xref: /linux/kernel/sys.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/unistd.h>
40 
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
43 #endif
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
46 #endif
47 #ifndef SET_FPEMU_CTL
48 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
49 #endif
50 #ifndef GET_FPEMU_CTL
51 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
52 #endif
53 #ifndef SET_FPEXC_CTL
54 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_FPEXC_CTL
57 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef GET_ENDIAN
60 # define GET_ENDIAN(a,b)	(-EINVAL)
61 #endif
62 #ifndef SET_ENDIAN
63 # define SET_ENDIAN(a,b)	(-EINVAL)
64 #endif
65 
66 /*
67  * this is where the system-wide overflow UID and GID are defined, for
68  * architectures that now have 32-bit UID/GID but didn't in the past
69  */
70 
71 int overflowuid = DEFAULT_OVERFLOWUID;
72 int overflowgid = DEFAULT_OVERFLOWGID;
73 
74 #ifdef CONFIG_UID16
75 EXPORT_SYMBOL(overflowuid);
76 EXPORT_SYMBOL(overflowgid);
77 #endif
78 
79 /*
80  * the same as above, but for filesystems which can only store a 16-bit
81  * UID and GID. as such, this is needed on all architectures
82  */
83 
84 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
85 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
86 
87 EXPORT_SYMBOL(fs_overflowuid);
88 EXPORT_SYMBOL(fs_overflowgid);
89 
90 /*
91  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
92  */
93 
94 int C_A_D = 1;
95 struct pid *cad_pid;
96 EXPORT_SYMBOL(cad_pid);
97 
98 /*
99  *	Notifier list for kernel code which wants to be called
100  *	at shutdown. This is used to stop any idling DMA operations
101  *	and the like.
102  */
103 
104 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
105 
106 /*
107  *	Notifier chain core routines.  The exported routines below
108  *	are layered on top of these, with appropriate locking added.
109  */
110 
111 static int notifier_chain_register(struct notifier_block **nl,
112 		struct notifier_block *n)
113 {
114 	while ((*nl) != NULL) {
115 		if (n->priority > (*nl)->priority)
116 			break;
117 		nl = &((*nl)->next);
118 	}
119 	n->next = *nl;
120 	rcu_assign_pointer(*nl, n);
121 	return 0;
122 }
123 
124 static int notifier_chain_unregister(struct notifier_block **nl,
125 		struct notifier_block *n)
126 {
127 	while ((*nl) != NULL) {
128 		if ((*nl) == n) {
129 			rcu_assign_pointer(*nl, n->next);
130 			return 0;
131 		}
132 		nl = &((*nl)->next);
133 	}
134 	return -ENOENT;
135 }
136 
137 static int __kprobes notifier_call_chain(struct notifier_block **nl,
138 		unsigned long val, void *v)
139 {
140 	int ret = NOTIFY_DONE;
141 	struct notifier_block *nb, *next_nb;
142 
143 	nb = rcu_dereference(*nl);
144 	while (nb) {
145 		next_nb = rcu_dereference(nb->next);
146 		ret = nb->notifier_call(nb, val, v);
147 		if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
148 			break;
149 		nb = next_nb;
150 	}
151 	return ret;
152 }
153 
154 /*
155  *	Atomic notifier chain routines.  Registration and unregistration
156  *	use a spinlock, and call_chain is synchronized by RCU (no locks).
157  */
158 
159 /**
160  *	atomic_notifier_chain_register - Add notifier to an atomic notifier chain
161  *	@nh: Pointer to head of the atomic notifier chain
162  *	@n: New entry in notifier chain
163  *
164  *	Adds a notifier to an atomic notifier chain.
165  *
166  *	Currently always returns zero.
167  */
168 
169 int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
170 		struct notifier_block *n)
171 {
172 	unsigned long flags;
173 	int ret;
174 
175 	spin_lock_irqsave(&nh->lock, flags);
176 	ret = notifier_chain_register(&nh->head, n);
177 	spin_unlock_irqrestore(&nh->lock, flags);
178 	return ret;
179 }
180 
181 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
182 
183 /**
184  *	atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
185  *	@nh: Pointer to head of the atomic notifier chain
186  *	@n: Entry to remove from notifier chain
187  *
188  *	Removes a notifier from an atomic notifier chain.
189  *
190  *	Returns zero on success or %-ENOENT on failure.
191  */
192 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
193 		struct notifier_block *n)
194 {
195 	unsigned long flags;
196 	int ret;
197 
198 	spin_lock_irqsave(&nh->lock, flags);
199 	ret = notifier_chain_unregister(&nh->head, n);
200 	spin_unlock_irqrestore(&nh->lock, flags);
201 	synchronize_rcu();
202 	return ret;
203 }
204 
205 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
206 
207 /**
208  *	atomic_notifier_call_chain - Call functions in an atomic notifier chain
209  *	@nh: Pointer to head of the atomic notifier chain
210  *	@val: Value passed unmodified to notifier function
211  *	@v: Pointer passed unmodified to notifier function
212  *
213  *	Calls each function in a notifier chain in turn.  The functions
214  *	run in an atomic context, so they must not block.
215  *	This routine uses RCU to synchronize with changes to the chain.
216  *
217  *	If the return value of the notifier can be and'ed
218  *	with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
219  *	will return immediately, with the return value of
220  *	the notifier function which halted execution.
221  *	Otherwise the return value is the return value
222  *	of the last notifier function called.
223  */
224 
225 int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
226 		unsigned long val, void *v)
227 {
228 	int ret;
229 
230 	rcu_read_lock();
231 	ret = notifier_call_chain(&nh->head, val, v);
232 	rcu_read_unlock();
233 	return ret;
234 }
235 
236 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
237 
238 /*
239  *	Blocking notifier chain routines.  All access to the chain is
240  *	synchronized by an rwsem.
241  */
242 
243 /**
244  *	blocking_notifier_chain_register - Add notifier to a blocking notifier chain
245  *	@nh: Pointer to head of the blocking notifier chain
246  *	@n: New entry in notifier chain
247  *
248  *	Adds a notifier to a blocking notifier chain.
249  *	Must be called in process context.
250  *
251  *	Currently always returns zero.
252  */
253 
254 int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
255 		struct notifier_block *n)
256 {
257 	int ret;
258 
259 	/*
260 	 * This code gets used during boot-up, when task switching is
261 	 * not yet working and interrupts must remain disabled.  At
262 	 * such times we must not call down_write().
263 	 */
264 	if (unlikely(system_state == SYSTEM_BOOTING))
265 		return notifier_chain_register(&nh->head, n);
266 
267 	down_write(&nh->rwsem);
268 	ret = notifier_chain_register(&nh->head, n);
269 	up_write(&nh->rwsem);
270 	return ret;
271 }
272 
273 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
274 
275 /**
276  *	blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
277  *	@nh: Pointer to head of the blocking notifier chain
278  *	@n: Entry to remove from notifier chain
279  *
280  *	Removes a notifier from a blocking notifier chain.
281  *	Must be called from process context.
282  *
283  *	Returns zero on success or %-ENOENT on failure.
284  */
285 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
286 		struct notifier_block *n)
287 {
288 	int ret;
289 
290 	/*
291 	 * This code gets used during boot-up, when task switching is
292 	 * not yet working and interrupts must remain disabled.  At
293 	 * such times we must not call down_write().
294 	 */
295 	if (unlikely(system_state == SYSTEM_BOOTING))
296 		return notifier_chain_unregister(&nh->head, n);
297 
298 	down_write(&nh->rwsem);
299 	ret = notifier_chain_unregister(&nh->head, n);
300 	up_write(&nh->rwsem);
301 	return ret;
302 }
303 
304 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
305 
306 /**
307  *	blocking_notifier_call_chain - Call functions in a blocking notifier chain
308  *	@nh: Pointer to head of the blocking notifier chain
309  *	@val: Value passed unmodified to notifier function
310  *	@v: Pointer passed unmodified to notifier function
311  *
312  *	Calls each function in a notifier chain in turn.  The functions
313  *	run in a process context, so they are allowed to block.
314  *
315  *	If the return value of the notifier can be and'ed
316  *	with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
317  *	will return immediately, with the return value of
318  *	the notifier function which halted execution.
319  *	Otherwise the return value is the return value
320  *	of the last notifier function called.
321  */
322 
323 int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
324 		unsigned long val, void *v)
325 {
326 	int ret = NOTIFY_DONE;
327 
328 	/*
329 	 * We check the head outside the lock, but if this access is
330 	 * racy then it does not matter what the result of the test
331 	 * is, we re-check the list after having taken the lock anyway:
332 	 */
333 	if (rcu_dereference(nh->head)) {
334 		down_read(&nh->rwsem);
335 		ret = notifier_call_chain(&nh->head, val, v);
336 		up_read(&nh->rwsem);
337 	}
338 	return ret;
339 }
340 
341 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
342 
343 /*
344  *	Raw notifier chain routines.  There is no protection;
345  *	the caller must provide it.  Use at your own risk!
346  */
347 
348 /**
349  *	raw_notifier_chain_register - Add notifier to a raw notifier chain
350  *	@nh: Pointer to head of the raw notifier chain
351  *	@n: New entry in notifier chain
352  *
353  *	Adds a notifier to a raw notifier chain.
354  *	All locking must be provided by the caller.
355  *
356  *	Currently always returns zero.
357  */
358 
359 int raw_notifier_chain_register(struct raw_notifier_head *nh,
360 		struct notifier_block *n)
361 {
362 	return notifier_chain_register(&nh->head, n);
363 }
364 
365 EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
366 
367 /**
368  *	raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
369  *	@nh: Pointer to head of the raw notifier chain
370  *	@n: Entry to remove from notifier chain
371  *
372  *	Removes a notifier from a raw notifier chain.
373  *	All locking must be provided by the caller.
374  *
375  *	Returns zero on success or %-ENOENT on failure.
376  */
377 int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
378 		struct notifier_block *n)
379 {
380 	return notifier_chain_unregister(&nh->head, n);
381 }
382 
383 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
384 
385 /**
386  *	raw_notifier_call_chain - Call functions in a raw notifier chain
387  *	@nh: Pointer to head of the raw notifier chain
388  *	@val: Value passed unmodified to notifier function
389  *	@v: Pointer passed unmodified to notifier function
390  *
391  *	Calls each function in a notifier chain in turn.  The functions
392  *	run in an undefined context.
393  *	All locking must be provided by the caller.
394  *
395  *	If the return value of the notifier can be and'ed
396  *	with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
397  *	will return immediately, with the return value of
398  *	the notifier function which halted execution.
399  *	Otherwise the return value is the return value
400  *	of the last notifier function called.
401  */
402 
403 int raw_notifier_call_chain(struct raw_notifier_head *nh,
404 		unsigned long val, void *v)
405 {
406 	return notifier_call_chain(&nh->head, val, v);
407 }
408 
409 EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
410 
411 /*
412  *	SRCU notifier chain routines.    Registration and unregistration
413  *	use a mutex, and call_chain is synchronized by SRCU (no locks).
414  */
415 
416 /**
417  *	srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
418  *	@nh: Pointer to head of the SRCU notifier chain
419  *	@n: New entry in notifier chain
420  *
421  *	Adds a notifier to an SRCU notifier chain.
422  *	Must be called in process context.
423  *
424  *	Currently always returns zero.
425  */
426 
427 int srcu_notifier_chain_register(struct srcu_notifier_head *nh,
428 		struct notifier_block *n)
429 {
430 	int ret;
431 
432 	/*
433 	 * This code gets used during boot-up, when task switching is
434 	 * not yet working and interrupts must remain disabled.  At
435 	 * such times we must not call mutex_lock().
436 	 */
437 	if (unlikely(system_state == SYSTEM_BOOTING))
438 		return notifier_chain_register(&nh->head, n);
439 
440 	mutex_lock(&nh->mutex);
441 	ret = notifier_chain_register(&nh->head, n);
442 	mutex_unlock(&nh->mutex);
443 	return ret;
444 }
445 
446 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register);
447 
448 /**
449  *	srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
450  *	@nh: Pointer to head of the SRCU notifier chain
451  *	@n: Entry to remove from notifier chain
452  *
453  *	Removes a notifier from an SRCU notifier chain.
454  *	Must be called from process context.
455  *
456  *	Returns zero on success or %-ENOENT on failure.
457  */
458 int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh,
459 		struct notifier_block *n)
460 {
461 	int ret;
462 
463 	/*
464 	 * This code gets used during boot-up, when task switching is
465 	 * not yet working and interrupts must remain disabled.  At
466 	 * such times we must not call mutex_lock().
467 	 */
468 	if (unlikely(system_state == SYSTEM_BOOTING))
469 		return notifier_chain_unregister(&nh->head, n);
470 
471 	mutex_lock(&nh->mutex);
472 	ret = notifier_chain_unregister(&nh->head, n);
473 	mutex_unlock(&nh->mutex);
474 	synchronize_srcu(&nh->srcu);
475 	return ret;
476 }
477 
478 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister);
479 
480 /**
481  *	srcu_notifier_call_chain - Call functions in an SRCU notifier chain
482  *	@nh: Pointer to head of the SRCU notifier chain
483  *	@val: Value passed unmodified to notifier function
484  *	@v: Pointer passed unmodified to notifier function
485  *
486  *	Calls each function in a notifier chain in turn.  The functions
487  *	run in a process context, so they are allowed to block.
488  *
489  *	If the return value of the notifier can be and'ed
490  *	with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
491  *	will return immediately, with the return value of
492  *	the notifier function which halted execution.
493  *	Otherwise the return value is the return value
494  *	of the last notifier function called.
495  */
496 
497 int srcu_notifier_call_chain(struct srcu_notifier_head *nh,
498 		unsigned long val, void *v)
499 {
500 	int ret;
501 	int idx;
502 
503 	idx = srcu_read_lock(&nh->srcu);
504 	ret = notifier_call_chain(&nh->head, val, v);
505 	srcu_read_unlock(&nh->srcu, idx);
506 	return ret;
507 }
508 
509 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain);
510 
511 /**
512  *	srcu_init_notifier_head - Initialize an SRCU notifier head
513  *	@nh: Pointer to head of the srcu notifier chain
514  *
515  *	Unlike other sorts of notifier heads, SRCU notifier heads require
516  *	dynamic initialization.  Be sure to call this routine before
517  *	calling any of the other SRCU notifier routines for this head.
518  *
519  *	If an SRCU notifier head is deallocated, it must first be cleaned
520  *	up by calling srcu_cleanup_notifier_head().  Otherwise the head's
521  *	per-cpu data (used by the SRCU mechanism) will leak.
522  */
523 
524 void srcu_init_notifier_head(struct srcu_notifier_head *nh)
525 {
526 	mutex_init(&nh->mutex);
527 	if (init_srcu_struct(&nh->srcu) < 0)
528 		BUG();
529 	nh->head = NULL;
530 }
531 
532 EXPORT_SYMBOL_GPL(srcu_init_notifier_head);
533 
534 /**
535  *	register_reboot_notifier - Register function to be called at reboot time
536  *	@nb: Info about notifier function to be called
537  *
538  *	Registers a function with the list of functions
539  *	to be called at reboot time.
540  *
541  *	Currently always returns zero, as blocking_notifier_chain_register()
542  *	always returns zero.
543  */
544 
545 int register_reboot_notifier(struct notifier_block * nb)
546 {
547 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
548 }
549 
550 EXPORT_SYMBOL(register_reboot_notifier);
551 
552 /**
553  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
554  *	@nb: Hook to be unregistered
555  *
556  *	Unregisters a previously registered reboot
557  *	notifier function.
558  *
559  *	Returns zero on success, or %-ENOENT on failure.
560  */
561 
562 int unregister_reboot_notifier(struct notifier_block * nb)
563 {
564 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
565 }
566 
567 EXPORT_SYMBOL(unregister_reboot_notifier);
568 
569 static int set_one_prio(struct task_struct *p, int niceval, int error)
570 {
571 	int no_nice;
572 
573 	if (p->uid != current->euid &&
574 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
575 		error = -EPERM;
576 		goto out;
577 	}
578 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
579 		error = -EACCES;
580 		goto out;
581 	}
582 	no_nice = security_task_setnice(p, niceval);
583 	if (no_nice) {
584 		error = no_nice;
585 		goto out;
586 	}
587 	if (error == -ESRCH)
588 		error = 0;
589 	set_user_nice(p, niceval);
590 out:
591 	return error;
592 }
593 
594 asmlinkage long sys_setpriority(int which, int who, int niceval)
595 {
596 	struct task_struct *g, *p;
597 	struct user_struct *user;
598 	int error = -EINVAL;
599 	struct pid *pgrp;
600 
601 	if (which > 2 || which < 0)
602 		goto out;
603 
604 	/* normalize: avoid signed division (rounding problems) */
605 	error = -ESRCH;
606 	if (niceval < -20)
607 		niceval = -20;
608 	if (niceval > 19)
609 		niceval = 19;
610 
611 	read_lock(&tasklist_lock);
612 	switch (which) {
613 		case PRIO_PROCESS:
614 			if (who)
615 				p = find_task_by_pid(who);
616 			else
617 				p = current;
618 			if (p)
619 				error = set_one_prio(p, niceval, error);
620 			break;
621 		case PRIO_PGRP:
622 			if (who)
623 				pgrp = find_pid(who);
624 			else
625 				pgrp = task_pgrp(current);
626 			do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
627 				error = set_one_prio(p, niceval, error);
628 			} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
629 			break;
630 		case PRIO_USER:
631 			user = current->user;
632 			if (!who)
633 				who = current->uid;
634 			else
635 				if ((who != current->uid) && !(user = find_user(who)))
636 					goto out_unlock;	/* No processes for this user */
637 
638 			do_each_thread(g, p)
639 				if (p->uid == who)
640 					error = set_one_prio(p, niceval, error);
641 			while_each_thread(g, p);
642 			if (who != current->uid)
643 				free_uid(user);		/* For find_user() */
644 			break;
645 	}
646 out_unlock:
647 	read_unlock(&tasklist_lock);
648 out:
649 	return error;
650 }
651 
652 /*
653  * Ugh. To avoid negative return values, "getpriority()" will
654  * not return the normal nice-value, but a negated value that
655  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
656  * to stay compatible.
657  */
658 asmlinkage long sys_getpriority(int which, int who)
659 {
660 	struct task_struct *g, *p;
661 	struct user_struct *user;
662 	long niceval, retval = -ESRCH;
663 	struct pid *pgrp;
664 
665 	if (which > 2 || which < 0)
666 		return -EINVAL;
667 
668 	read_lock(&tasklist_lock);
669 	switch (which) {
670 		case PRIO_PROCESS:
671 			if (who)
672 				p = find_task_by_pid(who);
673 			else
674 				p = current;
675 			if (p) {
676 				niceval = 20 - task_nice(p);
677 				if (niceval > retval)
678 					retval = niceval;
679 			}
680 			break;
681 		case PRIO_PGRP:
682 			if (who)
683 				pgrp = find_pid(who);
684 			else
685 				pgrp = task_pgrp(current);
686 			do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
687 				niceval = 20 - task_nice(p);
688 				if (niceval > retval)
689 					retval = niceval;
690 			} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
691 			break;
692 		case PRIO_USER:
693 			user = current->user;
694 			if (!who)
695 				who = current->uid;
696 			else
697 				if ((who != current->uid) && !(user = find_user(who)))
698 					goto out_unlock;	/* No processes for this user */
699 
700 			do_each_thread(g, p)
701 				if (p->uid == who) {
702 					niceval = 20 - task_nice(p);
703 					if (niceval > retval)
704 						retval = niceval;
705 				}
706 			while_each_thread(g, p);
707 			if (who != current->uid)
708 				free_uid(user);		/* for find_user() */
709 			break;
710 	}
711 out_unlock:
712 	read_unlock(&tasklist_lock);
713 
714 	return retval;
715 }
716 
717 /**
718  *	emergency_restart - reboot the system
719  *
720  *	Without shutting down any hardware or taking any locks
721  *	reboot the system.  This is called when we know we are in
722  *	trouble so this is our best effort to reboot.  This is
723  *	safe to call in interrupt context.
724  */
725 void emergency_restart(void)
726 {
727 	machine_emergency_restart();
728 }
729 EXPORT_SYMBOL_GPL(emergency_restart);
730 
731 static void kernel_restart_prepare(char *cmd)
732 {
733 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
734 	system_state = SYSTEM_RESTART;
735 	device_shutdown();
736 }
737 
738 /**
739  *	kernel_restart - reboot the system
740  *	@cmd: pointer to buffer containing command to execute for restart
741  *		or %NULL
742  *
743  *	Shutdown everything and perform a clean reboot.
744  *	This is not safe to call in interrupt context.
745  */
746 void kernel_restart(char *cmd)
747 {
748 	kernel_restart_prepare(cmd);
749 	if (!cmd)
750 		printk(KERN_EMERG "Restarting system.\n");
751 	else
752 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
753 	machine_restart(cmd);
754 }
755 EXPORT_SYMBOL_GPL(kernel_restart);
756 
757 /**
758  *	kernel_kexec - reboot the system
759  *
760  *	Move into place and start executing a preloaded standalone
761  *	executable.  If nothing was preloaded return an error.
762  */
763 static void kernel_kexec(void)
764 {
765 #ifdef CONFIG_KEXEC
766 	struct kimage *image;
767 	image = xchg(&kexec_image, NULL);
768 	if (!image)
769 		return;
770 	kernel_restart_prepare(NULL);
771 	printk(KERN_EMERG "Starting new kernel\n");
772 	machine_shutdown();
773 	machine_kexec(image);
774 #endif
775 }
776 
777 void kernel_shutdown_prepare(enum system_states state)
778 {
779 	blocking_notifier_call_chain(&reboot_notifier_list,
780 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
781 	system_state = state;
782 	device_shutdown();
783 }
784 /**
785  *	kernel_halt - halt the system
786  *
787  *	Shutdown everything and perform a clean system halt.
788  */
789 void kernel_halt(void)
790 {
791 	kernel_shutdown_prepare(SYSTEM_HALT);
792 	printk(KERN_EMERG "System halted.\n");
793 	machine_halt();
794 }
795 
796 EXPORT_SYMBOL_GPL(kernel_halt);
797 
798 /**
799  *	kernel_power_off - power_off the system
800  *
801  *	Shutdown everything and perform a clean system power_off.
802  */
803 void kernel_power_off(void)
804 {
805 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
806 	printk(KERN_EMERG "Power down.\n");
807 	machine_power_off();
808 }
809 EXPORT_SYMBOL_GPL(kernel_power_off);
810 /*
811  * Reboot system call: for obvious reasons only root may call it,
812  * and even root needs to set up some magic numbers in the registers
813  * so that some mistake won't make this reboot the whole machine.
814  * You can also set the meaning of the ctrl-alt-del-key here.
815  *
816  * reboot doesn't sync: do that yourself before calling this.
817  */
818 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
819 {
820 	char buffer[256];
821 
822 	/* We only trust the superuser with rebooting the system. */
823 	if (!capable(CAP_SYS_BOOT))
824 		return -EPERM;
825 
826 	/* For safety, we require "magic" arguments. */
827 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
828 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
829 	                magic2 != LINUX_REBOOT_MAGIC2A &&
830 			magic2 != LINUX_REBOOT_MAGIC2B &&
831 	                magic2 != LINUX_REBOOT_MAGIC2C))
832 		return -EINVAL;
833 
834 	/* Instead of trying to make the power_off code look like
835 	 * halt when pm_power_off is not set do it the easy way.
836 	 */
837 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
838 		cmd = LINUX_REBOOT_CMD_HALT;
839 
840 	lock_kernel();
841 	switch (cmd) {
842 	case LINUX_REBOOT_CMD_RESTART:
843 		kernel_restart(NULL);
844 		break;
845 
846 	case LINUX_REBOOT_CMD_CAD_ON:
847 		C_A_D = 1;
848 		break;
849 
850 	case LINUX_REBOOT_CMD_CAD_OFF:
851 		C_A_D = 0;
852 		break;
853 
854 	case LINUX_REBOOT_CMD_HALT:
855 		kernel_halt();
856 		unlock_kernel();
857 		do_exit(0);
858 		break;
859 
860 	case LINUX_REBOOT_CMD_POWER_OFF:
861 		kernel_power_off();
862 		unlock_kernel();
863 		do_exit(0);
864 		break;
865 
866 	case LINUX_REBOOT_CMD_RESTART2:
867 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
868 			unlock_kernel();
869 			return -EFAULT;
870 		}
871 		buffer[sizeof(buffer) - 1] = '\0';
872 
873 		kernel_restart(buffer);
874 		break;
875 
876 	case LINUX_REBOOT_CMD_KEXEC:
877 		kernel_kexec();
878 		unlock_kernel();
879 		return -EINVAL;
880 
881 #ifdef CONFIG_SOFTWARE_SUSPEND
882 	case LINUX_REBOOT_CMD_SW_SUSPEND:
883 		{
884 			int ret = software_suspend();
885 			unlock_kernel();
886 			return ret;
887 		}
888 #endif
889 
890 	default:
891 		unlock_kernel();
892 		return -EINVAL;
893 	}
894 	unlock_kernel();
895 	return 0;
896 }
897 
898 static void deferred_cad(struct work_struct *dummy)
899 {
900 	kernel_restart(NULL);
901 }
902 
903 /*
904  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
905  * As it's called within an interrupt, it may NOT sync: the only choice
906  * is whether to reboot at once, or just ignore the ctrl-alt-del.
907  */
908 void ctrl_alt_del(void)
909 {
910 	static DECLARE_WORK(cad_work, deferred_cad);
911 
912 	if (C_A_D)
913 		schedule_work(&cad_work);
914 	else
915 		kill_cad_pid(SIGINT, 1);
916 }
917 
918 /*
919  * Unprivileged users may change the real gid to the effective gid
920  * or vice versa.  (BSD-style)
921  *
922  * If you set the real gid at all, or set the effective gid to a value not
923  * equal to the real gid, then the saved gid is set to the new effective gid.
924  *
925  * This makes it possible for a setgid program to completely drop its
926  * privileges, which is often a useful assertion to make when you are doing
927  * a security audit over a program.
928  *
929  * The general idea is that a program which uses just setregid() will be
930  * 100% compatible with BSD.  A program which uses just setgid() will be
931  * 100% compatible with POSIX with saved IDs.
932  *
933  * SMP: There are not races, the GIDs are checked only by filesystem
934  *      operations (as far as semantic preservation is concerned).
935  */
936 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
937 {
938 	int old_rgid = current->gid;
939 	int old_egid = current->egid;
940 	int new_rgid = old_rgid;
941 	int new_egid = old_egid;
942 	int retval;
943 
944 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
945 	if (retval)
946 		return retval;
947 
948 	if (rgid != (gid_t) -1) {
949 		if ((old_rgid == rgid) ||
950 		    (current->egid==rgid) ||
951 		    capable(CAP_SETGID))
952 			new_rgid = rgid;
953 		else
954 			return -EPERM;
955 	}
956 	if (egid != (gid_t) -1) {
957 		if ((old_rgid == egid) ||
958 		    (current->egid == egid) ||
959 		    (current->sgid == egid) ||
960 		    capable(CAP_SETGID))
961 			new_egid = egid;
962 		else
963 			return -EPERM;
964 	}
965 	if (new_egid != old_egid) {
966 		current->mm->dumpable = suid_dumpable;
967 		smp_wmb();
968 	}
969 	if (rgid != (gid_t) -1 ||
970 	    (egid != (gid_t) -1 && egid != old_rgid))
971 		current->sgid = new_egid;
972 	current->fsgid = new_egid;
973 	current->egid = new_egid;
974 	current->gid = new_rgid;
975 	key_fsgid_changed(current);
976 	proc_id_connector(current, PROC_EVENT_GID);
977 	return 0;
978 }
979 
980 /*
981  * setgid() is implemented like SysV w/ SAVED_IDS
982  *
983  * SMP: Same implicit races as above.
984  */
985 asmlinkage long sys_setgid(gid_t gid)
986 {
987 	int old_egid = current->egid;
988 	int retval;
989 
990 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
991 	if (retval)
992 		return retval;
993 
994 	if (capable(CAP_SETGID)) {
995 		if (old_egid != gid) {
996 			current->mm->dumpable = suid_dumpable;
997 			smp_wmb();
998 		}
999 		current->gid = current->egid = current->sgid = current->fsgid = gid;
1000 	} else if ((gid == current->gid) || (gid == current->sgid)) {
1001 		if (old_egid != gid) {
1002 			current->mm->dumpable = suid_dumpable;
1003 			smp_wmb();
1004 		}
1005 		current->egid = current->fsgid = gid;
1006 	}
1007 	else
1008 		return -EPERM;
1009 
1010 	key_fsgid_changed(current);
1011 	proc_id_connector(current, PROC_EVENT_GID);
1012 	return 0;
1013 }
1014 
1015 static int set_user(uid_t new_ruid, int dumpclear)
1016 {
1017 	struct user_struct *new_user;
1018 
1019 	new_user = alloc_uid(new_ruid);
1020 	if (!new_user)
1021 		return -EAGAIN;
1022 
1023 	if (atomic_read(&new_user->processes) >=
1024 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
1025 			new_user != &root_user) {
1026 		free_uid(new_user);
1027 		return -EAGAIN;
1028 	}
1029 
1030 	switch_uid(new_user);
1031 
1032 	if (dumpclear) {
1033 		current->mm->dumpable = suid_dumpable;
1034 		smp_wmb();
1035 	}
1036 	current->uid = new_ruid;
1037 	return 0;
1038 }
1039 
1040 /*
1041  * Unprivileged users may change the real uid to the effective uid
1042  * or vice versa.  (BSD-style)
1043  *
1044  * If you set the real uid at all, or set the effective uid to a value not
1045  * equal to the real uid, then the saved uid is set to the new effective uid.
1046  *
1047  * This makes it possible for a setuid program to completely drop its
1048  * privileges, which is often a useful assertion to make when you are doing
1049  * a security audit over a program.
1050  *
1051  * The general idea is that a program which uses just setreuid() will be
1052  * 100% compatible with BSD.  A program which uses just setuid() will be
1053  * 100% compatible with POSIX with saved IDs.
1054  */
1055 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
1056 {
1057 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
1058 	int retval;
1059 
1060 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
1061 	if (retval)
1062 		return retval;
1063 
1064 	new_ruid = old_ruid = current->uid;
1065 	new_euid = old_euid = current->euid;
1066 	old_suid = current->suid;
1067 
1068 	if (ruid != (uid_t) -1) {
1069 		new_ruid = ruid;
1070 		if ((old_ruid != ruid) &&
1071 		    (current->euid != ruid) &&
1072 		    !capable(CAP_SETUID))
1073 			return -EPERM;
1074 	}
1075 
1076 	if (euid != (uid_t) -1) {
1077 		new_euid = euid;
1078 		if ((old_ruid != euid) &&
1079 		    (current->euid != euid) &&
1080 		    (current->suid != euid) &&
1081 		    !capable(CAP_SETUID))
1082 			return -EPERM;
1083 	}
1084 
1085 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
1086 		return -EAGAIN;
1087 
1088 	if (new_euid != old_euid) {
1089 		current->mm->dumpable = suid_dumpable;
1090 		smp_wmb();
1091 	}
1092 	current->fsuid = current->euid = new_euid;
1093 	if (ruid != (uid_t) -1 ||
1094 	    (euid != (uid_t) -1 && euid != old_ruid))
1095 		current->suid = current->euid;
1096 	current->fsuid = current->euid;
1097 
1098 	key_fsuid_changed(current);
1099 	proc_id_connector(current, PROC_EVENT_UID);
1100 
1101 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
1102 }
1103 
1104 
1105 
1106 /*
1107  * setuid() is implemented like SysV with SAVED_IDS
1108  *
1109  * Note that SAVED_ID's is deficient in that a setuid root program
1110  * like sendmail, for example, cannot set its uid to be a normal
1111  * user and then switch back, because if you're root, setuid() sets
1112  * the saved uid too.  If you don't like this, blame the bright people
1113  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
1114  * will allow a root program to temporarily drop privileges and be able to
1115  * regain them by swapping the real and effective uid.
1116  */
1117 asmlinkage long sys_setuid(uid_t uid)
1118 {
1119 	int old_euid = current->euid;
1120 	int old_ruid, old_suid, new_suid;
1121 	int retval;
1122 
1123 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
1124 	if (retval)
1125 		return retval;
1126 
1127 	old_ruid = current->uid;
1128 	old_suid = current->suid;
1129 	new_suid = old_suid;
1130 
1131 	if (capable(CAP_SETUID)) {
1132 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
1133 			return -EAGAIN;
1134 		new_suid = uid;
1135 	} else if ((uid != current->uid) && (uid != new_suid))
1136 		return -EPERM;
1137 
1138 	if (old_euid != uid) {
1139 		current->mm->dumpable = suid_dumpable;
1140 		smp_wmb();
1141 	}
1142 	current->fsuid = current->euid = uid;
1143 	current->suid = new_suid;
1144 
1145 	key_fsuid_changed(current);
1146 	proc_id_connector(current, PROC_EVENT_UID);
1147 
1148 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
1149 }
1150 
1151 
1152 /*
1153  * This function implements a generic ability to update ruid, euid,
1154  * and suid.  This allows you to implement the 4.4 compatible seteuid().
1155  */
1156 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1157 {
1158 	int old_ruid = current->uid;
1159 	int old_euid = current->euid;
1160 	int old_suid = current->suid;
1161 	int retval;
1162 
1163 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
1164 	if (retval)
1165 		return retval;
1166 
1167 	if (!capable(CAP_SETUID)) {
1168 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
1169 		    (ruid != current->euid) && (ruid != current->suid))
1170 			return -EPERM;
1171 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
1172 		    (euid != current->euid) && (euid != current->suid))
1173 			return -EPERM;
1174 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
1175 		    (suid != current->euid) && (suid != current->suid))
1176 			return -EPERM;
1177 	}
1178 	if (ruid != (uid_t) -1) {
1179 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
1180 			return -EAGAIN;
1181 	}
1182 	if (euid != (uid_t) -1) {
1183 		if (euid != current->euid) {
1184 			current->mm->dumpable = suid_dumpable;
1185 			smp_wmb();
1186 		}
1187 		current->euid = euid;
1188 	}
1189 	current->fsuid = current->euid;
1190 	if (suid != (uid_t) -1)
1191 		current->suid = suid;
1192 
1193 	key_fsuid_changed(current);
1194 	proc_id_connector(current, PROC_EVENT_UID);
1195 
1196 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
1197 }
1198 
1199 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
1200 {
1201 	int retval;
1202 
1203 	if (!(retval = put_user(current->uid, ruid)) &&
1204 	    !(retval = put_user(current->euid, euid)))
1205 		retval = put_user(current->suid, suid);
1206 
1207 	return retval;
1208 }
1209 
1210 /*
1211  * Same as above, but for rgid, egid, sgid.
1212  */
1213 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1214 {
1215 	int retval;
1216 
1217 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
1218 	if (retval)
1219 		return retval;
1220 
1221 	if (!capable(CAP_SETGID)) {
1222 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
1223 		    (rgid != current->egid) && (rgid != current->sgid))
1224 			return -EPERM;
1225 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
1226 		    (egid != current->egid) && (egid != current->sgid))
1227 			return -EPERM;
1228 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
1229 		    (sgid != current->egid) && (sgid != current->sgid))
1230 			return -EPERM;
1231 	}
1232 	if (egid != (gid_t) -1) {
1233 		if (egid != current->egid) {
1234 			current->mm->dumpable = suid_dumpable;
1235 			smp_wmb();
1236 		}
1237 		current->egid = egid;
1238 	}
1239 	current->fsgid = current->egid;
1240 	if (rgid != (gid_t) -1)
1241 		current->gid = rgid;
1242 	if (sgid != (gid_t) -1)
1243 		current->sgid = sgid;
1244 
1245 	key_fsgid_changed(current);
1246 	proc_id_connector(current, PROC_EVENT_GID);
1247 	return 0;
1248 }
1249 
1250 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
1251 {
1252 	int retval;
1253 
1254 	if (!(retval = put_user(current->gid, rgid)) &&
1255 	    !(retval = put_user(current->egid, egid)))
1256 		retval = put_user(current->sgid, sgid);
1257 
1258 	return retval;
1259 }
1260 
1261 
1262 /*
1263  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1264  * is used for "access()" and for the NFS daemon (letting nfsd stay at
1265  * whatever uid it wants to). It normally shadows "euid", except when
1266  * explicitly set by setfsuid() or for access..
1267  */
1268 asmlinkage long sys_setfsuid(uid_t uid)
1269 {
1270 	int old_fsuid;
1271 
1272 	old_fsuid = current->fsuid;
1273 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
1274 		return old_fsuid;
1275 
1276 	if (uid == current->uid || uid == current->euid ||
1277 	    uid == current->suid || uid == current->fsuid ||
1278 	    capable(CAP_SETUID)) {
1279 		if (uid != old_fsuid) {
1280 			current->mm->dumpable = suid_dumpable;
1281 			smp_wmb();
1282 		}
1283 		current->fsuid = uid;
1284 	}
1285 
1286 	key_fsuid_changed(current);
1287 	proc_id_connector(current, PROC_EVENT_UID);
1288 
1289 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
1290 
1291 	return old_fsuid;
1292 }
1293 
1294 /*
1295  * Samma p� svenska..
1296  */
1297 asmlinkage long sys_setfsgid(gid_t gid)
1298 {
1299 	int old_fsgid;
1300 
1301 	old_fsgid = current->fsgid;
1302 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
1303 		return old_fsgid;
1304 
1305 	if (gid == current->gid || gid == current->egid ||
1306 	    gid == current->sgid || gid == current->fsgid ||
1307 	    capable(CAP_SETGID)) {
1308 		if (gid != old_fsgid) {
1309 			current->mm->dumpable = suid_dumpable;
1310 			smp_wmb();
1311 		}
1312 		current->fsgid = gid;
1313 		key_fsgid_changed(current);
1314 		proc_id_connector(current, PROC_EVENT_GID);
1315 	}
1316 	return old_fsgid;
1317 }
1318 
1319 asmlinkage long sys_times(struct tms __user * tbuf)
1320 {
1321 	/*
1322 	 *	In the SMP world we might just be unlucky and have one of
1323 	 *	the times increment as we use it. Since the value is an
1324 	 *	atomically safe type this is just fine. Conceptually its
1325 	 *	as if the syscall took an instant longer to occur.
1326 	 */
1327 	if (tbuf) {
1328 		struct tms tmp;
1329 		struct task_struct *tsk = current;
1330 		struct task_struct *t;
1331 		cputime_t utime, stime, cutime, cstime;
1332 
1333 		spin_lock_irq(&tsk->sighand->siglock);
1334 		utime = tsk->signal->utime;
1335 		stime = tsk->signal->stime;
1336 		t = tsk;
1337 		do {
1338 			utime = cputime_add(utime, t->utime);
1339 			stime = cputime_add(stime, t->stime);
1340 			t = next_thread(t);
1341 		} while (t != tsk);
1342 
1343 		cutime = tsk->signal->cutime;
1344 		cstime = tsk->signal->cstime;
1345 		spin_unlock_irq(&tsk->sighand->siglock);
1346 
1347 		tmp.tms_utime = cputime_to_clock_t(utime);
1348 		tmp.tms_stime = cputime_to_clock_t(stime);
1349 		tmp.tms_cutime = cputime_to_clock_t(cutime);
1350 		tmp.tms_cstime = cputime_to_clock_t(cstime);
1351 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1352 			return -EFAULT;
1353 	}
1354 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1355 }
1356 
1357 /*
1358  * This needs some heavy checking ...
1359  * I just haven't the stomach for it. I also don't fully
1360  * understand sessions/pgrp etc. Let somebody who does explain it.
1361  *
1362  * OK, I think I have the protection semantics right.... this is really
1363  * only important on a multi-user system anyway, to make sure one user
1364  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1365  *
1366  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1367  * LBT 04.03.94
1368  */
1369 
1370 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1371 {
1372 	struct task_struct *p;
1373 	struct task_struct *group_leader = current->group_leader;
1374 	int err = -EINVAL;
1375 
1376 	if (!pid)
1377 		pid = group_leader->pid;
1378 	if (!pgid)
1379 		pgid = pid;
1380 	if (pgid < 0)
1381 		return -EINVAL;
1382 
1383 	/* From this point forward we keep holding onto the tasklist lock
1384 	 * so that our parent does not change from under us. -DaveM
1385 	 */
1386 	write_lock_irq(&tasklist_lock);
1387 
1388 	err = -ESRCH;
1389 	p = find_task_by_pid(pid);
1390 	if (!p)
1391 		goto out;
1392 
1393 	err = -EINVAL;
1394 	if (!thread_group_leader(p))
1395 		goto out;
1396 
1397 	if (p->real_parent == group_leader) {
1398 		err = -EPERM;
1399 		if (task_session(p) != task_session(group_leader))
1400 			goto out;
1401 		err = -EACCES;
1402 		if (p->did_exec)
1403 			goto out;
1404 	} else {
1405 		err = -ESRCH;
1406 		if (p != group_leader)
1407 			goto out;
1408 	}
1409 
1410 	err = -EPERM;
1411 	if (p->signal->leader)
1412 		goto out;
1413 
1414 	if (pgid != pid) {
1415 		struct task_struct *g =
1416 			find_task_by_pid_type(PIDTYPE_PGID, pgid);
1417 
1418 		if (!g || task_session(g) != task_session(group_leader))
1419 			goto out;
1420 	}
1421 
1422 	err = security_task_setpgid(p, pgid);
1423 	if (err)
1424 		goto out;
1425 
1426 	if (process_group(p) != pgid) {
1427 		detach_pid(p, PIDTYPE_PGID);
1428 		p->signal->pgrp = pgid;
1429 		attach_pid(p, PIDTYPE_PGID, pgid);
1430 	}
1431 
1432 	err = 0;
1433 out:
1434 	/* All paths lead to here, thus we are safe. -DaveM */
1435 	write_unlock_irq(&tasklist_lock);
1436 	return err;
1437 }
1438 
1439 asmlinkage long sys_getpgid(pid_t pid)
1440 {
1441 	if (!pid)
1442 		return process_group(current);
1443 	else {
1444 		int retval;
1445 		struct task_struct *p;
1446 
1447 		read_lock(&tasklist_lock);
1448 		p = find_task_by_pid(pid);
1449 
1450 		retval = -ESRCH;
1451 		if (p) {
1452 			retval = security_task_getpgid(p);
1453 			if (!retval)
1454 				retval = process_group(p);
1455 		}
1456 		read_unlock(&tasklist_lock);
1457 		return retval;
1458 	}
1459 }
1460 
1461 #ifdef __ARCH_WANT_SYS_GETPGRP
1462 
1463 asmlinkage long sys_getpgrp(void)
1464 {
1465 	/* SMP - assuming writes are word atomic this is fine */
1466 	return process_group(current);
1467 }
1468 
1469 #endif
1470 
1471 asmlinkage long sys_getsid(pid_t pid)
1472 {
1473 	if (!pid)
1474 		return process_session(current);
1475 	else {
1476 		int retval;
1477 		struct task_struct *p;
1478 
1479 		read_lock(&tasklist_lock);
1480 		p = find_task_by_pid(pid);
1481 
1482 		retval = -ESRCH;
1483 		if (p) {
1484 			retval = security_task_getsid(p);
1485 			if (!retval)
1486 				retval = process_session(p);
1487 		}
1488 		read_unlock(&tasklist_lock);
1489 		return retval;
1490 	}
1491 }
1492 
1493 asmlinkage long sys_setsid(void)
1494 {
1495 	struct task_struct *group_leader = current->group_leader;
1496 	pid_t session;
1497 	int err = -EPERM;
1498 
1499 	write_lock_irq(&tasklist_lock);
1500 
1501 	/* Fail if I am already a session leader */
1502 	if (group_leader->signal->leader)
1503 		goto out;
1504 
1505 	session = group_leader->pid;
1506 	/* Fail if a process group id already exists that equals the
1507 	 * proposed session id.
1508 	 *
1509 	 * Don't check if session id == 1 because kernel threads use this
1510 	 * session id and so the check will always fail and make it so
1511 	 * init cannot successfully call setsid.
1512 	 */
1513 	if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
1514 		goto out;
1515 
1516 	group_leader->signal->leader = 1;
1517 	__set_special_pids(session, session);
1518 
1519 	spin_lock(&group_leader->sighand->siglock);
1520 	group_leader->signal->tty = NULL;
1521 	spin_unlock(&group_leader->sighand->siglock);
1522 
1523 	err = process_group(group_leader);
1524 out:
1525 	write_unlock_irq(&tasklist_lock);
1526 	return err;
1527 }
1528 
1529 /*
1530  * Supplementary group IDs
1531  */
1532 
1533 /* init to 2 - one for init_task, one to ensure it is never freed */
1534 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1535 
1536 struct group_info *groups_alloc(int gidsetsize)
1537 {
1538 	struct group_info *group_info;
1539 	int nblocks;
1540 	int i;
1541 
1542 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1543 	/* Make sure we always allocate at least one indirect block pointer */
1544 	nblocks = nblocks ? : 1;
1545 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1546 	if (!group_info)
1547 		return NULL;
1548 	group_info->ngroups = gidsetsize;
1549 	group_info->nblocks = nblocks;
1550 	atomic_set(&group_info->usage, 1);
1551 
1552 	if (gidsetsize <= NGROUPS_SMALL)
1553 		group_info->blocks[0] = group_info->small_block;
1554 	else {
1555 		for (i = 0; i < nblocks; i++) {
1556 			gid_t *b;
1557 			b = (void *)__get_free_page(GFP_USER);
1558 			if (!b)
1559 				goto out_undo_partial_alloc;
1560 			group_info->blocks[i] = b;
1561 		}
1562 	}
1563 	return group_info;
1564 
1565 out_undo_partial_alloc:
1566 	while (--i >= 0) {
1567 		free_page((unsigned long)group_info->blocks[i]);
1568 	}
1569 	kfree(group_info);
1570 	return NULL;
1571 }
1572 
1573 EXPORT_SYMBOL(groups_alloc);
1574 
1575 void groups_free(struct group_info *group_info)
1576 {
1577 	if (group_info->blocks[0] != group_info->small_block) {
1578 		int i;
1579 		for (i = 0; i < group_info->nblocks; i++)
1580 			free_page((unsigned long)group_info->blocks[i]);
1581 	}
1582 	kfree(group_info);
1583 }
1584 
1585 EXPORT_SYMBOL(groups_free);
1586 
1587 /* export the group_info to a user-space array */
1588 static int groups_to_user(gid_t __user *grouplist,
1589     struct group_info *group_info)
1590 {
1591 	int i;
1592 	int count = group_info->ngroups;
1593 
1594 	for (i = 0; i < group_info->nblocks; i++) {
1595 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1596 		int off = i * NGROUPS_PER_BLOCK;
1597 		int len = cp_count * sizeof(*grouplist);
1598 
1599 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1600 			return -EFAULT;
1601 
1602 		count -= cp_count;
1603 	}
1604 	return 0;
1605 }
1606 
1607 /* fill a group_info from a user-space array - it must be allocated already */
1608 static int groups_from_user(struct group_info *group_info,
1609     gid_t __user *grouplist)
1610 {
1611 	int i;
1612 	int count = group_info->ngroups;
1613 
1614 	for (i = 0; i < group_info->nblocks; i++) {
1615 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1616 		int off = i * NGROUPS_PER_BLOCK;
1617 		int len = cp_count * sizeof(*grouplist);
1618 
1619 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1620 			return -EFAULT;
1621 
1622 		count -= cp_count;
1623 	}
1624 	return 0;
1625 }
1626 
1627 /* a simple Shell sort */
1628 static void groups_sort(struct group_info *group_info)
1629 {
1630 	int base, max, stride;
1631 	int gidsetsize = group_info->ngroups;
1632 
1633 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1634 		; /* nothing */
1635 	stride /= 3;
1636 
1637 	while (stride) {
1638 		max = gidsetsize - stride;
1639 		for (base = 0; base < max; base++) {
1640 			int left = base;
1641 			int right = left + stride;
1642 			gid_t tmp = GROUP_AT(group_info, right);
1643 
1644 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1645 				GROUP_AT(group_info, right) =
1646 				    GROUP_AT(group_info, left);
1647 				right = left;
1648 				left -= stride;
1649 			}
1650 			GROUP_AT(group_info, right) = tmp;
1651 		}
1652 		stride /= 3;
1653 	}
1654 }
1655 
1656 /* a simple bsearch */
1657 int groups_search(struct group_info *group_info, gid_t grp)
1658 {
1659 	unsigned int left, right;
1660 
1661 	if (!group_info)
1662 		return 0;
1663 
1664 	left = 0;
1665 	right = group_info->ngroups;
1666 	while (left < right) {
1667 		unsigned int mid = (left+right)/2;
1668 		int cmp = grp - GROUP_AT(group_info, mid);
1669 		if (cmp > 0)
1670 			left = mid + 1;
1671 		else if (cmp < 0)
1672 			right = mid;
1673 		else
1674 			return 1;
1675 	}
1676 	return 0;
1677 }
1678 
1679 /* validate and set current->group_info */
1680 int set_current_groups(struct group_info *group_info)
1681 {
1682 	int retval;
1683 	struct group_info *old_info;
1684 
1685 	retval = security_task_setgroups(group_info);
1686 	if (retval)
1687 		return retval;
1688 
1689 	groups_sort(group_info);
1690 	get_group_info(group_info);
1691 
1692 	task_lock(current);
1693 	old_info = current->group_info;
1694 	current->group_info = group_info;
1695 	task_unlock(current);
1696 
1697 	put_group_info(old_info);
1698 
1699 	return 0;
1700 }
1701 
1702 EXPORT_SYMBOL(set_current_groups);
1703 
1704 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1705 {
1706 	int i = 0;
1707 
1708 	/*
1709 	 *	SMP: Nobody else can change our grouplist. Thus we are
1710 	 *	safe.
1711 	 */
1712 
1713 	if (gidsetsize < 0)
1714 		return -EINVAL;
1715 
1716 	/* no need to grab task_lock here; it cannot change */
1717 	i = current->group_info->ngroups;
1718 	if (gidsetsize) {
1719 		if (i > gidsetsize) {
1720 			i = -EINVAL;
1721 			goto out;
1722 		}
1723 		if (groups_to_user(grouplist, current->group_info)) {
1724 			i = -EFAULT;
1725 			goto out;
1726 		}
1727 	}
1728 out:
1729 	return i;
1730 }
1731 
1732 /*
1733  *	SMP: Our groups are copy-on-write. We can set them safely
1734  *	without another task interfering.
1735  */
1736 
1737 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1738 {
1739 	struct group_info *group_info;
1740 	int retval;
1741 
1742 	if (!capable(CAP_SETGID))
1743 		return -EPERM;
1744 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1745 		return -EINVAL;
1746 
1747 	group_info = groups_alloc(gidsetsize);
1748 	if (!group_info)
1749 		return -ENOMEM;
1750 	retval = groups_from_user(group_info, grouplist);
1751 	if (retval) {
1752 		put_group_info(group_info);
1753 		return retval;
1754 	}
1755 
1756 	retval = set_current_groups(group_info);
1757 	put_group_info(group_info);
1758 
1759 	return retval;
1760 }
1761 
1762 /*
1763  * Check whether we're fsgid/egid or in the supplemental group..
1764  */
1765 int in_group_p(gid_t grp)
1766 {
1767 	int retval = 1;
1768 	if (grp != current->fsgid)
1769 		retval = groups_search(current->group_info, grp);
1770 	return retval;
1771 }
1772 
1773 EXPORT_SYMBOL(in_group_p);
1774 
1775 int in_egroup_p(gid_t grp)
1776 {
1777 	int retval = 1;
1778 	if (grp != current->egid)
1779 		retval = groups_search(current->group_info, grp);
1780 	return retval;
1781 }
1782 
1783 EXPORT_SYMBOL(in_egroup_p);
1784 
1785 DECLARE_RWSEM(uts_sem);
1786 
1787 EXPORT_SYMBOL(uts_sem);
1788 
1789 asmlinkage long sys_newuname(struct new_utsname __user * name)
1790 {
1791 	int errno = 0;
1792 
1793 	down_read(&uts_sem);
1794 	if (copy_to_user(name, utsname(), sizeof *name))
1795 		errno = -EFAULT;
1796 	up_read(&uts_sem);
1797 	return errno;
1798 }
1799 
1800 asmlinkage long sys_sethostname(char __user *name, int len)
1801 {
1802 	int errno;
1803 	char tmp[__NEW_UTS_LEN];
1804 
1805 	if (!capable(CAP_SYS_ADMIN))
1806 		return -EPERM;
1807 	if (len < 0 || len > __NEW_UTS_LEN)
1808 		return -EINVAL;
1809 	down_write(&uts_sem);
1810 	errno = -EFAULT;
1811 	if (!copy_from_user(tmp, name, len)) {
1812 		memcpy(utsname()->nodename, tmp, len);
1813 		utsname()->nodename[len] = 0;
1814 		errno = 0;
1815 	}
1816 	up_write(&uts_sem);
1817 	return errno;
1818 }
1819 
1820 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1821 
1822 asmlinkage long sys_gethostname(char __user *name, int len)
1823 {
1824 	int i, errno;
1825 
1826 	if (len < 0)
1827 		return -EINVAL;
1828 	down_read(&uts_sem);
1829 	i = 1 + strlen(utsname()->nodename);
1830 	if (i > len)
1831 		i = len;
1832 	errno = 0;
1833 	if (copy_to_user(name, utsname()->nodename, i))
1834 		errno = -EFAULT;
1835 	up_read(&uts_sem);
1836 	return errno;
1837 }
1838 
1839 #endif
1840 
1841 /*
1842  * Only setdomainname; getdomainname can be implemented by calling
1843  * uname()
1844  */
1845 asmlinkage long sys_setdomainname(char __user *name, int len)
1846 {
1847 	int errno;
1848 	char tmp[__NEW_UTS_LEN];
1849 
1850 	if (!capable(CAP_SYS_ADMIN))
1851 		return -EPERM;
1852 	if (len < 0 || len > __NEW_UTS_LEN)
1853 		return -EINVAL;
1854 
1855 	down_write(&uts_sem);
1856 	errno = -EFAULT;
1857 	if (!copy_from_user(tmp, name, len)) {
1858 		memcpy(utsname()->domainname, tmp, len);
1859 		utsname()->domainname[len] = 0;
1860 		errno = 0;
1861 	}
1862 	up_write(&uts_sem);
1863 	return errno;
1864 }
1865 
1866 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1867 {
1868 	if (resource >= RLIM_NLIMITS)
1869 		return -EINVAL;
1870 	else {
1871 		struct rlimit value;
1872 		task_lock(current->group_leader);
1873 		value = current->signal->rlim[resource];
1874 		task_unlock(current->group_leader);
1875 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1876 	}
1877 }
1878 
1879 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1880 
1881 /*
1882  *	Back compatibility for getrlimit. Needed for some apps.
1883  */
1884 
1885 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1886 {
1887 	struct rlimit x;
1888 	if (resource >= RLIM_NLIMITS)
1889 		return -EINVAL;
1890 
1891 	task_lock(current->group_leader);
1892 	x = current->signal->rlim[resource];
1893 	task_unlock(current->group_leader);
1894 	if (x.rlim_cur > 0x7FFFFFFF)
1895 		x.rlim_cur = 0x7FFFFFFF;
1896 	if (x.rlim_max > 0x7FFFFFFF)
1897 		x.rlim_max = 0x7FFFFFFF;
1898 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1899 }
1900 
1901 #endif
1902 
1903 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1904 {
1905 	struct rlimit new_rlim, *old_rlim;
1906 	unsigned long it_prof_secs;
1907 	int retval;
1908 
1909 	if (resource >= RLIM_NLIMITS)
1910 		return -EINVAL;
1911 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1912 		return -EFAULT;
1913 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1914 		return -EINVAL;
1915 	old_rlim = current->signal->rlim + resource;
1916 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1917 	    !capable(CAP_SYS_RESOURCE))
1918 		return -EPERM;
1919 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1920 		return -EPERM;
1921 
1922 	retval = security_task_setrlimit(resource, &new_rlim);
1923 	if (retval)
1924 		return retval;
1925 
1926 	task_lock(current->group_leader);
1927 	*old_rlim = new_rlim;
1928 	task_unlock(current->group_leader);
1929 
1930 	if (resource != RLIMIT_CPU)
1931 		goto out;
1932 
1933 	/*
1934 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1935 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1936 	 * very long-standing error, and fixing it now risks breakage of
1937 	 * applications, so we live with it
1938 	 */
1939 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1940 		goto out;
1941 
1942 	it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1943 	if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1944 		unsigned long rlim_cur = new_rlim.rlim_cur;
1945 		cputime_t cputime;
1946 
1947 		if (rlim_cur == 0) {
1948 			/*
1949 			 * The caller is asking for an immediate RLIMIT_CPU
1950 			 * expiry.  But we use the zero value to mean "it was
1951 			 * never set".  So let's cheat and make it one second
1952 			 * instead
1953 			 */
1954 			rlim_cur = 1;
1955 		}
1956 		cputime = secs_to_cputime(rlim_cur);
1957 		read_lock(&tasklist_lock);
1958 		spin_lock_irq(&current->sighand->siglock);
1959 		set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1960 		spin_unlock_irq(&current->sighand->siglock);
1961 		read_unlock(&tasklist_lock);
1962 	}
1963 out:
1964 	return 0;
1965 }
1966 
1967 /*
1968  * It would make sense to put struct rusage in the task_struct,
1969  * except that would make the task_struct be *really big*.  After
1970  * task_struct gets moved into malloc'ed memory, it would
1971  * make sense to do this.  It will make moving the rest of the information
1972  * a lot simpler!  (Which we're not doing right now because we're not
1973  * measuring them yet).
1974  *
1975  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1976  * races with threads incrementing their own counters.  But since word
1977  * reads are atomic, we either get new values or old values and we don't
1978  * care which for the sums.  We always take the siglock to protect reading
1979  * the c* fields from p->signal from races with exit.c updating those
1980  * fields when reaping, so a sample either gets all the additions of a
1981  * given child after it's reaped, or none so this sample is before reaping.
1982  *
1983  * Locking:
1984  * We need to take the siglock for CHILDEREN, SELF and BOTH
1985  * for  the cases current multithreaded, non-current single threaded
1986  * non-current multithreaded.  Thread traversal is now safe with
1987  * the siglock held.
1988  * Strictly speaking, we donot need to take the siglock if we are current and
1989  * single threaded,  as no one else can take our signal_struct away, no one
1990  * else can  reap the  children to update signal->c* counters, and no one else
1991  * can race with the signal-> fields. If we do not take any lock, the
1992  * signal-> fields could be read out of order while another thread was just
1993  * exiting. So we should  place a read memory barrier when we avoid the lock.
1994  * On the writer side,  write memory barrier is implied in  __exit_signal
1995  * as __exit_signal releases  the siglock spinlock after updating the signal->
1996  * fields. But we don't do this yet to keep things simple.
1997  *
1998  */
1999 
2000 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
2001 {
2002 	struct task_struct *t;
2003 	unsigned long flags;
2004 	cputime_t utime, stime;
2005 
2006 	memset((char *) r, 0, sizeof *r);
2007 	utime = stime = cputime_zero;
2008 
2009 	rcu_read_lock();
2010 	if (!lock_task_sighand(p, &flags)) {
2011 		rcu_read_unlock();
2012 		return;
2013 	}
2014 
2015 	switch (who) {
2016 		case RUSAGE_BOTH:
2017 		case RUSAGE_CHILDREN:
2018 			utime = p->signal->cutime;
2019 			stime = p->signal->cstime;
2020 			r->ru_nvcsw = p->signal->cnvcsw;
2021 			r->ru_nivcsw = p->signal->cnivcsw;
2022 			r->ru_minflt = p->signal->cmin_flt;
2023 			r->ru_majflt = p->signal->cmaj_flt;
2024 
2025 			if (who == RUSAGE_CHILDREN)
2026 				break;
2027 
2028 		case RUSAGE_SELF:
2029 			utime = cputime_add(utime, p->signal->utime);
2030 			stime = cputime_add(stime, p->signal->stime);
2031 			r->ru_nvcsw += p->signal->nvcsw;
2032 			r->ru_nivcsw += p->signal->nivcsw;
2033 			r->ru_minflt += p->signal->min_flt;
2034 			r->ru_majflt += p->signal->maj_flt;
2035 			t = p;
2036 			do {
2037 				utime = cputime_add(utime, t->utime);
2038 				stime = cputime_add(stime, t->stime);
2039 				r->ru_nvcsw += t->nvcsw;
2040 				r->ru_nivcsw += t->nivcsw;
2041 				r->ru_minflt += t->min_flt;
2042 				r->ru_majflt += t->maj_flt;
2043 				t = next_thread(t);
2044 			} while (t != p);
2045 			break;
2046 
2047 		default:
2048 			BUG();
2049 	}
2050 
2051 	unlock_task_sighand(p, &flags);
2052 	rcu_read_unlock();
2053 
2054 	cputime_to_timeval(utime, &r->ru_utime);
2055 	cputime_to_timeval(stime, &r->ru_stime);
2056 }
2057 
2058 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
2059 {
2060 	struct rusage r;
2061 	k_getrusage(p, who, &r);
2062 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
2063 }
2064 
2065 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
2066 {
2067 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
2068 		return -EINVAL;
2069 	return getrusage(current, who, ru);
2070 }
2071 
2072 asmlinkage long sys_umask(int mask)
2073 {
2074 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
2075 	return mask;
2076 }
2077 
2078 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
2079 			  unsigned long arg4, unsigned long arg5)
2080 {
2081 	long error;
2082 
2083 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2084 	if (error)
2085 		return error;
2086 
2087 	switch (option) {
2088 		case PR_SET_PDEATHSIG:
2089 			if (!valid_signal(arg2)) {
2090 				error = -EINVAL;
2091 				break;
2092 			}
2093 			current->pdeath_signal = arg2;
2094 			break;
2095 		case PR_GET_PDEATHSIG:
2096 			error = put_user(current->pdeath_signal, (int __user *)arg2);
2097 			break;
2098 		case PR_GET_DUMPABLE:
2099 			error = current->mm->dumpable;
2100 			break;
2101 		case PR_SET_DUMPABLE:
2102 			if (arg2 < 0 || arg2 > 1) {
2103 				error = -EINVAL;
2104 				break;
2105 			}
2106 			current->mm->dumpable = arg2;
2107 			break;
2108 
2109 		case PR_SET_UNALIGN:
2110 			error = SET_UNALIGN_CTL(current, arg2);
2111 			break;
2112 		case PR_GET_UNALIGN:
2113 			error = GET_UNALIGN_CTL(current, arg2);
2114 			break;
2115 		case PR_SET_FPEMU:
2116 			error = SET_FPEMU_CTL(current, arg2);
2117 			break;
2118 		case PR_GET_FPEMU:
2119 			error = GET_FPEMU_CTL(current, arg2);
2120 			break;
2121 		case PR_SET_FPEXC:
2122 			error = SET_FPEXC_CTL(current, arg2);
2123 			break;
2124 		case PR_GET_FPEXC:
2125 			error = GET_FPEXC_CTL(current, arg2);
2126 			break;
2127 		case PR_GET_TIMING:
2128 			error = PR_TIMING_STATISTICAL;
2129 			break;
2130 		case PR_SET_TIMING:
2131 			if (arg2 == PR_TIMING_STATISTICAL)
2132 				error = 0;
2133 			else
2134 				error = -EINVAL;
2135 			break;
2136 
2137 		case PR_GET_KEEPCAPS:
2138 			if (current->keep_capabilities)
2139 				error = 1;
2140 			break;
2141 		case PR_SET_KEEPCAPS:
2142 			if (arg2 != 0 && arg2 != 1) {
2143 				error = -EINVAL;
2144 				break;
2145 			}
2146 			current->keep_capabilities = arg2;
2147 			break;
2148 		case PR_SET_NAME: {
2149 			struct task_struct *me = current;
2150 			unsigned char ncomm[sizeof(me->comm)];
2151 
2152 			ncomm[sizeof(me->comm)-1] = 0;
2153 			if (strncpy_from_user(ncomm, (char __user *)arg2,
2154 						sizeof(me->comm)-1) < 0)
2155 				return -EFAULT;
2156 			set_task_comm(me, ncomm);
2157 			return 0;
2158 		}
2159 		case PR_GET_NAME: {
2160 			struct task_struct *me = current;
2161 			unsigned char tcomm[sizeof(me->comm)];
2162 
2163 			get_task_comm(tcomm, me);
2164 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
2165 				return -EFAULT;
2166 			return 0;
2167 		}
2168 		case PR_GET_ENDIAN:
2169 			error = GET_ENDIAN(current, arg2);
2170 			break;
2171 		case PR_SET_ENDIAN:
2172 			error = SET_ENDIAN(current, arg2);
2173 			break;
2174 
2175 		default:
2176 			error = -EINVAL;
2177 			break;
2178 	}
2179 	return error;
2180 }
2181 
2182 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
2183 	   		   struct getcpu_cache __user *cache)
2184 {
2185 	int err = 0;
2186 	int cpu = raw_smp_processor_id();
2187 	if (cpup)
2188 		err |= put_user(cpu, cpup);
2189 	if (nodep)
2190 		err |= put_user(cpu_to_node(cpu), nodep);
2191 	if (cache) {
2192 		/*
2193 		 * The cache is not needed for this implementation,
2194 		 * but make sure user programs pass something
2195 		 * valid. vsyscall implementations can instead make
2196 		 * good use of the cache. Only use t0 and t1 because
2197 		 * these are available in both 32bit and 64bit ABI (no
2198 		 * need for a compat_getcpu). 32bit has enough
2199 		 * padding
2200 		 */
2201 		unsigned long t0, t1;
2202 		get_user(t0, &cache->blob[0]);
2203 		get_user(t1, &cache->blob[1]);
2204 		t0++;
2205 		t1++;
2206 		put_user(t0, &cache->blob[0]);
2207 		put_user(t1, &cache->blob[1]);
2208 	}
2209 	return err ? -EFAULT : 0;
2210 }
2211