuid ||
1355 	    capable(CAP_SETUID)) {
1356 		if (uid != old_fsuid) {
1357 			set_dumpable(current->mm, suid_dumpable);
1358 			smp_wmb();
1359 		}
1360 		current->fsuid = uid;
1361 	}
1362 
1363 	key_fsuid_changed(current);
1364 	proc_id_connector(current, PROC_EVENT_UID);
1365 
1366 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
1367 
1368 	return old_fsuid;
1369 }
1370 
1371 /*
1372  * Samma på svenska..
1373  */
1374 asmlinkage long sys_setfsgid(gid_t gid)
1375 {
1376 	int old_fsgid;
1377 
1378 	old_fsgid = current->fsgid;
1379 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
1380 		return old_fsgid;
1381 
1382 	if (gid == current->gid || gid == current->egid ||
1383 	    gid == current->sgid || gid == current->fsgid ||
1384 	    capable(CAP_SETGID)) {
1385 		if (gid != old_fsgid) {
1386 			set_dumpable(current->mm, suid_dumpable);
1387 			smp_wmb();
1388 		}
1389 		current->fsgid = gid;
1390 		key_fsgid_changed(current);
1391 		proc_id_connector(current, PROC_EVENT_GID);
1392 	}
1393 	return old_fsgid;
1394 }
1395 
1396 asmlinkage long sys_times(struct tms __user * tbuf)
1397 {
1398 	/*
1399 	 *	In the SMP world we might just be unlucky and have one of
1400 	 *	the times increment as we use it. Since the value is an
1401 	 *	atomically safe type this is just fine. Conceptually its
1402 	 *	as if the syscall took an instant longer to occur.
1403 	 */
1404 	if (tbuf) {
1405 		struct tms tmp;
1406 		struct task_struct *tsk = current;
1407 		struct task_struct *t;
1408 		cputime_t utime, stime, cutime, cstime;
1409 
1410 		spin_lock_irq(&tsk->sighand->siglock);
1411 		utime = tsk->signal->utime;
1412 		stime = tsk->signal->stime;
1413 		t = tsk;
1414 		do {
1415 			utime = cputime_add(utime, t->utime);
1416 			stime = cputime_add(stime, t->stime);
1417 			t = next_thread(t);
1418 		} while (t != tsk);
1419 
1420 		cutime = tsk->signal->cutime;
1421 		cstime = tsk->signal->cstime;
1422 		spin_unlock_irq(&tsk->sighand->siglock);
1423 
1424 		tmp.tms_utime = cputime_to_clock_t(utime);
1425 		tmp.tms_stime = cputime_to_clock_t(stime);
1426 		tmp.tms_cutime = cputime_to_clock_t(cutime);
1427 		tmp.tms_cstime = cputime_to_clock_t(cstime);
1428 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1429 			return -EFAULT;
1430 	}
1431 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1432 }
1433 
1434 /*
1435  * This needs some heavy checking ...
1436  * I just haven't the stomach for it. I also don't fully
1437  * understand sessions/pgrp etc. Let somebody who does explain it.
1438  *
1439  * OK, I think I have the protection semantics right.... this is really
1440  * only important on a multi-user system anyway, to make sure one user
1441  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1442  *
1443  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1444  * LBT 04.03.94
1445  */
1446 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1447 {
1448 	struct task_struct *p;
1449 	struct task_struct *group_leader = current->group_leader;
1450 	int err = -EINVAL;
1451 
1452 	if (!pid)
1453 		pid = group_leader->pid;
1454 	if (!pgid)
1455 		pgid = pid;
1456 	if (pgid < 0)
1457 		return -EINVAL;
1458 
1459 	/* From this point forward we keep holding onto the tasklist lock
1460 	 * so that our parent does not change from under us. -DaveM
1461 	 */
1462 	write_lock_irq(&tasklist_lock);
1463 
1464 	err = -ESRCH;
1465 	p = find_task_by_pid(pid);
1466 	if (!p)
1467 		goto out;
1468 
1469 	err = -EINVAL;
1470 	if (!thread_group_leader(p))
1471 		goto out;
1472 
1473 	if (p->real_parent->tgid == group_leader->tgid) {
1474 		err = -EPERM;
1475 		if (task_session(p) != task_session(group_leader))
1476 			goto out;
1477 		err = -EACCES;
1478 		if (p->did_exec)
1479 			goto out;
1480 	} else {
1481 		err = -ESRCH;
1482 		if (p != group_leader)
1483 			goto out;
1484 	}
1485 
1486 	err = -EPERM;
1487 	if (p->signal->leader)
1488 		goto out;
1489 
1490 	if (pgid != pid) {
1491 		struct task_struct *g =
1492 			find_task_by_pid_type(PIDTYPE_PGID, pgid);
1493 
1494 		if (!g || task_session(g) != task_session(group_leader))
1495 			goto out;
1496 	}
1497 
1498 	err = security_task_setpgid(p, pgid);
1499 	if (err)
1500 		goto out;
1501 
1502 	if (process_group(p) != pgid) {
1503 		detach_pid(p, PIDTYPE_PGID);
1504 		p->signal->pgrp = pgid;
1505 		attach_pid(p, PIDTYPE_PGID, find_pid(pgid));
1506 	}
1507 
1508 	err = 0;
1509 out:
1510 	/* All paths lead to here, thus we are safe. -DaveM */
1511 	write_unlock_irq(&tasklist_lock);
1512 	return err;
1513 }
1514 
1515 asmlinkage long sys_getpgid(pid_t pid)
1516 {
1517 	if (!pid)
1518 		return process_group(current);
1519 	else {
1520 		int retval;
1521 		struct task_struct *p;
1522 
1523 		read_lock(&tasklist_lock);
1524 		p = find_task_by_pid(pid);
1525 
1526 		retval = -ESRCH;
1527 		if (p) {
1528 			retval = security_task_getpgid(p);
1529 			if (!retval)
1530 				retval = process_group(p);
1531 		}
1532 		read_unlock(&tasklist_lock);
1533 		return retval;
1534 	}
1535 }
1536 
1537 #ifdef __ARCH_WANT_SYS_GETPGRP
1538 
1539 asmlinkage long sys_getpgrp(void)
1540 {
1541 	/* SMP - assuming writes are word atomic this is fine */
1542 	return process_group(current);
1543 }
1544 
1545 #endif
1546 
1547 asmlinkage long sys_getsid(pid_t pid)
1548 {
1549 	if (!pid)
1550 		return process_session(current);
1551 	else {
1552 		int retval;
1553 		struct task_struct *p;
1554 
1555 		read_lock(&tasklist_lock);
1556 		p = find_task_by_pid(pid);
1557 
1558 		retval = -ESRCH;
1559 		if (p) {
1560 			retval = security_task_getsid(p);
1561 			if (!retval)
1562 				retval = process_session(p);
1563 		}
1564 		read_unlock(&tasklist_lock);
1565 		return retval;
1566 	}
1567 }
1568 
1569 asmlinkage long sys_setsid(void)
1570 {
1571 	struct task_struct *group_leader = current->group_leader;
1572 	pid_t session;
1573 	int err = -EPERM;
1574 
1575 	write_lock_irq(&tasklist_lock);
1576 
1577 	/* Fail if I am already a session leader */
1578 	if (group_leader->signal->leader)
1579 		goto out;
1580 
1581 	session = group_leader->pid;
1582 	/* Fail if a process group id already exists that equals the
1583 	 * proposed session id.
1584 	 *
1585 	 * Don't check if session id == 1 because kernel threads use this
1586 	 * session id and so the check will always fail and make it so
1587 	 * init cannot successfully call setsid.
1588 	 */
1589 	if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
1590 		goto out;
1591 
1592 	group_leader->signal->leader = 1;
1593 	__set_special_pids(session, session);
1594 
1595 	spin_lock(&group_leader->sighand->siglock);
1596 	group_leader->signal->tty = NULL;
1597 	spin_unlock(&group_leader->sighand->siglock);
1598 
1599 	err = process_group(group_leader);
1600 out:
1601 	write_unlock_irq(&tasklist_lock);
1602 	return err;
1603 }
1604 
1605 /*
1606  * Supplementary group IDs
1607  */
1608 
1609 /* init to 2 - one for init_task, one to ensure it is never freed */
1610 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1611 
1612 struct group_info *groups_alloc(int gidsetsize)
1613 {
1614 	struct group_info *group_info;
1615 	int nblocks;
1616 	int i;
1617 
1618 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1619 	/* Make sure we always allocate at least one indirect block pointer */
1620 	nblocks = nblocks ? : 1;
1621 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1622 	if (!group_info)
1623 		return NULL;
1624 	group_info->ngroups = gidsetsize;
1625 	group_info->nblocks = nblocks;
1626 	atomic_set(&group_info->usage, 1);
1627 
1628 	if (gidsetsize <= NGROUPS_SMALL)
1629 		group_info->blocks[0] = group_info->small_block;
1630 	else {
1631 		for (i = 0; i < nblocks; i++) {
1632 			gid_t *b;
1633 			b = (void *)__get_free_page(GFP_USER);
1634 			if (!b)
1635 				goto out_undo_partial_alloc;
1636 			group_info->blocks[i] = b;
1637 		}
1638 	}
1639 	return group_info;
1640 
1641 out_undo_partial_alloc:
1642 	while (--i >= 0) {
1643 		free_page((unsigned long)group_info->blocks[i]);
1644 	}
1645 	kfree(group_info);
1646 	return NULL;
1647 }
1648 
1649 EXPORT_SYMBOL(groups_alloc);
1650 
1651 void groups_free(struct group_info *group_info)
1652 {
1653 	if (group_info->blocks[0] != group_info->small_block) {
1654 		int i;
1655 		for (i = 0; i < group_info->nblocks; i++)
1656 			free_page((unsigned long)group_info->blocks[i]);
1657 	}
1658 	kfree(group_info);
1659 }
1660 
1661 EXPORT_SYMBOL(groups_free);
1662 
1663 /* export the group_info to a user-space array */
1664 static int groups_to_user(gid_t __user *grouplist,
1665     struct group_info *group_info)
1666 {
1667 	int i;
1668 	int count = group_info->ngroups;
1669 
1670 	for (i = 0; i < group_info->nblocks; i++) {
1671 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1672 		int off = i * NGROUPS_PER_BLOCK;
1673 		int len = cp_count * sizeof(*grouplist);
1674 
1675 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1676 			return -EFAULT;
1677 
1678 		count -= cp_count;
1679 	}
1680 	return 0;
1681 }
1682 
1683 /* fill a group_info from a user-space array - it must be allocated already */
1684 static int groups_from_user(struct group_info *group_info,
1685     gid_t __user *grouplist)
1686 {
1687 	int i;
1688 	int count = group_info->ngroups;
1689 
1690 	for (i = 0; i < group_info->nblocks; i++) {
1691 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1692 		int off = i * NGROUPS_PER_BLOCK;
1693 		int len = cp_count * sizeof(*grouplist);
1694 
1695 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1696 			return -EFAULT;
1697 
1698 		count -= cp_count;
1699 	}
1700 	return 0;
1701 }
1702 
1703 /* a simple Shell sort */
1704 static void groups_sort(struct group_info *group_info)
1705 {
1706 	int base, max, stride;
1707 	int gidsetsize = group_info->ngroups;
1708 
1709 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1710 		; /* nothing */
1711 	stride /= 3;
1712 
1713 	while (stride) {
1714 		max = gidsetsize - stride;
1715 		for (base = 0; base < max; base++) {
1716 			int left = base;
1717 			int right = left + stride;
1718 			gid_t tmp = GROUP_AT(group_info, right);
1719 
1720 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1721 				GROUP_AT(group_info, right) =
1722 				    GROUP_AT(group_info, left);
1723 				right = left;
1724 				left -= stride;
1725 			}
1726 			GROUP_AT(group_info, right) = tmp;
1727 		}
1728 		stride /= 3;
1729 	}
1730 }
1731 
1732 /* a simple bsearch */
1733 int groups_search(struct group_info *group_info, gid_t grp)
1734 {
1735 	unsigned int left, right;
1736 
1737 	if (!group_info)
1738 		return 0;
1739 
1740 	left = 0;
1741 	right = group_info->ngroups;
1742 	while (left < right) {
1743 		unsigned int mid = (left+right)/2;
1744 		int cmp = grp - GROUP_AT(group_info, mid);
1745 		if (cmp > 0)
1746 			left = mid + 1;
1747 		else if (cmp < 0)
1748 			right = mid;
1749 		else
1750 			return 1;
1751 	}
1752 	return 0;
1753 }
1754 
1755 /* validate and set current->group_info */
1756 int set_current_groups(struct group_info *group_info)
1757 {
1758 	int retval;
1759 	struct group_info *old_info;
1760 
1761 	retval = security_task_setgroups(group_info);
1762 	if (retval)
1763 		return retval;
1764 
1765 	groups_sort(group_info);
1766 	get_group_info(group_info);
1767 
1768 	task_lock(current);
1769 	old_info = current->group_info;
1770 	current->group_info = group_info;
1771 	task_unlock(current);
1772 
1773 	put_group_info(old_info);
1774 
1775 	return 0;
1776 }
1777 
1778 EXPORT_SYMBOL(set_current_groups);
1779 
1780 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1781 {
1782 	int i = 0;
1783 
1784 	/*
1785 	 *	SMP: Nobody else can change our grouplist. Thus we are
1786 	 *	safe.
1787 	 */
1788 
1789 	if (gidsetsize < 0)
1790 		return -EINVAL;
1791 
1792 	/* no need to grab task_lock here; it cannot change */
1793 	i = current->group_info->ngroups;
1794 	if (gidsetsize) {
1795 		if (i > gidsetsize) {
1796 			i = -EINVAL;
1797 			goto out;
1798 		}
1799 		if (groups_to_user(grouplist, current->group_info)) {
1800 			i = -EFAULT;
1801 			goto out;
1802 		}
1803 	}
1804 out:
1805 	return i;
1806 }
1807 
1808 /*
1809  *	SMP: Our groups are copy-on-write. We can set them safely
1810  *	without another task interfering.
1811  */
1812 
1813 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1814 {
1815 	struct group_info *group_info;
1816 	int retval;
1817 
1818 	if (!capable(CAP_SETGID))
1819 		return -EPERM;
1820 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1821 		return -EINVAL;
1822 
1823 	group_info = groups_alloc(gidsetsize);
1824 	if (!group_info)
1825 		return -ENOMEM;
1826 	retval = groups_from_user(group_info, grouplist);
1827 	if (retval) {
1828 		put_group_info(group_info);
1829 		return retval;
1830 	}
1831 
1832 	retval = set_current_groups(group_info);
1833 	put_group_info(group_info);
1834 
1835 	return retval;
1836 }
1837 
1838 /*
1839  * Check whether we're fsgid/egid or in the supplemental group..
1840  */
1841 int in_group_p(gid_t grp)
1842 {
1843 	int retval = 1;
1844 	if (grp != current->fsgid)
1845 		retval = groups_search(current->group_info, grp);
1846 	return retval;
1847 }
1848 
1849 EXPORT_SYMBOL(in_group_p);
1850 
1851 int in_egroup_p(gid_t grp)
1852 {
1853 	int retval = 1;
1854 	if (grp != current->egid)
1855 		retval = groups_search(current->group_info, grp);
1856 	return retval;
1857 }
1858 
1859 EXPORT_SYMBOL(in_egroup_p);
1860 
1861 DECLARE_RWSEM(uts_sem);
1862 
1863 EXPORT_SYMBOL(uts_sem);
1864 
1865 asmlinkage long sys_newuname(struct new_utsname __user * name)
1866 {
1867 	int errno = 0;
1868 
1869 	down_read(&uts_sem);
1870 	if (copy_to_user(name, utsname(), sizeof *name))
1871 		errno = -EFAULT;
1872 	up_read(&uts_sem);
1873 	return errno;
1874 }
1875 
1876 asmlinkage long sys_sethostname(char __user *name, int len)
1877 {
1878 	int errno;
1879 	char tmp[__NEW_UTS_LEN];
1880 
1881 	if (!capable(CAP_SYS_ADMIN))
1882 		return -EPERM;
1883 	if (len < 0 || len > __NEW_UTS_LEN)
1884 		return -EINVAL;
1885 	down_write(&uts_sem);
1886 	errno = -EFAULT;
1887 	if (!copy_from_user(tmp, name, len)) {
1888 		memcpy(utsname()->nodename, tmp, len);
1889 		utsname()->nodename[len] = 0;
1890 		errno = 0;
1891 	}
1892 	up_write(&uts_sem);
1893 	return errno;
1894 }
1895 
1896 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1897 
1898 asmlinkage long sys_gethostname(char __user *name, int len)
1899 {
1900 	int i, errno;
1901 
1902 	if (len < 0)
1903 		return -EINVAL;
1904 	down_read(&uts_sem);
1905 	i = 1 + strlen(utsname()->nodename);
1906 	if (i > len)
1907 		i = len;
1908 	errno = 0;
1909 	if (copy_to_user(name, utsname()->nodename, i))
1910 		errno = -EFAULT;
1911 	up_read(&uts_sem);
1912 	return errno;
1913 }
1914 
1915 #endif
1916 
1917 /*
1918  * Only setdomainname; getdomainname can be implemented by calling
1919  * uname()
1920  */
1921 asmlinkage long sys_setdomainname(char __user *name, int len)
1922 {
1923 	int errno;
1924 	char tmp[__NEW_UTS_LEN];
1925 
1926 	if (!capable(CAP_SYS_ADMIN))
1927 		return -EPERM;
1928 	if (len < 0 || len > __NEW_UTS_LEN)
1929 		return -EINVAL;
1930 
1931 	down_write(&uts_sem);
1932 	errno = -EFAULT;
1933 	if (!copy_from_user(tmp, name, len)) {
1934 		memcpy(utsname()->domainname, tmp, len);
1935 		utsname()->domainname[len] = 0;
1936 		errno = 0;
1937 	}
1938 	up_write(&uts_sem);
1939 	return errno;
1940 }
1941 
1942 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1943 {
1944 	if (resource >= RLIM_NLIMITS)
1945 		return -EINVAL;
1946 	else {
1947 		struct rlimit value;
1948 		task_lock(current->group_leader);
1949 		value = current->signal->rlim[resource];
1950 		task_unlock(current->group_leader);
1951 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1952 	}
1953 }
1954 
1955 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1956 
1957 /*
1958  *	Back compatibility for getrlimit. Needed for some apps.
1959  */
1960 
1961 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1962 {
1963 	struct rlimit x;
1964 	if (resource >= RLIM_NLIMITS)
1965 		return -EINVAL;
1966 
1967 	task_lock(current->group_leader);
1968 	x = current->signal->rlim[resource];
1969 	task_unlock(current->group_leader);
1970 	if (x.rlim_cur > 0x7FFFFFFF)
1971 		x.rlim_cur = 0x7FFFFFFF;
1972 	if (x.rlim_max > 0x7FFFFFFF)
1973 		x.rlim_max = 0x7FFFFFFF;
1974 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1975 }
1976 
1977 #endif
1978 
1979 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1980 {
1981 	struct rlimit new_rlim, *old_rlim;
1982 	unsigned long it_prof_secs;
1983 	int retval;
1984 
1985 	if (resource >= RLIM_NLIMITS)
1986 		return -EINVAL;
1987 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1988 		return -EFAULT;
1989 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1990 		return -EINVAL;
1991 	old_rlim = current->signal->rlim + resource;
1992 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1993 	    !capable(CAP_SYS_RESOURCE))
1994 		return -EPERM;
1995 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1996 		return -EPERM;
1997 
1998 	retval = security_task_setrlimit(resource, &new_rlim);
1999 	if (retval)
2000 		return retval;
2001 
2002 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
2003 		/*
2004 		 * The caller is asking for an immediate RLIMIT_CPU
2005 		 * expiry.  But we use the zero value to mean "it was
2006 		 * never set".  So let's cheat and make it one second
2007 		 * instead
2008 		 */
2009 		new_rlim.rlim_cur = 1;
2010 	}
2011 
2012 	task_lock(current->group_leader);
2013 	*old_rlim = new_rlim;
2014 	task_unlock(current->group_leader);
2015 
2016 	if (resource != RLIMIT_CPU)
2017 		goto out;
2018 
2019 	/*
2020 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
2021 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
2022 	 * very long-standing error, and fixing it now risks breakage of
2023 	 * applications, so we live with it
2024 	 */
2025 	if (new_rlim.rlim_cur == RLIM_INFINITY)
2026 		goto out;
2027 
2028 	it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
2029 	if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
2030 		unsigned long rlim_cur = new_rlim.rlim_cur;
2031 		cputime_t cputime;
2032 
2033 		cputime = secs_to_cputime(rlim_cur);
2034 		read_lock(&tasklist_lock);
2035 		spin_lock_irq(&current->sighand->siglock);
2036 		set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
2037 		spin_unlock_irq(&current->sighand->siglock);
2038 		read_unlock(&tasklist_lock);
2039 	}
2040 out:
2041 	return 0;
2042 }
2043 
2044 /*
2045  * It would make sense to put struct rusage in the task_struct,
2046  * except that would make the task_struct be *really big*.  After
2047  * task_struct gets moved into malloc'ed memory, it would
2048  * make sense to do this.  It will make moving the rest of the information
2049  * a lot simpler!  (Which we're not doing right now because we're not
2050  * measuring them yet).
2051  *
2052  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
2053  * races with threads incrementing their own counters.  But since word
2054  * reads are atomic, we either get new values or old values and we don't
2055  * care which for the sums.  We always take the siglock to protect reading
2056  * the c* fields from p->signal from races with exit.c updating those
2057  * fields when reaping, so a sample either gets all the additions of a
2058  * given child after it's reaped, or none so this sample is before reaping.
2059  *
2060  * Locking:
2061  * We need to take the siglock for CHILDEREN, SELF and BOTH
2062  * for  the cases current multithreaded, non-current single threaded
2063  * non-current multithreaded.  Thread traversal is now safe with
2064  * the siglock held.
2065  * Strictly speaking, we donot need to take the siglock if we are current and
2066  * single threaded,  as no one else can take our signal_struct away, no one
2067  * else can  reap the  children to update signal->c* counters, and no one else
2068  * can race with the signal-> fields. If we do not take any lock, the
2069  * signal-> fields could be read out of order while another thread was just
2070  * exiting. So we should  place a read memory barrier when we avoid the lock.
2071  * On the writer side,  write memory barrier is implied in  __exit_signal
2072  * as __exit_signal releases  the siglock spinlock after updating the signal->
2073  * fields. But we don't do this yet to keep things simple.
2074  *
2075  */
2076 
2077 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
2078 {
2079 	struct task_struct *t;
2080 	unsigned long flags;
2081 	cputime_t utime, stime;
2082 
2083 	memset((char *) r, 0, sizeof *r);
2084 	utime = stime = cputime_zero;
2085 
2086 	rcu_read_lock();
2087 	if (!lock_task_sighand(p, &flags)) {
2088 		rcu_read_unlock();
2089 		return;
2090 	}
2091 
2092 	switch (who) {
2093 		case RUSAGE_BOTH:
2094 		case RUSAGE_CHILDREN:
2095 			utime = p->signal->cutime;
2096 			stime = p->signal->cstime;
2097 			r->ru_nvcsw = p->signal->cnvcsw;
2098 			r->ru_nivcsw = p->signal->cnivcsw;
2099 			r->ru_minflt = p->signal->cmin_flt;
2100 			r->ru_majflt = p->signal->cmaj_flt;
2101 			r->ru_inblock = p->signal->cinblock;
2102 			r->ru_oublock = p->signal->coublock;
2103 
2104 			if (who == RUSAGE_CHILDREN)
2105 				break;
2106 
2107 		case RUSAGE_SELF:
2108 			utime = cputime_add(utime, p->signal->utime);
2109 			stime = cputime_add(stime, p->signal->stime);
2110 			r->ru_nvcsw += p->signal->nvcsw;
2111 			r->ru_nivcsw += p->signal->nivcsw;
2112 			r->ru_minflt += p->signal->min_flt;
2113 			r->ru_majflt += p->signal->maj_flt;
2114 			r->ru_inblock += p->signal->inblock;
2115 			r->ru_oublock += p->signal->oublock;
2116 			t = p;
2117 			do {
2118 				utime = cputime_add(utime, t->utime);
2119 				stime = cputime_add(stime, t->stime);
2120 				r->ru_nvcsw += t->nvcsw;
2121 				r->ru_nivcsw += t->nivcsw;
2122 				r->ru_minflt += t->min_flt;
2123 				r->ru_majflt += t->maj_flt;
2124 				r->ru_inblock += task_io_get_inblock(t);
2125 				r->ru_oublock += task_io_get_oublock(t);
2126 				t = next_thread(t);
2127 			} while (t != p);
2128 			break;
2129 
2130 		default:
2131 			BUG();
2132 	}
2133 
2134 	unlock_task_sighand(p, &flags);
2135 	rcu_read_unlock();
2136 
2137 	cputime_to_timeval(utime, &r->ru_utime);
2138 	cputime_to_timeval(stime, &r->ru_stime);
2139 }
2140 
2141 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
2142 {
2143 	struct rusage r;
2144 	k_getrusage(p, who, &r);
2145 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
2146 }
2147 
2148 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
2149 {
2150 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
2151 		return -EINVAL;
2152 	return getrusage(current, who, ru);
2153 }
2154 
2155 asmlinkage long sys_umask(int mask)
2156 {
2157 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
2158 	return mask;
2159 }
2160 
2161 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
2162 			  unsigned long arg4, unsigned long arg5)
2163 {
2164 	long error;
2165 
2166 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2167 	if (error)
2168 		return error;
2169 
2170 	switch (option) {
2171 		case PR_SET_PDEATHSIG:
2172 			if (!valid_signal(arg2)) {
2173 				error = -EINVAL;
2174 				break;
2175 			}
2176 			current->pdeath_signal = arg2;
2177 			break;
2178 		case PR_GET_PDEATHSIG:
2179 			error = put_user(current->pdeath_signal, (int __user *)arg2);
2180 			break;
2181 		case PR_GET_DUMPABLE:
2182 			error = get_dumpable(current->mm);
2183 			break;
2184 		case PR_SET_DUMPABLE:
2185 			if (arg2 < 0 || arg2 > 1) {
2186 				error = -EINVAL;
2187 				break;
2188 			}
2189 			set_dumpable(current->mm, arg2);
2190 			break;
2191 
2192 		case PR_SET_UNALIGN:
2193 			error = SET_UNALIGN_CTL(current, arg2);
2194 			break;
2195 		case PR_GET_UNALIGN:
2196 			error = GET_UNALIGN_CTL(current, arg2);
2197 			break;
2198 		case PR_SET_FPEMU:
2199 			error = SET_FPEMU_CTL(current, arg2);
2200 			break;
2201 		case PR_GET_FPEMU:
2202 			error = GET_FPEMU_CTL(current, arg2);
2203 			break;
2204 		case PR_SET_FPEXC:
2205 			error = SET_FPEXC_CTL(current, arg2);
2206 			break;
2207 		case PR_GET_FPEXC:
2208 			error = GET_FPEXC_CTL(current, arg2);
2209 			break;
2210 		case PR_GET_TIMING:
2211 			error = PR_TIMING_STATISTICAL;
2212 			break;
2213 		case PR_SET_TIMING:
2214 			if (arg2 == PR_TIMING_STATISTICAL)
2215 				error = 0;
2216 			else
2217 				error = -EINVAL;
2218 			break;
2219 
2220 		case PR_GET_KEEPCAPS:
2221 			if (current->keep_capabilities)
2222 				error = 1;
2223 			break;
2224 		case PR_SET_KEEPCAPS:
2225 			if (arg2 != 0 && arg2 != 1) {
2226 				error = -EINVAL;
2227 				break;
2228 			}
2229 			current->keep_capabilities = arg2;
2230 			break;
2231 		case PR_SET_NAME: {
2232 			struct task_struct *me = current;
2233 			unsigned char ncomm[sizeof(me->comm)];
2234 
2235 			ncomm[sizeof(me->comm)-1] = 0;
2236 			if (strncpy_from_user(ncomm, (char __user *)arg2,
2237 						sizeof(me->comm)-1) < 0)
2238 				return -EFAULT;
2239 			set_task_comm(me, ncomm);
2240 			return 0;
2241 		}
2242 		case PR_GET_NAME: {
2243 			struct task_struct *me = current;
2244 			unsigned char tcomm[sizeof(me->comm)];
2245 
2246 			get_task_comm(tcomm, me);
2247 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
2248 				return -EFAULT;
2249 			return 0;
2250 		}
2251 		case PR_GET_ENDIAN:
2252 			error = GET_ENDIAN(current, arg2);
2253 			break;
2254 		case PR_SET_ENDIAN:
2255 			error = SET_ENDIAN(current, arg2);
2256 			break;
2257 
2258 		case PR_GET_SECCOMP:
2259 			error = prctl_get_seccomp();
2260 			break;
2261 		case PR_SET_SECCOMP:
2262 			error = prctl_set_seccomp(arg2);
2263 			break;
2264 
2265 		default:
2266 			error = -EINVAL;
2267 			break;
2268 	}
2269 	return error;
2270 }
2271 
2272 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
2273 	   		   struct getcpu_cache __user *cache)
2274 {
2275 	int err = 0;
2276 	int cpu = raw_smp_processor_id();
2277 	if (cpup)
2278 		err |= put_user(cpu, cpup);
2279 	if (nodep)
2280 		err |= put_user(cpu_to_node(cpu), nodep);
2281 	if (cache) {
2282 		/*
2283 		 * The cache is not needed for this implementation,
2284 		 * but make sure user programs pass something
2285 		 * valid. vsyscall implementations can instead make
2286 		 * good use of the cache. Only use t0 and t1 because
2287 		 * these are available in both 32bit and 64bit ABI (no
2288 		 * need for a compat_getcpu). 32bit has enough
2289 		 * padding
2290 		 */
2291 		unsigned long t0, t1;
2292 		get_user(t0, &cache->blob[0]);
2293 		get_user(t1, &cache->blob[1]);
2294 		t0++;
2295 		t1++;
2296 		put_user(t0, &cache->blob[0]);
2297 		put_user(t1, &cache->blob[1]);
2298 	}
2299 	return err ? -EFAULT : 0;
2300 }
2301 
2302 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2303 
2304 static void argv_cleanup(char **argv, char **envp)
2305 {
2306 	argv_free(argv);
2307 }
2308 
2309 /**
2310  * orderly_poweroff - Trigger an orderly system poweroff
2311  * @force: force poweroff if command execution fails
2312  *
2313  * This may be called from any context to trigger a system shutdown.
2314  * If the orderly shutdown fails, it will force an immediate shutdown.
2315  */
2316 int orderly_poweroff(bool force)
2317 {
2318 	int argc;
2319 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2320 	static char *envp[] = {
2321 		"HOME=/",
2322 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2323 		NULL
2324 	};
2325 	int ret = -ENOMEM;
2326 	struct subprocess_info *info;
2327 
2328 	if (argv == NULL) {
2329 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2330 		       __func__, poweroff_cmd);
2331 		goto out;
2332 	}
2333 
2334 	info = call_usermodehelper_setup(argv[0], argv, envp);
2335 	if (info == NULL) {
2336 		argv_free(argv);
2337 		goto out;
2338 	}
2339 
2340 	call_usermodehelper_setcleanup(info, argv_cleanup);
2341 
2342 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
2343 
2344   out:
2345 	if (ret && force) {
2346 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2347 		       "forcing the issue\n");
2348 
2349 		/* I guess this should try to kick off some daemon to
2350 		   sync and poweroff asap.  Or not even bother syncing
2351 		   if we're doing an emergency shutdown? */
2352 		emergency_sync();
2353 		kernel_power_off();
2354 	}
2355 
2356 	return ret;
2357 }
2358 EXPORT_SYMBOL_GPL(orderly_poweroff);
2359