xref: /linux/kernel/sys.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 
38 #include <linux/compat.h>
39 #include <linux/syscalls.h>
40 #include <linux/kprobes.h>
41 #include <linux/user_namespace.h>
42 
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/unistd.h>
46 
47 #ifndef SET_UNALIGN_CTL
48 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
49 #endif
50 #ifndef GET_UNALIGN_CTL
51 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
52 #endif
53 #ifndef SET_FPEMU_CTL
54 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_FPEMU_CTL
57 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef SET_FPEXC_CTL
60 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
61 #endif
62 #ifndef GET_FPEXC_CTL
63 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
64 #endif
65 #ifndef GET_ENDIAN
66 # define GET_ENDIAN(a,b)	(-EINVAL)
67 #endif
68 #ifndef SET_ENDIAN
69 # define SET_ENDIAN(a,b)	(-EINVAL)
70 #endif
71 #ifndef GET_TSC_CTL
72 # define GET_TSC_CTL(a)		(-EINVAL)
73 #endif
74 #ifndef SET_TSC_CTL
75 # define SET_TSC_CTL(a)		(-EINVAL)
76 #endif
77 
78 /*
79  * this is where the system-wide overflow UID and GID are defined, for
80  * architectures that now have 32-bit UID/GID but didn't in the past
81  */
82 
83 int overflowuid = DEFAULT_OVERFLOWUID;
84 int overflowgid = DEFAULT_OVERFLOWGID;
85 
86 #ifdef CONFIG_UID16
87 EXPORT_SYMBOL(overflowuid);
88 EXPORT_SYMBOL(overflowgid);
89 #endif
90 
91 /*
92  * the same as above, but for filesystems which can only store a 16-bit
93  * UID and GID. as such, this is needed on all architectures
94  */
95 
96 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
97 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
98 
99 EXPORT_SYMBOL(fs_overflowuid);
100 EXPORT_SYMBOL(fs_overflowgid);
101 
102 /*
103  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
104  */
105 
106 int C_A_D = 1;
107 struct pid *cad_pid;
108 EXPORT_SYMBOL(cad_pid);
109 
110 /*
111  * If set, this is used for preparing the system to power off.
112  */
113 
114 void (*pm_power_off_prepare)(void);
115 
116 /*
117  * set the priority of a task
118  * - the caller must hold the RCU read lock
119  */
120 static int set_one_prio(struct task_struct *p, int niceval, int error)
121 {
122 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
123 	int no_nice;
124 
125 	if (pcred->uid  != cred->euid &&
126 	    pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
127 		error = -EPERM;
128 		goto out;
129 	}
130 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
131 		error = -EACCES;
132 		goto out;
133 	}
134 	no_nice = security_task_setnice(p, niceval);
135 	if (no_nice) {
136 		error = no_nice;
137 		goto out;
138 	}
139 	if (error == -ESRCH)
140 		error = 0;
141 	set_user_nice(p, niceval);
142 out:
143 	return error;
144 }
145 
146 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
147 {
148 	struct task_struct *g, *p;
149 	struct user_struct *user;
150 	const struct cred *cred = current_cred();
151 	int error = -EINVAL;
152 	struct pid *pgrp;
153 
154 	if (which > PRIO_USER || which < PRIO_PROCESS)
155 		goto out;
156 
157 	/* normalize: avoid signed division (rounding problems) */
158 	error = -ESRCH;
159 	if (niceval < -20)
160 		niceval = -20;
161 	if (niceval > 19)
162 		niceval = 19;
163 
164 	read_lock(&tasklist_lock);
165 	switch (which) {
166 		case PRIO_PROCESS:
167 			if (who)
168 				p = find_task_by_vpid(who);
169 			else
170 				p = current;
171 			if (p)
172 				error = set_one_prio(p, niceval, error);
173 			break;
174 		case PRIO_PGRP:
175 			if (who)
176 				pgrp = find_vpid(who);
177 			else
178 				pgrp = task_pgrp(current);
179 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
180 				error = set_one_prio(p, niceval, error);
181 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
182 			break;
183 		case PRIO_USER:
184 			user = (struct user_struct *) cred->user;
185 			if (!who)
186 				who = cred->uid;
187 			else if ((who != cred->uid) &&
188 				 !(user = find_user(who)))
189 				goto out_unlock;	/* No processes for this user */
190 
191 			do_each_thread(g, p)
192 				if (__task_cred(p)->uid == who)
193 					error = set_one_prio(p, niceval, error);
194 			while_each_thread(g, p);
195 			if (who != cred->uid)
196 				free_uid(user);		/* For find_user() */
197 			break;
198 	}
199 out_unlock:
200 	read_unlock(&tasklist_lock);
201 out:
202 	return error;
203 }
204 
205 /*
206  * Ugh. To avoid negative return values, "getpriority()" will
207  * not return the normal nice-value, but a negated value that
208  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
209  * to stay compatible.
210  */
211 SYSCALL_DEFINE2(getpriority, int, which, int, who)
212 {
213 	struct task_struct *g, *p;
214 	struct user_struct *user;
215 	const struct cred *cred = current_cred();
216 	long niceval, retval = -ESRCH;
217 	struct pid *pgrp;
218 
219 	if (which > PRIO_USER || which < PRIO_PROCESS)
220 		return -EINVAL;
221 
222 	read_lock(&tasklist_lock);
223 	switch (which) {
224 		case PRIO_PROCESS:
225 			if (who)
226 				p = find_task_by_vpid(who);
227 			else
228 				p = current;
229 			if (p) {
230 				niceval = 20 - task_nice(p);
231 				if (niceval > retval)
232 					retval = niceval;
233 			}
234 			break;
235 		case PRIO_PGRP:
236 			if (who)
237 				pgrp = find_vpid(who);
238 			else
239 				pgrp = task_pgrp(current);
240 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
241 				niceval = 20 - task_nice(p);
242 				if (niceval > retval)
243 					retval = niceval;
244 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
245 			break;
246 		case PRIO_USER:
247 			user = (struct user_struct *) cred->user;
248 			if (!who)
249 				who = cred->uid;
250 			else if ((who != cred->uid) &&
251 				 !(user = find_user(who)))
252 				goto out_unlock;	/* No processes for this user */
253 
254 			do_each_thread(g, p)
255 				if (__task_cred(p)->uid == who) {
256 					niceval = 20 - task_nice(p);
257 					if (niceval > retval)
258 						retval = niceval;
259 				}
260 			while_each_thread(g, p);
261 			if (who != cred->uid)
262 				free_uid(user);		/* for find_user() */
263 			break;
264 	}
265 out_unlock:
266 	read_unlock(&tasklist_lock);
267 
268 	return retval;
269 }
270 
271 /**
272  *	emergency_restart - reboot the system
273  *
274  *	Without shutting down any hardware or taking any locks
275  *	reboot the system.  This is called when we know we are in
276  *	trouble so this is our best effort to reboot.  This is
277  *	safe to call in interrupt context.
278  */
279 void emergency_restart(void)
280 {
281 	machine_emergency_restart();
282 }
283 EXPORT_SYMBOL_GPL(emergency_restart);
284 
285 void kernel_restart_prepare(char *cmd)
286 {
287 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
288 	system_state = SYSTEM_RESTART;
289 	device_shutdown();
290 	sysdev_shutdown();
291 }
292 
293 /**
294  *	kernel_restart - reboot the system
295  *	@cmd: pointer to buffer containing command to execute for restart
296  *		or %NULL
297  *
298  *	Shutdown everything and perform a clean reboot.
299  *	This is not safe to call in interrupt context.
300  */
301 void kernel_restart(char *cmd)
302 {
303 	kernel_restart_prepare(cmd);
304 	if (!cmd)
305 		printk(KERN_EMERG "Restarting system.\n");
306 	else
307 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
308 	machine_restart(cmd);
309 }
310 EXPORT_SYMBOL_GPL(kernel_restart);
311 
312 static void kernel_shutdown_prepare(enum system_states state)
313 {
314 	blocking_notifier_call_chain(&reboot_notifier_list,
315 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
316 	system_state = state;
317 	device_shutdown();
318 }
319 /**
320  *	kernel_halt - halt the system
321  *
322  *	Shutdown everything and perform a clean system halt.
323  */
324 void kernel_halt(void)
325 {
326 	kernel_shutdown_prepare(SYSTEM_HALT);
327 	sysdev_shutdown();
328 	printk(KERN_EMERG "System halted.\n");
329 	machine_halt();
330 }
331 
332 EXPORT_SYMBOL_GPL(kernel_halt);
333 
334 /**
335  *	kernel_power_off - power_off the system
336  *
337  *	Shutdown everything and perform a clean system power_off.
338  */
339 void kernel_power_off(void)
340 {
341 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
342 	if (pm_power_off_prepare)
343 		pm_power_off_prepare();
344 	disable_nonboot_cpus();
345 	sysdev_shutdown();
346 	printk(KERN_EMERG "Power down.\n");
347 	machine_power_off();
348 }
349 EXPORT_SYMBOL_GPL(kernel_power_off);
350 /*
351  * Reboot system call: for obvious reasons only root may call it,
352  * and even root needs to set up some magic numbers in the registers
353  * so that some mistake won't make this reboot the whole machine.
354  * You can also set the meaning of the ctrl-alt-del-key here.
355  *
356  * reboot doesn't sync: do that yourself before calling this.
357  */
358 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
359 		void __user *, arg)
360 {
361 	char buffer[256];
362 
363 	/* We only trust the superuser with rebooting the system. */
364 	if (!capable(CAP_SYS_BOOT))
365 		return -EPERM;
366 
367 	/* For safety, we require "magic" arguments. */
368 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
369 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
370 	                magic2 != LINUX_REBOOT_MAGIC2A &&
371 			magic2 != LINUX_REBOOT_MAGIC2B &&
372 	                magic2 != LINUX_REBOOT_MAGIC2C))
373 		return -EINVAL;
374 
375 	/* Instead of trying to make the power_off code look like
376 	 * halt when pm_power_off is not set do it the easy way.
377 	 */
378 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
379 		cmd = LINUX_REBOOT_CMD_HALT;
380 
381 	lock_kernel();
382 	switch (cmd) {
383 	case LINUX_REBOOT_CMD_RESTART:
384 		kernel_restart(NULL);
385 		break;
386 
387 	case LINUX_REBOOT_CMD_CAD_ON:
388 		C_A_D = 1;
389 		break;
390 
391 	case LINUX_REBOOT_CMD_CAD_OFF:
392 		C_A_D = 0;
393 		break;
394 
395 	case LINUX_REBOOT_CMD_HALT:
396 		kernel_halt();
397 		unlock_kernel();
398 		do_exit(0);
399 		break;
400 
401 	case LINUX_REBOOT_CMD_POWER_OFF:
402 		kernel_power_off();
403 		unlock_kernel();
404 		do_exit(0);
405 		break;
406 
407 	case LINUX_REBOOT_CMD_RESTART2:
408 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
409 			unlock_kernel();
410 			return -EFAULT;
411 		}
412 		buffer[sizeof(buffer) - 1] = '\0';
413 
414 		kernel_restart(buffer);
415 		break;
416 
417 #ifdef CONFIG_KEXEC
418 	case LINUX_REBOOT_CMD_KEXEC:
419 		{
420 			int ret;
421 			ret = kernel_kexec();
422 			unlock_kernel();
423 			return ret;
424 		}
425 #endif
426 
427 #ifdef CONFIG_HIBERNATION
428 	case LINUX_REBOOT_CMD_SW_SUSPEND:
429 		{
430 			int ret = hibernate();
431 			unlock_kernel();
432 			return ret;
433 		}
434 #endif
435 
436 	default:
437 		unlock_kernel();
438 		return -EINVAL;
439 	}
440 	unlock_kernel();
441 	return 0;
442 }
443 
444 static void deferred_cad(struct work_struct *dummy)
445 {
446 	kernel_restart(NULL);
447 }
448 
449 /*
450  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451  * As it's called within an interrupt, it may NOT sync: the only choice
452  * is whether to reboot at once, or just ignore the ctrl-alt-del.
453  */
454 void ctrl_alt_del(void)
455 {
456 	static DECLARE_WORK(cad_work, deferred_cad);
457 
458 	if (C_A_D)
459 		schedule_work(&cad_work);
460 	else
461 		kill_cad_pid(SIGINT, 1);
462 }
463 
464 /*
465  * Unprivileged users may change the real gid to the effective gid
466  * or vice versa.  (BSD-style)
467  *
468  * If you set the real gid at all, or set the effective gid to a value not
469  * equal to the real gid, then the saved gid is set to the new effective gid.
470  *
471  * This makes it possible for a setgid program to completely drop its
472  * privileges, which is often a useful assertion to make when you are doing
473  * a security audit over a program.
474  *
475  * The general idea is that a program which uses just setregid() will be
476  * 100% compatible with BSD.  A program which uses just setgid() will be
477  * 100% compatible with POSIX with saved IDs.
478  *
479  * SMP: There are not races, the GIDs are checked only by filesystem
480  *      operations (as far as semantic preservation is concerned).
481  */
482 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
483 {
484 	const struct cred *old;
485 	struct cred *new;
486 	int retval;
487 
488 	new = prepare_creds();
489 	if (!new)
490 		return -ENOMEM;
491 	old = current_cred();
492 
493 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
494 	if (retval)
495 		goto error;
496 
497 	retval = -EPERM;
498 	if (rgid != (gid_t) -1) {
499 		if (old->gid == rgid ||
500 		    old->egid == rgid ||
501 		    capable(CAP_SETGID))
502 			new->gid = rgid;
503 		else
504 			goto error;
505 	}
506 	if (egid != (gid_t) -1) {
507 		if (old->gid == egid ||
508 		    old->egid == egid ||
509 		    old->sgid == egid ||
510 		    capable(CAP_SETGID))
511 			new->egid = egid;
512 		else
513 			goto error;
514 	}
515 
516 	if (rgid != (gid_t) -1 ||
517 	    (egid != (gid_t) -1 && egid != old->gid))
518 		new->sgid = new->egid;
519 	new->fsgid = new->egid;
520 
521 	return commit_creds(new);
522 
523 error:
524 	abort_creds(new);
525 	return retval;
526 }
527 
528 /*
529  * setgid() is implemented like SysV w/ SAVED_IDS
530  *
531  * SMP: Same implicit races as above.
532  */
533 SYSCALL_DEFINE1(setgid, gid_t, gid)
534 {
535 	const struct cred *old;
536 	struct cred *new;
537 	int retval;
538 
539 	new = prepare_creds();
540 	if (!new)
541 		return -ENOMEM;
542 	old = current_cred();
543 
544 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
545 	if (retval)
546 		goto error;
547 
548 	retval = -EPERM;
549 	if (capable(CAP_SETGID))
550 		new->gid = new->egid = new->sgid = new->fsgid = gid;
551 	else if (gid == old->gid || gid == old->sgid)
552 		new->egid = new->fsgid = gid;
553 	else
554 		goto error;
555 
556 	return commit_creds(new);
557 
558 error:
559 	abort_creds(new);
560 	return retval;
561 }
562 
563 /*
564  * change the user struct in a credentials set to match the new UID
565  */
566 static int set_user(struct cred *new)
567 {
568 	struct user_struct *new_user;
569 
570 	new_user = alloc_uid(current_user_ns(), new->uid);
571 	if (!new_user)
572 		return -EAGAIN;
573 
574 	if (atomic_read(&new_user->processes) >=
575 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
576 			new_user != INIT_USER) {
577 		free_uid(new_user);
578 		return -EAGAIN;
579 	}
580 
581 	free_uid(new->user);
582 	new->user = new_user;
583 	return 0;
584 }
585 
586 /*
587  * Unprivileged users may change the real uid to the effective uid
588  * or vice versa.  (BSD-style)
589  *
590  * If you set the real uid at all, or set the effective uid to a value not
591  * equal to the real uid, then the saved uid is set to the new effective uid.
592  *
593  * This makes it possible for a setuid program to completely drop its
594  * privileges, which is often a useful assertion to make when you are doing
595  * a security audit over a program.
596  *
597  * The general idea is that a program which uses just setreuid() will be
598  * 100% compatible with BSD.  A program which uses just setuid() will be
599  * 100% compatible with POSIX with saved IDs.
600  */
601 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
602 {
603 	const struct cred *old;
604 	struct cred *new;
605 	int retval;
606 
607 	new = prepare_creds();
608 	if (!new)
609 		return -ENOMEM;
610 	old = current_cred();
611 
612 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
613 	if (retval)
614 		goto error;
615 
616 	retval = -EPERM;
617 	if (ruid != (uid_t) -1) {
618 		new->uid = ruid;
619 		if (old->uid != ruid &&
620 		    old->euid != ruid &&
621 		    !capable(CAP_SETUID))
622 			goto error;
623 	}
624 
625 	if (euid != (uid_t) -1) {
626 		new->euid = euid;
627 		if (old->uid != euid &&
628 		    old->euid != euid &&
629 		    old->suid != euid &&
630 		    !capable(CAP_SETUID))
631 			goto error;
632 	}
633 
634 	retval = -EAGAIN;
635 	if (new->uid != old->uid && set_user(new) < 0)
636 		goto error;
637 
638 	if (ruid != (uid_t) -1 ||
639 	    (euid != (uid_t) -1 && euid != old->uid))
640 		new->suid = new->euid;
641 	new->fsuid = new->euid;
642 
643 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
644 	if (retval < 0)
645 		goto error;
646 
647 	return commit_creds(new);
648 
649 error:
650 	abort_creds(new);
651 	return retval;
652 }
653 
654 /*
655  * setuid() is implemented like SysV with SAVED_IDS
656  *
657  * Note that SAVED_ID's is deficient in that a setuid root program
658  * like sendmail, for example, cannot set its uid to be a normal
659  * user and then switch back, because if you're root, setuid() sets
660  * the saved uid too.  If you don't like this, blame the bright people
661  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
662  * will allow a root program to temporarily drop privileges and be able to
663  * regain them by swapping the real and effective uid.
664  */
665 SYSCALL_DEFINE1(setuid, uid_t, uid)
666 {
667 	const struct cred *old;
668 	struct cred *new;
669 	int retval;
670 
671 	new = prepare_creds();
672 	if (!new)
673 		return -ENOMEM;
674 	old = current_cred();
675 
676 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
677 	if (retval)
678 		goto error;
679 
680 	retval = -EPERM;
681 	if (capable(CAP_SETUID)) {
682 		new->suid = new->uid = uid;
683 		if (uid != old->uid && set_user(new) < 0) {
684 			retval = -EAGAIN;
685 			goto error;
686 		}
687 	} else if (uid != old->uid && uid != new->suid) {
688 		goto error;
689 	}
690 
691 	new->fsuid = new->euid = uid;
692 
693 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
694 	if (retval < 0)
695 		goto error;
696 
697 	return commit_creds(new);
698 
699 error:
700 	abort_creds(new);
701 	return retval;
702 }
703 
704 
705 /*
706  * This function implements a generic ability to update ruid, euid,
707  * and suid.  This allows you to implement the 4.4 compatible seteuid().
708  */
709 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
710 {
711 	const struct cred *old;
712 	struct cred *new;
713 	int retval;
714 
715 	new = prepare_creds();
716 	if (!new)
717 		return -ENOMEM;
718 
719 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
720 	if (retval)
721 		goto error;
722 	old = current_cred();
723 
724 	retval = -EPERM;
725 	if (!capable(CAP_SETUID)) {
726 		if (ruid != (uid_t) -1 && ruid != old->uid &&
727 		    ruid != old->euid  && ruid != old->suid)
728 			goto error;
729 		if (euid != (uid_t) -1 && euid != old->uid &&
730 		    euid != old->euid  && euid != old->suid)
731 			goto error;
732 		if (suid != (uid_t) -1 && suid != old->uid &&
733 		    suid != old->euid  && suid != old->suid)
734 			goto error;
735 	}
736 
737 	retval = -EAGAIN;
738 	if (ruid != (uid_t) -1) {
739 		new->uid = ruid;
740 		if (ruid != old->uid && set_user(new) < 0)
741 			goto error;
742 	}
743 	if (euid != (uid_t) -1)
744 		new->euid = euid;
745 	if (suid != (uid_t) -1)
746 		new->suid = suid;
747 	new->fsuid = new->euid;
748 
749 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
750 	if (retval < 0)
751 		goto error;
752 
753 	return commit_creds(new);
754 
755 error:
756 	abort_creds(new);
757 	return retval;
758 }
759 
760 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
761 {
762 	const struct cred *cred = current_cred();
763 	int retval;
764 
765 	if (!(retval   = put_user(cred->uid,  ruid)) &&
766 	    !(retval   = put_user(cred->euid, euid)))
767 		retval = put_user(cred->suid, suid);
768 
769 	return retval;
770 }
771 
772 /*
773  * Same as above, but for rgid, egid, sgid.
774  */
775 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
776 {
777 	const struct cred *old;
778 	struct cred *new;
779 	int retval;
780 
781 	new = prepare_creds();
782 	if (!new)
783 		return -ENOMEM;
784 	old = current_cred();
785 
786 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
787 	if (retval)
788 		goto error;
789 
790 	retval = -EPERM;
791 	if (!capable(CAP_SETGID)) {
792 		if (rgid != (gid_t) -1 && rgid != old->gid &&
793 		    rgid != old->egid  && rgid != old->sgid)
794 			goto error;
795 		if (egid != (gid_t) -1 && egid != old->gid &&
796 		    egid != old->egid  && egid != old->sgid)
797 			goto error;
798 		if (sgid != (gid_t) -1 && sgid != old->gid &&
799 		    sgid != old->egid  && sgid != old->sgid)
800 			goto error;
801 	}
802 
803 	if (rgid != (gid_t) -1)
804 		new->gid = rgid;
805 	if (egid != (gid_t) -1)
806 		new->egid = egid;
807 	if (sgid != (gid_t) -1)
808 		new->sgid = sgid;
809 	new->fsgid = new->egid;
810 
811 	return commit_creds(new);
812 
813 error:
814 	abort_creds(new);
815 	return retval;
816 }
817 
818 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
819 {
820 	const struct cred *cred = current_cred();
821 	int retval;
822 
823 	if (!(retval   = put_user(cred->gid,  rgid)) &&
824 	    !(retval   = put_user(cred->egid, egid)))
825 		retval = put_user(cred->sgid, sgid);
826 
827 	return retval;
828 }
829 
830 
831 /*
832  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
833  * is used for "access()" and for the NFS daemon (letting nfsd stay at
834  * whatever uid it wants to). It normally shadows "euid", except when
835  * explicitly set by setfsuid() or for access..
836  */
837 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
838 {
839 	const struct cred *old;
840 	struct cred *new;
841 	uid_t old_fsuid;
842 
843 	new = prepare_creds();
844 	if (!new)
845 		return current_fsuid();
846 	old = current_cred();
847 	old_fsuid = old->fsuid;
848 
849 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
850 		goto error;
851 
852 	if (uid == old->uid  || uid == old->euid  ||
853 	    uid == old->suid || uid == old->fsuid ||
854 	    capable(CAP_SETUID)) {
855 		if (uid != old_fsuid) {
856 			new->fsuid = uid;
857 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
858 				goto change_okay;
859 		}
860 	}
861 
862 error:
863 	abort_creds(new);
864 	return old_fsuid;
865 
866 change_okay:
867 	commit_creds(new);
868 	return old_fsuid;
869 }
870 
871 /*
872  * Samma på svenska..
873  */
874 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
875 {
876 	const struct cred *old;
877 	struct cred *new;
878 	gid_t old_fsgid;
879 
880 	new = prepare_creds();
881 	if (!new)
882 		return current_fsgid();
883 	old = current_cred();
884 	old_fsgid = old->fsgid;
885 
886 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
887 		goto error;
888 
889 	if (gid == old->gid  || gid == old->egid  ||
890 	    gid == old->sgid || gid == old->fsgid ||
891 	    capable(CAP_SETGID)) {
892 		if (gid != old_fsgid) {
893 			new->fsgid = gid;
894 			goto change_okay;
895 		}
896 	}
897 
898 error:
899 	abort_creds(new);
900 	return old_fsgid;
901 
902 change_okay:
903 	commit_creds(new);
904 	return old_fsgid;
905 }
906 
907 void do_sys_times(struct tms *tms)
908 {
909 	struct task_cputime cputime;
910 	cputime_t cutime, cstime;
911 
912 	thread_group_cputime(current, &cputime);
913 	spin_lock_irq(&current->sighand->siglock);
914 	cutime = current->signal->cutime;
915 	cstime = current->signal->cstime;
916 	spin_unlock_irq(&current->sighand->siglock);
917 	tms->tms_utime = cputime_to_clock_t(cputime.utime);
918 	tms->tms_stime = cputime_to_clock_t(cputime.stime);
919 	tms->tms_cutime = cputime_to_clock_t(cutime);
920 	tms->tms_cstime = cputime_to_clock_t(cstime);
921 }
922 
923 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
924 {
925 	if (tbuf) {
926 		struct tms tmp;
927 
928 		do_sys_times(&tmp);
929 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
930 			return -EFAULT;
931 	}
932 	force_successful_syscall_return();
933 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
934 }
935 
936 /*
937  * This needs some heavy checking ...
938  * I just haven't the stomach for it. I also don't fully
939  * understand sessions/pgrp etc. Let somebody who does explain it.
940  *
941  * OK, I think I have the protection semantics right.... this is really
942  * only important on a multi-user system anyway, to make sure one user
943  * can't send a signal to a process owned by another.  -TYT, 12/12/91
944  *
945  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
946  * LBT 04.03.94
947  */
948 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
949 {
950 	struct task_struct *p;
951 	struct task_struct *group_leader = current->group_leader;
952 	struct pid *pgrp;
953 	int err;
954 
955 	if (!pid)
956 		pid = task_pid_vnr(group_leader);
957 	if (!pgid)
958 		pgid = pid;
959 	if (pgid < 0)
960 		return -EINVAL;
961 
962 	/* From this point forward we keep holding onto the tasklist lock
963 	 * so that our parent does not change from under us. -DaveM
964 	 */
965 	write_lock_irq(&tasklist_lock);
966 
967 	err = -ESRCH;
968 	p = find_task_by_vpid(pid);
969 	if (!p)
970 		goto out;
971 
972 	err = -EINVAL;
973 	if (!thread_group_leader(p))
974 		goto out;
975 
976 	if (same_thread_group(p->real_parent, group_leader)) {
977 		err = -EPERM;
978 		if (task_session(p) != task_session(group_leader))
979 			goto out;
980 		err = -EACCES;
981 		if (p->did_exec)
982 			goto out;
983 	} else {
984 		err = -ESRCH;
985 		if (p != group_leader)
986 			goto out;
987 	}
988 
989 	err = -EPERM;
990 	if (p->signal->leader)
991 		goto out;
992 
993 	pgrp = task_pid(p);
994 	if (pgid != pid) {
995 		struct task_struct *g;
996 
997 		pgrp = find_vpid(pgid);
998 		g = pid_task(pgrp, PIDTYPE_PGID);
999 		if (!g || task_session(g) != task_session(group_leader))
1000 			goto out;
1001 	}
1002 
1003 	err = security_task_setpgid(p, pgid);
1004 	if (err)
1005 		goto out;
1006 
1007 	if (task_pgrp(p) != pgrp) {
1008 		change_pid(p, PIDTYPE_PGID, pgrp);
1009 		set_task_pgrp(p, pid_nr(pgrp));
1010 	}
1011 
1012 	err = 0;
1013 out:
1014 	/* All paths lead to here, thus we are safe. -DaveM */
1015 	write_unlock_irq(&tasklist_lock);
1016 	return err;
1017 }
1018 
1019 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1020 {
1021 	struct task_struct *p;
1022 	struct pid *grp;
1023 	int retval;
1024 
1025 	rcu_read_lock();
1026 	if (!pid)
1027 		grp = task_pgrp(current);
1028 	else {
1029 		retval = -ESRCH;
1030 		p = find_task_by_vpid(pid);
1031 		if (!p)
1032 			goto out;
1033 		grp = task_pgrp(p);
1034 		if (!grp)
1035 			goto out;
1036 
1037 		retval = security_task_getpgid(p);
1038 		if (retval)
1039 			goto out;
1040 	}
1041 	retval = pid_vnr(grp);
1042 out:
1043 	rcu_read_unlock();
1044 	return retval;
1045 }
1046 
1047 #ifdef __ARCH_WANT_SYS_GETPGRP
1048 
1049 SYSCALL_DEFINE0(getpgrp)
1050 {
1051 	return sys_getpgid(0);
1052 }
1053 
1054 #endif
1055 
1056 SYSCALL_DEFINE1(getsid, pid_t, pid)
1057 {
1058 	struct task_struct *p;
1059 	struct pid *sid;
1060 	int retval;
1061 
1062 	rcu_read_lock();
1063 	if (!pid)
1064 		sid = task_session(current);
1065 	else {
1066 		retval = -ESRCH;
1067 		p = find_task_by_vpid(pid);
1068 		if (!p)
1069 			goto out;
1070 		sid = task_session(p);
1071 		if (!sid)
1072 			goto out;
1073 
1074 		retval = security_task_getsid(p);
1075 		if (retval)
1076 			goto out;
1077 	}
1078 	retval = pid_vnr(sid);
1079 out:
1080 	rcu_read_unlock();
1081 	return retval;
1082 }
1083 
1084 SYSCALL_DEFINE0(setsid)
1085 {
1086 	struct task_struct *group_leader = current->group_leader;
1087 	struct pid *sid = task_pid(group_leader);
1088 	pid_t session = pid_vnr(sid);
1089 	int err = -EPERM;
1090 
1091 	write_lock_irq(&tasklist_lock);
1092 	/* Fail if I am already a session leader */
1093 	if (group_leader->signal->leader)
1094 		goto out;
1095 
1096 	/* Fail if a process group id already exists that equals the
1097 	 * proposed session id.
1098 	 */
1099 	if (pid_task(sid, PIDTYPE_PGID))
1100 		goto out;
1101 
1102 	group_leader->signal->leader = 1;
1103 	__set_special_pids(sid);
1104 
1105 	proc_clear_tty(group_leader);
1106 
1107 	err = session;
1108 out:
1109 	write_unlock_irq(&tasklist_lock);
1110 	return err;
1111 }
1112 
1113 /*
1114  * Supplementary group IDs
1115  */
1116 
1117 /* init to 2 - one for init_task, one to ensure it is never freed */
1118 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1119 
1120 struct group_info *groups_alloc(int gidsetsize)
1121 {
1122 	struct group_info *group_info;
1123 	int nblocks;
1124 	int i;
1125 
1126 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1127 	/* Make sure we always allocate at least one indirect block pointer */
1128 	nblocks = nblocks ? : 1;
1129 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1130 	if (!group_info)
1131 		return NULL;
1132 	group_info->ngroups = gidsetsize;
1133 	group_info->nblocks = nblocks;
1134 	atomic_set(&group_info->usage, 1);
1135 
1136 	if (gidsetsize <= NGROUPS_SMALL)
1137 		group_info->blocks[0] = group_info->small_block;
1138 	else {
1139 		for (i = 0; i < nblocks; i++) {
1140 			gid_t *b;
1141 			b = (void *)__get_free_page(GFP_USER);
1142 			if (!b)
1143 				goto out_undo_partial_alloc;
1144 			group_info->blocks[i] = b;
1145 		}
1146 	}
1147 	return group_info;
1148 
1149 out_undo_partial_alloc:
1150 	while (--i >= 0) {
1151 		free_page((unsigned long)group_info->blocks[i]);
1152 	}
1153 	kfree(group_info);
1154 	return NULL;
1155 }
1156 
1157 EXPORT_SYMBOL(groups_alloc);
1158 
1159 void groups_free(struct group_info *group_info)
1160 {
1161 	if (group_info->blocks[0] != group_info->small_block) {
1162 		int i;
1163 		for (i = 0; i < group_info->nblocks; i++)
1164 			free_page((unsigned long)group_info->blocks[i]);
1165 	}
1166 	kfree(group_info);
1167 }
1168 
1169 EXPORT_SYMBOL(groups_free);
1170 
1171 /* export the group_info to a user-space array */
1172 static int groups_to_user(gid_t __user *grouplist,
1173 			  const struct group_info *group_info)
1174 {
1175 	int i;
1176 	unsigned int count = group_info->ngroups;
1177 
1178 	for (i = 0; i < group_info->nblocks; i++) {
1179 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1180 		unsigned int len = cp_count * sizeof(*grouplist);
1181 
1182 		if (copy_to_user(grouplist, group_info->blocks[i], len))
1183 			return -EFAULT;
1184 
1185 		grouplist += NGROUPS_PER_BLOCK;
1186 		count -= cp_count;
1187 	}
1188 	return 0;
1189 }
1190 
1191 /* fill a group_info from a user-space array - it must be allocated already */
1192 static int groups_from_user(struct group_info *group_info,
1193     gid_t __user *grouplist)
1194 {
1195 	int i;
1196 	unsigned int count = group_info->ngroups;
1197 
1198 	for (i = 0; i < group_info->nblocks; i++) {
1199 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1200 		unsigned int len = cp_count * sizeof(*grouplist);
1201 
1202 		if (copy_from_user(group_info->blocks[i], grouplist, len))
1203 			return -EFAULT;
1204 
1205 		grouplist += NGROUPS_PER_BLOCK;
1206 		count -= cp_count;
1207 	}
1208 	return 0;
1209 }
1210 
1211 /* a simple Shell sort */
1212 static void groups_sort(struct group_info *group_info)
1213 {
1214 	int base, max, stride;
1215 	int gidsetsize = group_info->ngroups;
1216 
1217 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1218 		; /* nothing */
1219 	stride /= 3;
1220 
1221 	while (stride) {
1222 		max = gidsetsize - stride;
1223 		for (base = 0; base < max; base++) {
1224 			int left = base;
1225 			int right = left + stride;
1226 			gid_t tmp = GROUP_AT(group_info, right);
1227 
1228 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1229 				GROUP_AT(group_info, right) =
1230 				    GROUP_AT(group_info, left);
1231 				right = left;
1232 				left -= stride;
1233 			}
1234 			GROUP_AT(group_info, right) = tmp;
1235 		}
1236 		stride /= 3;
1237 	}
1238 }
1239 
1240 /* a simple bsearch */
1241 int groups_search(const struct group_info *group_info, gid_t grp)
1242 {
1243 	unsigned int left, right;
1244 
1245 	if (!group_info)
1246 		return 0;
1247 
1248 	left = 0;
1249 	right = group_info->ngroups;
1250 	while (left < right) {
1251 		unsigned int mid = (left+right)/2;
1252 		int cmp = grp - GROUP_AT(group_info, mid);
1253 		if (cmp > 0)
1254 			left = mid + 1;
1255 		else if (cmp < 0)
1256 			right = mid;
1257 		else
1258 			return 1;
1259 	}
1260 	return 0;
1261 }
1262 
1263 /**
1264  * set_groups - Change a group subscription in a set of credentials
1265  * @new: The newly prepared set of credentials to alter
1266  * @group_info: The group list to install
1267  *
1268  * Validate a group subscription and, if valid, insert it into a set
1269  * of credentials.
1270  */
1271 int set_groups(struct cred *new, struct group_info *group_info)
1272 {
1273 	int retval;
1274 
1275 	retval = security_task_setgroups(group_info);
1276 	if (retval)
1277 		return retval;
1278 
1279 	put_group_info(new->group_info);
1280 	groups_sort(group_info);
1281 	get_group_info(group_info);
1282 	new->group_info = group_info;
1283 	return 0;
1284 }
1285 
1286 EXPORT_SYMBOL(set_groups);
1287 
1288 /**
1289  * set_current_groups - Change current's group subscription
1290  * @group_info: The group list to impose
1291  *
1292  * Validate a group subscription and, if valid, impose it upon current's task
1293  * security record.
1294  */
1295 int set_current_groups(struct group_info *group_info)
1296 {
1297 	struct cred *new;
1298 	int ret;
1299 
1300 	new = prepare_creds();
1301 	if (!new)
1302 		return -ENOMEM;
1303 
1304 	ret = set_groups(new, group_info);
1305 	if (ret < 0) {
1306 		abort_creds(new);
1307 		return ret;
1308 	}
1309 
1310 	return commit_creds(new);
1311 }
1312 
1313 EXPORT_SYMBOL(set_current_groups);
1314 
1315 SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist)
1316 {
1317 	const struct cred *cred = current_cred();
1318 	int i;
1319 
1320 	if (gidsetsize < 0)
1321 		return -EINVAL;
1322 
1323 	/* no need to grab task_lock here; it cannot change */
1324 	i = cred->group_info->ngroups;
1325 	if (gidsetsize) {
1326 		if (i > gidsetsize) {
1327 			i = -EINVAL;
1328 			goto out;
1329 		}
1330 		if (groups_to_user(grouplist, cred->group_info)) {
1331 			i = -EFAULT;
1332 			goto out;
1333 		}
1334 	}
1335 out:
1336 	return i;
1337 }
1338 
1339 /*
1340  *	SMP: Our groups are copy-on-write. We can set them safely
1341  *	without another task interfering.
1342  */
1343 
1344 SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist)
1345 {
1346 	struct group_info *group_info;
1347 	int retval;
1348 
1349 	if (!capable(CAP_SETGID))
1350 		return -EPERM;
1351 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1352 		return -EINVAL;
1353 
1354 	group_info = groups_alloc(gidsetsize);
1355 	if (!group_info)
1356 		return -ENOMEM;
1357 	retval = groups_from_user(group_info, grouplist);
1358 	if (retval) {
1359 		put_group_info(group_info);
1360 		return retval;
1361 	}
1362 
1363 	retval = set_current_groups(group_info);
1364 	put_group_info(group_info);
1365 
1366 	return retval;
1367 }
1368 
1369 /*
1370  * Check whether we're fsgid/egid or in the supplemental group..
1371  */
1372 int in_group_p(gid_t grp)
1373 {
1374 	const struct cred *cred = current_cred();
1375 	int retval = 1;
1376 
1377 	if (grp != cred->fsgid)
1378 		retval = groups_search(cred->group_info, grp);
1379 	return retval;
1380 }
1381 
1382 EXPORT_SYMBOL(in_group_p);
1383 
1384 int in_egroup_p(gid_t grp)
1385 {
1386 	const struct cred *cred = current_cred();
1387 	int retval = 1;
1388 
1389 	if (grp != cred->egid)
1390 		retval = groups_search(cred->group_info, grp);
1391 	return retval;
1392 }
1393 
1394 EXPORT_SYMBOL(in_egroup_p);
1395 
1396 DECLARE_RWSEM(uts_sem);
1397 
1398 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1399 {
1400 	int errno = 0;
1401 
1402 	down_read(&uts_sem);
1403 	if (copy_to_user(name, utsname(), sizeof *name))
1404 		errno = -EFAULT;
1405 	up_read(&uts_sem);
1406 	return errno;
1407 }
1408 
1409 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1410 {
1411 	int errno;
1412 	char tmp[__NEW_UTS_LEN];
1413 
1414 	if (!capable(CAP_SYS_ADMIN))
1415 		return -EPERM;
1416 	if (len < 0 || len > __NEW_UTS_LEN)
1417 		return -EINVAL;
1418 	down_write(&uts_sem);
1419 	errno = -EFAULT;
1420 	if (!copy_from_user(tmp, name, len)) {
1421 		struct new_utsname *u = utsname();
1422 
1423 		memcpy(u->nodename, tmp, len);
1424 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1425 		errno = 0;
1426 	}
1427 	up_write(&uts_sem);
1428 	return errno;
1429 }
1430 
1431 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1432 
1433 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1434 {
1435 	int i, errno;
1436 	struct new_utsname *u;
1437 
1438 	if (len < 0)
1439 		return -EINVAL;
1440 	down_read(&uts_sem);
1441 	u = utsname();
1442 	i = 1 + strlen(u->nodename);
1443 	if (i > len)
1444 		i = len;
1445 	errno = 0;
1446 	if (copy_to_user(name, u->nodename, i))
1447 		errno = -EFAULT;
1448 	up_read(&uts_sem);
1449 	return errno;
1450 }
1451 
1452 #endif
1453 
1454 /*
1455  * Only setdomainname; getdomainname can be implemented by calling
1456  * uname()
1457  */
1458 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1459 {
1460 	int errno;
1461 	char tmp[__NEW_UTS_LEN];
1462 
1463 	if (!capable(CAP_SYS_ADMIN))
1464 		return -EPERM;
1465 	if (len < 0 || len > __NEW_UTS_LEN)
1466 		return -EINVAL;
1467 
1468 	down_write(&uts_sem);
1469 	errno = -EFAULT;
1470 	if (!copy_from_user(tmp, name, len)) {
1471 		struct new_utsname *u = utsname();
1472 
1473 		memcpy(u->domainname, tmp, len);
1474 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1475 		errno = 0;
1476 	}
1477 	up_write(&uts_sem);
1478 	return errno;
1479 }
1480 
1481 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1482 {
1483 	if (resource >= RLIM_NLIMITS)
1484 		return -EINVAL;
1485 	else {
1486 		struct rlimit value;
1487 		task_lock(current->group_leader);
1488 		value = current->signal->rlim[resource];
1489 		task_unlock(current->group_leader);
1490 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1491 	}
1492 }
1493 
1494 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1495 
1496 /*
1497  *	Back compatibility for getrlimit. Needed for some apps.
1498  */
1499 
1500 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1501 		struct rlimit __user *, rlim)
1502 {
1503 	struct rlimit x;
1504 	if (resource >= RLIM_NLIMITS)
1505 		return -EINVAL;
1506 
1507 	task_lock(current->group_leader);
1508 	x = current->signal->rlim[resource];
1509 	task_unlock(current->group_leader);
1510 	if (x.rlim_cur > 0x7FFFFFFF)
1511 		x.rlim_cur = 0x7FFFFFFF;
1512 	if (x.rlim_max > 0x7FFFFFFF)
1513 		x.rlim_max = 0x7FFFFFFF;
1514 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1515 }
1516 
1517 #endif
1518 
1519 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1520 {
1521 	struct rlimit new_rlim, *old_rlim;
1522 	int retval;
1523 
1524 	if (resource >= RLIM_NLIMITS)
1525 		return -EINVAL;
1526 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1527 		return -EFAULT;
1528 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1529 		return -EINVAL;
1530 	old_rlim = current->signal->rlim + resource;
1531 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1532 	    !capable(CAP_SYS_RESOURCE))
1533 		return -EPERM;
1534 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1535 		return -EPERM;
1536 
1537 	retval = security_task_setrlimit(resource, &new_rlim);
1538 	if (retval)
1539 		return retval;
1540 
1541 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1542 		/*
1543 		 * The caller is asking for an immediate RLIMIT_CPU
1544 		 * expiry.  But we use the zero value to mean "it was
1545 		 * never set".  So let's cheat and make it one second
1546 		 * instead
1547 		 */
1548 		new_rlim.rlim_cur = 1;
1549 	}
1550 
1551 	task_lock(current->group_leader);
1552 	*old_rlim = new_rlim;
1553 	task_unlock(current->group_leader);
1554 
1555 	if (resource != RLIMIT_CPU)
1556 		goto out;
1557 
1558 	/*
1559 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1560 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1561 	 * very long-standing error, and fixing it now risks breakage of
1562 	 * applications, so we live with it
1563 	 */
1564 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1565 		goto out;
1566 
1567 	update_rlimit_cpu(new_rlim.rlim_cur);
1568 out:
1569 	return 0;
1570 }
1571 
1572 /*
1573  * It would make sense to put struct rusage in the task_struct,
1574  * except that would make the task_struct be *really big*.  After
1575  * task_struct gets moved into malloc'ed memory, it would
1576  * make sense to do this.  It will make moving the rest of the information
1577  * a lot simpler!  (Which we're not doing right now because we're not
1578  * measuring them yet).
1579  *
1580  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1581  * races with threads incrementing their own counters.  But since word
1582  * reads are atomic, we either get new values or old values and we don't
1583  * care which for the sums.  We always take the siglock to protect reading
1584  * the c* fields from p->signal from races with exit.c updating those
1585  * fields when reaping, so a sample either gets all the additions of a
1586  * given child after it's reaped, or none so this sample is before reaping.
1587  *
1588  * Locking:
1589  * We need to take the siglock for CHILDEREN, SELF and BOTH
1590  * for  the cases current multithreaded, non-current single threaded
1591  * non-current multithreaded.  Thread traversal is now safe with
1592  * the siglock held.
1593  * Strictly speaking, we donot need to take the siglock if we are current and
1594  * single threaded,  as no one else can take our signal_struct away, no one
1595  * else can  reap the  children to update signal->c* counters, and no one else
1596  * can race with the signal-> fields. If we do not take any lock, the
1597  * signal-> fields could be read out of order while another thread was just
1598  * exiting. So we should  place a read memory barrier when we avoid the lock.
1599  * On the writer side,  write memory barrier is implied in  __exit_signal
1600  * as __exit_signal releases  the siglock spinlock after updating the signal->
1601  * fields. But we don't do this yet to keep things simple.
1602  *
1603  */
1604 
1605 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1606 {
1607 	r->ru_nvcsw += t->nvcsw;
1608 	r->ru_nivcsw += t->nivcsw;
1609 	r->ru_minflt += t->min_flt;
1610 	r->ru_majflt += t->maj_flt;
1611 	r->ru_inblock += task_io_get_inblock(t);
1612 	r->ru_oublock += task_io_get_oublock(t);
1613 }
1614 
1615 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1616 {
1617 	struct task_struct *t;
1618 	unsigned long flags;
1619 	cputime_t utime, stime;
1620 	struct task_cputime cputime;
1621 
1622 	memset((char *) r, 0, sizeof *r);
1623 	utime = stime = cputime_zero;
1624 
1625 	if (who == RUSAGE_THREAD) {
1626 		utime = task_utime(current);
1627 		stime = task_stime(current);
1628 		accumulate_thread_rusage(p, r);
1629 		goto out;
1630 	}
1631 
1632 	if (!lock_task_sighand(p, &flags))
1633 		return;
1634 
1635 	switch (who) {
1636 		case RUSAGE_BOTH:
1637 		case RUSAGE_CHILDREN:
1638 			utime = p->signal->cutime;
1639 			stime = p->signal->cstime;
1640 			r->ru_nvcsw = p->signal->cnvcsw;
1641 			r->ru_nivcsw = p->signal->cnivcsw;
1642 			r->ru_minflt = p->signal->cmin_flt;
1643 			r->ru_majflt = p->signal->cmaj_flt;
1644 			r->ru_inblock = p->signal->cinblock;
1645 			r->ru_oublock = p->signal->coublock;
1646 
1647 			if (who == RUSAGE_CHILDREN)
1648 				break;
1649 
1650 		case RUSAGE_SELF:
1651 			thread_group_cputime(p, &cputime);
1652 			utime = cputime_add(utime, cputime.utime);
1653 			stime = cputime_add(stime, cputime.stime);
1654 			r->ru_nvcsw += p->signal->nvcsw;
1655 			r->ru_nivcsw += p->signal->nivcsw;
1656 			r->ru_minflt += p->signal->min_flt;
1657 			r->ru_majflt += p->signal->maj_flt;
1658 			r->ru_inblock += p->signal->inblock;
1659 			r->ru_oublock += p->signal->oublock;
1660 			t = p;
1661 			do {
1662 				accumulate_thread_rusage(t, r);
1663 				t = next_thread(t);
1664 			} while (t != p);
1665 			break;
1666 
1667 		default:
1668 			BUG();
1669 	}
1670 	unlock_task_sighand(p, &flags);
1671 
1672 out:
1673 	cputime_to_timeval(utime, &r->ru_utime);
1674 	cputime_to_timeval(stime, &r->ru_stime);
1675 }
1676 
1677 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1678 {
1679 	struct rusage r;
1680 	k_getrusage(p, who, &r);
1681 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1682 }
1683 
1684 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1685 {
1686 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1687 	    who != RUSAGE_THREAD)
1688 		return -EINVAL;
1689 	return getrusage(current, who, ru);
1690 }
1691 
1692 SYSCALL_DEFINE1(umask, int, mask)
1693 {
1694 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1695 	return mask;
1696 }
1697 
1698 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1699 		unsigned long, arg4, unsigned long, arg5)
1700 {
1701 	struct task_struct *me = current;
1702 	unsigned char comm[sizeof(me->comm)];
1703 	long error;
1704 
1705 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1706 	if (error != -ENOSYS)
1707 		return error;
1708 
1709 	error = 0;
1710 	switch (option) {
1711 		case PR_SET_PDEATHSIG:
1712 			if (!valid_signal(arg2)) {
1713 				error = -EINVAL;
1714 				break;
1715 			}
1716 			me->pdeath_signal = arg2;
1717 			error = 0;
1718 			break;
1719 		case PR_GET_PDEATHSIG:
1720 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1721 			break;
1722 		case PR_GET_DUMPABLE:
1723 			error = get_dumpable(me->mm);
1724 			break;
1725 		case PR_SET_DUMPABLE:
1726 			if (arg2 < 0 || arg2 > 1) {
1727 				error = -EINVAL;
1728 				break;
1729 			}
1730 			set_dumpable(me->mm, arg2);
1731 			error = 0;
1732 			break;
1733 
1734 		case PR_SET_UNALIGN:
1735 			error = SET_UNALIGN_CTL(me, arg2);
1736 			break;
1737 		case PR_GET_UNALIGN:
1738 			error = GET_UNALIGN_CTL(me, arg2);
1739 			break;
1740 		case PR_SET_FPEMU:
1741 			error = SET_FPEMU_CTL(me, arg2);
1742 			break;
1743 		case PR_GET_FPEMU:
1744 			error = GET_FPEMU_CTL(me, arg2);
1745 			break;
1746 		case PR_SET_FPEXC:
1747 			error = SET_FPEXC_CTL(me, arg2);
1748 			break;
1749 		case PR_GET_FPEXC:
1750 			error = GET_FPEXC_CTL(me, arg2);
1751 			break;
1752 		case PR_GET_TIMING:
1753 			error = PR_TIMING_STATISTICAL;
1754 			break;
1755 		case PR_SET_TIMING:
1756 			if (arg2 != PR_TIMING_STATISTICAL)
1757 				error = -EINVAL;
1758 			else
1759 				error = 0;
1760 			break;
1761 
1762 		case PR_SET_NAME:
1763 			comm[sizeof(me->comm)-1] = 0;
1764 			if (strncpy_from_user(comm, (char __user *)arg2,
1765 					      sizeof(me->comm) - 1) < 0)
1766 				return -EFAULT;
1767 			set_task_comm(me, comm);
1768 			return 0;
1769 		case PR_GET_NAME:
1770 			get_task_comm(comm, me);
1771 			if (copy_to_user((char __user *)arg2, comm,
1772 					 sizeof(comm)))
1773 				return -EFAULT;
1774 			return 0;
1775 		case PR_GET_ENDIAN:
1776 			error = GET_ENDIAN(me, arg2);
1777 			break;
1778 		case PR_SET_ENDIAN:
1779 			error = SET_ENDIAN(me, arg2);
1780 			break;
1781 
1782 		case PR_GET_SECCOMP:
1783 			error = prctl_get_seccomp();
1784 			break;
1785 		case PR_SET_SECCOMP:
1786 			error = prctl_set_seccomp(arg2);
1787 			break;
1788 		case PR_GET_TSC:
1789 			error = GET_TSC_CTL(arg2);
1790 			break;
1791 		case PR_SET_TSC:
1792 			error = SET_TSC_CTL(arg2);
1793 			break;
1794 		case PR_GET_TIMERSLACK:
1795 			error = current->timer_slack_ns;
1796 			break;
1797 		case PR_SET_TIMERSLACK:
1798 			if (arg2 <= 0)
1799 				current->timer_slack_ns =
1800 					current->default_timer_slack_ns;
1801 			else
1802 				current->timer_slack_ns = arg2;
1803 			error = 0;
1804 			break;
1805 		default:
1806 			error = -EINVAL;
1807 			break;
1808 	}
1809 	return error;
1810 }
1811 
1812 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1813 		struct getcpu_cache __user *, unused)
1814 {
1815 	int err = 0;
1816 	int cpu = raw_smp_processor_id();
1817 	if (cpup)
1818 		err |= put_user(cpu, cpup);
1819 	if (nodep)
1820 		err |= put_user(cpu_to_node(cpu), nodep);
1821 	return err ? -EFAULT : 0;
1822 }
1823 
1824 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1825 
1826 static void argv_cleanup(char **argv, char **envp)
1827 {
1828 	argv_free(argv);
1829 }
1830 
1831 /**
1832  * orderly_poweroff - Trigger an orderly system poweroff
1833  * @force: force poweroff if command execution fails
1834  *
1835  * This may be called from any context to trigger a system shutdown.
1836  * If the orderly shutdown fails, it will force an immediate shutdown.
1837  */
1838 int orderly_poweroff(bool force)
1839 {
1840 	int argc;
1841 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1842 	static char *envp[] = {
1843 		"HOME=/",
1844 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1845 		NULL
1846 	};
1847 	int ret = -ENOMEM;
1848 	struct subprocess_info *info;
1849 
1850 	if (argv == NULL) {
1851 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1852 		       __func__, poweroff_cmd);
1853 		goto out;
1854 	}
1855 
1856 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1857 	if (info == NULL) {
1858 		argv_free(argv);
1859 		goto out;
1860 	}
1861 
1862 	call_usermodehelper_setcleanup(info, argv_cleanup);
1863 
1864 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1865 
1866   out:
1867 	if (ret && force) {
1868 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1869 		       "forcing the issue\n");
1870 
1871 		/* I guess this should try to kick off some daemon to
1872 		   sync and poweroff asap.  Or not even bother syncing
1873 		   if we're doing an emergency shutdown? */
1874 		emergency_sync();
1875 		kernel_power_off();
1876 	}
1877 
1878 	return ret;
1879 }
1880 EXPORT_SYMBOL_GPL(orderly_poweroff);
1881