xref: /linux/kernel/sys.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
51 
52 #include <linux/kmsg_dump.h>
53 /* Move somewhere else to avoid recompiling? */
54 #include <generated/utsrelease.h>
55 
56 #include <asm/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/unistd.h>
59 
60 #ifndef SET_UNALIGN_CTL
61 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
62 #endif
63 #ifndef GET_UNALIGN_CTL
64 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
65 #endif
66 #ifndef SET_FPEMU_CTL
67 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
68 #endif
69 #ifndef GET_FPEMU_CTL
70 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
71 #endif
72 #ifndef SET_FPEXC_CTL
73 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
74 #endif
75 #ifndef GET_FPEXC_CTL
76 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
77 #endif
78 #ifndef GET_ENDIAN
79 # define GET_ENDIAN(a,b)	(-EINVAL)
80 #endif
81 #ifndef SET_ENDIAN
82 # define SET_ENDIAN(a,b)	(-EINVAL)
83 #endif
84 #ifndef GET_TSC_CTL
85 # define GET_TSC_CTL(a)		(-EINVAL)
86 #endif
87 #ifndef SET_TSC_CTL
88 # define SET_TSC_CTL(a)		(-EINVAL)
89 #endif
90 
91 /*
92  * this is where the system-wide overflow UID and GID are defined, for
93  * architectures that now have 32-bit UID/GID but didn't in the past
94  */
95 
96 int overflowuid = DEFAULT_OVERFLOWUID;
97 int overflowgid = DEFAULT_OVERFLOWGID;
98 
99 EXPORT_SYMBOL(overflowuid);
100 EXPORT_SYMBOL(overflowgid);
101 
102 /*
103  * the same as above, but for filesystems which can only store a 16-bit
104  * UID and GID. as such, this is needed on all architectures
105  */
106 
107 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
108 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
109 
110 EXPORT_SYMBOL(fs_overflowuid);
111 EXPORT_SYMBOL(fs_overflowgid);
112 
113 /*
114  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
115  */
116 
117 int C_A_D = 1;
118 struct pid *cad_pid;
119 EXPORT_SYMBOL(cad_pid);
120 
121 /*
122  * If set, this is used for preparing the system to power off.
123  */
124 
125 void (*pm_power_off_prepare)(void);
126 
127 /*
128  * Returns true if current's euid is same as p's uid or euid,
129  * or has CAP_SYS_NICE to p's user_ns.
130  *
131  * Called with rcu_read_lock, creds are safe
132  */
133 static bool set_one_prio_perm(struct task_struct *p)
134 {
135 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
136 
137 	if (uid_eq(pcred->uid,  cred->euid) ||
138 	    uid_eq(pcred->euid, cred->euid))
139 		return true;
140 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
141 		return true;
142 	return false;
143 }
144 
145 /*
146  * set the priority of a task
147  * - the caller must hold the RCU read lock
148  */
149 static int set_one_prio(struct task_struct *p, int niceval, int error)
150 {
151 	int no_nice;
152 
153 	if (!set_one_prio_perm(p)) {
154 		error = -EPERM;
155 		goto out;
156 	}
157 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
158 		error = -EACCES;
159 		goto out;
160 	}
161 	no_nice = security_task_setnice(p, niceval);
162 	if (no_nice) {
163 		error = no_nice;
164 		goto out;
165 	}
166 	if (error == -ESRCH)
167 		error = 0;
168 	set_user_nice(p, niceval);
169 out:
170 	return error;
171 }
172 
173 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
174 {
175 	struct task_struct *g, *p;
176 	struct user_struct *user;
177 	const struct cred *cred = current_cred();
178 	int error = -EINVAL;
179 	struct pid *pgrp;
180 	kuid_t uid;
181 
182 	if (which > PRIO_USER || which < PRIO_PROCESS)
183 		goto out;
184 
185 	/* normalize: avoid signed division (rounding problems) */
186 	error = -ESRCH;
187 	if (niceval < -20)
188 		niceval = -20;
189 	if (niceval > 19)
190 		niceval = 19;
191 
192 	rcu_read_lock();
193 	read_lock(&tasklist_lock);
194 	switch (which) {
195 		case PRIO_PROCESS:
196 			if (who)
197 				p = find_task_by_vpid(who);
198 			else
199 				p = current;
200 			if (p)
201 				error = set_one_prio(p, niceval, error);
202 			break;
203 		case PRIO_PGRP:
204 			if (who)
205 				pgrp = find_vpid(who);
206 			else
207 				pgrp = task_pgrp(current);
208 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
209 				error = set_one_prio(p, niceval, error);
210 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
211 			break;
212 		case PRIO_USER:
213 			uid = make_kuid(cred->user_ns, who);
214 			user = cred->user;
215 			if (!who)
216 				uid = cred->uid;
217 			else if (!uid_eq(uid, cred->uid) &&
218 				 !(user = find_user(uid)))
219 				goto out_unlock;	/* No processes for this user */
220 
221 			do_each_thread(g, p) {
222 				if (uid_eq(task_uid(p), uid))
223 					error = set_one_prio(p, niceval, error);
224 			} while_each_thread(g, p);
225 			if (!uid_eq(uid, cred->uid))
226 				free_uid(user);		/* For find_user() */
227 			break;
228 	}
229 out_unlock:
230 	read_unlock(&tasklist_lock);
231 	rcu_read_unlock();
232 out:
233 	return error;
234 }
235 
236 /*
237  * Ugh. To avoid negative return values, "getpriority()" will
238  * not return the normal nice-value, but a negated value that
239  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
240  * to stay compatible.
241  */
242 SYSCALL_DEFINE2(getpriority, int, which, int, who)
243 {
244 	struct task_struct *g, *p;
245 	struct user_struct *user;
246 	const struct cred *cred = current_cred();
247 	long niceval, retval = -ESRCH;
248 	struct pid *pgrp;
249 	kuid_t uid;
250 
251 	if (which > PRIO_USER || which < PRIO_PROCESS)
252 		return -EINVAL;
253 
254 	rcu_read_lock();
255 	read_lock(&tasklist_lock);
256 	switch (which) {
257 		case PRIO_PROCESS:
258 			if (who)
259 				p = find_task_by_vpid(who);
260 			else
261 				p = current;
262 			if (p) {
263 				niceval = 20 - task_nice(p);
264 				if (niceval > retval)
265 					retval = niceval;
266 			}
267 			break;
268 		case PRIO_PGRP:
269 			if (who)
270 				pgrp = find_vpid(who);
271 			else
272 				pgrp = task_pgrp(current);
273 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
274 				niceval = 20 - task_nice(p);
275 				if (niceval > retval)
276 					retval = niceval;
277 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
278 			break;
279 		case PRIO_USER:
280 			uid = make_kuid(cred->user_ns, who);
281 			user = cred->user;
282 			if (!who)
283 				uid = cred->uid;
284 			else if (!uid_eq(uid, cred->uid) &&
285 				 !(user = find_user(uid)))
286 				goto out_unlock;	/* No processes for this user */
287 
288 			do_each_thread(g, p) {
289 				if (uid_eq(task_uid(p), uid)) {
290 					niceval = 20 - task_nice(p);
291 					if (niceval > retval)
292 						retval = niceval;
293 				}
294 			} while_each_thread(g, p);
295 			if (!uid_eq(uid, cred->uid))
296 				free_uid(user);		/* for find_user() */
297 			break;
298 	}
299 out_unlock:
300 	read_unlock(&tasklist_lock);
301 	rcu_read_unlock();
302 
303 	return retval;
304 }
305 
306 /**
307  *	emergency_restart - reboot the system
308  *
309  *	Without shutting down any hardware or taking any locks
310  *	reboot the system.  This is called when we know we are in
311  *	trouble so this is our best effort to reboot.  This is
312  *	safe to call in interrupt context.
313  */
314 void emergency_restart(void)
315 {
316 	kmsg_dump(KMSG_DUMP_EMERG);
317 	machine_emergency_restart();
318 }
319 EXPORT_SYMBOL_GPL(emergency_restart);
320 
321 void kernel_restart_prepare(char *cmd)
322 {
323 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
324 	system_state = SYSTEM_RESTART;
325 	usermodehelper_disable();
326 	device_shutdown();
327 }
328 
329 /**
330  *	register_reboot_notifier - Register function to be called at reboot time
331  *	@nb: Info about notifier function to be called
332  *
333  *	Registers a function with the list of functions
334  *	to be called at reboot time.
335  *
336  *	Currently always returns zero, as blocking_notifier_chain_register()
337  *	always returns zero.
338  */
339 int register_reboot_notifier(struct notifier_block *nb)
340 {
341 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
342 }
343 EXPORT_SYMBOL(register_reboot_notifier);
344 
345 /**
346  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
347  *	@nb: Hook to be unregistered
348  *
349  *	Unregisters a previously registered reboot
350  *	notifier function.
351  *
352  *	Returns zero on success, or %-ENOENT on failure.
353  */
354 int unregister_reboot_notifier(struct notifier_block *nb)
355 {
356 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
357 }
358 EXPORT_SYMBOL(unregister_reboot_notifier);
359 
360 /**
361  *	kernel_restart - reboot the system
362  *	@cmd: pointer to buffer containing command to execute for restart
363  *		or %NULL
364  *
365  *	Shutdown everything and perform a clean reboot.
366  *	This is not safe to call in interrupt context.
367  */
368 void kernel_restart(char *cmd)
369 {
370 	kernel_restart_prepare(cmd);
371 	disable_nonboot_cpus();
372 	syscore_shutdown();
373 	if (!cmd)
374 		printk(KERN_EMERG "Restarting system.\n");
375 	else
376 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
377 	kmsg_dump(KMSG_DUMP_RESTART);
378 	machine_restart(cmd);
379 }
380 EXPORT_SYMBOL_GPL(kernel_restart);
381 
382 static void kernel_shutdown_prepare(enum system_states state)
383 {
384 	blocking_notifier_call_chain(&reboot_notifier_list,
385 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
386 	system_state = state;
387 	usermodehelper_disable();
388 	device_shutdown();
389 }
390 /**
391  *	kernel_halt - halt the system
392  *
393  *	Shutdown everything and perform a clean system halt.
394  */
395 void kernel_halt(void)
396 {
397 	kernel_shutdown_prepare(SYSTEM_HALT);
398 	disable_nonboot_cpus();
399 	syscore_shutdown();
400 	printk(KERN_EMERG "System halted.\n");
401 	kmsg_dump(KMSG_DUMP_HALT);
402 	machine_halt();
403 }
404 
405 EXPORT_SYMBOL_GPL(kernel_halt);
406 
407 /**
408  *	kernel_power_off - power_off the system
409  *
410  *	Shutdown everything and perform a clean system power_off.
411  */
412 void kernel_power_off(void)
413 {
414 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
415 	if (pm_power_off_prepare)
416 		pm_power_off_prepare();
417 	disable_nonboot_cpus();
418 	syscore_shutdown();
419 	printk(KERN_EMERG "Power down.\n");
420 	kmsg_dump(KMSG_DUMP_POWEROFF);
421 	machine_power_off();
422 }
423 EXPORT_SYMBOL_GPL(kernel_power_off);
424 
425 static DEFINE_MUTEX(reboot_mutex);
426 
427 /*
428  * Reboot system call: for obvious reasons only root may call it,
429  * and even root needs to set up some magic numbers in the registers
430  * so that some mistake won't make this reboot the whole machine.
431  * You can also set the meaning of the ctrl-alt-del-key here.
432  *
433  * reboot doesn't sync: do that yourself before calling this.
434  */
435 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
436 		void __user *, arg)
437 {
438 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
439 	char buffer[256];
440 	int ret = 0;
441 
442 	/* We only trust the superuser with rebooting the system. */
443 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
444 		return -EPERM;
445 
446 	/* For safety, we require "magic" arguments. */
447 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
448 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
449 	                magic2 != LINUX_REBOOT_MAGIC2A &&
450 			magic2 != LINUX_REBOOT_MAGIC2B &&
451 	                magic2 != LINUX_REBOOT_MAGIC2C))
452 		return -EINVAL;
453 
454 	/*
455 	 * If pid namespaces are enabled and the current task is in a child
456 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
457 	 * call do_exit().
458 	 */
459 	ret = reboot_pid_ns(pid_ns, cmd);
460 	if (ret)
461 		return ret;
462 
463 	/* Instead of trying to make the power_off code look like
464 	 * halt when pm_power_off is not set do it the easy way.
465 	 */
466 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
467 		cmd = LINUX_REBOOT_CMD_HALT;
468 
469 	mutex_lock(&reboot_mutex);
470 	switch (cmd) {
471 	case LINUX_REBOOT_CMD_RESTART:
472 		kernel_restart(NULL);
473 		break;
474 
475 	case LINUX_REBOOT_CMD_CAD_ON:
476 		C_A_D = 1;
477 		break;
478 
479 	case LINUX_REBOOT_CMD_CAD_OFF:
480 		C_A_D = 0;
481 		break;
482 
483 	case LINUX_REBOOT_CMD_HALT:
484 		kernel_halt();
485 		do_exit(0);
486 		panic("cannot halt");
487 
488 	case LINUX_REBOOT_CMD_POWER_OFF:
489 		kernel_power_off();
490 		do_exit(0);
491 		break;
492 
493 	case LINUX_REBOOT_CMD_RESTART2:
494 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
495 			ret = -EFAULT;
496 			break;
497 		}
498 		buffer[sizeof(buffer) - 1] = '\0';
499 
500 		kernel_restart(buffer);
501 		break;
502 
503 #ifdef CONFIG_KEXEC
504 	case LINUX_REBOOT_CMD_KEXEC:
505 		ret = kernel_kexec();
506 		break;
507 #endif
508 
509 #ifdef CONFIG_HIBERNATION
510 	case LINUX_REBOOT_CMD_SW_SUSPEND:
511 		ret = hibernate();
512 		break;
513 #endif
514 
515 	default:
516 		ret = -EINVAL;
517 		break;
518 	}
519 	mutex_unlock(&reboot_mutex);
520 	return ret;
521 }
522 
523 static void deferred_cad(struct work_struct *dummy)
524 {
525 	kernel_restart(NULL);
526 }
527 
528 /*
529  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
530  * As it's called within an interrupt, it may NOT sync: the only choice
531  * is whether to reboot at once, or just ignore the ctrl-alt-del.
532  */
533 void ctrl_alt_del(void)
534 {
535 	static DECLARE_WORK(cad_work, deferred_cad);
536 
537 	if (C_A_D)
538 		schedule_work(&cad_work);
539 	else
540 		kill_cad_pid(SIGINT, 1);
541 }
542 
543 /*
544  * Unprivileged users may change the real gid to the effective gid
545  * or vice versa.  (BSD-style)
546  *
547  * If you set the real gid at all, or set the effective gid to a value not
548  * equal to the real gid, then the saved gid is set to the new effective gid.
549  *
550  * This makes it possible for a setgid program to completely drop its
551  * privileges, which is often a useful assertion to make when you are doing
552  * a security audit over a program.
553  *
554  * The general idea is that a program which uses just setregid() will be
555  * 100% compatible with BSD.  A program which uses just setgid() will be
556  * 100% compatible with POSIX with saved IDs.
557  *
558  * SMP: There are not races, the GIDs are checked only by filesystem
559  *      operations (as far as semantic preservation is concerned).
560  */
561 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
562 {
563 	struct user_namespace *ns = current_user_ns();
564 	const struct cred *old;
565 	struct cred *new;
566 	int retval;
567 	kgid_t krgid, kegid;
568 
569 	krgid = make_kgid(ns, rgid);
570 	kegid = make_kgid(ns, egid);
571 
572 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
573 		return -EINVAL;
574 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
575 		return -EINVAL;
576 
577 	new = prepare_creds();
578 	if (!new)
579 		return -ENOMEM;
580 	old = current_cred();
581 
582 	retval = -EPERM;
583 	if (rgid != (gid_t) -1) {
584 		if (gid_eq(old->gid, krgid) ||
585 		    gid_eq(old->egid, krgid) ||
586 		    nsown_capable(CAP_SETGID))
587 			new->gid = krgid;
588 		else
589 			goto error;
590 	}
591 	if (egid != (gid_t) -1) {
592 		if (gid_eq(old->gid, kegid) ||
593 		    gid_eq(old->egid, kegid) ||
594 		    gid_eq(old->sgid, kegid) ||
595 		    nsown_capable(CAP_SETGID))
596 			new->egid = kegid;
597 		else
598 			goto error;
599 	}
600 
601 	if (rgid != (gid_t) -1 ||
602 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
603 		new->sgid = new->egid;
604 	new->fsgid = new->egid;
605 
606 	return commit_creds(new);
607 
608 error:
609 	abort_creds(new);
610 	return retval;
611 }
612 
613 /*
614  * setgid() is implemented like SysV w/ SAVED_IDS
615  *
616  * SMP: Same implicit races as above.
617  */
618 SYSCALL_DEFINE1(setgid, gid_t, gid)
619 {
620 	struct user_namespace *ns = current_user_ns();
621 	const struct cred *old;
622 	struct cred *new;
623 	int retval;
624 	kgid_t kgid;
625 
626 	kgid = make_kgid(ns, gid);
627 	if (!gid_valid(kgid))
628 		return -EINVAL;
629 
630 	new = prepare_creds();
631 	if (!new)
632 		return -ENOMEM;
633 	old = current_cred();
634 
635 	retval = -EPERM;
636 	if (nsown_capable(CAP_SETGID))
637 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
638 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
639 		new->egid = new->fsgid = kgid;
640 	else
641 		goto error;
642 
643 	return commit_creds(new);
644 
645 error:
646 	abort_creds(new);
647 	return retval;
648 }
649 
650 /*
651  * change the user struct in a credentials set to match the new UID
652  */
653 static int set_user(struct cred *new)
654 {
655 	struct user_struct *new_user;
656 
657 	new_user = alloc_uid(new->uid);
658 	if (!new_user)
659 		return -EAGAIN;
660 
661 	/*
662 	 * We don't fail in case of NPROC limit excess here because too many
663 	 * poorly written programs don't check set*uid() return code, assuming
664 	 * it never fails if called by root.  We may still enforce NPROC limit
665 	 * for programs doing set*uid()+execve() by harmlessly deferring the
666 	 * failure to the execve() stage.
667 	 */
668 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
669 			new_user != INIT_USER)
670 		current->flags |= PF_NPROC_EXCEEDED;
671 	else
672 		current->flags &= ~PF_NPROC_EXCEEDED;
673 
674 	free_uid(new->user);
675 	new->user = new_user;
676 	return 0;
677 }
678 
679 /*
680  * Unprivileged users may change the real uid to the effective uid
681  * or vice versa.  (BSD-style)
682  *
683  * If you set the real uid at all, or set the effective uid to a value not
684  * equal to the real uid, then the saved uid is set to the new effective uid.
685  *
686  * This makes it possible for a setuid program to completely drop its
687  * privileges, which is often a useful assertion to make when you are doing
688  * a security audit over a program.
689  *
690  * The general idea is that a program which uses just setreuid() will be
691  * 100% compatible with BSD.  A program which uses just setuid() will be
692  * 100% compatible with POSIX with saved IDs.
693  */
694 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
695 {
696 	struct user_namespace *ns = current_user_ns();
697 	const struct cred *old;
698 	struct cred *new;
699 	int retval;
700 	kuid_t kruid, keuid;
701 
702 	kruid = make_kuid(ns, ruid);
703 	keuid = make_kuid(ns, euid);
704 
705 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
706 		return -EINVAL;
707 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
708 		return -EINVAL;
709 
710 	new = prepare_creds();
711 	if (!new)
712 		return -ENOMEM;
713 	old = current_cred();
714 
715 	retval = -EPERM;
716 	if (ruid != (uid_t) -1) {
717 		new->uid = kruid;
718 		if (!uid_eq(old->uid, kruid) &&
719 		    !uid_eq(old->euid, kruid) &&
720 		    !nsown_capable(CAP_SETUID))
721 			goto error;
722 	}
723 
724 	if (euid != (uid_t) -1) {
725 		new->euid = keuid;
726 		if (!uid_eq(old->uid, keuid) &&
727 		    !uid_eq(old->euid, keuid) &&
728 		    !uid_eq(old->suid, keuid) &&
729 		    !nsown_capable(CAP_SETUID))
730 			goto error;
731 	}
732 
733 	if (!uid_eq(new->uid, old->uid)) {
734 		retval = set_user(new);
735 		if (retval < 0)
736 			goto error;
737 	}
738 	if (ruid != (uid_t) -1 ||
739 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
740 		new->suid = new->euid;
741 	new->fsuid = new->euid;
742 
743 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
744 	if (retval < 0)
745 		goto error;
746 
747 	return commit_creds(new);
748 
749 error:
750 	abort_creds(new);
751 	return retval;
752 }
753 
754 /*
755  * setuid() is implemented like SysV with SAVED_IDS
756  *
757  * Note that SAVED_ID's is deficient in that a setuid root program
758  * like sendmail, for example, cannot set its uid to be a normal
759  * user and then switch back, because if you're root, setuid() sets
760  * the saved uid too.  If you don't like this, blame the bright people
761  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
762  * will allow a root program to temporarily drop privileges and be able to
763  * regain them by swapping the real and effective uid.
764  */
765 SYSCALL_DEFINE1(setuid, uid_t, uid)
766 {
767 	struct user_namespace *ns = current_user_ns();
768 	const struct cred *old;
769 	struct cred *new;
770 	int retval;
771 	kuid_t kuid;
772 
773 	kuid = make_kuid(ns, uid);
774 	if (!uid_valid(kuid))
775 		return -EINVAL;
776 
777 	new = prepare_creds();
778 	if (!new)
779 		return -ENOMEM;
780 	old = current_cred();
781 
782 	retval = -EPERM;
783 	if (nsown_capable(CAP_SETUID)) {
784 		new->suid = new->uid = kuid;
785 		if (!uid_eq(kuid, old->uid)) {
786 			retval = set_user(new);
787 			if (retval < 0)
788 				goto error;
789 		}
790 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
791 		goto error;
792 	}
793 
794 	new->fsuid = new->euid = kuid;
795 
796 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
797 	if (retval < 0)
798 		goto error;
799 
800 	return commit_creds(new);
801 
802 error:
803 	abort_creds(new);
804 	return retval;
805 }
806 
807 
808 /*
809  * This function implements a generic ability to update ruid, euid,
810  * and suid.  This allows you to implement the 4.4 compatible seteuid().
811  */
812 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
813 {
814 	struct user_namespace *ns = current_user_ns();
815 	const struct cred *old;
816 	struct cred *new;
817 	int retval;
818 	kuid_t kruid, keuid, ksuid;
819 
820 	kruid = make_kuid(ns, ruid);
821 	keuid = make_kuid(ns, euid);
822 	ksuid = make_kuid(ns, suid);
823 
824 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
825 		return -EINVAL;
826 
827 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
828 		return -EINVAL;
829 
830 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
831 		return -EINVAL;
832 
833 	new = prepare_creds();
834 	if (!new)
835 		return -ENOMEM;
836 
837 	old = current_cred();
838 
839 	retval = -EPERM;
840 	if (!nsown_capable(CAP_SETUID)) {
841 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
842 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
843 			goto error;
844 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
845 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
846 			goto error;
847 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
848 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
849 			goto error;
850 	}
851 
852 	if (ruid != (uid_t) -1) {
853 		new->uid = kruid;
854 		if (!uid_eq(kruid, old->uid)) {
855 			retval = set_user(new);
856 			if (retval < 0)
857 				goto error;
858 		}
859 	}
860 	if (euid != (uid_t) -1)
861 		new->euid = keuid;
862 	if (suid != (uid_t) -1)
863 		new->suid = ksuid;
864 	new->fsuid = new->euid;
865 
866 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
867 	if (retval < 0)
868 		goto error;
869 
870 	return commit_creds(new);
871 
872 error:
873 	abort_creds(new);
874 	return retval;
875 }
876 
877 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
878 {
879 	const struct cred *cred = current_cred();
880 	int retval;
881 	uid_t ruid, euid, suid;
882 
883 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
884 	euid = from_kuid_munged(cred->user_ns, cred->euid);
885 	suid = from_kuid_munged(cred->user_ns, cred->suid);
886 
887 	if (!(retval   = put_user(ruid, ruidp)) &&
888 	    !(retval   = put_user(euid, euidp)))
889 		retval = put_user(suid, suidp);
890 
891 	return retval;
892 }
893 
894 /*
895  * Same as above, but for rgid, egid, sgid.
896  */
897 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
898 {
899 	struct user_namespace *ns = current_user_ns();
900 	const struct cred *old;
901 	struct cred *new;
902 	int retval;
903 	kgid_t krgid, kegid, ksgid;
904 
905 	krgid = make_kgid(ns, rgid);
906 	kegid = make_kgid(ns, egid);
907 	ksgid = make_kgid(ns, sgid);
908 
909 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
910 		return -EINVAL;
911 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
912 		return -EINVAL;
913 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
914 		return -EINVAL;
915 
916 	new = prepare_creds();
917 	if (!new)
918 		return -ENOMEM;
919 	old = current_cred();
920 
921 	retval = -EPERM;
922 	if (!nsown_capable(CAP_SETGID)) {
923 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
924 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
925 			goto error;
926 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
927 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
928 			goto error;
929 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
930 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
931 			goto error;
932 	}
933 
934 	if (rgid != (gid_t) -1)
935 		new->gid = krgid;
936 	if (egid != (gid_t) -1)
937 		new->egid = kegid;
938 	if (sgid != (gid_t) -1)
939 		new->sgid = ksgid;
940 	new->fsgid = new->egid;
941 
942 	return commit_creds(new);
943 
944 error:
945 	abort_creds(new);
946 	return retval;
947 }
948 
949 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
950 {
951 	const struct cred *cred = current_cred();
952 	int retval;
953 	gid_t rgid, egid, sgid;
954 
955 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
956 	egid = from_kgid_munged(cred->user_ns, cred->egid);
957 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
958 
959 	if (!(retval   = put_user(rgid, rgidp)) &&
960 	    !(retval   = put_user(egid, egidp)))
961 		retval = put_user(sgid, sgidp);
962 
963 	return retval;
964 }
965 
966 
967 /*
968  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
969  * is used for "access()" and for the NFS daemon (letting nfsd stay at
970  * whatever uid it wants to). It normally shadows "euid", except when
971  * explicitly set by setfsuid() or for access..
972  */
973 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
974 {
975 	const struct cred *old;
976 	struct cred *new;
977 	uid_t old_fsuid;
978 	kuid_t kuid;
979 
980 	old = current_cred();
981 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
982 
983 	kuid = make_kuid(old->user_ns, uid);
984 	if (!uid_valid(kuid))
985 		return old_fsuid;
986 
987 	new = prepare_creds();
988 	if (!new)
989 		return old_fsuid;
990 
991 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
992 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
993 	    nsown_capable(CAP_SETUID)) {
994 		if (!uid_eq(kuid, old->fsuid)) {
995 			new->fsuid = kuid;
996 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
997 				goto change_okay;
998 		}
999 	}
1000 
1001 	abort_creds(new);
1002 	return old_fsuid;
1003 
1004 change_okay:
1005 	commit_creds(new);
1006 	return old_fsuid;
1007 }
1008 
1009 /*
1010  * Samma på svenska..
1011  */
1012 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1013 {
1014 	const struct cred *old;
1015 	struct cred *new;
1016 	gid_t old_fsgid;
1017 	kgid_t kgid;
1018 
1019 	old = current_cred();
1020 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1021 
1022 	kgid = make_kgid(old->user_ns, gid);
1023 	if (!gid_valid(kgid))
1024 		return old_fsgid;
1025 
1026 	new = prepare_creds();
1027 	if (!new)
1028 		return old_fsgid;
1029 
1030 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
1031 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1032 	    nsown_capable(CAP_SETGID)) {
1033 		if (!gid_eq(kgid, old->fsgid)) {
1034 			new->fsgid = kgid;
1035 			goto change_okay;
1036 		}
1037 	}
1038 
1039 	abort_creds(new);
1040 	return old_fsgid;
1041 
1042 change_okay:
1043 	commit_creds(new);
1044 	return old_fsgid;
1045 }
1046 
1047 void do_sys_times(struct tms *tms)
1048 {
1049 	cputime_t tgutime, tgstime, cutime, cstime;
1050 
1051 	spin_lock_irq(&current->sighand->siglock);
1052 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1053 	cutime = current->signal->cutime;
1054 	cstime = current->signal->cstime;
1055 	spin_unlock_irq(&current->sighand->siglock);
1056 	tms->tms_utime = cputime_to_clock_t(tgutime);
1057 	tms->tms_stime = cputime_to_clock_t(tgstime);
1058 	tms->tms_cutime = cputime_to_clock_t(cutime);
1059 	tms->tms_cstime = cputime_to_clock_t(cstime);
1060 }
1061 
1062 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1063 {
1064 	if (tbuf) {
1065 		struct tms tmp;
1066 
1067 		do_sys_times(&tmp);
1068 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1069 			return -EFAULT;
1070 	}
1071 	force_successful_syscall_return();
1072 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1073 }
1074 
1075 /*
1076  * This needs some heavy checking ...
1077  * I just haven't the stomach for it. I also don't fully
1078  * understand sessions/pgrp etc. Let somebody who does explain it.
1079  *
1080  * OK, I think I have the protection semantics right.... this is really
1081  * only important on a multi-user system anyway, to make sure one user
1082  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1083  *
1084  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1085  * LBT 04.03.94
1086  */
1087 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1088 {
1089 	struct task_struct *p;
1090 	struct task_struct *group_leader = current->group_leader;
1091 	struct pid *pgrp;
1092 	int err;
1093 
1094 	if (!pid)
1095 		pid = task_pid_vnr(group_leader);
1096 	if (!pgid)
1097 		pgid = pid;
1098 	if (pgid < 0)
1099 		return -EINVAL;
1100 	rcu_read_lock();
1101 
1102 	/* From this point forward we keep holding onto the tasklist lock
1103 	 * so that our parent does not change from under us. -DaveM
1104 	 */
1105 	write_lock_irq(&tasklist_lock);
1106 
1107 	err = -ESRCH;
1108 	p = find_task_by_vpid(pid);
1109 	if (!p)
1110 		goto out;
1111 
1112 	err = -EINVAL;
1113 	if (!thread_group_leader(p))
1114 		goto out;
1115 
1116 	if (same_thread_group(p->real_parent, group_leader)) {
1117 		err = -EPERM;
1118 		if (task_session(p) != task_session(group_leader))
1119 			goto out;
1120 		err = -EACCES;
1121 		if (p->did_exec)
1122 			goto out;
1123 	} else {
1124 		err = -ESRCH;
1125 		if (p != group_leader)
1126 			goto out;
1127 	}
1128 
1129 	err = -EPERM;
1130 	if (p->signal->leader)
1131 		goto out;
1132 
1133 	pgrp = task_pid(p);
1134 	if (pgid != pid) {
1135 		struct task_struct *g;
1136 
1137 		pgrp = find_vpid(pgid);
1138 		g = pid_task(pgrp, PIDTYPE_PGID);
1139 		if (!g || task_session(g) != task_session(group_leader))
1140 			goto out;
1141 	}
1142 
1143 	err = security_task_setpgid(p, pgid);
1144 	if (err)
1145 		goto out;
1146 
1147 	if (task_pgrp(p) != pgrp)
1148 		change_pid(p, PIDTYPE_PGID, pgrp);
1149 
1150 	err = 0;
1151 out:
1152 	/* All paths lead to here, thus we are safe. -DaveM */
1153 	write_unlock_irq(&tasklist_lock);
1154 	rcu_read_unlock();
1155 	return err;
1156 }
1157 
1158 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1159 {
1160 	struct task_struct *p;
1161 	struct pid *grp;
1162 	int retval;
1163 
1164 	rcu_read_lock();
1165 	if (!pid)
1166 		grp = task_pgrp(current);
1167 	else {
1168 		retval = -ESRCH;
1169 		p = find_task_by_vpid(pid);
1170 		if (!p)
1171 			goto out;
1172 		grp = task_pgrp(p);
1173 		if (!grp)
1174 			goto out;
1175 
1176 		retval = security_task_getpgid(p);
1177 		if (retval)
1178 			goto out;
1179 	}
1180 	retval = pid_vnr(grp);
1181 out:
1182 	rcu_read_unlock();
1183 	return retval;
1184 }
1185 
1186 #ifdef __ARCH_WANT_SYS_GETPGRP
1187 
1188 SYSCALL_DEFINE0(getpgrp)
1189 {
1190 	return sys_getpgid(0);
1191 }
1192 
1193 #endif
1194 
1195 SYSCALL_DEFINE1(getsid, pid_t, pid)
1196 {
1197 	struct task_struct *p;
1198 	struct pid *sid;
1199 	int retval;
1200 
1201 	rcu_read_lock();
1202 	if (!pid)
1203 		sid = task_session(current);
1204 	else {
1205 		retval = -ESRCH;
1206 		p = find_task_by_vpid(pid);
1207 		if (!p)
1208 			goto out;
1209 		sid = task_session(p);
1210 		if (!sid)
1211 			goto out;
1212 
1213 		retval = security_task_getsid(p);
1214 		if (retval)
1215 			goto out;
1216 	}
1217 	retval = pid_vnr(sid);
1218 out:
1219 	rcu_read_unlock();
1220 	return retval;
1221 }
1222 
1223 SYSCALL_DEFINE0(setsid)
1224 {
1225 	struct task_struct *group_leader = current->group_leader;
1226 	struct pid *sid = task_pid(group_leader);
1227 	pid_t session = pid_vnr(sid);
1228 	int err = -EPERM;
1229 
1230 	write_lock_irq(&tasklist_lock);
1231 	/* Fail if I am already a session leader */
1232 	if (group_leader->signal->leader)
1233 		goto out;
1234 
1235 	/* Fail if a process group id already exists that equals the
1236 	 * proposed session id.
1237 	 */
1238 	if (pid_task(sid, PIDTYPE_PGID))
1239 		goto out;
1240 
1241 	group_leader->signal->leader = 1;
1242 	__set_special_pids(sid);
1243 
1244 	proc_clear_tty(group_leader);
1245 
1246 	err = session;
1247 out:
1248 	write_unlock_irq(&tasklist_lock);
1249 	if (err > 0) {
1250 		proc_sid_connector(group_leader);
1251 		sched_autogroup_create_attach(group_leader);
1252 	}
1253 	return err;
1254 }
1255 
1256 DECLARE_RWSEM(uts_sem);
1257 
1258 #ifdef COMPAT_UTS_MACHINE
1259 #define override_architecture(name) \
1260 	(personality(current->personality) == PER_LINUX32 && \
1261 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1262 		      sizeof(COMPAT_UTS_MACHINE)))
1263 #else
1264 #define override_architecture(name)	0
1265 #endif
1266 
1267 /*
1268  * Work around broken programs that cannot handle "Linux 3.0".
1269  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1270  */
1271 static int override_release(char __user *release, size_t len)
1272 {
1273 	int ret = 0;
1274 
1275 	if (current->personality & UNAME26) {
1276 		const char *rest = UTS_RELEASE;
1277 		char buf[65] = { 0 };
1278 		int ndots = 0;
1279 		unsigned v;
1280 		size_t copy;
1281 
1282 		while (*rest) {
1283 			if (*rest == '.' && ++ndots >= 3)
1284 				break;
1285 			if (!isdigit(*rest) && *rest != '.')
1286 				break;
1287 			rest++;
1288 		}
1289 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1290 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1291 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1292 		ret = copy_to_user(release, buf, copy + 1);
1293 	}
1294 	return ret;
1295 }
1296 
1297 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1298 {
1299 	int errno = 0;
1300 
1301 	down_read(&uts_sem);
1302 	if (copy_to_user(name, utsname(), sizeof *name))
1303 		errno = -EFAULT;
1304 	up_read(&uts_sem);
1305 
1306 	if (!errno && override_release(name->release, sizeof(name->release)))
1307 		errno = -EFAULT;
1308 	if (!errno && override_architecture(name))
1309 		errno = -EFAULT;
1310 	return errno;
1311 }
1312 
1313 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1314 /*
1315  * Old cruft
1316  */
1317 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1318 {
1319 	int error = 0;
1320 
1321 	if (!name)
1322 		return -EFAULT;
1323 
1324 	down_read(&uts_sem);
1325 	if (copy_to_user(name, utsname(), sizeof(*name)))
1326 		error = -EFAULT;
1327 	up_read(&uts_sem);
1328 
1329 	if (!error && override_release(name->release, sizeof(name->release)))
1330 		error = -EFAULT;
1331 	if (!error && override_architecture(name))
1332 		error = -EFAULT;
1333 	return error;
1334 }
1335 
1336 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1337 {
1338 	int error;
1339 
1340 	if (!name)
1341 		return -EFAULT;
1342 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1343 		return -EFAULT;
1344 
1345 	down_read(&uts_sem);
1346 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1347 			       __OLD_UTS_LEN);
1348 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1349 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1350 				__OLD_UTS_LEN);
1351 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1352 	error |= __copy_to_user(&name->release, &utsname()->release,
1353 				__OLD_UTS_LEN);
1354 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1355 	error |= __copy_to_user(&name->version, &utsname()->version,
1356 				__OLD_UTS_LEN);
1357 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1358 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1359 				__OLD_UTS_LEN);
1360 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1361 	up_read(&uts_sem);
1362 
1363 	if (!error && override_architecture(name))
1364 		error = -EFAULT;
1365 	if (!error && override_release(name->release, sizeof(name->release)))
1366 		error = -EFAULT;
1367 	return error ? -EFAULT : 0;
1368 }
1369 #endif
1370 
1371 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1372 {
1373 	int errno;
1374 	char tmp[__NEW_UTS_LEN];
1375 
1376 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1377 		return -EPERM;
1378 
1379 	if (len < 0 || len > __NEW_UTS_LEN)
1380 		return -EINVAL;
1381 	down_write(&uts_sem);
1382 	errno = -EFAULT;
1383 	if (!copy_from_user(tmp, name, len)) {
1384 		struct new_utsname *u = utsname();
1385 
1386 		memcpy(u->nodename, tmp, len);
1387 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1388 		errno = 0;
1389 		uts_proc_notify(UTS_PROC_HOSTNAME);
1390 	}
1391 	up_write(&uts_sem);
1392 	return errno;
1393 }
1394 
1395 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1396 
1397 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1398 {
1399 	int i, errno;
1400 	struct new_utsname *u;
1401 
1402 	if (len < 0)
1403 		return -EINVAL;
1404 	down_read(&uts_sem);
1405 	u = utsname();
1406 	i = 1 + strlen(u->nodename);
1407 	if (i > len)
1408 		i = len;
1409 	errno = 0;
1410 	if (copy_to_user(name, u->nodename, i))
1411 		errno = -EFAULT;
1412 	up_read(&uts_sem);
1413 	return errno;
1414 }
1415 
1416 #endif
1417 
1418 /*
1419  * Only setdomainname; getdomainname can be implemented by calling
1420  * uname()
1421  */
1422 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1423 {
1424 	int errno;
1425 	char tmp[__NEW_UTS_LEN];
1426 
1427 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1428 		return -EPERM;
1429 	if (len < 0 || len > __NEW_UTS_LEN)
1430 		return -EINVAL;
1431 
1432 	down_write(&uts_sem);
1433 	errno = -EFAULT;
1434 	if (!copy_from_user(tmp, name, len)) {
1435 		struct new_utsname *u = utsname();
1436 
1437 		memcpy(u->domainname, tmp, len);
1438 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1439 		errno = 0;
1440 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1441 	}
1442 	up_write(&uts_sem);
1443 	return errno;
1444 }
1445 
1446 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1447 {
1448 	struct rlimit value;
1449 	int ret;
1450 
1451 	ret = do_prlimit(current, resource, NULL, &value);
1452 	if (!ret)
1453 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1454 
1455 	return ret;
1456 }
1457 
1458 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1459 
1460 /*
1461  *	Back compatibility for getrlimit. Needed for some apps.
1462  */
1463 
1464 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1465 		struct rlimit __user *, rlim)
1466 {
1467 	struct rlimit x;
1468 	if (resource >= RLIM_NLIMITS)
1469 		return -EINVAL;
1470 
1471 	task_lock(current->group_leader);
1472 	x = current->signal->rlim[resource];
1473 	task_unlock(current->group_leader);
1474 	if (x.rlim_cur > 0x7FFFFFFF)
1475 		x.rlim_cur = 0x7FFFFFFF;
1476 	if (x.rlim_max > 0x7FFFFFFF)
1477 		x.rlim_max = 0x7FFFFFFF;
1478 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1479 }
1480 
1481 #endif
1482 
1483 static inline bool rlim64_is_infinity(__u64 rlim64)
1484 {
1485 #if BITS_PER_LONG < 64
1486 	return rlim64 >= ULONG_MAX;
1487 #else
1488 	return rlim64 == RLIM64_INFINITY;
1489 #endif
1490 }
1491 
1492 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1493 {
1494 	if (rlim->rlim_cur == RLIM_INFINITY)
1495 		rlim64->rlim_cur = RLIM64_INFINITY;
1496 	else
1497 		rlim64->rlim_cur = rlim->rlim_cur;
1498 	if (rlim->rlim_max == RLIM_INFINITY)
1499 		rlim64->rlim_max = RLIM64_INFINITY;
1500 	else
1501 		rlim64->rlim_max = rlim->rlim_max;
1502 }
1503 
1504 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1505 {
1506 	if (rlim64_is_infinity(rlim64->rlim_cur))
1507 		rlim->rlim_cur = RLIM_INFINITY;
1508 	else
1509 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1510 	if (rlim64_is_infinity(rlim64->rlim_max))
1511 		rlim->rlim_max = RLIM_INFINITY;
1512 	else
1513 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1514 }
1515 
1516 /* make sure you are allowed to change @tsk limits before calling this */
1517 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1518 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1519 {
1520 	struct rlimit *rlim;
1521 	int retval = 0;
1522 
1523 	if (resource >= RLIM_NLIMITS)
1524 		return -EINVAL;
1525 	if (new_rlim) {
1526 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1527 			return -EINVAL;
1528 		if (resource == RLIMIT_NOFILE &&
1529 				new_rlim->rlim_max > sysctl_nr_open)
1530 			return -EPERM;
1531 	}
1532 
1533 	/* protect tsk->signal and tsk->sighand from disappearing */
1534 	read_lock(&tasklist_lock);
1535 	if (!tsk->sighand) {
1536 		retval = -ESRCH;
1537 		goto out;
1538 	}
1539 
1540 	rlim = tsk->signal->rlim + resource;
1541 	task_lock(tsk->group_leader);
1542 	if (new_rlim) {
1543 		/* Keep the capable check against init_user_ns until
1544 		   cgroups can contain all limits */
1545 		if (new_rlim->rlim_max > rlim->rlim_max &&
1546 				!capable(CAP_SYS_RESOURCE))
1547 			retval = -EPERM;
1548 		if (!retval)
1549 			retval = security_task_setrlimit(tsk->group_leader,
1550 					resource, new_rlim);
1551 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1552 			/*
1553 			 * The caller is asking for an immediate RLIMIT_CPU
1554 			 * expiry.  But we use the zero value to mean "it was
1555 			 * never set".  So let's cheat and make it one second
1556 			 * instead
1557 			 */
1558 			new_rlim->rlim_cur = 1;
1559 		}
1560 	}
1561 	if (!retval) {
1562 		if (old_rlim)
1563 			*old_rlim = *rlim;
1564 		if (new_rlim)
1565 			*rlim = *new_rlim;
1566 	}
1567 	task_unlock(tsk->group_leader);
1568 
1569 	/*
1570 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1571 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1572 	 * very long-standing error, and fixing it now risks breakage of
1573 	 * applications, so we live with it
1574 	 */
1575 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1576 			 new_rlim->rlim_cur != RLIM_INFINITY)
1577 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1578 out:
1579 	read_unlock(&tasklist_lock);
1580 	return retval;
1581 }
1582 
1583 /* rcu lock must be held */
1584 static int check_prlimit_permission(struct task_struct *task)
1585 {
1586 	const struct cred *cred = current_cred(), *tcred;
1587 
1588 	if (current == task)
1589 		return 0;
1590 
1591 	tcred = __task_cred(task);
1592 	if (uid_eq(cred->uid, tcred->euid) &&
1593 	    uid_eq(cred->uid, tcred->suid) &&
1594 	    uid_eq(cred->uid, tcred->uid)  &&
1595 	    gid_eq(cred->gid, tcred->egid) &&
1596 	    gid_eq(cred->gid, tcred->sgid) &&
1597 	    gid_eq(cred->gid, tcred->gid))
1598 		return 0;
1599 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1600 		return 0;
1601 
1602 	return -EPERM;
1603 }
1604 
1605 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1606 		const struct rlimit64 __user *, new_rlim,
1607 		struct rlimit64 __user *, old_rlim)
1608 {
1609 	struct rlimit64 old64, new64;
1610 	struct rlimit old, new;
1611 	struct task_struct *tsk;
1612 	int ret;
1613 
1614 	if (new_rlim) {
1615 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1616 			return -EFAULT;
1617 		rlim64_to_rlim(&new64, &new);
1618 	}
1619 
1620 	rcu_read_lock();
1621 	tsk = pid ? find_task_by_vpid(pid) : current;
1622 	if (!tsk) {
1623 		rcu_read_unlock();
1624 		return -ESRCH;
1625 	}
1626 	ret = check_prlimit_permission(tsk);
1627 	if (ret) {
1628 		rcu_read_unlock();
1629 		return ret;
1630 	}
1631 	get_task_struct(tsk);
1632 	rcu_read_unlock();
1633 
1634 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1635 			old_rlim ? &old : NULL);
1636 
1637 	if (!ret && old_rlim) {
1638 		rlim_to_rlim64(&old, &old64);
1639 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1640 			ret = -EFAULT;
1641 	}
1642 
1643 	put_task_struct(tsk);
1644 	return ret;
1645 }
1646 
1647 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1648 {
1649 	struct rlimit new_rlim;
1650 
1651 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1652 		return -EFAULT;
1653 	return do_prlimit(current, resource, &new_rlim, NULL);
1654 }
1655 
1656 /*
1657  * It would make sense to put struct rusage in the task_struct,
1658  * except that would make the task_struct be *really big*.  After
1659  * task_struct gets moved into malloc'ed memory, it would
1660  * make sense to do this.  It will make moving the rest of the information
1661  * a lot simpler!  (Which we're not doing right now because we're not
1662  * measuring them yet).
1663  *
1664  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1665  * races with threads incrementing their own counters.  But since word
1666  * reads are atomic, we either get new values or old values and we don't
1667  * care which for the sums.  We always take the siglock to protect reading
1668  * the c* fields from p->signal from races with exit.c updating those
1669  * fields when reaping, so a sample either gets all the additions of a
1670  * given child after it's reaped, or none so this sample is before reaping.
1671  *
1672  * Locking:
1673  * We need to take the siglock for CHILDEREN, SELF and BOTH
1674  * for  the cases current multithreaded, non-current single threaded
1675  * non-current multithreaded.  Thread traversal is now safe with
1676  * the siglock held.
1677  * Strictly speaking, we donot need to take the siglock if we are current and
1678  * single threaded,  as no one else can take our signal_struct away, no one
1679  * else can  reap the  children to update signal->c* counters, and no one else
1680  * can race with the signal-> fields. If we do not take any lock, the
1681  * signal-> fields could be read out of order while another thread was just
1682  * exiting. So we should  place a read memory barrier when we avoid the lock.
1683  * On the writer side,  write memory barrier is implied in  __exit_signal
1684  * as __exit_signal releases  the siglock spinlock after updating the signal->
1685  * fields. But we don't do this yet to keep things simple.
1686  *
1687  */
1688 
1689 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1690 {
1691 	r->ru_nvcsw += t->nvcsw;
1692 	r->ru_nivcsw += t->nivcsw;
1693 	r->ru_minflt += t->min_flt;
1694 	r->ru_majflt += t->maj_flt;
1695 	r->ru_inblock += task_io_get_inblock(t);
1696 	r->ru_oublock += task_io_get_oublock(t);
1697 }
1698 
1699 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1700 {
1701 	struct task_struct *t;
1702 	unsigned long flags;
1703 	cputime_t tgutime, tgstime, utime, stime;
1704 	unsigned long maxrss = 0;
1705 
1706 	memset((char *) r, 0, sizeof *r);
1707 	utime = stime = 0;
1708 
1709 	if (who == RUSAGE_THREAD) {
1710 		task_cputime_adjusted(current, &utime, &stime);
1711 		accumulate_thread_rusage(p, r);
1712 		maxrss = p->signal->maxrss;
1713 		goto out;
1714 	}
1715 
1716 	if (!lock_task_sighand(p, &flags))
1717 		return;
1718 
1719 	switch (who) {
1720 		case RUSAGE_BOTH:
1721 		case RUSAGE_CHILDREN:
1722 			utime = p->signal->cutime;
1723 			stime = p->signal->cstime;
1724 			r->ru_nvcsw = p->signal->cnvcsw;
1725 			r->ru_nivcsw = p->signal->cnivcsw;
1726 			r->ru_minflt = p->signal->cmin_flt;
1727 			r->ru_majflt = p->signal->cmaj_flt;
1728 			r->ru_inblock = p->signal->cinblock;
1729 			r->ru_oublock = p->signal->coublock;
1730 			maxrss = p->signal->cmaxrss;
1731 
1732 			if (who == RUSAGE_CHILDREN)
1733 				break;
1734 
1735 		case RUSAGE_SELF:
1736 			thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1737 			utime += tgutime;
1738 			stime += tgstime;
1739 			r->ru_nvcsw += p->signal->nvcsw;
1740 			r->ru_nivcsw += p->signal->nivcsw;
1741 			r->ru_minflt += p->signal->min_flt;
1742 			r->ru_majflt += p->signal->maj_flt;
1743 			r->ru_inblock += p->signal->inblock;
1744 			r->ru_oublock += p->signal->oublock;
1745 			if (maxrss < p->signal->maxrss)
1746 				maxrss = p->signal->maxrss;
1747 			t = p;
1748 			do {
1749 				accumulate_thread_rusage(t, r);
1750 				t = next_thread(t);
1751 			} while (t != p);
1752 			break;
1753 
1754 		default:
1755 			BUG();
1756 	}
1757 	unlock_task_sighand(p, &flags);
1758 
1759 out:
1760 	cputime_to_timeval(utime, &r->ru_utime);
1761 	cputime_to_timeval(stime, &r->ru_stime);
1762 
1763 	if (who != RUSAGE_CHILDREN) {
1764 		struct mm_struct *mm = get_task_mm(p);
1765 		if (mm) {
1766 			setmax_mm_hiwater_rss(&maxrss, mm);
1767 			mmput(mm);
1768 		}
1769 	}
1770 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1771 }
1772 
1773 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1774 {
1775 	struct rusage r;
1776 	k_getrusage(p, who, &r);
1777 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1778 }
1779 
1780 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1781 {
1782 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1783 	    who != RUSAGE_THREAD)
1784 		return -EINVAL;
1785 	return getrusage(current, who, ru);
1786 }
1787 
1788 SYSCALL_DEFINE1(umask, int, mask)
1789 {
1790 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1791 	return mask;
1792 }
1793 
1794 #ifdef CONFIG_CHECKPOINT_RESTORE
1795 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1796 {
1797 	struct fd exe;
1798 	struct inode *inode;
1799 	int err;
1800 
1801 	exe = fdget(fd);
1802 	if (!exe.file)
1803 		return -EBADF;
1804 
1805 	inode = file_inode(exe.file);
1806 
1807 	/*
1808 	 * Because the original mm->exe_file points to executable file, make
1809 	 * sure that this one is executable as well, to avoid breaking an
1810 	 * overall picture.
1811 	 */
1812 	err = -EACCES;
1813 	if (!S_ISREG(inode->i_mode)	||
1814 	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1815 		goto exit;
1816 
1817 	err = inode_permission(inode, MAY_EXEC);
1818 	if (err)
1819 		goto exit;
1820 
1821 	down_write(&mm->mmap_sem);
1822 
1823 	/*
1824 	 * Forbid mm->exe_file change if old file still mapped.
1825 	 */
1826 	err = -EBUSY;
1827 	if (mm->exe_file) {
1828 		struct vm_area_struct *vma;
1829 
1830 		for (vma = mm->mmap; vma; vma = vma->vm_next)
1831 			if (vma->vm_file &&
1832 			    path_equal(&vma->vm_file->f_path,
1833 				       &mm->exe_file->f_path))
1834 				goto exit_unlock;
1835 	}
1836 
1837 	/*
1838 	 * The symlink can be changed only once, just to disallow arbitrary
1839 	 * transitions malicious software might bring in. This means one
1840 	 * could make a snapshot over all processes running and monitor
1841 	 * /proc/pid/exe changes to notice unusual activity if needed.
1842 	 */
1843 	err = -EPERM;
1844 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1845 		goto exit_unlock;
1846 
1847 	err = 0;
1848 	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
1849 exit_unlock:
1850 	up_write(&mm->mmap_sem);
1851 
1852 exit:
1853 	fdput(exe);
1854 	return err;
1855 }
1856 
1857 static int prctl_set_mm(int opt, unsigned long addr,
1858 			unsigned long arg4, unsigned long arg5)
1859 {
1860 	unsigned long rlim = rlimit(RLIMIT_DATA);
1861 	struct mm_struct *mm = current->mm;
1862 	struct vm_area_struct *vma;
1863 	int error;
1864 
1865 	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1866 		return -EINVAL;
1867 
1868 	if (!capable(CAP_SYS_RESOURCE))
1869 		return -EPERM;
1870 
1871 	if (opt == PR_SET_MM_EXE_FILE)
1872 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1873 
1874 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1875 		return -EINVAL;
1876 
1877 	error = -EINVAL;
1878 
1879 	down_read(&mm->mmap_sem);
1880 	vma = find_vma(mm, addr);
1881 
1882 	switch (opt) {
1883 	case PR_SET_MM_START_CODE:
1884 		mm->start_code = addr;
1885 		break;
1886 	case PR_SET_MM_END_CODE:
1887 		mm->end_code = addr;
1888 		break;
1889 	case PR_SET_MM_START_DATA:
1890 		mm->start_data = addr;
1891 		break;
1892 	case PR_SET_MM_END_DATA:
1893 		mm->end_data = addr;
1894 		break;
1895 
1896 	case PR_SET_MM_START_BRK:
1897 		if (addr <= mm->end_data)
1898 			goto out;
1899 
1900 		if (rlim < RLIM_INFINITY &&
1901 		    (mm->brk - addr) +
1902 		    (mm->end_data - mm->start_data) > rlim)
1903 			goto out;
1904 
1905 		mm->start_brk = addr;
1906 		break;
1907 
1908 	case PR_SET_MM_BRK:
1909 		if (addr <= mm->end_data)
1910 			goto out;
1911 
1912 		if (rlim < RLIM_INFINITY &&
1913 		    (addr - mm->start_brk) +
1914 		    (mm->end_data - mm->start_data) > rlim)
1915 			goto out;
1916 
1917 		mm->brk = addr;
1918 		break;
1919 
1920 	/*
1921 	 * If command line arguments and environment
1922 	 * are placed somewhere else on stack, we can
1923 	 * set them up here, ARG_START/END to setup
1924 	 * command line argumets and ENV_START/END
1925 	 * for environment.
1926 	 */
1927 	case PR_SET_MM_START_STACK:
1928 	case PR_SET_MM_ARG_START:
1929 	case PR_SET_MM_ARG_END:
1930 	case PR_SET_MM_ENV_START:
1931 	case PR_SET_MM_ENV_END:
1932 		if (!vma) {
1933 			error = -EFAULT;
1934 			goto out;
1935 		}
1936 		if (opt == PR_SET_MM_START_STACK)
1937 			mm->start_stack = addr;
1938 		else if (opt == PR_SET_MM_ARG_START)
1939 			mm->arg_start = addr;
1940 		else if (opt == PR_SET_MM_ARG_END)
1941 			mm->arg_end = addr;
1942 		else if (opt == PR_SET_MM_ENV_START)
1943 			mm->env_start = addr;
1944 		else if (opt == PR_SET_MM_ENV_END)
1945 			mm->env_end = addr;
1946 		break;
1947 
1948 	/*
1949 	 * This doesn't move auxiliary vector itself
1950 	 * since it's pinned to mm_struct, but allow
1951 	 * to fill vector with new values. It's up
1952 	 * to a caller to provide sane values here
1953 	 * otherwise user space tools which use this
1954 	 * vector might be unhappy.
1955 	 */
1956 	case PR_SET_MM_AUXV: {
1957 		unsigned long user_auxv[AT_VECTOR_SIZE];
1958 
1959 		if (arg4 > sizeof(user_auxv))
1960 			goto out;
1961 		up_read(&mm->mmap_sem);
1962 
1963 		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1964 			return -EFAULT;
1965 
1966 		/* Make sure the last entry is always AT_NULL */
1967 		user_auxv[AT_VECTOR_SIZE - 2] = 0;
1968 		user_auxv[AT_VECTOR_SIZE - 1] = 0;
1969 
1970 		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1971 
1972 		task_lock(current);
1973 		memcpy(mm->saved_auxv, user_auxv, arg4);
1974 		task_unlock(current);
1975 
1976 		return 0;
1977 	}
1978 	default:
1979 		goto out;
1980 	}
1981 
1982 	error = 0;
1983 out:
1984 	up_read(&mm->mmap_sem);
1985 	return error;
1986 }
1987 
1988 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1989 {
1990 	return put_user(me->clear_child_tid, tid_addr);
1991 }
1992 
1993 #else /* CONFIG_CHECKPOINT_RESTORE */
1994 static int prctl_set_mm(int opt, unsigned long addr,
1995 			unsigned long arg4, unsigned long arg5)
1996 {
1997 	return -EINVAL;
1998 }
1999 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2000 {
2001 	return -EINVAL;
2002 }
2003 #endif
2004 
2005 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2006 		unsigned long, arg4, unsigned long, arg5)
2007 {
2008 	struct task_struct *me = current;
2009 	unsigned char comm[sizeof(me->comm)];
2010 	long error;
2011 
2012 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2013 	if (error != -ENOSYS)
2014 		return error;
2015 
2016 	error = 0;
2017 	switch (option) {
2018 	case PR_SET_PDEATHSIG:
2019 		if (!valid_signal(arg2)) {
2020 			error = -EINVAL;
2021 			break;
2022 		}
2023 		me->pdeath_signal = arg2;
2024 		break;
2025 	case PR_GET_PDEATHSIG:
2026 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2027 		break;
2028 	case PR_GET_DUMPABLE:
2029 		error = get_dumpable(me->mm);
2030 		break;
2031 	case PR_SET_DUMPABLE:
2032 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2033 			error = -EINVAL;
2034 			break;
2035 		}
2036 		set_dumpable(me->mm, arg2);
2037 		break;
2038 
2039 	case PR_SET_UNALIGN:
2040 		error = SET_UNALIGN_CTL(me, arg2);
2041 		break;
2042 	case PR_GET_UNALIGN:
2043 		error = GET_UNALIGN_CTL(me, arg2);
2044 		break;
2045 	case PR_SET_FPEMU:
2046 		error = SET_FPEMU_CTL(me, arg2);
2047 		break;
2048 	case PR_GET_FPEMU:
2049 		error = GET_FPEMU_CTL(me, arg2);
2050 		break;
2051 	case PR_SET_FPEXC:
2052 		error = SET_FPEXC_CTL(me, arg2);
2053 		break;
2054 	case PR_GET_FPEXC:
2055 		error = GET_FPEXC_CTL(me, arg2);
2056 		break;
2057 	case PR_GET_TIMING:
2058 		error = PR_TIMING_STATISTICAL;
2059 		break;
2060 	case PR_SET_TIMING:
2061 		if (arg2 != PR_TIMING_STATISTICAL)
2062 			error = -EINVAL;
2063 		break;
2064 	case PR_SET_NAME:
2065 		comm[sizeof(me->comm) - 1] = 0;
2066 		if (strncpy_from_user(comm, (char __user *)arg2,
2067 				      sizeof(me->comm) - 1) < 0)
2068 			return -EFAULT;
2069 		set_task_comm(me, comm);
2070 		proc_comm_connector(me);
2071 		break;
2072 	case PR_GET_NAME:
2073 		get_task_comm(comm, me);
2074 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2075 			return -EFAULT;
2076 		break;
2077 	case PR_GET_ENDIAN:
2078 		error = GET_ENDIAN(me, arg2);
2079 		break;
2080 	case PR_SET_ENDIAN:
2081 		error = SET_ENDIAN(me, arg2);
2082 		break;
2083 	case PR_GET_SECCOMP:
2084 		error = prctl_get_seccomp();
2085 		break;
2086 	case PR_SET_SECCOMP:
2087 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2088 		break;
2089 	case PR_GET_TSC:
2090 		error = GET_TSC_CTL(arg2);
2091 		break;
2092 	case PR_SET_TSC:
2093 		error = SET_TSC_CTL(arg2);
2094 		break;
2095 	case PR_TASK_PERF_EVENTS_DISABLE:
2096 		error = perf_event_task_disable();
2097 		break;
2098 	case PR_TASK_PERF_EVENTS_ENABLE:
2099 		error = perf_event_task_enable();
2100 		break;
2101 	case PR_GET_TIMERSLACK:
2102 		error = current->timer_slack_ns;
2103 		break;
2104 	case PR_SET_TIMERSLACK:
2105 		if (arg2 <= 0)
2106 			current->timer_slack_ns =
2107 					current->default_timer_slack_ns;
2108 		else
2109 			current->timer_slack_ns = arg2;
2110 		break;
2111 	case PR_MCE_KILL:
2112 		if (arg4 | arg5)
2113 			return -EINVAL;
2114 		switch (arg2) {
2115 		case PR_MCE_KILL_CLEAR:
2116 			if (arg3 != 0)
2117 				return -EINVAL;
2118 			current->flags &= ~PF_MCE_PROCESS;
2119 			break;
2120 		case PR_MCE_KILL_SET:
2121 			current->flags |= PF_MCE_PROCESS;
2122 			if (arg3 == PR_MCE_KILL_EARLY)
2123 				current->flags |= PF_MCE_EARLY;
2124 			else if (arg3 == PR_MCE_KILL_LATE)
2125 				current->flags &= ~PF_MCE_EARLY;
2126 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2127 				current->flags &=
2128 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2129 			else
2130 				return -EINVAL;
2131 			break;
2132 		default:
2133 			return -EINVAL;
2134 		}
2135 		break;
2136 	case PR_MCE_KILL_GET:
2137 		if (arg2 | arg3 | arg4 | arg5)
2138 			return -EINVAL;
2139 		if (current->flags & PF_MCE_PROCESS)
2140 			error = (current->flags & PF_MCE_EARLY) ?
2141 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2142 		else
2143 			error = PR_MCE_KILL_DEFAULT;
2144 		break;
2145 	case PR_SET_MM:
2146 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2147 		break;
2148 	case PR_GET_TID_ADDRESS:
2149 		error = prctl_get_tid_address(me, (int __user **)arg2);
2150 		break;
2151 	case PR_SET_CHILD_SUBREAPER:
2152 		me->signal->is_child_subreaper = !!arg2;
2153 		break;
2154 	case PR_GET_CHILD_SUBREAPER:
2155 		error = put_user(me->signal->is_child_subreaper,
2156 				 (int __user *)arg2);
2157 		break;
2158 	case PR_SET_NO_NEW_PRIVS:
2159 		if (arg2 != 1 || arg3 || arg4 || arg5)
2160 			return -EINVAL;
2161 
2162 		current->no_new_privs = 1;
2163 		break;
2164 	case PR_GET_NO_NEW_PRIVS:
2165 		if (arg2 || arg3 || arg4 || arg5)
2166 			return -EINVAL;
2167 		return current->no_new_privs ? 1 : 0;
2168 	default:
2169 		error = -EINVAL;
2170 		break;
2171 	}
2172 	return error;
2173 }
2174 
2175 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2176 		struct getcpu_cache __user *, unused)
2177 {
2178 	int err = 0;
2179 	int cpu = raw_smp_processor_id();
2180 	if (cpup)
2181 		err |= put_user(cpu, cpup);
2182 	if (nodep)
2183 		err |= put_user(cpu_to_node(cpu), nodep);
2184 	return err ? -EFAULT : 0;
2185 }
2186 
2187 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2188 
2189 static int __orderly_poweroff(bool force)
2190 {
2191 	char **argv;
2192 	static char *envp[] = {
2193 		"HOME=/",
2194 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2195 		NULL
2196 	};
2197 	int ret;
2198 
2199 	argv = argv_split(GFP_KERNEL, poweroff_cmd, NULL);
2200 	if (argv) {
2201 		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2202 		argv_free(argv);
2203 	} else {
2204 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2205 					 __func__, poweroff_cmd);
2206 		ret = -ENOMEM;
2207 	}
2208 
2209 	if (ret && force) {
2210 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2211 					"forcing the issue\n");
2212 		/*
2213 		 * I guess this should try to kick off some daemon to sync and
2214 		 * poweroff asap.  Or not even bother syncing if we're doing an
2215 		 * emergency shutdown?
2216 		 */
2217 		emergency_sync();
2218 		kernel_power_off();
2219 	}
2220 
2221 	return ret;
2222 }
2223 
2224 static bool poweroff_force;
2225 
2226 static void poweroff_work_func(struct work_struct *work)
2227 {
2228 	__orderly_poweroff(poweroff_force);
2229 }
2230 
2231 static DECLARE_WORK(poweroff_work, poweroff_work_func);
2232 
2233 /**
2234  * orderly_poweroff - Trigger an orderly system poweroff
2235  * @force: force poweroff if command execution fails
2236  *
2237  * This may be called from any context to trigger a system shutdown.
2238  * If the orderly shutdown fails, it will force an immediate shutdown.
2239  */
2240 int orderly_poweroff(bool force)
2241 {
2242 	if (force) /* do not override the pending "true" */
2243 		poweroff_force = true;
2244 	schedule_work(&poweroff_work);
2245 	return 0;
2246 }
2247 EXPORT_SYMBOL_GPL(orderly_poweroff);
2248