xref: /linux/kernel/sys.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/unistd.h>
40 
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
43 #endif
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
46 #endif
47 #ifndef SET_FPEMU_CTL
48 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
49 #endif
50 #ifndef GET_FPEMU_CTL
51 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
52 #endif
53 #ifndef SET_FPEXC_CTL
54 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_FPEXC_CTL
57 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef GET_ENDIAN
60 # define GET_ENDIAN(a,b)	(-EINVAL)
61 #endif
62 #ifndef SET_ENDIAN
63 # define SET_ENDIAN(a,b)	(-EINVAL)
64 #endif
65 
66 /*
67  * this is where the system-wide overflow UID and GID are defined, for
68  * architectures that now have 32-bit UID/GID but didn't in the past
69  */
70 
71 int overflowuid = DEFAULT_OVERFLOWUID;
72 int overflowgid = DEFAULT_OVERFLOWGID;
73 
74 #ifdef CONFIG_UID16
75 EXPORT_SYMBOL(overflowuid);
76 EXPORT_SYMBOL(overflowgid);
77 #endif
78 
79 /*
80  * the same as above, but for filesystems which can only store a 16-bit
81  * UID and GID. as such, this is needed on all architectures
82  */
83 
84 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
85 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
86 
87 EXPORT_SYMBOL(fs_overflowuid);
88 EXPORT_SYMBOL(fs_overflowgid);
89 
90 /*
91  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
92  */
93 
94 int C_A_D = 1;
95 struct pid *cad_pid;
96 EXPORT_SYMBOL(cad_pid);
97 
98 /*
99  *	Notifier list for kernel code which wants to be called
100  *	at shutdown. This is used to stop any idling DMA operations
101  *	and the like.
102  */
103 
104 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
105 
106 /*
107  *	Notifier chain core routines.  The exported routines below
108  *	are layered on top of these, with appropriate locking added.
109  */
110 
111 static int notifier_chain_register(struct notifier_block **nl,
112 		struct notifier_block *n)
113 {
114 	while ((*nl) != NULL) {
115 		if (n->priority > (*nl)->priority)
116 			break;
117 		nl = &((*nl)->next);
118 	}
119 	n->next = *nl;
120 	rcu_assign_pointer(*nl, n);
121 	return 0;
122 }
123 
124 static int notifier_chain_unregister(struct notifier_block **nl,
125 		struct notifier_block *n)
126 {
127 	while ((*nl) != NULL) {
128 		if ((*nl) == n) {
129 			rcu_assign_pointer(*nl, n->next);
130 			return 0;
131 		}
132 		nl = &((*nl)->next);
133 	}
134 	return -ENOENT;
135 }
136 
137 static int __kprobes notifier_call_chain(struct notifier_block **nl,
138 		unsigned long val, void *v)
139 {
140 	int ret = NOTIFY_DONE;
141 	struct notifier_block *nb, *next_nb;
142 
143 	nb = rcu_dereference(*nl);
144 	while (nb) {
145 		next_nb = rcu_dereference(nb->next);
146 		ret = nb->notifier_call(nb, val, v);
147 		if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
148 			break;
149 		nb = next_nb;
150 	}
151 	return ret;
152 }
153 
154 /*
155  *	Atomic notifier chain routines.  Registration and unregistration
156  *	use a spinlock, and call_chain is synchronized by RCU (no locks).
157  */
158 
159 /**
160  *	atomic_notifier_chain_register - Add notifier to an atomic notifier chain
161  *	@nh: Pointer to head of the atomic notifier chain
162  *	@n: New entry in notifier chain
163  *
164  *	Adds a notifier to an atomic notifier chain.
165  *
166  *	Currently always returns zero.
167  */
168 
169 int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
170 		struct notifier_block *n)
171 {
172 	unsigned long flags;
173 	int ret;
174 
175 	spin_lock_irqsave(&nh->lock, flags);
176 	ret = notifier_chain_register(&nh->head, n);
177 	spin_unlock_irqrestore(&nh->lock, flags);
178 	return ret;
179 }
180 
181 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
182 
183 /**
184  *	atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
185  *	@nh: Pointer to head of the atomic notifier chain
186  *	@n: Entry to remove from notifier chain
187  *
188  *	Removes a notifier from an atomic notifier chain.
189  *
190  *	Returns zero on success or %-ENOENT on failure.
191  */
192 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
193 		struct notifier_block *n)
194 {
195 	unsigned long flags;
196 	int ret;
197 
198 	spin_lock_irqsave(&nh->lock, flags);
199 	ret = notifier_chain_unregister(&nh->head, n);
200 	spin_unlock_irqrestore(&nh->lock, flags);
201 	synchronize_rcu();
202 	return ret;
203 }
204 
205 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
206 
207 /**
208  *	atomic_notifier_call_chain - Call functions in an atomic notifier chain
209  *	@nh: Pointer to head of the atomic notifier chain
210  *	@val: Value passed unmodified to notifier function
211  *	@v: Pointer passed unmodified to notifier function
212  *
213  *	Calls each function in a notifier chain in turn.  The functions
214  *	run in an atomic context, so they must not block.
215  *	This routine uses RCU to synchronize with changes to the chain.
216  *
217  *	If the return value of the notifier can be and'ed
218  *	with %NOTIFY_STOP_MASK then atomic_notifier_call_chain
219  *	will return immediately, with the return value of
220  *	the notifier function which halted execution.
221  *	Otherwise the return value is the return value
222  *	of the last notifier function called.
223  */
224 
225 int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
226 		unsigned long val, void *v)
227 {
228 	int ret;
229 
230 	rcu_read_lock();
231 	ret = notifier_call_chain(&nh->head, val, v);
232 	rcu_read_unlock();
233 	return ret;
234 }
235 
236 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
237 
238 /*
239  *	Blocking notifier chain routines.  All access to the chain is
240  *	synchronized by an rwsem.
241  */
242 
243 /**
244  *	blocking_notifier_chain_register - Add notifier to a blocking notifier chain
245  *	@nh: Pointer to head of the blocking notifier chain
246  *	@n: New entry in notifier chain
247  *
248  *	Adds a notifier to a blocking notifier chain.
249  *	Must be called in process context.
250  *
251  *	Currently always returns zero.
252  */
253 
254 int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
255 		struct notifier_block *n)
256 {
257 	int ret;
258 
259 	/*
260 	 * This code gets used during boot-up, when task switching is
261 	 * not yet working and interrupts must remain disabled.  At
262 	 * such times we must not call down_write().
263 	 */
264 	if (unlikely(system_state == SYSTEM_BOOTING))
265 		return notifier_chain_register(&nh->head, n);
266 
267 	down_write(&nh->rwsem);
268 	ret = notifier_chain_register(&nh->head, n);
269 	up_write(&nh->rwsem);
270 	return ret;
271 }
272 
273 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
274 
275 /**
276  *	blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
277  *	@nh: Pointer to head of the blocking notifier chain
278  *	@n: Entry to remove from notifier chain
279  *
280  *	Removes a notifier from a blocking notifier chain.
281  *	Must be called from process context.
282  *
283  *	Returns zero on success or %-ENOENT on failure.
284  */
285 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
286 		struct notifier_block *n)
287 {
288 	int ret;
289 
290 	/*
291 	 * This code gets used during boot-up, when task switching is
292 	 * not yet working and interrupts must remain disabled.  At
293 	 * such times we must not call down_write().
294 	 */
295 	if (unlikely(system_state == SYSTEM_BOOTING))
296 		return notifier_chain_unregister(&nh->head, n);
297 
298 	down_write(&nh->rwsem);
299 	ret = notifier_chain_unregister(&nh->head, n);
300 	up_write(&nh->rwsem);
301 	return ret;
302 }
303 
304 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
305 
306 /**
307  *	blocking_notifier_call_chain - Call functions in a blocking notifier chain
308  *	@nh: Pointer to head of the blocking notifier chain
309  *	@val: Value passed unmodified to notifier function
310  *	@v: Pointer passed unmodified to notifier function
311  *
312  *	Calls each function in a notifier chain in turn.  The functions
313  *	run in a process context, so they are allowed to block.
314  *
315  *	If the return value of the notifier can be and'ed
316  *	with %NOTIFY_STOP_MASK then blocking_notifier_call_chain
317  *	will return immediately, with the return value of
318  *	the notifier function which halted execution.
319  *	Otherwise the return value is the return value
320  *	of the last notifier function called.
321  */
322 
323 int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
324 		unsigned long val, void *v)
325 {
326 	int ret = NOTIFY_DONE;
327 
328 	/*
329 	 * We check the head outside the lock, but if this access is
330 	 * racy then it does not matter what the result of the test
331 	 * is, we re-check the list after having taken the lock anyway:
332 	 */
333 	if (rcu_dereference(nh->head)) {
334 		down_read(&nh->rwsem);
335 		ret = notifier_call_chain(&nh->head, val, v);
336 		up_read(&nh->rwsem);
337 	}
338 	return ret;
339 }
340 
341 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
342 
343 /*
344  *	Raw notifier chain routines.  There is no protection;
345  *	the caller must provide it.  Use at your own risk!
346  */
347 
348 /**
349  *	raw_notifier_chain_register - Add notifier to a raw notifier chain
350  *	@nh: Pointer to head of the raw notifier chain
351  *	@n: New entry in notifier chain
352  *
353  *	Adds a notifier to a raw notifier chain.
354  *	All locking must be provided by the caller.
355  *
356  *	Currently always returns zero.
357  */
358 
359 int raw_notifier_chain_register(struct raw_notifier_head *nh,
360 		struct notifier_block *n)
361 {
362 	return notifier_chain_register(&nh->head, n);
363 }
364 
365 EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
366 
367 /**
368  *	raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
369  *	@nh: Pointer to head of the raw notifier chain
370  *	@n: Entry to remove from notifier chain
371  *
372  *	Removes a notifier from a raw notifier chain.
373  *	All locking must be provided by the caller.
374  *
375  *	Returns zero on success or %-ENOENT on failure.
376  */
377 int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
378 		struct notifier_block *n)
379 {
380 	return notifier_chain_unregister(&nh->head, n);
381 }
382 
383 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
384 
385 /**
386  *	raw_notifier_call_chain - Call functions in a raw notifier chain
387  *	@nh: Pointer to head of the raw notifier chain
388  *	@val: Value passed unmodified to notifier function
389  *	@v: Pointer passed unmodified to notifier function
390  *
391  *	Calls each function in a notifier chain in turn.  The functions
392  *	run in an undefined context.
393  *	All locking must be provided by the caller.
394  *
395  *	If the return value of the notifier can be and'ed
396  *	with %NOTIFY_STOP_MASK then raw_notifier_call_chain
397  *	will return immediately, with the return value of
398  *	the notifier function which halted execution.
399  *	Otherwise the return value is the return value
400  *	of the last notifier function called.
401  */
402 
403 int raw_notifier_call_chain(struct raw_notifier_head *nh,
404 		unsigned long val, void *v)
405 {
406 	return notifier_call_chain(&nh->head, val, v);
407 }
408 
409 EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
410 
411 /*
412  *	SRCU notifier chain routines.    Registration and unregistration
413  *	use a mutex, and call_chain is synchronized by SRCU (no locks).
414  */
415 
416 /**
417  *	srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
418  *	@nh: Pointer to head of the SRCU notifier chain
419  *	@n: New entry in notifier chain
420  *
421  *	Adds a notifier to an SRCU notifier chain.
422  *	Must be called in process context.
423  *
424  *	Currently always returns zero.
425  */
426 
427 int srcu_notifier_chain_register(struct srcu_notifier_head *nh,
428 		struct notifier_block *n)
429 {
430 	int ret;
431 
432 	/*
433 	 * This code gets used during boot-up, when task switching is
434 	 * not yet working and interrupts must remain disabled.  At
435 	 * such times we must not call mutex_lock().
436 	 */
437 	if (unlikely(system_state == SYSTEM_BOOTING))
438 		return notifier_chain_register(&nh->head, n);
439 
440 	mutex_lock(&nh->mutex);
441 	ret = notifier_chain_register(&nh->head, n);
442 	mutex_unlock(&nh->mutex);
443 	return ret;
444 }
445 
446 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register);
447 
448 /**
449  *	srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
450  *	@nh: Pointer to head of the SRCU notifier chain
451  *	@n: Entry to remove from notifier chain
452  *
453  *	Removes a notifier from an SRCU notifier chain.
454  *	Must be called from process context.
455  *
456  *	Returns zero on success or %-ENOENT on failure.
457  */
458 int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh,
459 		struct notifier_block *n)
460 {
461 	int ret;
462 
463 	/*
464 	 * This code gets used during boot-up, when task switching is
465 	 * not yet working and interrupts must remain disabled.  At
466 	 * such times we must not call mutex_lock().
467 	 */
468 	if (unlikely(system_state == SYSTEM_BOOTING))
469 		return notifier_chain_unregister(&nh->head, n);
470 
471 	mutex_lock(&nh->mutex);
472 	ret = notifier_chain_unregister(&nh->head, n);
473 	mutex_unlock(&nh->mutex);
474 	synchronize_srcu(&nh->srcu);
475 	return ret;
476 }
477 
478 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister);
479 
480 /**
481  *	srcu_notifier_call_chain - Call functions in an SRCU notifier chain
482  *	@nh: Pointer to head of the SRCU notifier chain
483  *	@val: Value passed unmodified to notifier function
484  *	@v: Pointer passed unmodified to notifier function
485  *
486  *	Calls each function in a notifier chain in turn.  The functions
487  *	run in a process context, so they are allowed to block.
488  *
489  *	If the return value of the notifier can be and'ed
490  *	with %NOTIFY_STOP_MASK then srcu_notifier_call_chain
491  *	will return immediately, with the return value of
492  *	the notifier function which halted execution.
493  *	Otherwise the return value is the return value
494  *	of the last notifier function called.
495  */
496 
497 int srcu_notifier_call_chain(struct srcu_notifier_head *nh,
498 		unsigned long val, void *v)
499 {
500 	int ret;
501 	int idx;
502 
503 	idx = srcu_read_lock(&nh->srcu);
504 	ret = notifier_call_chain(&nh->head, val, v);
505 	srcu_read_unlock(&nh->srcu, idx);
506 	return ret;
507 }
508 
509 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain);
510 
511 /**
512  *	srcu_init_notifier_head - Initialize an SRCU notifier head
513  *	@nh: Pointer to head of the srcu notifier chain
514  *
515  *	Unlike other sorts of notifier heads, SRCU notifier heads require
516  *	dynamic initialization.  Be sure to call this routine before
517  *	calling any of the other SRCU notifier routines for this head.
518  *
519  *	If an SRCU notifier head is deallocated, it must first be cleaned
520  *	up by calling srcu_cleanup_notifier_head().  Otherwise the head's
521  *	per-cpu data (used by the SRCU mechanism) will leak.
522  */
523 
524 void srcu_init_notifier_head(struct srcu_notifier_head *nh)
525 {
526 	mutex_init(&nh->mutex);
527 	if (init_srcu_struct(&nh->srcu) < 0)
528 		BUG();
529 	nh->head = NULL;
530 }
531 
532 EXPORT_SYMBOL_GPL(srcu_init_notifier_head);
533 
534 /**
535  *	register_reboot_notifier - Register function to be called at reboot time
536  *	@nb: Info about notifier function to be called
537  *
538  *	Registers a function with the list of functions
539  *	to be called at reboot time.
540  *
541  *	Currently always returns zero, as blocking_notifier_chain_register
542  *	always returns zero.
543  */
544 
545 int register_reboot_notifier(struct notifier_block * nb)
546 {
547 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
548 }
549 
550 EXPORT_SYMBOL(register_reboot_notifier);
551 
552 /**
553  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
554  *	@nb: Hook to be unregistered
555  *
556  *	Unregisters a previously registered reboot
557  *	notifier function.
558  *
559  *	Returns zero on success, or %-ENOENT on failure.
560  */
561 
562 int unregister_reboot_notifier(struct notifier_block * nb)
563 {
564 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
565 }
566 
567 EXPORT_SYMBOL(unregister_reboot_notifier);
568 
569 static int set_one_prio(struct task_struct *p, int niceval, int error)
570 {
571 	int no_nice;
572 
573 	if (p->uid != current->euid &&
574 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
575 		error = -EPERM;
576 		goto out;
577 	}
578 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
579 		error = -EACCES;
580 		goto out;
581 	}
582 	no_nice = security_task_setnice(p, niceval);
583 	if (no_nice) {
584 		error = no_nice;
585 		goto out;
586 	}
587 	if (error == -ESRCH)
588 		error = 0;
589 	set_user_nice(p, niceval);
590 out:
591 	return error;
592 }
593 
594 asmlinkage long sys_setpriority(int which, int who, int niceval)
595 {
596 	struct task_struct *g, *p;
597 	struct user_struct *user;
598 	int error = -EINVAL;
599 
600 	if (which > 2 || which < 0)
601 		goto out;
602 
603 	/* normalize: avoid signed division (rounding problems) */
604 	error = -ESRCH;
605 	if (niceval < -20)
606 		niceval = -20;
607 	if (niceval > 19)
608 		niceval = 19;
609 
610 	read_lock(&tasklist_lock);
611 	switch (which) {
612 		case PRIO_PROCESS:
613 			if (!who)
614 				who = current->pid;
615 			p = find_task_by_pid(who);
616 			if (p)
617 				error = set_one_prio(p, niceval, error);
618 			break;
619 		case PRIO_PGRP:
620 			if (!who)
621 				who = process_group(current);
622 			do_each_task_pid(who, PIDTYPE_PGID, p) {
623 				error = set_one_prio(p, niceval, error);
624 			} while_each_task_pid(who, PIDTYPE_PGID, p);
625 			break;
626 		case PRIO_USER:
627 			user = current->user;
628 			if (!who)
629 				who = current->uid;
630 			else
631 				if ((who != current->uid) && !(user = find_user(who)))
632 					goto out_unlock;	/* No processes for this user */
633 
634 			do_each_thread(g, p)
635 				if (p->uid == who)
636 					error = set_one_prio(p, niceval, error);
637 			while_each_thread(g, p);
638 			if (who != current->uid)
639 				free_uid(user);		/* For find_user() */
640 			break;
641 	}
642 out_unlock:
643 	read_unlock(&tasklist_lock);
644 out:
645 	return error;
646 }
647 
648 /*
649  * Ugh. To avoid negative return values, "getpriority()" will
650  * not return the normal nice-value, but a negated value that
651  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
652  * to stay compatible.
653  */
654 asmlinkage long sys_getpriority(int which, int who)
655 {
656 	struct task_struct *g, *p;
657 	struct user_struct *user;
658 	long niceval, retval = -ESRCH;
659 
660 	if (which > 2 || which < 0)
661 		return -EINVAL;
662 
663 	read_lock(&tasklist_lock);
664 	switch (which) {
665 		case PRIO_PROCESS:
666 			if (!who)
667 				who = current->pid;
668 			p = find_task_by_pid(who);
669 			if (p) {
670 				niceval = 20 - task_nice(p);
671 				if (niceval > retval)
672 					retval = niceval;
673 			}
674 			break;
675 		case PRIO_PGRP:
676 			if (!who)
677 				who = process_group(current);
678 			do_each_task_pid(who, PIDTYPE_PGID, p) {
679 				niceval = 20 - task_nice(p);
680 				if (niceval > retval)
681 					retval = niceval;
682 			} while_each_task_pid(who, PIDTYPE_PGID, p);
683 			break;
684 		case PRIO_USER:
685 			user = current->user;
686 			if (!who)
687 				who = current->uid;
688 			else
689 				if ((who != current->uid) && !(user = find_user(who)))
690 					goto out_unlock;	/* No processes for this user */
691 
692 			do_each_thread(g, p)
693 				if (p->uid == who) {
694 					niceval = 20 - task_nice(p);
695 					if (niceval > retval)
696 						retval = niceval;
697 				}
698 			while_each_thread(g, p);
699 			if (who != current->uid)
700 				free_uid(user);		/* for find_user() */
701 			break;
702 	}
703 out_unlock:
704 	read_unlock(&tasklist_lock);
705 
706 	return retval;
707 }
708 
709 /**
710  *	emergency_restart - reboot the system
711  *
712  *	Without shutting down any hardware or taking any locks
713  *	reboot the system.  This is called when we know we are in
714  *	trouble so this is our best effort to reboot.  This is
715  *	safe to call in interrupt context.
716  */
717 void emergency_restart(void)
718 {
719 	machine_emergency_restart();
720 }
721 EXPORT_SYMBOL_GPL(emergency_restart);
722 
723 static void kernel_restart_prepare(char *cmd)
724 {
725 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
726 	system_state = SYSTEM_RESTART;
727 	device_shutdown();
728 }
729 
730 /**
731  *	kernel_restart - reboot the system
732  *	@cmd: pointer to buffer containing command to execute for restart
733  *		or %NULL
734  *
735  *	Shutdown everything and perform a clean reboot.
736  *	This is not safe to call in interrupt context.
737  */
738 void kernel_restart(char *cmd)
739 {
740 	kernel_restart_prepare(cmd);
741 	if (!cmd)
742 		printk(KERN_EMERG "Restarting system.\n");
743 	else
744 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
745 	machine_restart(cmd);
746 }
747 EXPORT_SYMBOL_GPL(kernel_restart);
748 
749 /**
750  *	kernel_kexec - reboot the system
751  *
752  *	Move into place and start executing a preloaded standalone
753  *	executable.  If nothing was preloaded return an error.
754  */
755 static void kernel_kexec(void)
756 {
757 #ifdef CONFIG_KEXEC
758 	struct kimage *image;
759 	image = xchg(&kexec_image, NULL);
760 	if (!image)
761 		return;
762 	kernel_restart_prepare(NULL);
763 	printk(KERN_EMERG "Starting new kernel\n");
764 	machine_shutdown();
765 	machine_kexec(image);
766 #endif
767 }
768 
769 void kernel_shutdown_prepare(enum system_states state)
770 {
771 	blocking_notifier_call_chain(&reboot_notifier_list,
772 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
773 	system_state = state;
774 	device_shutdown();
775 }
776 /**
777  *	kernel_halt - halt the system
778  *
779  *	Shutdown everything and perform a clean system halt.
780  */
781 void kernel_halt(void)
782 {
783 	kernel_shutdown_prepare(SYSTEM_HALT);
784 	printk(KERN_EMERG "System halted.\n");
785 	machine_halt();
786 }
787 
788 EXPORT_SYMBOL_GPL(kernel_halt);
789 
790 /**
791  *	kernel_power_off - power_off the system
792  *
793  *	Shutdown everything and perform a clean system power_off.
794  */
795 void kernel_power_off(void)
796 {
797 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
798 	printk(KERN_EMERG "Power down.\n");
799 	machine_power_off();
800 }
801 EXPORT_SYMBOL_GPL(kernel_power_off);
802 /*
803  * Reboot system call: for obvious reasons only root may call it,
804  * and even root needs to set up some magic numbers in the registers
805  * so that some mistake won't make this reboot the whole machine.
806  * You can also set the meaning of the ctrl-alt-del-key here.
807  *
808  * reboot doesn't sync: do that yourself before calling this.
809  */
810 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
811 {
812 	char buffer[256];
813 
814 	/* We only trust the superuser with rebooting the system. */
815 	if (!capable(CAP_SYS_BOOT))
816 		return -EPERM;
817 
818 	/* For safety, we require "magic" arguments. */
819 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
820 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
821 	                magic2 != LINUX_REBOOT_MAGIC2A &&
822 			magic2 != LINUX_REBOOT_MAGIC2B &&
823 	                magic2 != LINUX_REBOOT_MAGIC2C))
824 		return -EINVAL;
825 
826 	/* Instead of trying to make the power_off code look like
827 	 * halt when pm_power_off is not set do it the easy way.
828 	 */
829 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
830 		cmd = LINUX_REBOOT_CMD_HALT;
831 
832 	lock_kernel();
833 	switch (cmd) {
834 	case LINUX_REBOOT_CMD_RESTART:
835 		kernel_restart(NULL);
836 		break;
837 
838 	case LINUX_REBOOT_CMD_CAD_ON:
839 		C_A_D = 1;
840 		break;
841 
842 	case LINUX_REBOOT_CMD_CAD_OFF:
843 		C_A_D = 0;
844 		break;
845 
846 	case LINUX_REBOOT_CMD_HALT:
847 		kernel_halt();
848 		unlock_kernel();
849 		do_exit(0);
850 		break;
851 
852 	case LINUX_REBOOT_CMD_POWER_OFF:
853 		kernel_power_off();
854 		unlock_kernel();
855 		do_exit(0);
856 		break;
857 
858 	case LINUX_REBOOT_CMD_RESTART2:
859 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
860 			unlock_kernel();
861 			return -EFAULT;
862 		}
863 		buffer[sizeof(buffer) - 1] = '\0';
864 
865 		kernel_restart(buffer);
866 		break;
867 
868 	case LINUX_REBOOT_CMD_KEXEC:
869 		kernel_kexec();
870 		unlock_kernel();
871 		return -EINVAL;
872 
873 #ifdef CONFIG_SOFTWARE_SUSPEND
874 	case LINUX_REBOOT_CMD_SW_SUSPEND:
875 		{
876 			int ret = software_suspend();
877 			unlock_kernel();
878 			return ret;
879 		}
880 #endif
881 
882 	default:
883 		unlock_kernel();
884 		return -EINVAL;
885 	}
886 	unlock_kernel();
887 	return 0;
888 }
889 
890 static void deferred_cad(struct work_struct *dummy)
891 {
892 	kernel_restart(NULL);
893 }
894 
895 /*
896  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
897  * As it's called within an interrupt, it may NOT sync: the only choice
898  * is whether to reboot at once, or just ignore the ctrl-alt-del.
899  */
900 void ctrl_alt_del(void)
901 {
902 	static DECLARE_WORK(cad_work, deferred_cad);
903 
904 	if (C_A_D)
905 		schedule_work(&cad_work);
906 	else
907 		kill_cad_pid(SIGINT, 1);
908 }
909 
910 /*
911  * Unprivileged users may change the real gid to the effective gid
912  * or vice versa.  (BSD-style)
913  *
914  * If you set the real gid at all, or set the effective gid to a value not
915  * equal to the real gid, then the saved gid is set to the new effective gid.
916  *
917  * This makes it possible for a setgid program to completely drop its
918  * privileges, which is often a useful assertion to make when you are doing
919  * a security audit over a program.
920  *
921  * The general idea is that a program which uses just setregid() will be
922  * 100% compatible with BSD.  A program which uses just setgid() will be
923  * 100% compatible with POSIX with saved IDs.
924  *
925  * SMP: There are not races, the GIDs are checked only by filesystem
926  *      operations (as far as semantic preservation is concerned).
927  */
928 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
929 {
930 	int old_rgid = current->gid;
931 	int old_egid = current->egid;
932 	int new_rgid = old_rgid;
933 	int new_egid = old_egid;
934 	int retval;
935 
936 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
937 	if (retval)
938 		return retval;
939 
940 	if (rgid != (gid_t) -1) {
941 		if ((old_rgid == rgid) ||
942 		    (current->egid==rgid) ||
943 		    capable(CAP_SETGID))
944 			new_rgid = rgid;
945 		else
946 			return -EPERM;
947 	}
948 	if (egid != (gid_t) -1) {
949 		if ((old_rgid == egid) ||
950 		    (current->egid == egid) ||
951 		    (current->sgid == egid) ||
952 		    capable(CAP_SETGID))
953 			new_egid = egid;
954 		else
955 			return -EPERM;
956 	}
957 	if (new_egid != old_egid) {
958 		current->mm->dumpable = suid_dumpable;
959 		smp_wmb();
960 	}
961 	if (rgid != (gid_t) -1 ||
962 	    (egid != (gid_t) -1 && egid != old_rgid))
963 		current->sgid = new_egid;
964 	current->fsgid = new_egid;
965 	current->egid = new_egid;
966 	current->gid = new_rgid;
967 	key_fsgid_changed(current);
968 	proc_id_connector(current, PROC_EVENT_GID);
969 	return 0;
970 }
971 
972 /*
973  * setgid() is implemented like SysV w/ SAVED_IDS
974  *
975  * SMP: Same implicit races as above.
976  */
977 asmlinkage long sys_setgid(gid_t gid)
978 {
979 	int old_egid = current->egid;
980 	int retval;
981 
982 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
983 	if (retval)
984 		return retval;
985 
986 	if (capable(CAP_SETGID)) {
987 		if (old_egid != gid) {
988 			current->mm->dumpable = suid_dumpable;
989 			smp_wmb();
990 		}
991 		current->gid = current->egid = current->sgid = current->fsgid = gid;
992 	} else if ((gid == current->gid) || (gid == current->sgid)) {
993 		if (old_egid != gid) {
994 			current->mm->dumpable = suid_dumpable;
995 			smp_wmb();
996 		}
997 		current->egid = current->fsgid = gid;
998 	}
999 	else
1000 		return -EPERM;
1001 
1002 	key_fsgid_changed(current);
1003 	proc_id_connector(current, PROC_EVENT_GID);
1004 	return 0;
1005 }
1006 
1007 static int set_user(uid_t new_ruid, int dumpclear)
1008 {
1009 	struct user_struct *new_user;
1010 
1011 	new_user = alloc_uid(new_ruid);
1012 	if (!new_user)
1013 		return -EAGAIN;
1014 
1015 	if (atomic_read(&new_user->processes) >=
1016 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
1017 			new_user != &root_user) {
1018 		free_uid(new_user);
1019 		return -EAGAIN;
1020 	}
1021 
1022 	switch_uid(new_user);
1023 
1024 	if (dumpclear) {
1025 		current->mm->dumpable = suid_dumpable;
1026 		smp_wmb();
1027 	}
1028 	current->uid = new_ruid;
1029 	return 0;
1030 }
1031 
1032 /*
1033  * Unprivileged users may change the real uid to the effective uid
1034  * or vice versa.  (BSD-style)
1035  *
1036  * If you set the real uid at all, or set the effective uid to a value not
1037  * equal to the real uid, then the saved uid is set to the new effective uid.
1038  *
1039  * This makes it possible for a setuid program to completely drop its
1040  * privileges, which is often a useful assertion to make when you are doing
1041  * a security audit over a program.
1042  *
1043  * The general idea is that a program which uses just setreuid() will be
1044  * 100% compatible with BSD.  A program which uses just setuid() will be
1045  * 100% compatible with POSIX with saved IDs.
1046  */
1047 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
1048 {
1049 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
1050 	int retval;
1051 
1052 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
1053 	if (retval)
1054 		return retval;
1055 
1056 	new_ruid = old_ruid = current->uid;
1057 	new_euid = old_euid = current->euid;
1058 	old_suid = current->suid;
1059 
1060 	if (ruid != (uid_t) -1) {
1061 		new_ruid = ruid;
1062 		if ((old_ruid != ruid) &&
1063 		    (current->euid != ruid) &&
1064 		    !capable(CAP_SETUID))
1065 			return -EPERM;
1066 	}
1067 
1068 	if (euid != (uid_t) -1) {
1069 		new_euid = euid;
1070 		if ((old_ruid != euid) &&
1071 		    (current->euid != euid) &&
1072 		    (current->suid != euid) &&
1073 		    !capable(CAP_SETUID))
1074 			return -EPERM;
1075 	}
1076 
1077 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
1078 		return -EAGAIN;
1079 
1080 	if (new_euid != old_euid) {
1081 		current->mm->dumpable = suid_dumpable;
1082 		smp_wmb();
1083 	}
1084 	current->fsuid = current->euid = new_euid;
1085 	if (ruid != (uid_t) -1 ||
1086 	    (euid != (uid_t) -1 && euid != old_ruid))
1087 		current->suid = current->euid;
1088 	current->fsuid = current->euid;
1089 
1090 	key_fsuid_changed(current);
1091 	proc_id_connector(current, PROC_EVENT_UID);
1092 
1093 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
1094 }
1095 
1096 
1097 
1098 /*
1099  * setuid() is implemented like SysV with SAVED_IDS
1100  *
1101  * Note that SAVED_ID's is deficient in that a setuid root program
1102  * like sendmail, for example, cannot set its uid to be a normal
1103  * user and then switch back, because if you're root, setuid() sets
1104  * the saved uid too.  If you don't like this, blame the bright people
1105  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
1106  * will allow a root program to temporarily drop privileges and be able to
1107  * regain them by swapping the real and effective uid.
1108  */
1109 asmlinkage long sys_setuid(uid_t uid)
1110 {
1111 	int old_euid = current->euid;
1112 	int old_ruid, old_suid, new_suid;
1113 	int retval;
1114 
1115 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
1116 	if (retval)
1117 		return retval;
1118 
1119 	old_ruid = current->uid;
1120 	old_suid = current->suid;
1121 	new_suid = old_suid;
1122 
1123 	if (capable(CAP_SETUID)) {
1124 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
1125 			return -EAGAIN;
1126 		new_suid = uid;
1127 	} else if ((uid != current->uid) && (uid != new_suid))
1128 		return -EPERM;
1129 
1130 	if (old_euid != uid) {
1131 		current->mm->dumpable = suid_dumpable;
1132 		smp_wmb();
1133 	}
1134 	current->fsuid = current->euid = uid;
1135 	current->suid = new_suid;
1136 
1137 	key_fsuid_changed(current);
1138 	proc_id_connector(current, PROC_EVENT_UID);
1139 
1140 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
1141 }
1142 
1143 
1144 /*
1145  * This function implements a generic ability to update ruid, euid,
1146  * and suid.  This allows you to implement the 4.4 compatible seteuid().
1147  */
1148 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1149 {
1150 	int old_ruid = current->uid;
1151 	int old_euid = current->euid;
1152 	int old_suid = current->suid;
1153 	int retval;
1154 
1155 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
1156 	if (retval)
1157 		return retval;
1158 
1159 	if (!capable(CAP_SETUID)) {
1160 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
1161 		    (ruid != current->euid) && (ruid != current->suid))
1162 			return -EPERM;
1163 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
1164 		    (euid != current->euid) && (euid != current->suid))
1165 			return -EPERM;
1166 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
1167 		    (suid != current->euid) && (suid != current->suid))
1168 			return -EPERM;
1169 	}
1170 	if (ruid != (uid_t) -1) {
1171 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
1172 			return -EAGAIN;
1173 	}
1174 	if (euid != (uid_t) -1) {
1175 		if (euid != current->euid) {
1176 			current->mm->dumpable = suid_dumpable;
1177 			smp_wmb();
1178 		}
1179 		current->euid = euid;
1180 	}
1181 	current->fsuid = current->euid;
1182 	if (suid != (uid_t) -1)
1183 		current->suid = suid;
1184 
1185 	key_fsuid_changed(current);
1186 	proc_id_connector(current, PROC_EVENT_UID);
1187 
1188 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
1189 }
1190 
1191 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
1192 {
1193 	int retval;
1194 
1195 	if (!(retval = put_user(current->uid, ruid)) &&
1196 	    !(retval = put_user(current->euid, euid)))
1197 		retval = put_user(current->suid, suid);
1198 
1199 	return retval;
1200 }
1201 
1202 /*
1203  * Same as above, but for rgid, egid, sgid.
1204  */
1205 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1206 {
1207 	int retval;
1208 
1209 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
1210 	if (retval)
1211 		return retval;
1212 
1213 	if (!capable(CAP_SETGID)) {
1214 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
1215 		    (rgid != current->egid) && (rgid != current->sgid))
1216 			return -EPERM;
1217 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
1218 		    (egid != current->egid) && (egid != current->sgid))
1219 			return -EPERM;
1220 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
1221 		    (sgid != current->egid) && (sgid != current->sgid))
1222 			return -EPERM;
1223 	}
1224 	if (egid != (gid_t) -1) {
1225 		if (egid != current->egid) {
1226 			current->mm->dumpable = suid_dumpable;
1227 			smp_wmb();
1228 		}
1229 		current->egid = egid;
1230 	}
1231 	current->fsgid = current->egid;
1232 	if (rgid != (gid_t) -1)
1233 		current->gid = rgid;
1234 	if (sgid != (gid_t) -1)
1235 		current->sgid = sgid;
1236 
1237 	key_fsgid_changed(current);
1238 	proc_id_connector(current, PROC_EVENT_GID);
1239 	return 0;
1240 }
1241 
1242 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
1243 {
1244 	int retval;
1245 
1246 	if (!(retval = put_user(current->gid, rgid)) &&
1247 	    !(retval = put_user(current->egid, egid)))
1248 		retval = put_user(current->sgid, sgid);
1249 
1250 	return retval;
1251 }
1252 
1253 
1254 /*
1255  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1256  * is used for "access()" and for the NFS daemon (letting nfsd stay at
1257  * whatever uid it wants to). It normally shadows "euid", except when
1258  * explicitly set by setfsuid() or for access..
1259  */
1260 asmlinkage long sys_setfsuid(uid_t uid)
1261 {
1262 	int old_fsuid;
1263 
1264 	old_fsuid = current->fsuid;
1265 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
1266 		return old_fsuid;
1267 
1268 	if (uid == current->uid || uid == current->euid ||
1269 	    uid == current->suid || uid == current->fsuid ||
1270 	    capable(CAP_SETUID)) {
1271 		if (uid != old_fsuid) {
1272 			current->mm->dumpable = suid_dumpable;
1273 			smp_wmb();
1274 		}
1275 		current->fsuid = uid;
1276 	}
1277 
1278 	key_fsuid_changed(current);
1279 	proc_id_connector(current, PROC_EVENT_UID);
1280 
1281 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
1282 
1283 	return old_fsuid;
1284 }
1285 
1286 /*
1287  * Samma p� svenska..
1288  */
1289 asmlinkage long sys_setfsgid(gid_t gid)
1290 {
1291 	int old_fsgid;
1292 
1293 	old_fsgid = current->fsgid;
1294 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
1295 		return old_fsgid;
1296 
1297 	if (gid == current->gid || gid == current->egid ||
1298 	    gid == current->sgid || gid == current->fsgid ||
1299 	    capable(CAP_SETGID)) {
1300 		if (gid != old_fsgid) {
1301 			current->mm->dumpable = suid_dumpable;
1302 			smp_wmb();
1303 		}
1304 		current->fsgid = gid;
1305 		key_fsgid_changed(current);
1306 		proc_id_connector(current, PROC_EVENT_GID);
1307 	}
1308 	return old_fsgid;
1309 }
1310 
1311 asmlinkage long sys_times(struct tms __user * tbuf)
1312 {
1313 	/*
1314 	 *	In the SMP world we might just be unlucky and have one of
1315 	 *	the times increment as we use it. Since the value is an
1316 	 *	atomically safe type this is just fine. Conceptually its
1317 	 *	as if the syscall took an instant longer to occur.
1318 	 */
1319 	if (tbuf) {
1320 		struct tms tmp;
1321 		struct task_struct *tsk = current;
1322 		struct task_struct *t;
1323 		cputime_t utime, stime, cutime, cstime;
1324 
1325 		spin_lock_irq(&tsk->sighand->siglock);
1326 		utime = tsk->signal->utime;
1327 		stime = tsk->signal->stime;
1328 		t = tsk;
1329 		do {
1330 			utime = cputime_add(utime, t->utime);
1331 			stime = cputime_add(stime, t->stime);
1332 			t = next_thread(t);
1333 		} while (t != tsk);
1334 
1335 		cutime = tsk->signal->cutime;
1336 		cstime = tsk->signal->cstime;
1337 		spin_unlock_irq(&tsk->sighand->siglock);
1338 
1339 		tmp.tms_utime = cputime_to_clock_t(utime);
1340 		tmp.tms_stime = cputime_to_clock_t(stime);
1341 		tmp.tms_cutime = cputime_to_clock_t(cutime);
1342 		tmp.tms_cstime = cputime_to_clock_t(cstime);
1343 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1344 			return -EFAULT;
1345 	}
1346 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1347 }
1348 
1349 /*
1350  * This needs some heavy checking ...
1351  * I just haven't the stomach for it. I also don't fully
1352  * understand sessions/pgrp etc. Let somebody who does explain it.
1353  *
1354  * OK, I think I have the protection semantics right.... this is really
1355  * only important on a multi-user system anyway, to make sure one user
1356  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1357  *
1358  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1359  * LBT 04.03.94
1360  */
1361 
1362 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1363 {
1364 	struct task_struct *p;
1365 	struct task_struct *group_leader = current->group_leader;
1366 	int err = -EINVAL;
1367 
1368 	if (!pid)
1369 		pid = group_leader->pid;
1370 	if (!pgid)
1371 		pgid = pid;
1372 	if (pgid < 0)
1373 		return -EINVAL;
1374 
1375 	/* From this point forward we keep holding onto the tasklist lock
1376 	 * so that our parent does not change from under us. -DaveM
1377 	 */
1378 	write_lock_irq(&tasklist_lock);
1379 
1380 	err = -ESRCH;
1381 	p = find_task_by_pid(pid);
1382 	if (!p)
1383 		goto out;
1384 
1385 	err = -EINVAL;
1386 	if (!thread_group_leader(p))
1387 		goto out;
1388 
1389 	if (p->real_parent == group_leader) {
1390 		err = -EPERM;
1391 		if (process_session(p) != process_session(group_leader))
1392 			goto out;
1393 		err = -EACCES;
1394 		if (p->did_exec)
1395 			goto out;
1396 	} else {
1397 		err = -ESRCH;
1398 		if (p != group_leader)
1399 			goto out;
1400 	}
1401 
1402 	err = -EPERM;
1403 	if (p->signal->leader)
1404 		goto out;
1405 
1406 	if (pgid != pid) {
1407 		struct task_struct *g =
1408 			find_task_by_pid_type(PIDTYPE_PGID, pgid);
1409 
1410 		if (!g || process_session(g) != process_session(group_leader))
1411 			goto out;
1412 	}
1413 
1414 	err = security_task_setpgid(p, pgid);
1415 	if (err)
1416 		goto out;
1417 
1418 	if (process_group(p) != pgid) {
1419 		detach_pid(p, PIDTYPE_PGID);
1420 		p->signal->pgrp = pgid;
1421 		attach_pid(p, PIDTYPE_PGID, pgid);
1422 	}
1423 
1424 	err = 0;
1425 out:
1426 	/* All paths lead to here, thus we are safe. -DaveM */
1427 	write_unlock_irq(&tasklist_lock);
1428 	return err;
1429 }
1430 
1431 asmlinkage long sys_getpgid(pid_t pid)
1432 {
1433 	if (!pid)
1434 		return process_group(current);
1435 	else {
1436 		int retval;
1437 		struct task_struct *p;
1438 
1439 		read_lock(&tasklist_lock);
1440 		p = find_task_by_pid(pid);
1441 
1442 		retval = -ESRCH;
1443 		if (p) {
1444 			retval = security_task_getpgid(p);
1445 			if (!retval)
1446 				retval = process_group(p);
1447 		}
1448 		read_unlock(&tasklist_lock);
1449 		return retval;
1450 	}
1451 }
1452 
1453 #ifdef __ARCH_WANT_SYS_GETPGRP
1454 
1455 asmlinkage long sys_getpgrp(void)
1456 {
1457 	/* SMP - assuming writes are word atomic this is fine */
1458 	return process_group(current);
1459 }
1460 
1461 #endif
1462 
1463 asmlinkage long sys_getsid(pid_t pid)
1464 {
1465 	if (!pid)
1466 		return process_session(current);
1467 	else {
1468 		int retval;
1469 		struct task_struct *p;
1470 
1471 		read_lock(&tasklist_lock);
1472 		p = find_task_by_pid(pid);
1473 
1474 		retval = -ESRCH;
1475 		if (p) {
1476 			retval = security_task_getsid(p);
1477 			if (!retval)
1478 				retval = process_session(p);
1479 		}
1480 		read_unlock(&tasklist_lock);
1481 		return retval;
1482 	}
1483 }
1484 
1485 asmlinkage long sys_setsid(void)
1486 {
1487 	struct task_struct *group_leader = current->group_leader;
1488 	pid_t session;
1489 	int err = -EPERM;
1490 
1491 	write_lock_irq(&tasklist_lock);
1492 
1493 	/* Fail if I am already a session leader */
1494 	if (group_leader->signal->leader)
1495 		goto out;
1496 
1497 	session = group_leader->pid;
1498 	/* Fail if a process group id already exists that equals the
1499 	 * proposed session id.
1500 	 *
1501 	 * Don't check if session id == 1 because kernel threads use this
1502 	 * session id and so the check will always fail and make it so
1503 	 * init cannot successfully call setsid.
1504 	 */
1505 	if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
1506 		goto out;
1507 
1508 	group_leader->signal->leader = 1;
1509 	__set_special_pids(session, session);
1510 
1511 	spin_lock(&group_leader->sighand->siglock);
1512 	group_leader->signal->tty = NULL;
1513 	group_leader->signal->tty_old_pgrp = 0;
1514 	spin_unlock(&group_leader->sighand->siglock);
1515 
1516 	err = process_group(group_leader);
1517 out:
1518 	write_unlock_irq(&tasklist_lock);
1519 	return err;
1520 }
1521 
1522 /*
1523  * Supplementary group IDs
1524  */
1525 
1526 /* init to 2 - one for init_task, one to ensure it is never freed */
1527 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1528 
1529 struct group_info *groups_alloc(int gidsetsize)
1530 {
1531 	struct group_info *group_info;
1532 	int nblocks;
1533 	int i;
1534 
1535 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1536 	/* Make sure we always allocate at least one indirect block pointer */
1537 	nblocks = nblocks ? : 1;
1538 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1539 	if (!group_info)
1540 		return NULL;
1541 	group_info->ngroups = gidsetsize;
1542 	group_info->nblocks = nblocks;
1543 	atomic_set(&group_info->usage, 1);
1544 
1545 	if (gidsetsize <= NGROUPS_SMALL)
1546 		group_info->blocks[0] = group_info->small_block;
1547 	else {
1548 		for (i = 0; i < nblocks; i++) {
1549 			gid_t *b;
1550 			b = (void *)__get_free_page(GFP_USER);
1551 			if (!b)
1552 				goto out_undo_partial_alloc;
1553 			group_info->blocks[i] = b;
1554 		}
1555 	}
1556 	return group_info;
1557 
1558 out_undo_partial_alloc:
1559 	while (--i >= 0) {
1560 		free_page((unsigned long)group_info->blocks[i]);
1561 	}
1562 	kfree(group_info);
1563 	return NULL;
1564 }
1565 
1566 EXPORT_SYMBOL(groups_alloc);
1567 
1568 void groups_free(struct group_info *group_info)
1569 {
1570 	if (group_info->blocks[0] != group_info->small_block) {
1571 		int i;
1572 		for (i = 0; i < group_info->nblocks; i++)
1573 			free_page((unsigned long)group_info->blocks[i]);
1574 	}
1575 	kfree(group_info);
1576 }
1577 
1578 EXPORT_SYMBOL(groups_free);
1579 
1580 /* export the group_info to a user-space array */
1581 static int groups_to_user(gid_t __user *grouplist,
1582     struct group_info *group_info)
1583 {
1584 	int i;
1585 	int count = group_info->ngroups;
1586 
1587 	for (i = 0; i < group_info->nblocks; i++) {
1588 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1589 		int off = i * NGROUPS_PER_BLOCK;
1590 		int len = cp_count * sizeof(*grouplist);
1591 
1592 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1593 			return -EFAULT;
1594 
1595 		count -= cp_count;
1596 	}
1597 	return 0;
1598 }
1599 
1600 /* fill a group_info from a user-space array - it must be allocated already */
1601 static int groups_from_user(struct group_info *group_info,
1602     gid_t __user *grouplist)
1603 {
1604 	int i;
1605 	int count = group_info->ngroups;
1606 
1607 	for (i = 0; i < group_info->nblocks; i++) {
1608 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1609 		int off = i * NGROUPS_PER_BLOCK;
1610 		int len = cp_count * sizeof(*grouplist);
1611 
1612 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1613 			return -EFAULT;
1614 
1615 		count -= cp_count;
1616 	}
1617 	return 0;
1618 }
1619 
1620 /* a simple Shell sort */
1621 static void groups_sort(struct group_info *group_info)
1622 {
1623 	int base, max, stride;
1624 	int gidsetsize = group_info->ngroups;
1625 
1626 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1627 		; /* nothing */
1628 	stride /= 3;
1629 
1630 	while (stride) {
1631 		max = gidsetsize - stride;
1632 		for (base = 0; base < max; base++) {
1633 			int left = base;
1634 			int right = left + stride;
1635 			gid_t tmp = GROUP_AT(group_info, right);
1636 
1637 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1638 				GROUP_AT(group_info, right) =
1639 				    GROUP_AT(group_info, left);
1640 				right = left;
1641 				left -= stride;
1642 			}
1643 			GROUP_AT(group_info, right) = tmp;
1644 		}
1645 		stride /= 3;
1646 	}
1647 }
1648 
1649 /* a simple bsearch */
1650 int groups_search(struct group_info *group_info, gid_t grp)
1651 {
1652 	unsigned int left, right;
1653 
1654 	if (!group_info)
1655 		return 0;
1656 
1657 	left = 0;
1658 	right = group_info->ngroups;
1659 	while (left < right) {
1660 		unsigned int mid = (left+right)/2;
1661 		int cmp = grp - GROUP_AT(group_info, mid);
1662 		if (cmp > 0)
1663 			left = mid + 1;
1664 		else if (cmp < 0)
1665 			right = mid;
1666 		else
1667 			return 1;
1668 	}
1669 	return 0;
1670 }
1671 
1672 /* validate and set current->group_info */
1673 int set_current_groups(struct group_info *group_info)
1674 {
1675 	int retval;
1676 	struct group_info *old_info;
1677 
1678 	retval = security_task_setgroups(group_info);
1679 	if (retval)
1680 		return retval;
1681 
1682 	groups_sort(group_info);
1683 	get_group_info(group_info);
1684 
1685 	task_lock(current);
1686 	old_info = current->group_info;
1687 	current->group_info = group_info;
1688 	task_unlock(current);
1689 
1690 	put_group_info(old_info);
1691 
1692 	return 0;
1693 }
1694 
1695 EXPORT_SYMBOL(set_current_groups);
1696 
1697 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1698 {
1699 	int i = 0;
1700 
1701 	/*
1702 	 *	SMP: Nobody else can change our grouplist. Thus we are
1703 	 *	safe.
1704 	 */
1705 
1706 	if (gidsetsize < 0)
1707 		return -EINVAL;
1708 
1709 	/* no need to grab task_lock here; it cannot change */
1710 	i = current->group_info->ngroups;
1711 	if (gidsetsize) {
1712 		if (i > gidsetsize) {
1713 			i = -EINVAL;
1714 			goto out;
1715 		}
1716 		if (groups_to_user(grouplist, current->group_info)) {
1717 			i = -EFAULT;
1718 			goto out;
1719 		}
1720 	}
1721 out:
1722 	return i;
1723 }
1724 
1725 /*
1726  *	SMP: Our groups are copy-on-write. We can set them safely
1727  *	without another task interfering.
1728  */
1729 
1730 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1731 {
1732 	struct group_info *group_info;
1733 	int retval;
1734 
1735 	if (!capable(CAP_SETGID))
1736 		return -EPERM;
1737 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1738 		return -EINVAL;
1739 
1740 	group_info = groups_alloc(gidsetsize);
1741 	if (!group_info)
1742 		return -ENOMEM;
1743 	retval = groups_from_user(group_info, grouplist);
1744 	if (retval) {
1745 		put_group_info(group_info);
1746 		return retval;
1747 	}
1748 
1749 	retval = set_current_groups(group_info);
1750 	put_group_info(group_info);
1751 
1752 	return retval;
1753 }
1754 
1755 /*
1756  * Check whether we're fsgid/egid or in the supplemental group..
1757  */
1758 int in_group_p(gid_t grp)
1759 {
1760 	int retval = 1;
1761 	if (grp != current->fsgid)
1762 		retval = groups_search(current->group_info, grp);
1763 	return retval;
1764 }
1765 
1766 EXPORT_SYMBOL(in_group_p);
1767 
1768 int in_egroup_p(gid_t grp)
1769 {
1770 	int retval = 1;
1771 	if (grp != current->egid)
1772 		retval = groups_search(current->group_info, grp);
1773 	return retval;
1774 }
1775 
1776 EXPORT_SYMBOL(in_egroup_p);
1777 
1778 DECLARE_RWSEM(uts_sem);
1779 
1780 EXPORT_SYMBOL(uts_sem);
1781 
1782 asmlinkage long sys_newuname(struct new_utsname __user * name)
1783 {
1784 	int errno = 0;
1785 
1786 	down_read(&uts_sem);
1787 	if (copy_to_user(name, utsname(), sizeof *name))
1788 		errno = -EFAULT;
1789 	up_read(&uts_sem);
1790 	return errno;
1791 }
1792 
1793 asmlinkage long sys_sethostname(char __user *name, int len)
1794 {
1795 	int errno;
1796 	char tmp[__NEW_UTS_LEN];
1797 
1798 	if (!capable(CAP_SYS_ADMIN))
1799 		return -EPERM;
1800 	if (len < 0 || len > __NEW_UTS_LEN)
1801 		return -EINVAL;
1802 	down_write(&uts_sem);
1803 	errno = -EFAULT;
1804 	if (!copy_from_user(tmp, name, len)) {
1805 		memcpy(utsname()->nodename, tmp, len);
1806 		utsname()->nodename[len] = 0;
1807 		errno = 0;
1808 	}
1809 	up_write(&uts_sem);
1810 	return errno;
1811 }
1812 
1813 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1814 
1815 asmlinkage long sys_gethostname(char __user *name, int len)
1816 {
1817 	int i, errno;
1818 
1819 	if (len < 0)
1820 		return -EINVAL;
1821 	down_read(&uts_sem);
1822 	i = 1 + strlen(utsname()->nodename);
1823 	if (i > len)
1824 		i = len;
1825 	errno = 0;
1826 	if (copy_to_user(name, utsname()->nodename, i))
1827 		errno = -EFAULT;
1828 	up_read(&uts_sem);
1829 	return errno;
1830 }
1831 
1832 #endif
1833 
1834 /*
1835  * Only setdomainname; getdomainname can be implemented by calling
1836  * uname()
1837  */
1838 asmlinkage long sys_setdomainname(char __user *name, int len)
1839 {
1840 	int errno;
1841 	char tmp[__NEW_UTS_LEN];
1842 
1843 	if (!capable(CAP_SYS_ADMIN))
1844 		return -EPERM;
1845 	if (len < 0 || len > __NEW_UTS_LEN)
1846 		return -EINVAL;
1847 
1848 	down_write(&uts_sem);
1849 	errno = -EFAULT;
1850 	if (!copy_from_user(tmp, name, len)) {
1851 		memcpy(utsname()->domainname, tmp, len);
1852 		utsname()->domainname[len] = 0;
1853 		errno = 0;
1854 	}
1855 	up_write(&uts_sem);
1856 	return errno;
1857 }
1858 
1859 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1860 {
1861 	if (resource >= RLIM_NLIMITS)
1862 		return -EINVAL;
1863 	else {
1864 		struct rlimit value;
1865 		task_lock(current->group_leader);
1866 		value = current->signal->rlim[resource];
1867 		task_unlock(current->group_leader);
1868 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1869 	}
1870 }
1871 
1872 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1873 
1874 /*
1875  *	Back compatibility for getrlimit. Needed for some apps.
1876  */
1877 
1878 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1879 {
1880 	struct rlimit x;
1881 	if (resource >= RLIM_NLIMITS)
1882 		return -EINVAL;
1883 
1884 	task_lock(current->group_leader);
1885 	x = current->signal->rlim[resource];
1886 	task_unlock(current->group_leader);
1887 	if (x.rlim_cur > 0x7FFFFFFF)
1888 		x.rlim_cur = 0x7FFFFFFF;
1889 	if (x.rlim_max > 0x7FFFFFFF)
1890 		x.rlim_max = 0x7FFFFFFF;
1891 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1892 }
1893 
1894 #endif
1895 
1896 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1897 {
1898 	struct rlimit new_rlim, *old_rlim;
1899 	unsigned long it_prof_secs;
1900 	int retval;
1901 
1902 	if (resource >= RLIM_NLIMITS)
1903 		return -EINVAL;
1904 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1905 		return -EFAULT;
1906 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1907 		return -EINVAL;
1908 	old_rlim = current->signal->rlim + resource;
1909 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1910 	    !capable(CAP_SYS_RESOURCE))
1911 		return -EPERM;
1912 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1913 		return -EPERM;
1914 
1915 	retval = security_task_setrlimit(resource, &new_rlim);
1916 	if (retval)
1917 		return retval;
1918 
1919 	task_lock(current->group_leader);
1920 	*old_rlim = new_rlim;
1921 	task_unlock(current->group_leader);
1922 
1923 	if (resource != RLIMIT_CPU)
1924 		goto out;
1925 
1926 	/*
1927 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1928 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1929 	 * very long-standing error, and fixing it now risks breakage of
1930 	 * applications, so we live with it
1931 	 */
1932 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1933 		goto out;
1934 
1935 	it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1936 	if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1937 		unsigned long rlim_cur = new_rlim.rlim_cur;
1938 		cputime_t cputime;
1939 
1940 		if (rlim_cur == 0) {
1941 			/*
1942 			 * The caller is asking for an immediate RLIMIT_CPU
1943 			 * expiry.  But we use the zero value to mean "it was
1944 			 * never set".  So let's cheat and make it one second
1945 			 * instead
1946 			 */
1947 			rlim_cur = 1;
1948 		}
1949 		cputime = secs_to_cputime(rlim_cur);
1950 		read_lock(&tasklist_lock);
1951 		spin_lock_irq(&current->sighand->siglock);
1952 		set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1953 		spin_unlock_irq(&current->sighand->siglock);
1954 		read_unlock(&tasklist_lock);
1955 	}
1956 out:
1957 	return 0;
1958 }
1959 
1960 /*
1961  * It would make sense to put struct rusage in the task_struct,
1962  * except that would make the task_struct be *really big*.  After
1963  * task_struct gets moved into malloc'ed memory, it would
1964  * make sense to do this.  It will make moving the rest of the information
1965  * a lot simpler!  (Which we're not doing right now because we're not
1966  * measuring them yet).
1967  *
1968  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1969  * races with threads incrementing their own counters.  But since word
1970  * reads are atomic, we either get new values or old values and we don't
1971  * care which for the sums.  We always take the siglock to protect reading
1972  * the c* fields from p->signal from races with exit.c updating those
1973  * fields when reaping, so a sample either gets all the additions of a
1974  * given child after it's reaped, or none so this sample is before reaping.
1975  *
1976  * Locking:
1977  * We need to take the siglock for CHILDEREN, SELF and BOTH
1978  * for  the cases current multithreaded, non-current single threaded
1979  * non-current multithreaded.  Thread traversal is now safe with
1980  * the siglock held.
1981  * Strictly speaking, we donot need to take the siglock if we are current and
1982  * single threaded,  as no one else can take our signal_struct away, no one
1983  * else can  reap the  children to update signal->c* counters, and no one else
1984  * can race with the signal-> fields. If we do not take any lock, the
1985  * signal-> fields could be read out of order while another thread was just
1986  * exiting. So we should  place a read memory barrier when we avoid the lock.
1987  * On the writer side,  write memory barrier is implied in  __exit_signal
1988  * as __exit_signal releases  the siglock spinlock after updating the signal->
1989  * fields. But we don't do this yet to keep things simple.
1990  *
1991  */
1992 
1993 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1994 {
1995 	struct task_struct *t;
1996 	unsigned long flags;
1997 	cputime_t utime, stime;
1998 
1999 	memset((char *) r, 0, sizeof *r);
2000 	utime = stime = cputime_zero;
2001 
2002 	rcu_read_lock();
2003 	if (!lock_task_sighand(p, &flags)) {
2004 		rcu_read_unlock();
2005 		return;
2006 	}
2007 
2008 	switch (who) {
2009 		case RUSAGE_BOTH:
2010 		case RUSAGE_CHILDREN:
2011 			utime = p->signal->cutime;
2012 			stime = p->signal->cstime;
2013 			r->ru_nvcsw = p->signal->cnvcsw;
2014 			r->ru_nivcsw = p->signal->cnivcsw;
2015 			r->ru_minflt = p->signal->cmin_flt;
2016 			r->ru_majflt = p->signal->cmaj_flt;
2017 
2018 			if (who == RUSAGE_CHILDREN)
2019 				break;
2020 
2021 		case RUSAGE_SELF:
2022 			utime = cputime_add(utime, p->signal->utime);
2023 			stime = cputime_add(stime, p->signal->stime);
2024 			r->ru_nvcsw += p->signal->nvcsw;
2025 			r->ru_nivcsw += p->signal->nivcsw;
2026 			r->ru_minflt += p->signal->min_flt;
2027 			r->ru_majflt += p->signal->maj_flt;
2028 			t = p;
2029 			do {
2030 				utime = cputime_add(utime, t->utime);
2031 				stime = cputime_add(stime, t->stime);
2032 				r->ru_nvcsw += t->nvcsw;
2033 				r->ru_nivcsw += t->nivcsw;
2034 				r->ru_minflt += t->min_flt;
2035 				r->ru_majflt += t->maj_flt;
2036 				t = next_thread(t);
2037 			} while (t != p);
2038 			break;
2039 
2040 		default:
2041 			BUG();
2042 	}
2043 
2044 	unlock_task_sighand(p, &flags);
2045 	rcu_read_unlock();
2046 
2047 	cputime_to_timeval(utime, &r->ru_utime);
2048 	cputime_to_timeval(stime, &r->ru_stime);
2049 }
2050 
2051 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
2052 {
2053 	struct rusage r;
2054 	k_getrusage(p, who, &r);
2055 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
2056 }
2057 
2058 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
2059 {
2060 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
2061 		return -EINVAL;
2062 	return getrusage(current, who, ru);
2063 }
2064 
2065 asmlinkage long sys_umask(int mask)
2066 {
2067 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
2068 	return mask;
2069 }
2070 
2071 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
2072 			  unsigned long arg4, unsigned long arg5)
2073 {
2074 	long error;
2075 
2076 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2077 	if (error)
2078 		return error;
2079 
2080 	switch (option) {
2081 		case PR_SET_PDEATHSIG:
2082 			if (!valid_signal(arg2)) {
2083 				error = -EINVAL;
2084 				break;
2085 			}
2086 			current->pdeath_signal = arg2;
2087 			break;
2088 		case PR_GET_PDEATHSIG:
2089 			error = put_user(current->pdeath_signal, (int __user *)arg2);
2090 			break;
2091 		case PR_GET_DUMPABLE:
2092 			error = current->mm->dumpable;
2093 			break;
2094 		case PR_SET_DUMPABLE:
2095 			if (arg2 < 0 || arg2 > 1) {
2096 				error = -EINVAL;
2097 				break;
2098 			}
2099 			current->mm->dumpable = arg2;
2100 			break;
2101 
2102 		case PR_SET_UNALIGN:
2103 			error = SET_UNALIGN_CTL(current, arg2);
2104 			break;
2105 		case PR_GET_UNALIGN:
2106 			error = GET_UNALIGN_CTL(current, arg2);
2107 			break;
2108 		case PR_SET_FPEMU:
2109 			error = SET_FPEMU_CTL(current, arg2);
2110 			break;
2111 		case PR_GET_FPEMU:
2112 			error = GET_FPEMU_CTL(current, arg2);
2113 			break;
2114 		case PR_SET_FPEXC:
2115 			error = SET_FPEXC_CTL(current, arg2);
2116 			break;
2117 		case PR_GET_FPEXC:
2118 			error = GET_FPEXC_CTL(current, arg2);
2119 			break;
2120 		case PR_GET_TIMING:
2121 			error = PR_TIMING_STATISTICAL;
2122 			break;
2123 		case PR_SET_TIMING:
2124 			if (arg2 == PR_TIMING_STATISTICAL)
2125 				error = 0;
2126 			else
2127 				error = -EINVAL;
2128 			break;
2129 
2130 		case PR_GET_KEEPCAPS:
2131 			if (current->keep_capabilities)
2132 				error = 1;
2133 			break;
2134 		case PR_SET_KEEPCAPS:
2135 			if (arg2 != 0 && arg2 != 1) {
2136 				error = -EINVAL;
2137 				break;
2138 			}
2139 			current->keep_capabilities = arg2;
2140 			break;
2141 		case PR_SET_NAME: {
2142 			struct task_struct *me = current;
2143 			unsigned char ncomm[sizeof(me->comm)];
2144 
2145 			ncomm[sizeof(me->comm)-1] = 0;
2146 			if (strncpy_from_user(ncomm, (char __user *)arg2,
2147 						sizeof(me->comm)-1) < 0)
2148 				return -EFAULT;
2149 			set_task_comm(me, ncomm);
2150 			return 0;
2151 		}
2152 		case PR_GET_NAME: {
2153 			struct task_struct *me = current;
2154 			unsigned char tcomm[sizeof(me->comm)];
2155 
2156 			get_task_comm(tcomm, me);
2157 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
2158 				return -EFAULT;
2159 			return 0;
2160 		}
2161 		case PR_GET_ENDIAN:
2162 			error = GET_ENDIAN(current, arg2);
2163 			break;
2164 		case PR_SET_ENDIAN:
2165 			error = SET_ENDIAN(current, arg2);
2166 			break;
2167 
2168 		default:
2169 			error = -EINVAL;
2170 			break;
2171 	}
2172 	return error;
2173 }
2174 
2175 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
2176 	   		   struct getcpu_cache __user *cache)
2177 {
2178 	int err = 0;
2179 	int cpu = raw_smp_processor_id();
2180 	if (cpup)
2181 		err |= put_user(cpu, cpup);
2182 	if (nodep)
2183 		err |= put_user(cpu_to_node(cpu), nodep);
2184 	if (cache) {
2185 		/*
2186 		 * The cache is not needed for this implementation,
2187 		 * but make sure user programs pass something
2188 		 * valid. vsyscall implementations can instead make
2189 		 * good use of the cache. Only use t0 and t1 because
2190 		 * these are available in both 32bit and 64bit ABI (no
2191 		 * need for a compat_getcpu). 32bit has enough
2192 		 * padding
2193 		 */
2194 		unsigned long t0, t1;
2195 		get_user(t0, &cache->blob[0]);
2196 		get_user(t1, &cache->blob[1]);
2197 		t0++;
2198 		t1++;
2199 		put_user(t0, &cache->blob[0]);
2200 		put_user(t1, &cache->blob[1]);
2201 	}
2202 	return err ? -EFAULT : 0;
2203 }
2204