xref: /linux/kernel/sys.c (revision c54ea4918c2b7722d7242ea53271356501988a9b)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 
42 #include <linux/compat.h>
43 #include <linux/syscalls.h>
44 #include <linux/kprobes.h>
45 #include <linux/user_namespace.h>
46 
47 #include <linux/kmsg_dump.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/io.h>
51 #include <asm/unistd.h>
52 
53 #ifndef SET_UNALIGN_CTL
54 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_UNALIGN_CTL
57 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef SET_FPEMU_CTL
60 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
61 #endif
62 #ifndef GET_FPEMU_CTL
63 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
64 #endif
65 #ifndef SET_FPEXC_CTL
66 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
67 #endif
68 #ifndef GET_FPEXC_CTL
69 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
70 #endif
71 #ifndef GET_ENDIAN
72 # define GET_ENDIAN(a,b)	(-EINVAL)
73 #endif
74 #ifndef SET_ENDIAN
75 # define SET_ENDIAN(a,b)	(-EINVAL)
76 #endif
77 #ifndef GET_TSC_CTL
78 # define GET_TSC_CTL(a)		(-EINVAL)
79 #endif
80 #ifndef SET_TSC_CTL
81 # define SET_TSC_CTL(a)		(-EINVAL)
82 #endif
83 
84 /*
85  * this is where the system-wide overflow UID and GID are defined, for
86  * architectures that now have 32-bit UID/GID but didn't in the past
87  */
88 
89 int overflowuid = DEFAULT_OVERFLOWUID;
90 int overflowgid = DEFAULT_OVERFLOWGID;
91 
92 #ifdef CONFIG_UID16
93 EXPORT_SYMBOL(overflowuid);
94 EXPORT_SYMBOL(overflowgid);
95 #endif
96 
97 /*
98  * the same as above, but for filesystems which can only store a 16-bit
99  * UID and GID. as such, this is needed on all architectures
100  */
101 
102 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
103 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
104 
105 EXPORT_SYMBOL(fs_overflowuid);
106 EXPORT_SYMBOL(fs_overflowgid);
107 
108 /*
109  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
110  */
111 
112 int C_A_D = 1;
113 struct pid *cad_pid;
114 EXPORT_SYMBOL(cad_pid);
115 
116 /*
117  * If set, this is used for preparing the system to power off.
118  */
119 
120 void (*pm_power_off_prepare)(void);
121 
122 /*
123  * set the priority of a task
124  * - the caller must hold the RCU read lock
125  */
126 static int set_one_prio(struct task_struct *p, int niceval, int error)
127 {
128 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
129 	int no_nice;
130 
131 	if (pcred->uid  != cred->euid &&
132 	    pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
133 		error = -EPERM;
134 		goto out;
135 	}
136 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
137 		error = -EACCES;
138 		goto out;
139 	}
140 	no_nice = security_task_setnice(p, niceval);
141 	if (no_nice) {
142 		error = no_nice;
143 		goto out;
144 	}
145 	if (error == -ESRCH)
146 		error = 0;
147 	set_user_nice(p, niceval);
148 out:
149 	return error;
150 }
151 
152 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
153 {
154 	struct task_struct *g, *p;
155 	struct user_struct *user;
156 	const struct cred *cred = current_cred();
157 	int error = -EINVAL;
158 	struct pid *pgrp;
159 
160 	if (which > PRIO_USER || which < PRIO_PROCESS)
161 		goto out;
162 
163 	/* normalize: avoid signed division (rounding problems) */
164 	error = -ESRCH;
165 	if (niceval < -20)
166 		niceval = -20;
167 	if (niceval > 19)
168 		niceval = 19;
169 
170 	rcu_read_lock();
171 	read_lock(&tasklist_lock);
172 	switch (which) {
173 		case PRIO_PROCESS:
174 			if (who)
175 				p = find_task_by_vpid(who);
176 			else
177 				p = current;
178 			if (p)
179 				error = set_one_prio(p, niceval, error);
180 			break;
181 		case PRIO_PGRP:
182 			if (who)
183 				pgrp = find_vpid(who);
184 			else
185 				pgrp = task_pgrp(current);
186 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
187 				error = set_one_prio(p, niceval, error);
188 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
189 			break;
190 		case PRIO_USER:
191 			user = (struct user_struct *) cred->user;
192 			if (!who)
193 				who = cred->uid;
194 			else if ((who != cred->uid) &&
195 				 !(user = find_user(who)))
196 				goto out_unlock;	/* No processes for this user */
197 
198 			do_each_thread(g, p) {
199 				if (__task_cred(p)->uid == who)
200 					error = set_one_prio(p, niceval, error);
201 			} while_each_thread(g, p);
202 			if (who != cred->uid)
203 				free_uid(user);		/* For find_user() */
204 			break;
205 	}
206 out_unlock:
207 	read_unlock(&tasklist_lock);
208 	rcu_read_unlock();
209 out:
210 	return error;
211 }
212 
213 /*
214  * Ugh. To avoid negative return values, "getpriority()" will
215  * not return the normal nice-value, but a negated value that
216  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
217  * to stay compatible.
218  */
219 SYSCALL_DEFINE2(getpriority, int, which, int, who)
220 {
221 	struct task_struct *g, *p;
222 	struct user_struct *user;
223 	const struct cred *cred = current_cred();
224 	long niceval, retval = -ESRCH;
225 	struct pid *pgrp;
226 
227 	if (which > PRIO_USER || which < PRIO_PROCESS)
228 		return -EINVAL;
229 
230 	rcu_read_lock();
231 	read_lock(&tasklist_lock);
232 	switch (which) {
233 		case PRIO_PROCESS:
234 			if (who)
235 				p = find_task_by_vpid(who);
236 			else
237 				p = current;
238 			if (p) {
239 				niceval = 20 - task_nice(p);
240 				if (niceval > retval)
241 					retval = niceval;
242 			}
243 			break;
244 		case PRIO_PGRP:
245 			if (who)
246 				pgrp = find_vpid(who);
247 			else
248 				pgrp = task_pgrp(current);
249 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
250 				niceval = 20 - task_nice(p);
251 				if (niceval > retval)
252 					retval = niceval;
253 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
254 			break;
255 		case PRIO_USER:
256 			user = (struct user_struct *) cred->user;
257 			if (!who)
258 				who = cred->uid;
259 			else if ((who != cred->uid) &&
260 				 !(user = find_user(who)))
261 				goto out_unlock;	/* No processes for this user */
262 
263 			do_each_thread(g, p) {
264 				if (__task_cred(p)->uid == who) {
265 					niceval = 20 - task_nice(p);
266 					if (niceval > retval)
267 						retval = niceval;
268 				}
269 			} while_each_thread(g, p);
270 			if (who != cred->uid)
271 				free_uid(user);		/* for find_user() */
272 			break;
273 	}
274 out_unlock:
275 	read_unlock(&tasklist_lock);
276 	rcu_read_unlock();
277 
278 	return retval;
279 }
280 
281 /**
282  *	emergency_restart - reboot the system
283  *
284  *	Without shutting down any hardware or taking any locks
285  *	reboot the system.  This is called when we know we are in
286  *	trouble so this is our best effort to reboot.  This is
287  *	safe to call in interrupt context.
288  */
289 void emergency_restart(void)
290 {
291 	kmsg_dump(KMSG_DUMP_EMERG);
292 	machine_emergency_restart();
293 }
294 EXPORT_SYMBOL_GPL(emergency_restart);
295 
296 void kernel_restart_prepare(char *cmd)
297 {
298 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
299 	system_state = SYSTEM_RESTART;
300 	device_shutdown();
301 	sysdev_shutdown();
302 	syscore_shutdown();
303 }
304 
305 /**
306  *	kernel_restart - reboot the system
307  *	@cmd: pointer to buffer containing command to execute for restart
308  *		or %NULL
309  *
310  *	Shutdown everything and perform a clean reboot.
311  *	This is not safe to call in interrupt context.
312  */
313 void kernel_restart(char *cmd)
314 {
315 	kernel_restart_prepare(cmd);
316 	if (!cmd)
317 		printk(KERN_EMERG "Restarting system.\n");
318 	else
319 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
320 	kmsg_dump(KMSG_DUMP_RESTART);
321 	machine_restart(cmd);
322 }
323 EXPORT_SYMBOL_GPL(kernel_restart);
324 
325 static void kernel_shutdown_prepare(enum system_states state)
326 {
327 	blocking_notifier_call_chain(&reboot_notifier_list,
328 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
329 	system_state = state;
330 	device_shutdown();
331 }
332 /**
333  *	kernel_halt - halt the system
334  *
335  *	Shutdown everything and perform a clean system halt.
336  */
337 void kernel_halt(void)
338 {
339 	kernel_shutdown_prepare(SYSTEM_HALT);
340 	sysdev_shutdown();
341 	syscore_shutdown();
342 	printk(KERN_EMERG "System halted.\n");
343 	kmsg_dump(KMSG_DUMP_HALT);
344 	machine_halt();
345 }
346 
347 EXPORT_SYMBOL_GPL(kernel_halt);
348 
349 /**
350  *	kernel_power_off - power_off the system
351  *
352  *	Shutdown everything and perform a clean system power_off.
353  */
354 void kernel_power_off(void)
355 {
356 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
357 	if (pm_power_off_prepare)
358 		pm_power_off_prepare();
359 	disable_nonboot_cpus();
360 	sysdev_shutdown();
361 	syscore_shutdown();
362 	printk(KERN_EMERG "Power down.\n");
363 	kmsg_dump(KMSG_DUMP_POWEROFF);
364 	machine_power_off();
365 }
366 EXPORT_SYMBOL_GPL(kernel_power_off);
367 
368 static DEFINE_MUTEX(reboot_mutex);
369 
370 /*
371  * Reboot system call: for obvious reasons only root may call it,
372  * and even root needs to set up some magic numbers in the registers
373  * so that some mistake won't make this reboot the whole machine.
374  * You can also set the meaning of the ctrl-alt-del-key here.
375  *
376  * reboot doesn't sync: do that yourself before calling this.
377  */
378 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
379 		void __user *, arg)
380 {
381 	char buffer[256];
382 	int ret = 0;
383 
384 	/* We only trust the superuser with rebooting the system. */
385 	if (!capable(CAP_SYS_BOOT))
386 		return -EPERM;
387 
388 	/* For safety, we require "magic" arguments. */
389 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
390 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
391 	                magic2 != LINUX_REBOOT_MAGIC2A &&
392 			magic2 != LINUX_REBOOT_MAGIC2B &&
393 	                magic2 != LINUX_REBOOT_MAGIC2C))
394 		return -EINVAL;
395 
396 	/* Instead of trying to make the power_off code look like
397 	 * halt when pm_power_off is not set do it the easy way.
398 	 */
399 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
400 		cmd = LINUX_REBOOT_CMD_HALT;
401 
402 	mutex_lock(&reboot_mutex);
403 	switch (cmd) {
404 	case LINUX_REBOOT_CMD_RESTART:
405 		kernel_restart(NULL);
406 		break;
407 
408 	case LINUX_REBOOT_CMD_CAD_ON:
409 		C_A_D = 1;
410 		break;
411 
412 	case LINUX_REBOOT_CMD_CAD_OFF:
413 		C_A_D = 0;
414 		break;
415 
416 	case LINUX_REBOOT_CMD_HALT:
417 		kernel_halt();
418 		do_exit(0);
419 		panic("cannot halt");
420 
421 	case LINUX_REBOOT_CMD_POWER_OFF:
422 		kernel_power_off();
423 		do_exit(0);
424 		break;
425 
426 	case LINUX_REBOOT_CMD_RESTART2:
427 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
428 			ret = -EFAULT;
429 			break;
430 		}
431 		buffer[sizeof(buffer) - 1] = '\0';
432 
433 		kernel_restart(buffer);
434 		break;
435 
436 #ifdef CONFIG_KEXEC
437 	case LINUX_REBOOT_CMD_KEXEC:
438 		ret = kernel_kexec();
439 		break;
440 #endif
441 
442 #ifdef CONFIG_HIBERNATION
443 	case LINUX_REBOOT_CMD_SW_SUSPEND:
444 		ret = hibernate();
445 		break;
446 #endif
447 
448 	default:
449 		ret = -EINVAL;
450 		break;
451 	}
452 	mutex_unlock(&reboot_mutex);
453 	return ret;
454 }
455 
456 static void deferred_cad(struct work_struct *dummy)
457 {
458 	kernel_restart(NULL);
459 }
460 
461 /*
462  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
463  * As it's called within an interrupt, it may NOT sync: the only choice
464  * is whether to reboot at once, or just ignore the ctrl-alt-del.
465  */
466 void ctrl_alt_del(void)
467 {
468 	static DECLARE_WORK(cad_work, deferred_cad);
469 
470 	if (C_A_D)
471 		schedule_work(&cad_work);
472 	else
473 		kill_cad_pid(SIGINT, 1);
474 }
475 
476 /*
477  * Unprivileged users may change the real gid to the effective gid
478  * or vice versa.  (BSD-style)
479  *
480  * If you set the real gid at all, or set the effective gid to a value not
481  * equal to the real gid, then the saved gid is set to the new effective gid.
482  *
483  * This makes it possible for a setgid program to completely drop its
484  * privileges, which is often a useful assertion to make when you are doing
485  * a security audit over a program.
486  *
487  * The general idea is that a program which uses just setregid() will be
488  * 100% compatible with BSD.  A program which uses just setgid() will be
489  * 100% compatible with POSIX with saved IDs.
490  *
491  * SMP: There are not races, the GIDs are checked only by filesystem
492  *      operations (as far as semantic preservation is concerned).
493  */
494 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
495 {
496 	const struct cred *old;
497 	struct cred *new;
498 	int retval;
499 
500 	new = prepare_creds();
501 	if (!new)
502 		return -ENOMEM;
503 	old = current_cred();
504 
505 	retval = -EPERM;
506 	if (rgid != (gid_t) -1) {
507 		if (old->gid == rgid ||
508 		    old->egid == rgid ||
509 		    capable(CAP_SETGID))
510 			new->gid = rgid;
511 		else
512 			goto error;
513 	}
514 	if (egid != (gid_t) -1) {
515 		if (old->gid == egid ||
516 		    old->egid == egid ||
517 		    old->sgid == egid ||
518 		    capable(CAP_SETGID))
519 			new->egid = egid;
520 		else
521 			goto error;
522 	}
523 
524 	if (rgid != (gid_t) -1 ||
525 	    (egid != (gid_t) -1 && egid != old->gid))
526 		new->sgid = new->egid;
527 	new->fsgid = new->egid;
528 
529 	return commit_creds(new);
530 
531 error:
532 	abort_creds(new);
533 	return retval;
534 }
535 
536 /*
537  * setgid() is implemented like SysV w/ SAVED_IDS
538  *
539  * SMP: Same implicit races as above.
540  */
541 SYSCALL_DEFINE1(setgid, gid_t, gid)
542 {
543 	const struct cred *old;
544 	struct cred *new;
545 	int retval;
546 
547 	new = prepare_creds();
548 	if (!new)
549 		return -ENOMEM;
550 	old = current_cred();
551 
552 	retval = -EPERM;
553 	if (capable(CAP_SETGID))
554 		new->gid = new->egid = new->sgid = new->fsgid = gid;
555 	else if (gid == old->gid || gid == old->sgid)
556 		new->egid = new->fsgid = gid;
557 	else
558 		goto error;
559 
560 	return commit_creds(new);
561 
562 error:
563 	abort_creds(new);
564 	return retval;
565 }
566 
567 /*
568  * change the user struct in a credentials set to match the new UID
569  */
570 static int set_user(struct cred *new)
571 {
572 	struct user_struct *new_user;
573 
574 	new_user = alloc_uid(current_user_ns(), new->uid);
575 	if (!new_user)
576 		return -EAGAIN;
577 
578 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
579 			new_user != INIT_USER) {
580 		free_uid(new_user);
581 		return -EAGAIN;
582 	}
583 
584 	free_uid(new->user);
585 	new->user = new_user;
586 	return 0;
587 }
588 
589 /*
590  * Unprivileged users may change the real uid to the effective uid
591  * or vice versa.  (BSD-style)
592  *
593  * If you set the real uid at all, or set the effective uid to a value not
594  * equal to the real uid, then the saved uid is set to the new effective uid.
595  *
596  * This makes it possible for a setuid program to completely drop its
597  * privileges, which is often a useful assertion to make when you are doing
598  * a security audit over a program.
599  *
600  * The general idea is that a program which uses just setreuid() will be
601  * 100% compatible with BSD.  A program which uses just setuid() will be
602  * 100% compatible with POSIX with saved IDs.
603  */
604 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
605 {
606 	const struct cred *old;
607 	struct cred *new;
608 	int retval;
609 
610 	new = prepare_creds();
611 	if (!new)
612 		return -ENOMEM;
613 	old = current_cred();
614 
615 	retval = -EPERM;
616 	if (ruid != (uid_t) -1) {
617 		new->uid = ruid;
618 		if (old->uid != ruid &&
619 		    old->euid != ruid &&
620 		    !capable(CAP_SETUID))
621 			goto error;
622 	}
623 
624 	if (euid != (uid_t) -1) {
625 		new->euid = euid;
626 		if (old->uid != euid &&
627 		    old->euid != euid &&
628 		    old->suid != euid &&
629 		    !capable(CAP_SETUID))
630 			goto error;
631 	}
632 
633 	if (new->uid != old->uid) {
634 		retval = set_user(new);
635 		if (retval < 0)
636 			goto error;
637 	}
638 	if (ruid != (uid_t) -1 ||
639 	    (euid != (uid_t) -1 && euid != old->uid))
640 		new->suid = new->euid;
641 	new->fsuid = new->euid;
642 
643 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
644 	if (retval < 0)
645 		goto error;
646 
647 	return commit_creds(new);
648 
649 error:
650 	abort_creds(new);
651 	return retval;
652 }
653 
654 /*
655  * setuid() is implemented like SysV with SAVED_IDS
656  *
657  * Note that SAVED_ID's is deficient in that a setuid root program
658  * like sendmail, for example, cannot set its uid to be a normal
659  * user and then switch back, because if you're root, setuid() sets
660  * the saved uid too.  If you don't like this, blame the bright people
661  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
662  * will allow a root program to temporarily drop privileges and be able to
663  * regain them by swapping the real and effective uid.
664  */
665 SYSCALL_DEFINE1(setuid, uid_t, uid)
666 {
667 	const struct cred *old;
668 	struct cred *new;
669 	int retval;
670 
671 	new = prepare_creds();
672 	if (!new)
673 		return -ENOMEM;
674 	old = current_cred();
675 
676 	retval = -EPERM;
677 	if (capable(CAP_SETUID)) {
678 		new->suid = new->uid = uid;
679 		if (uid != old->uid) {
680 			retval = set_user(new);
681 			if (retval < 0)
682 				goto error;
683 		}
684 	} else if (uid != old->uid && uid != new->suid) {
685 		goto error;
686 	}
687 
688 	new->fsuid = new->euid = uid;
689 
690 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
691 	if (retval < 0)
692 		goto error;
693 
694 	return commit_creds(new);
695 
696 error:
697 	abort_creds(new);
698 	return retval;
699 }
700 
701 
702 /*
703  * This function implements a generic ability to update ruid, euid,
704  * and suid.  This allows you to implement the 4.4 compatible seteuid().
705  */
706 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
707 {
708 	const struct cred *old;
709 	struct cred *new;
710 	int retval;
711 
712 	new = prepare_creds();
713 	if (!new)
714 		return -ENOMEM;
715 
716 	old = current_cred();
717 
718 	retval = -EPERM;
719 	if (!capable(CAP_SETUID)) {
720 		if (ruid != (uid_t) -1 && ruid != old->uid &&
721 		    ruid != old->euid  && ruid != old->suid)
722 			goto error;
723 		if (euid != (uid_t) -1 && euid != old->uid &&
724 		    euid != old->euid  && euid != old->suid)
725 			goto error;
726 		if (suid != (uid_t) -1 && suid != old->uid &&
727 		    suid != old->euid  && suid != old->suid)
728 			goto error;
729 	}
730 
731 	if (ruid != (uid_t) -1) {
732 		new->uid = ruid;
733 		if (ruid != old->uid) {
734 			retval = set_user(new);
735 			if (retval < 0)
736 				goto error;
737 		}
738 	}
739 	if (euid != (uid_t) -1)
740 		new->euid = euid;
741 	if (suid != (uid_t) -1)
742 		new->suid = suid;
743 	new->fsuid = new->euid;
744 
745 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
746 	if (retval < 0)
747 		goto error;
748 
749 	return commit_creds(new);
750 
751 error:
752 	abort_creds(new);
753 	return retval;
754 }
755 
756 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
757 {
758 	const struct cred *cred = current_cred();
759 	int retval;
760 
761 	if (!(retval   = put_user(cred->uid,  ruid)) &&
762 	    !(retval   = put_user(cred->euid, euid)))
763 		retval = put_user(cred->suid, suid);
764 
765 	return retval;
766 }
767 
768 /*
769  * Same as above, but for rgid, egid, sgid.
770  */
771 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
772 {
773 	const struct cred *old;
774 	struct cred *new;
775 	int retval;
776 
777 	new = prepare_creds();
778 	if (!new)
779 		return -ENOMEM;
780 	old = current_cred();
781 
782 	retval = -EPERM;
783 	if (!capable(CAP_SETGID)) {
784 		if (rgid != (gid_t) -1 && rgid != old->gid &&
785 		    rgid != old->egid  && rgid != old->sgid)
786 			goto error;
787 		if (egid != (gid_t) -1 && egid != old->gid &&
788 		    egid != old->egid  && egid != old->sgid)
789 			goto error;
790 		if (sgid != (gid_t) -1 && sgid != old->gid &&
791 		    sgid != old->egid  && sgid != old->sgid)
792 			goto error;
793 	}
794 
795 	if (rgid != (gid_t) -1)
796 		new->gid = rgid;
797 	if (egid != (gid_t) -1)
798 		new->egid = egid;
799 	if (sgid != (gid_t) -1)
800 		new->sgid = sgid;
801 	new->fsgid = new->egid;
802 
803 	return commit_creds(new);
804 
805 error:
806 	abort_creds(new);
807 	return retval;
808 }
809 
810 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
811 {
812 	const struct cred *cred = current_cred();
813 	int retval;
814 
815 	if (!(retval   = put_user(cred->gid,  rgid)) &&
816 	    !(retval   = put_user(cred->egid, egid)))
817 		retval = put_user(cred->sgid, sgid);
818 
819 	return retval;
820 }
821 
822 
823 /*
824  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
825  * is used for "access()" and for the NFS daemon (letting nfsd stay at
826  * whatever uid it wants to). It normally shadows "euid", except when
827  * explicitly set by setfsuid() or for access..
828  */
829 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
830 {
831 	const struct cred *old;
832 	struct cred *new;
833 	uid_t old_fsuid;
834 
835 	new = prepare_creds();
836 	if (!new)
837 		return current_fsuid();
838 	old = current_cred();
839 	old_fsuid = old->fsuid;
840 
841 	if (uid == old->uid  || uid == old->euid  ||
842 	    uid == old->suid || uid == old->fsuid ||
843 	    capable(CAP_SETUID)) {
844 		if (uid != old_fsuid) {
845 			new->fsuid = uid;
846 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
847 				goto change_okay;
848 		}
849 	}
850 
851 	abort_creds(new);
852 	return old_fsuid;
853 
854 change_okay:
855 	commit_creds(new);
856 	return old_fsuid;
857 }
858 
859 /*
860  * Samma på svenska..
861  */
862 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
863 {
864 	const struct cred *old;
865 	struct cred *new;
866 	gid_t old_fsgid;
867 
868 	new = prepare_creds();
869 	if (!new)
870 		return current_fsgid();
871 	old = current_cred();
872 	old_fsgid = old->fsgid;
873 
874 	if (gid == old->gid  || gid == old->egid  ||
875 	    gid == old->sgid || gid == old->fsgid ||
876 	    capable(CAP_SETGID)) {
877 		if (gid != old_fsgid) {
878 			new->fsgid = gid;
879 			goto change_okay;
880 		}
881 	}
882 
883 	abort_creds(new);
884 	return old_fsgid;
885 
886 change_okay:
887 	commit_creds(new);
888 	return old_fsgid;
889 }
890 
891 void do_sys_times(struct tms *tms)
892 {
893 	cputime_t tgutime, tgstime, cutime, cstime;
894 
895 	spin_lock_irq(&current->sighand->siglock);
896 	thread_group_times(current, &tgutime, &tgstime);
897 	cutime = current->signal->cutime;
898 	cstime = current->signal->cstime;
899 	spin_unlock_irq(&current->sighand->siglock);
900 	tms->tms_utime = cputime_to_clock_t(tgutime);
901 	tms->tms_stime = cputime_to_clock_t(tgstime);
902 	tms->tms_cutime = cputime_to_clock_t(cutime);
903 	tms->tms_cstime = cputime_to_clock_t(cstime);
904 }
905 
906 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
907 {
908 	if (tbuf) {
909 		struct tms tmp;
910 
911 		do_sys_times(&tmp);
912 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
913 			return -EFAULT;
914 	}
915 	force_successful_syscall_return();
916 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
917 }
918 
919 /*
920  * This needs some heavy checking ...
921  * I just haven't the stomach for it. I also don't fully
922  * understand sessions/pgrp etc. Let somebody who does explain it.
923  *
924  * OK, I think I have the protection semantics right.... this is really
925  * only important on a multi-user system anyway, to make sure one user
926  * can't send a signal to a process owned by another.  -TYT, 12/12/91
927  *
928  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
929  * LBT 04.03.94
930  */
931 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
932 {
933 	struct task_struct *p;
934 	struct task_struct *group_leader = current->group_leader;
935 	struct pid *pgrp;
936 	int err;
937 
938 	if (!pid)
939 		pid = task_pid_vnr(group_leader);
940 	if (!pgid)
941 		pgid = pid;
942 	if (pgid < 0)
943 		return -EINVAL;
944 	rcu_read_lock();
945 
946 	/* From this point forward we keep holding onto the tasklist lock
947 	 * so that our parent does not change from under us. -DaveM
948 	 */
949 	write_lock_irq(&tasklist_lock);
950 
951 	err = -ESRCH;
952 	p = find_task_by_vpid(pid);
953 	if (!p)
954 		goto out;
955 
956 	err = -EINVAL;
957 	if (!thread_group_leader(p))
958 		goto out;
959 
960 	if (same_thread_group(p->real_parent, group_leader)) {
961 		err = -EPERM;
962 		if (task_session(p) != task_session(group_leader))
963 			goto out;
964 		err = -EACCES;
965 		if (p->did_exec)
966 			goto out;
967 	} else {
968 		err = -ESRCH;
969 		if (p != group_leader)
970 			goto out;
971 	}
972 
973 	err = -EPERM;
974 	if (p->signal->leader)
975 		goto out;
976 
977 	pgrp = task_pid(p);
978 	if (pgid != pid) {
979 		struct task_struct *g;
980 
981 		pgrp = find_vpid(pgid);
982 		g = pid_task(pgrp, PIDTYPE_PGID);
983 		if (!g || task_session(g) != task_session(group_leader))
984 			goto out;
985 	}
986 
987 	err = security_task_setpgid(p, pgid);
988 	if (err)
989 		goto out;
990 
991 	if (task_pgrp(p) != pgrp)
992 		change_pid(p, PIDTYPE_PGID, pgrp);
993 
994 	err = 0;
995 out:
996 	/* All paths lead to here, thus we are safe. -DaveM */
997 	write_unlock_irq(&tasklist_lock);
998 	rcu_read_unlock();
999 	return err;
1000 }
1001 
1002 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1003 {
1004 	struct task_struct *p;
1005 	struct pid *grp;
1006 	int retval;
1007 
1008 	rcu_read_lock();
1009 	if (!pid)
1010 		grp = task_pgrp(current);
1011 	else {
1012 		retval = -ESRCH;
1013 		p = find_task_by_vpid(pid);
1014 		if (!p)
1015 			goto out;
1016 		grp = task_pgrp(p);
1017 		if (!grp)
1018 			goto out;
1019 
1020 		retval = security_task_getpgid(p);
1021 		if (retval)
1022 			goto out;
1023 	}
1024 	retval = pid_vnr(grp);
1025 out:
1026 	rcu_read_unlock();
1027 	return retval;
1028 }
1029 
1030 #ifdef __ARCH_WANT_SYS_GETPGRP
1031 
1032 SYSCALL_DEFINE0(getpgrp)
1033 {
1034 	return sys_getpgid(0);
1035 }
1036 
1037 #endif
1038 
1039 SYSCALL_DEFINE1(getsid, pid_t, pid)
1040 {
1041 	struct task_struct *p;
1042 	struct pid *sid;
1043 	int retval;
1044 
1045 	rcu_read_lock();
1046 	if (!pid)
1047 		sid = task_session(current);
1048 	else {
1049 		retval = -ESRCH;
1050 		p = find_task_by_vpid(pid);
1051 		if (!p)
1052 			goto out;
1053 		sid = task_session(p);
1054 		if (!sid)
1055 			goto out;
1056 
1057 		retval = security_task_getsid(p);
1058 		if (retval)
1059 			goto out;
1060 	}
1061 	retval = pid_vnr(sid);
1062 out:
1063 	rcu_read_unlock();
1064 	return retval;
1065 }
1066 
1067 SYSCALL_DEFINE0(setsid)
1068 {
1069 	struct task_struct *group_leader = current->group_leader;
1070 	struct pid *sid = task_pid(group_leader);
1071 	pid_t session = pid_vnr(sid);
1072 	int err = -EPERM;
1073 
1074 	write_lock_irq(&tasklist_lock);
1075 	/* Fail if I am already a session leader */
1076 	if (group_leader->signal->leader)
1077 		goto out;
1078 
1079 	/* Fail if a process group id already exists that equals the
1080 	 * proposed session id.
1081 	 */
1082 	if (pid_task(sid, PIDTYPE_PGID))
1083 		goto out;
1084 
1085 	group_leader->signal->leader = 1;
1086 	__set_special_pids(sid);
1087 
1088 	proc_clear_tty(group_leader);
1089 
1090 	err = session;
1091 out:
1092 	write_unlock_irq(&tasklist_lock);
1093 	if (err > 0) {
1094 		proc_sid_connector(group_leader);
1095 		sched_autogroup_create_attach(group_leader);
1096 	}
1097 	return err;
1098 }
1099 
1100 DECLARE_RWSEM(uts_sem);
1101 
1102 #ifdef COMPAT_UTS_MACHINE
1103 #define override_architecture(name) \
1104 	(personality(current->personality) == PER_LINUX32 && \
1105 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1106 		      sizeof(COMPAT_UTS_MACHINE)))
1107 #else
1108 #define override_architecture(name)	0
1109 #endif
1110 
1111 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1112 {
1113 	int errno = 0;
1114 
1115 	down_read(&uts_sem);
1116 	if (copy_to_user(name, utsname(), sizeof *name))
1117 		errno = -EFAULT;
1118 	up_read(&uts_sem);
1119 
1120 	if (!errno && override_architecture(name))
1121 		errno = -EFAULT;
1122 	return errno;
1123 }
1124 
1125 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1126 /*
1127  * Old cruft
1128  */
1129 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1130 {
1131 	int error = 0;
1132 
1133 	if (!name)
1134 		return -EFAULT;
1135 
1136 	down_read(&uts_sem);
1137 	if (copy_to_user(name, utsname(), sizeof(*name)))
1138 		error = -EFAULT;
1139 	up_read(&uts_sem);
1140 
1141 	if (!error && override_architecture(name))
1142 		error = -EFAULT;
1143 	return error;
1144 }
1145 
1146 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1147 {
1148 	int error;
1149 
1150 	if (!name)
1151 		return -EFAULT;
1152 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1153 		return -EFAULT;
1154 
1155 	down_read(&uts_sem);
1156 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1157 			       __OLD_UTS_LEN);
1158 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1159 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1160 				__OLD_UTS_LEN);
1161 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1162 	error |= __copy_to_user(&name->release, &utsname()->release,
1163 				__OLD_UTS_LEN);
1164 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1165 	error |= __copy_to_user(&name->version, &utsname()->version,
1166 				__OLD_UTS_LEN);
1167 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1168 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1169 				__OLD_UTS_LEN);
1170 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1171 	up_read(&uts_sem);
1172 
1173 	if (!error && override_architecture(name))
1174 		error = -EFAULT;
1175 	return error ? -EFAULT : 0;
1176 }
1177 #endif
1178 
1179 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1180 {
1181 	int errno;
1182 	char tmp[__NEW_UTS_LEN];
1183 
1184 	if (!capable(CAP_SYS_ADMIN))
1185 		return -EPERM;
1186 	if (len < 0 || len > __NEW_UTS_LEN)
1187 		return -EINVAL;
1188 	down_write(&uts_sem);
1189 	errno = -EFAULT;
1190 	if (!copy_from_user(tmp, name, len)) {
1191 		struct new_utsname *u = utsname();
1192 
1193 		memcpy(u->nodename, tmp, len);
1194 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1195 		errno = 0;
1196 	}
1197 	up_write(&uts_sem);
1198 	return errno;
1199 }
1200 
1201 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1202 
1203 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1204 {
1205 	int i, errno;
1206 	struct new_utsname *u;
1207 
1208 	if (len < 0)
1209 		return -EINVAL;
1210 	down_read(&uts_sem);
1211 	u = utsname();
1212 	i = 1 + strlen(u->nodename);
1213 	if (i > len)
1214 		i = len;
1215 	errno = 0;
1216 	if (copy_to_user(name, u->nodename, i))
1217 		errno = -EFAULT;
1218 	up_read(&uts_sem);
1219 	return errno;
1220 }
1221 
1222 #endif
1223 
1224 /*
1225  * Only setdomainname; getdomainname can be implemented by calling
1226  * uname()
1227  */
1228 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1229 {
1230 	int errno;
1231 	char tmp[__NEW_UTS_LEN];
1232 
1233 	if (!capable(CAP_SYS_ADMIN))
1234 		return -EPERM;
1235 	if (len < 0 || len > __NEW_UTS_LEN)
1236 		return -EINVAL;
1237 
1238 	down_write(&uts_sem);
1239 	errno = -EFAULT;
1240 	if (!copy_from_user(tmp, name, len)) {
1241 		struct new_utsname *u = utsname();
1242 
1243 		memcpy(u->domainname, tmp, len);
1244 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1245 		errno = 0;
1246 	}
1247 	up_write(&uts_sem);
1248 	return errno;
1249 }
1250 
1251 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1252 {
1253 	struct rlimit value;
1254 	int ret;
1255 
1256 	ret = do_prlimit(current, resource, NULL, &value);
1257 	if (!ret)
1258 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1259 
1260 	return ret;
1261 }
1262 
1263 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1264 
1265 /*
1266  *	Back compatibility for getrlimit. Needed for some apps.
1267  */
1268 
1269 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1270 		struct rlimit __user *, rlim)
1271 {
1272 	struct rlimit x;
1273 	if (resource >= RLIM_NLIMITS)
1274 		return -EINVAL;
1275 
1276 	task_lock(current->group_leader);
1277 	x = current->signal->rlim[resource];
1278 	task_unlock(current->group_leader);
1279 	if (x.rlim_cur > 0x7FFFFFFF)
1280 		x.rlim_cur = 0x7FFFFFFF;
1281 	if (x.rlim_max > 0x7FFFFFFF)
1282 		x.rlim_max = 0x7FFFFFFF;
1283 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1284 }
1285 
1286 #endif
1287 
1288 static inline bool rlim64_is_infinity(__u64 rlim64)
1289 {
1290 #if BITS_PER_LONG < 64
1291 	return rlim64 >= ULONG_MAX;
1292 #else
1293 	return rlim64 == RLIM64_INFINITY;
1294 #endif
1295 }
1296 
1297 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1298 {
1299 	if (rlim->rlim_cur == RLIM_INFINITY)
1300 		rlim64->rlim_cur = RLIM64_INFINITY;
1301 	else
1302 		rlim64->rlim_cur = rlim->rlim_cur;
1303 	if (rlim->rlim_max == RLIM_INFINITY)
1304 		rlim64->rlim_max = RLIM64_INFINITY;
1305 	else
1306 		rlim64->rlim_max = rlim->rlim_max;
1307 }
1308 
1309 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1310 {
1311 	if (rlim64_is_infinity(rlim64->rlim_cur))
1312 		rlim->rlim_cur = RLIM_INFINITY;
1313 	else
1314 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1315 	if (rlim64_is_infinity(rlim64->rlim_max))
1316 		rlim->rlim_max = RLIM_INFINITY;
1317 	else
1318 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1319 }
1320 
1321 /* make sure you are allowed to change @tsk limits before calling this */
1322 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1323 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1324 {
1325 	struct rlimit *rlim;
1326 	int retval = 0;
1327 
1328 	if (resource >= RLIM_NLIMITS)
1329 		return -EINVAL;
1330 	if (new_rlim) {
1331 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1332 			return -EINVAL;
1333 		if (resource == RLIMIT_NOFILE &&
1334 				new_rlim->rlim_max > sysctl_nr_open)
1335 			return -EPERM;
1336 	}
1337 
1338 	/* protect tsk->signal and tsk->sighand from disappearing */
1339 	read_lock(&tasklist_lock);
1340 	if (!tsk->sighand) {
1341 		retval = -ESRCH;
1342 		goto out;
1343 	}
1344 
1345 	rlim = tsk->signal->rlim + resource;
1346 	task_lock(tsk->group_leader);
1347 	if (new_rlim) {
1348 		if (new_rlim->rlim_max > rlim->rlim_max &&
1349 				!capable(CAP_SYS_RESOURCE))
1350 			retval = -EPERM;
1351 		if (!retval)
1352 			retval = security_task_setrlimit(tsk->group_leader,
1353 					resource, new_rlim);
1354 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1355 			/*
1356 			 * The caller is asking for an immediate RLIMIT_CPU
1357 			 * expiry.  But we use the zero value to mean "it was
1358 			 * never set".  So let's cheat and make it one second
1359 			 * instead
1360 			 */
1361 			new_rlim->rlim_cur = 1;
1362 		}
1363 	}
1364 	if (!retval) {
1365 		if (old_rlim)
1366 			*old_rlim = *rlim;
1367 		if (new_rlim)
1368 			*rlim = *new_rlim;
1369 	}
1370 	task_unlock(tsk->group_leader);
1371 
1372 	/*
1373 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1374 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1375 	 * very long-standing error, and fixing it now risks breakage of
1376 	 * applications, so we live with it
1377 	 */
1378 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1379 			 new_rlim->rlim_cur != RLIM_INFINITY)
1380 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1381 out:
1382 	read_unlock(&tasklist_lock);
1383 	return retval;
1384 }
1385 
1386 /* rcu lock must be held */
1387 static int check_prlimit_permission(struct task_struct *task)
1388 {
1389 	const struct cred *cred = current_cred(), *tcred;
1390 
1391 	tcred = __task_cred(task);
1392 	if (current != task &&
1393 	    (cred->uid != tcred->euid ||
1394 	     cred->uid != tcred->suid ||
1395 	     cred->uid != tcred->uid  ||
1396 	     cred->gid != tcred->egid ||
1397 	     cred->gid != tcred->sgid ||
1398 	     cred->gid != tcred->gid) &&
1399 	     !capable(CAP_SYS_RESOURCE)) {
1400 		return -EPERM;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1407 		const struct rlimit64 __user *, new_rlim,
1408 		struct rlimit64 __user *, old_rlim)
1409 {
1410 	struct rlimit64 old64, new64;
1411 	struct rlimit old, new;
1412 	struct task_struct *tsk;
1413 	int ret;
1414 
1415 	if (new_rlim) {
1416 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1417 			return -EFAULT;
1418 		rlim64_to_rlim(&new64, &new);
1419 	}
1420 
1421 	rcu_read_lock();
1422 	tsk = pid ? find_task_by_vpid(pid) : current;
1423 	if (!tsk) {
1424 		rcu_read_unlock();
1425 		return -ESRCH;
1426 	}
1427 	ret = check_prlimit_permission(tsk);
1428 	if (ret) {
1429 		rcu_read_unlock();
1430 		return ret;
1431 	}
1432 	get_task_struct(tsk);
1433 	rcu_read_unlock();
1434 
1435 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1436 			old_rlim ? &old : NULL);
1437 
1438 	if (!ret && old_rlim) {
1439 		rlim_to_rlim64(&old, &old64);
1440 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1441 			ret = -EFAULT;
1442 	}
1443 
1444 	put_task_struct(tsk);
1445 	return ret;
1446 }
1447 
1448 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1449 {
1450 	struct rlimit new_rlim;
1451 
1452 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1453 		return -EFAULT;
1454 	return do_prlimit(current, resource, &new_rlim, NULL);
1455 }
1456 
1457 /*
1458  * It would make sense to put struct rusage in the task_struct,
1459  * except that would make the task_struct be *really big*.  After
1460  * task_struct gets moved into malloc'ed memory, it would
1461  * make sense to do this.  It will make moving the rest of the information
1462  * a lot simpler!  (Which we're not doing right now because we're not
1463  * measuring them yet).
1464  *
1465  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1466  * races with threads incrementing their own counters.  But since word
1467  * reads are atomic, we either get new values or old values and we don't
1468  * care which for the sums.  We always take the siglock to protect reading
1469  * the c* fields from p->signal from races with exit.c updating those
1470  * fields when reaping, so a sample either gets all the additions of a
1471  * given child after it's reaped, or none so this sample is before reaping.
1472  *
1473  * Locking:
1474  * We need to take the siglock for CHILDEREN, SELF and BOTH
1475  * for  the cases current multithreaded, non-current single threaded
1476  * non-current multithreaded.  Thread traversal is now safe with
1477  * the siglock held.
1478  * Strictly speaking, we donot need to take the siglock if we are current and
1479  * single threaded,  as no one else can take our signal_struct away, no one
1480  * else can  reap the  children to update signal->c* counters, and no one else
1481  * can race with the signal-> fields. If we do not take any lock, the
1482  * signal-> fields could be read out of order while another thread was just
1483  * exiting. So we should  place a read memory barrier when we avoid the lock.
1484  * On the writer side,  write memory barrier is implied in  __exit_signal
1485  * as __exit_signal releases  the siglock spinlock after updating the signal->
1486  * fields. But we don't do this yet to keep things simple.
1487  *
1488  */
1489 
1490 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1491 {
1492 	r->ru_nvcsw += t->nvcsw;
1493 	r->ru_nivcsw += t->nivcsw;
1494 	r->ru_minflt += t->min_flt;
1495 	r->ru_majflt += t->maj_flt;
1496 	r->ru_inblock += task_io_get_inblock(t);
1497 	r->ru_oublock += task_io_get_oublock(t);
1498 }
1499 
1500 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1501 {
1502 	struct task_struct *t;
1503 	unsigned long flags;
1504 	cputime_t tgutime, tgstime, utime, stime;
1505 	unsigned long maxrss = 0;
1506 
1507 	memset((char *) r, 0, sizeof *r);
1508 	utime = stime = cputime_zero;
1509 
1510 	if (who == RUSAGE_THREAD) {
1511 		task_times(current, &utime, &stime);
1512 		accumulate_thread_rusage(p, r);
1513 		maxrss = p->signal->maxrss;
1514 		goto out;
1515 	}
1516 
1517 	if (!lock_task_sighand(p, &flags))
1518 		return;
1519 
1520 	switch (who) {
1521 		case RUSAGE_BOTH:
1522 		case RUSAGE_CHILDREN:
1523 			utime = p->signal->cutime;
1524 			stime = p->signal->cstime;
1525 			r->ru_nvcsw = p->signal->cnvcsw;
1526 			r->ru_nivcsw = p->signal->cnivcsw;
1527 			r->ru_minflt = p->signal->cmin_flt;
1528 			r->ru_majflt = p->signal->cmaj_flt;
1529 			r->ru_inblock = p->signal->cinblock;
1530 			r->ru_oublock = p->signal->coublock;
1531 			maxrss = p->signal->cmaxrss;
1532 
1533 			if (who == RUSAGE_CHILDREN)
1534 				break;
1535 
1536 		case RUSAGE_SELF:
1537 			thread_group_times(p, &tgutime, &tgstime);
1538 			utime = cputime_add(utime, tgutime);
1539 			stime = cputime_add(stime, tgstime);
1540 			r->ru_nvcsw += p->signal->nvcsw;
1541 			r->ru_nivcsw += p->signal->nivcsw;
1542 			r->ru_minflt += p->signal->min_flt;
1543 			r->ru_majflt += p->signal->maj_flt;
1544 			r->ru_inblock += p->signal->inblock;
1545 			r->ru_oublock += p->signal->oublock;
1546 			if (maxrss < p->signal->maxrss)
1547 				maxrss = p->signal->maxrss;
1548 			t = p;
1549 			do {
1550 				accumulate_thread_rusage(t, r);
1551 				t = next_thread(t);
1552 			} while (t != p);
1553 			break;
1554 
1555 		default:
1556 			BUG();
1557 	}
1558 	unlock_task_sighand(p, &flags);
1559 
1560 out:
1561 	cputime_to_timeval(utime, &r->ru_utime);
1562 	cputime_to_timeval(stime, &r->ru_stime);
1563 
1564 	if (who != RUSAGE_CHILDREN) {
1565 		struct mm_struct *mm = get_task_mm(p);
1566 		if (mm) {
1567 			setmax_mm_hiwater_rss(&maxrss, mm);
1568 			mmput(mm);
1569 		}
1570 	}
1571 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1572 }
1573 
1574 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1575 {
1576 	struct rusage r;
1577 	k_getrusage(p, who, &r);
1578 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1579 }
1580 
1581 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1582 {
1583 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1584 	    who != RUSAGE_THREAD)
1585 		return -EINVAL;
1586 	return getrusage(current, who, ru);
1587 }
1588 
1589 SYSCALL_DEFINE1(umask, int, mask)
1590 {
1591 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1592 	return mask;
1593 }
1594 
1595 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1596 		unsigned long, arg4, unsigned long, arg5)
1597 {
1598 	struct task_struct *me = current;
1599 	unsigned char comm[sizeof(me->comm)];
1600 	long error;
1601 
1602 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1603 	if (error != -ENOSYS)
1604 		return error;
1605 
1606 	error = 0;
1607 	switch (option) {
1608 		case PR_SET_PDEATHSIG:
1609 			if (!valid_signal(arg2)) {
1610 				error = -EINVAL;
1611 				break;
1612 			}
1613 			me->pdeath_signal = arg2;
1614 			error = 0;
1615 			break;
1616 		case PR_GET_PDEATHSIG:
1617 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1618 			break;
1619 		case PR_GET_DUMPABLE:
1620 			error = get_dumpable(me->mm);
1621 			break;
1622 		case PR_SET_DUMPABLE:
1623 			if (arg2 < 0 || arg2 > 1) {
1624 				error = -EINVAL;
1625 				break;
1626 			}
1627 			set_dumpable(me->mm, arg2);
1628 			error = 0;
1629 			break;
1630 
1631 		case PR_SET_UNALIGN:
1632 			error = SET_UNALIGN_CTL(me, arg2);
1633 			break;
1634 		case PR_GET_UNALIGN:
1635 			error = GET_UNALIGN_CTL(me, arg2);
1636 			break;
1637 		case PR_SET_FPEMU:
1638 			error = SET_FPEMU_CTL(me, arg2);
1639 			break;
1640 		case PR_GET_FPEMU:
1641 			error = GET_FPEMU_CTL(me, arg2);
1642 			break;
1643 		case PR_SET_FPEXC:
1644 			error = SET_FPEXC_CTL(me, arg2);
1645 			break;
1646 		case PR_GET_FPEXC:
1647 			error = GET_FPEXC_CTL(me, arg2);
1648 			break;
1649 		case PR_GET_TIMING:
1650 			error = PR_TIMING_STATISTICAL;
1651 			break;
1652 		case PR_SET_TIMING:
1653 			if (arg2 != PR_TIMING_STATISTICAL)
1654 				error = -EINVAL;
1655 			else
1656 				error = 0;
1657 			break;
1658 
1659 		case PR_SET_NAME:
1660 			comm[sizeof(me->comm)-1] = 0;
1661 			if (strncpy_from_user(comm, (char __user *)arg2,
1662 					      sizeof(me->comm) - 1) < 0)
1663 				return -EFAULT;
1664 			set_task_comm(me, comm);
1665 			return 0;
1666 		case PR_GET_NAME:
1667 			get_task_comm(comm, me);
1668 			if (copy_to_user((char __user *)arg2, comm,
1669 					 sizeof(comm)))
1670 				return -EFAULT;
1671 			return 0;
1672 		case PR_GET_ENDIAN:
1673 			error = GET_ENDIAN(me, arg2);
1674 			break;
1675 		case PR_SET_ENDIAN:
1676 			error = SET_ENDIAN(me, arg2);
1677 			break;
1678 
1679 		case PR_GET_SECCOMP:
1680 			error = prctl_get_seccomp();
1681 			break;
1682 		case PR_SET_SECCOMP:
1683 			error = prctl_set_seccomp(arg2);
1684 			break;
1685 		case PR_GET_TSC:
1686 			error = GET_TSC_CTL(arg2);
1687 			break;
1688 		case PR_SET_TSC:
1689 			error = SET_TSC_CTL(arg2);
1690 			break;
1691 		case PR_TASK_PERF_EVENTS_DISABLE:
1692 			error = perf_event_task_disable();
1693 			break;
1694 		case PR_TASK_PERF_EVENTS_ENABLE:
1695 			error = perf_event_task_enable();
1696 			break;
1697 		case PR_GET_TIMERSLACK:
1698 			error = current->timer_slack_ns;
1699 			break;
1700 		case PR_SET_TIMERSLACK:
1701 			if (arg2 <= 0)
1702 				current->timer_slack_ns =
1703 					current->default_timer_slack_ns;
1704 			else
1705 				current->timer_slack_ns = arg2;
1706 			error = 0;
1707 			break;
1708 		case PR_MCE_KILL:
1709 			if (arg4 | arg5)
1710 				return -EINVAL;
1711 			switch (arg2) {
1712 			case PR_MCE_KILL_CLEAR:
1713 				if (arg3 != 0)
1714 					return -EINVAL;
1715 				current->flags &= ~PF_MCE_PROCESS;
1716 				break;
1717 			case PR_MCE_KILL_SET:
1718 				current->flags |= PF_MCE_PROCESS;
1719 				if (arg3 == PR_MCE_KILL_EARLY)
1720 					current->flags |= PF_MCE_EARLY;
1721 				else if (arg3 == PR_MCE_KILL_LATE)
1722 					current->flags &= ~PF_MCE_EARLY;
1723 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1724 					current->flags &=
1725 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1726 				else
1727 					return -EINVAL;
1728 				break;
1729 			default:
1730 				return -EINVAL;
1731 			}
1732 			error = 0;
1733 			break;
1734 		case PR_MCE_KILL_GET:
1735 			if (arg2 | arg3 | arg4 | arg5)
1736 				return -EINVAL;
1737 			if (current->flags & PF_MCE_PROCESS)
1738 				error = (current->flags & PF_MCE_EARLY) ?
1739 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1740 			else
1741 				error = PR_MCE_KILL_DEFAULT;
1742 			break;
1743 		default:
1744 			error = -EINVAL;
1745 			break;
1746 	}
1747 	return error;
1748 }
1749 
1750 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1751 		struct getcpu_cache __user *, unused)
1752 {
1753 	int err = 0;
1754 	int cpu = raw_smp_processor_id();
1755 	if (cpup)
1756 		err |= put_user(cpu, cpup);
1757 	if (nodep)
1758 		err |= put_user(cpu_to_node(cpu), nodep);
1759 	return err ? -EFAULT : 0;
1760 }
1761 
1762 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1763 
1764 static void argv_cleanup(struct subprocess_info *info)
1765 {
1766 	argv_free(info->argv);
1767 }
1768 
1769 /**
1770  * orderly_poweroff - Trigger an orderly system poweroff
1771  * @force: force poweroff if command execution fails
1772  *
1773  * This may be called from any context to trigger a system shutdown.
1774  * If the orderly shutdown fails, it will force an immediate shutdown.
1775  */
1776 int orderly_poweroff(bool force)
1777 {
1778 	int argc;
1779 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1780 	static char *envp[] = {
1781 		"HOME=/",
1782 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1783 		NULL
1784 	};
1785 	int ret = -ENOMEM;
1786 	struct subprocess_info *info;
1787 
1788 	if (argv == NULL) {
1789 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1790 		       __func__, poweroff_cmd);
1791 		goto out;
1792 	}
1793 
1794 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1795 	if (info == NULL) {
1796 		argv_free(argv);
1797 		goto out;
1798 	}
1799 
1800 	call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1801 
1802 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1803 
1804   out:
1805 	if (ret && force) {
1806 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1807 		       "forcing the issue\n");
1808 
1809 		/* I guess this should try to kick off some daemon to
1810 		   sync and poweroff asap.  Or not even bother syncing
1811 		   if we're doing an emergency shutdown? */
1812 		emergency_sync();
1813 		kernel_power_off();
1814 	}
1815 
1816 	return ret;
1817 }
1818 EXPORT_SYMBOL_GPL(orderly_poweroff);
1819