xref: /linux/kernel/sys.c (revision 98b8788ae91694499d1995035625bea16a4db0c4)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 
39 #include <linux/compat.h>
40 #include <linux/syscalls.h>
41 #include <linux/kprobes.h>
42 #include <linux/user_namespace.h>
43 
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46 #include <asm/unistd.h>
47 
48 #ifndef SET_UNALIGN_CTL
49 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
50 #endif
51 #ifndef GET_UNALIGN_CTL
52 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
53 #endif
54 #ifndef SET_FPEMU_CTL
55 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
56 #endif
57 #ifndef GET_FPEMU_CTL
58 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
59 #endif
60 #ifndef SET_FPEXC_CTL
61 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
62 #endif
63 #ifndef GET_FPEXC_CTL
64 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
65 #endif
66 #ifndef GET_ENDIAN
67 # define GET_ENDIAN(a,b)	(-EINVAL)
68 #endif
69 #ifndef SET_ENDIAN
70 # define SET_ENDIAN(a,b)	(-EINVAL)
71 #endif
72 #ifndef GET_TSC_CTL
73 # define GET_TSC_CTL(a)		(-EINVAL)
74 #endif
75 #ifndef SET_TSC_CTL
76 # define SET_TSC_CTL(a)		(-EINVAL)
77 #endif
78 
79 /*
80  * this is where the system-wide overflow UID and GID are defined, for
81  * architectures that now have 32-bit UID/GID but didn't in the past
82  */
83 
84 int overflowuid = DEFAULT_OVERFLOWUID;
85 int overflowgid = DEFAULT_OVERFLOWGID;
86 
87 #ifdef CONFIG_UID16
88 EXPORT_SYMBOL(overflowuid);
89 EXPORT_SYMBOL(overflowgid);
90 #endif
91 
92 /*
93  * the same as above, but for filesystems which can only store a 16-bit
94  * UID and GID. as such, this is needed on all architectures
95  */
96 
97 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
98 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
99 
100 EXPORT_SYMBOL(fs_overflowuid);
101 EXPORT_SYMBOL(fs_overflowgid);
102 
103 /*
104  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
105  */
106 
107 int C_A_D = 1;
108 struct pid *cad_pid;
109 EXPORT_SYMBOL(cad_pid);
110 
111 /*
112  * If set, this is used for preparing the system to power off.
113  */
114 
115 void (*pm_power_off_prepare)(void);
116 
117 /*
118  * set the priority of a task
119  * - the caller must hold the RCU read lock
120  */
121 static int set_one_prio(struct task_struct *p, int niceval, int error)
122 {
123 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
124 	int no_nice;
125 
126 	if (pcred->uid  != cred->euid &&
127 	    pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
128 		error = -EPERM;
129 		goto out;
130 	}
131 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
132 		error = -EACCES;
133 		goto out;
134 	}
135 	no_nice = security_task_setnice(p, niceval);
136 	if (no_nice) {
137 		error = no_nice;
138 		goto out;
139 	}
140 	if (error == -ESRCH)
141 		error = 0;
142 	set_user_nice(p, niceval);
143 out:
144 	return error;
145 }
146 
147 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
148 {
149 	struct task_struct *g, *p;
150 	struct user_struct *user;
151 	const struct cred *cred = current_cred();
152 	int error = -EINVAL;
153 	struct pid *pgrp;
154 
155 	if (which > PRIO_USER || which < PRIO_PROCESS)
156 		goto out;
157 
158 	/* normalize: avoid signed division (rounding problems) */
159 	error = -ESRCH;
160 	if (niceval < -20)
161 		niceval = -20;
162 	if (niceval > 19)
163 		niceval = 19;
164 
165 	read_lock(&tasklist_lock);
166 	switch (which) {
167 		case PRIO_PROCESS:
168 			if (who)
169 				p = find_task_by_vpid(who);
170 			else
171 				p = current;
172 			if (p)
173 				error = set_one_prio(p, niceval, error);
174 			break;
175 		case PRIO_PGRP:
176 			if (who)
177 				pgrp = find_vpid(who);
178 			else
179 				pgrp = task_pgrp(current);
180 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
181 				error = set_one_prio(p, niceval, error);
182 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
183 			break;
184 		case PRIO_USER:
185 			user = (struct user_struct *) cred->user;
186 			if (!who)
187 				who = cred->uid;
188 			else if ((who != cred->uid) &&
189 				 !(user = find_user(who)))
190 				goto out_unlock;	/* No processes for this user */
191 
192 			do_each_thread(g, p)
193 				if (__task_cred(p)->uid == who)
194 					error = set_one_prio(p, niceval, error);
195 			while_each_thread(g, p);
196 			if (who != cred->uid)
197 				free_uid(user);		/* For find_user() */
198 			break;
199 	}
200 out_unlock:
201 	read_unlock(&tasklist_lock);
202 out:
203 	return error;
204 }
205 
206 /*
207  * Ugh. To avoid negative return values, "getpriority()" will
208  * not return the normal nice-value, but a negated value that
209  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
210  * to stay compatible.
211  */
212 SYSCALL_DEFINE2(getpriority, int, which, int, who)
213 {
214 	struct task_struct *g, *p;
215 	struct user_struct *user;
216 	const struct cred *cred = current_cred();
217 	long niceval, retval = -ESRCH;
218 	struct pid *pgrp;
219 
220 	if (which > PRIO_USER || which < PRIO_PROCESS)
221 		return -EINVAL;
222 
223 	read_lock(&tasklist_lock);
224 	switch (which) {
225 		case PRIO_PROCESS:
226 			if (who)
227 				p = find_task_by_vpid(who);
228 			else
229 				p = current;
230 			if (p) {
231 				niceval = 20 - task_nice(p);
232 				if (niceval > retval)
233 					retval = niceval;
234 			}
235 			break;
236 		case PRIO_PGRP:
237 			if (who)
238 				pgrp = find_vpid(who);
239 			else
240 				pgrp = task_pgrp(current);
241 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
242 				niceval = 20 - task_nice(p);
243 				if (niceval > retval)
244 					retval = niceval;
245 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
246 			break;
247 		case PRIO_USER:
248 			user = (struct user_struct *) cred->user;
249 			if (!who)
250 				who = cred->uid;
251 			else if ((who != cred->uid) &&
252 				 !(user = find_user(who)))
253 				goto out_unlock;	/* No processes for this user */
254 
255 			do_each_thread(g, p)
256 				if (__task_cred(p)->uid == who) {
257 					niceval = 20 - task_nice(p);
258 					if (niceval > retval)
259 						retval = niceval;
260 				}
261 			while_each_thread(g, p);
262 			if (who != cred->uid)
263 				free_uid(user);		/* for find_user() */
264 			break;
265 	}
266 out_unlock:
267 	read_unlock(&tasklist_lock);
268 
269 	return retval;
270 }
271 
272 /**
273  *	emergency_restart - reboot the system
274  *
275  *	Without shutting down any hardware or taking any locks
276  *	reboot the system.  This is called when we know we are in
277  *	trouble so this is our best effort to reboot.  This is
278  *	safe to call in interrupt context.
279  */
280 void emergency_restart(void)
281 {
282 	machine_emergency_restart();
283 }
284 EXPORT_SYMBOL_GPL(emergency_restart);
285 
286 void kernel_restart_prepare(char *cmd)
287 {
288 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
289 	system_state = SYSTEM_RESTART;
290 	device_shutdown();
291 	sysdev_shutdown();
292 }
293 
294 /**
295  *	kernel_restart - reboot the system
296  *	@cmd: pointer to buffer containing command to execute for restart
297  *		or %NULL
298  *
299  *	Shutdown everything and perform a clean reboot.
300  *	This is not safe to call in interrupt context.
301  */
302 void kernel_restart(char *cmd)
303 {
304 	kernel_restart_prepare(cmd);
305 	if (!cmd)
306 		printk(KERN_EMERG "Restarting system.\n");
307 	else
308 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
309 	machine_restart(cmd);
310 }
311 EXPORT_SYMBOL_GPL(kernel_restart);
312 
313 static void kernel_shutdown_prepare(enum system_states state)
314 {
315 	blocking_notifier_call_chain(&reboot_notifier_list,
316 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
317 	system_state = state;
318 	device_shutdown();
319 }
320 /**
321  *	kernel_halt - halt the system
322  *
323  *	Shutdown everything and perform a clean system halt.
324  */
325 void kernel_halt(void)
326 {
327 	kernel_shutdown_prepare(SYSTEM_HALT);
328 	sysdev_shutdown();
329 	printk(KERN_EMERG "System halted.\n");
330 	machine_halt();
331 }
332 
333 EXPORT_SYMBOL_GPL(kernel_halt);
334 
335 /**
336  *	kernel_power_off - power_off the system
337  *
338  *	Shutdown everything and perform a clean system power_off.
339  */
340 void kernel_power_off(void)
341 {
342 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
343 	if (pm_power_off_prepare)
344 		pm_power_off_prepare();
345 	disable_nonboot_cpus();
346 	sysdev_shutdown();
347 	printk(KERN_EMERG "Power down.\n");
348 	machine_power_off();
349 }
350 EXPORT_SYMBOL_GPL(kernel_power_off);
351 
352 static DEFINE_MUTEX(reboot_mutex);
353 
354 /*
355  * Reboot system call: for obvious reasons only root may call it,
356  * and even root needs to set up some magic numbers in the registers
357  * so that some mistake won't make this reboot the whole machine.
358  * You can also set the meaning of the ctrl-alt-del-key here.
359  *
360  * reboot doesn't sync: do that yourself before calling this.
361  */
362 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
363 		void __user *, arg)
364 {
365 	char buffer[256];
366 	int ret = 0;
367 
368 	/* We only trust the superuser with rebooting the system. */
369 	if (!capable(CAP_SYS_BOOT))
370 		return -EPERM;
371 
372 	/* For safety, we require "magic" arguments. */
373 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
374 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
375 	                magic2 != LINUX_REBOOT_MAGIC2A &&
376 			magic2 != LINUX_REBOOT_MAGIC2B &&
377 	                magic2 != LINUX_REBOOT_MAGIC2C))
378 		return -EINVAL;
379 
380 	/* Instead of trying to make the power_off code look like
381 	 * halt when pm_power_off is not set do it the easy way.
382 	 */
383 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
384 		cmd = LINUX_REBOOT_CMD_HALT;
385 
386 	mutex_lock(&reboot_mutex);
387 	switch (cmd) {
388 	case LINUX_REBOOT_CMD_RESTART:
389 		kernel_restart(NULL);
390 		break;
391 
392 	case LINUX_REBOOT_CMD_CAD_ON:
393 		C_A_D = 1;
394 		break;
395 
396 	case LINUX_REBOOT_CMD_CAD_OFF:
397 		C_A_D = 0;
398 		break;
399 
400 	case LINUX_REBOOT_CMD_HALT:
401 		kernel_halt();
402 		do_exit(0);
403 		panic("cannot halt");
404 
405 	case LINUX_REBOOT_CMD_POWER_OFF:
406 		kernel_power_off();
407 		do_exit(0);
408 		break;
409 
410 	case LINUX_REBOOT_CMD_RESTART2:
411 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
412 			ret = -EFAULT;
413 			break;
414 		}
415 		buffer[sizeof(buffer) - 1] = '\0';
416 
417 		kernel_restart(buffer);
418 		break;
419 
420 #ifdef CONFIG_KEXEC
421 	case LINUX_REBOOT_CMD_KEXEC:
422 		ret = kernel_kexec();
423 		break;
424 #endif
425 
426 #ifdef CONFIG_HIBERNATION
427 	case LINUX_REBOOT_CMD_SW_SUSPEND:
428 		ret = hibernate();
429 		break;
430 #endif
431 
432 	default:
433 		ret = -EINVAL;
434 		break;
435 	}
436 	mutex_unlock(&reboot_mutex);
437 	return ret;
438 }
439 
440 static void deferred_cad(struct work_struct *dummy)
441 {
442 	kernel_restart(NULL);
443 }
444 
445 /*
446  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
447  * As it's called within an interrupt, it may NOT sync: the only choice
448  * is whether to reboot at once, or just ignore the ctrl-alt-del.
449  */
450 void ctrl_alt_del(void)
451 {
452 	static DECLARE_WORK(cad_work, deferred_cad);
453 
454 	if (C_A_D)
455 		schedule_work(&cad_work);
456 	else
457 		kill_cad_pid(SIGINT, 1);
458 }
459 
460 /*
461  * Unprivileged users may change the real gid to the effective gid
462  * or vice versa.  (BSD-style)
463  *
464  * If you set the real gid at all, or set the effective gid to a value not
465  * equal to the real gid, then the saved gid is set to the new effective gid.
466  *
467  * This makes it possible for a setgid program to completely drop its
468  * privileges, which is often a useful assertion to make when you are doing
469  * a security audit over a program.
470  *
471  * The general idea is that a program which uses just setregid() will be
472  * 100% compatible with BSD.  A program which uses just setgid() will be
473  * 100% compatible with POSIX with saved IDs.
474  *
475  * SMP: There are not races, the GIDs are checked only by filesystem
476  *      operations (as far as semantic preservation is concerned).
477  */
478 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
479 {
480 	const struct cred *old;
481 	struct cred *new;
482 	int retval;
483 
484 	new = prepare_creds();
485 	if (!new)
486 		return -ENOMEM;
487 	old = current_cred();
488 
489 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
490 	if (retval)
491 		goto error;
492 
493 	retval = -EPERM;
494 	if (rgid != (gid_t) -1) {
495 		if (old->gid == rgid ||
496 		    old->egid == rgid ||
497 		    capable(CAP_SETGID))
498 			new->gid = rgid;
499 		else
500 			goto error;
501 	}
502 	if (egid != (gid_t) -1) {
503 		if (old->gid == egid ||
504 		    old->egid == egid ||
505 		    old->sgid == egid ||
506 		    capable(CAP_SETGID))
507 			new->egid = egid;
508 		else
509 			goto error;
510 	}
511 
512 	if (rgid != (gid_t) -1 ||
513 	    (egid != (gid_t) -1 && egid != old->gid))
514 		new->sgid = new->egid;
515 	new->fsgid = new->egid;
516 
517 	return commit_creds(new);
518 
519 error:
520 	abort_creds(new);
521 	return retval;
522 }
523 
524 /*
525  * setgid() is implemented like SysV w/ SAVED_IDS
526  *
527  * SMP: Same implicit races as above.
528  */
529 SYSCALL_DEFINE1(setgid, gid_t, gid)
530 {
531 	const struct cred *old;
532 	struct cred *new;
533 	int retval;
534 
535 	new = prepare_creds();
536 	if (!new)
537 		return -ENOMEM;
538 	old = current_cred();
539 
540 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
541 	if (retval)
542 		goto error;
543 
544 	retval = -EPERM;
545 	if (capable(CAP_SETGID))
546 		new->gid = new->egid = new->sgid = new->fsgid = gid;
547 	else if (gid == old->gid || gid == old->sgid)
548 		new->egid = new->fsgid = gid;
549 	else
550 		goto error;
551 
552 	return commit_creds(new);
553 
554 error:
555 	abort_creds(new);
556 	return retval;
557 }
558 
559 /*
560  * change the user struct in a credentials set to match the new UID
561  */
562 static int set_user(struct cred *new)
563 {
564 	struct user_struct *new_user;
565 
566 	new_user = alloc_uid(current_user_ns(), new->uid);
567 	if (!new_user)
568 		return -EAGAIN;
569 
570 	if (!task_can_switch_user(new_user, current)) {
571 		free_uid(new_user);
572 		return -EINVAL;
573 	}
574 
575 	if (atomic_read(&new_user->processes) >=
576 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
577 			new_user != INIT_USER) {
578 		free_uid(new_user);
579 		return -EAGAIN;
580 	}
581 
582 	free_uid(new->user);
583 	new->user = new_user;
584 	return 0;
585 }
586 
587 /*
588  * Unprivileged users may change the real uid to the effective uid
589  * or vice versa.  (BSD-style)
590  *
591  * If you set the real uid at all, or set the effective uid to a value not
592  * equal to the real uid, then the saved uid is set to the new effective uid.
593  *
594  * This makes it possible for a setuid program to completely drop its
595  * privileges, which is often a useful assertion to make when you are doing
596  * a security audit over a program.
597  *
598  * The general idea is that a program which uses just setreuid() will be
599  * 100% compatible with BSD.  A program which uses just setuid() will be
600  * 100% compatible with POSIX with saved IDs.
601  */
602 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
603 {
604 	const struct cred *old;
605 	struct cred *new;
606 	int retval;
607 
608 	new = prepare_creds();
609 	if (!new)
610 		return -ENOMEM;
611 	old = current_cred();
612 
613 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
614 	if (retval)
615 		goto error;
616 
617 	retval = -EPERM;
618 	if (ruid != (uid_t) -1) {
619 		new->uid = ruid;
620 		if (old->uid != ruid &&
621 		    old->euid != ruid &&
622 		    !capable(CAP_SETUID))
623 			goto error;
624 	}
625 
626 	if (euid != (uid_t) -1) {
627 		new->euid = euid;
628 		if (old->uid != euid &&
629 		    old->euid != euid &&
630 		    old->suid != euid &&
631 		    !capable(CAP_SETUID))
632 			goto error;
633 	}
634 
635 	if (new->uid != old->uid) {
636 		retval = set_user(new);
637 		if (retval < 0)
638 			goto error;
639 	}
640 	if (ruid != (uid_t) -1 ||
641 	    (euid != (uid_t) -1 && euid != old->uid))
642 		new->suid = new->euid;
643 	new->fsuid = new->euid;
644 
645 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
646 	if (retval < 0)
647 		goto error;
648 
649 	return commit_creds(new);
650 
651 error:
652 	abort_creds(new);
653 	return retval;
654 }
655 
656 /*
657  * setuid() is implemented like SysV with SAVED_IDS
658  *
659  * Note that SAVED_ID's is deficient in that a setuid root program
660  * like sendmail, for example, cannot set its uid to be a normal
661  * user and then switch back, because if you're root, setuid() sets
662  * the saved uid too.  If you don't like this, blame the bright people
663  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
664  * will allow a root program to temporarily drop privileges and be able to
665  * regain them by swapping the real and effective uid.
666  */
667 SYSCALL_DEFINE1(setuid, uid_t, uid)
668 {
669 	const struct cred *old;
670 	struct cred *new;
671 	int retval;
672 
673 	new = prepare_creds();
674 	if (!new)
675 		return -ENOMEM;
676 	old = current_cred();
677 
678 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
679 	if (retval)
680 		goto error;
681 
682 	retval = -EPERM;
683 	if (capable(CAP_SETUID)) {
684 		new->suid = new->uid = uid;
685 		if (uid != old->uid) {
686 			retval = set_user(new);
687 			if (retval < 0)
688 				goto error;
689 		}
690 	} else if (uid != old->uid && uid != new->suid) {
691 		goto error;
692 	}
693 
694 	new->fsuid = new->euid = uid;
695 
696 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
697 	if (retval < 0)
698 		goto error;
699 
700 	return commit_creds(new);
701 
702 error:
703 	abort_creds(new);
704 	return retval;
705 }
706 
707 
708 /*
709  * This function implements a generic ability to update ruid, euid,
710  * and suid.  This allows you to implement the 4.4 compatible seteuid().
711  */
712 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
713 {
714 	const struct cred *old;
715 	struct cred *new;
716 	int retval;
717 
718 	new = prepare_creds();
719 	if (!new)
720 		return -ENOMEM;
721 
722 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
723 	if (retval)
724 		goto error;
725 	old = current_cred();
726 
727 	retval = -EPERM;
728 	if (!capable(CAP_SETUID)) {
729 		if (ruid != (uid_t) -1 && ruid != old->uid &&
730 		    ruid != old->euid  && ruid != old->suid)
731 			goto error;
732 		if (euid != (uid_t) -1 && euid != old->uid &&
733 		    euid != old->euid  && euid != old->suid)
734 			goto error;
735 		if (suid != (uid_t) -1 && suid != old->uid &&
736 		    suid != old->euid  && suid != old->suid)
737 			goto error;
738 	}
739 
740 	if (ruid != (uid_t) -1) {
741 		new->uid = ruid;
742 		if (ruid != old->uid) {
743 			retval = set_user(new);
744 			if (retval < 0)
745 				goto error;
746 		}
747 	}
748 	if (euid != (uid_t) -1)
749 		new->euid = euid;
750 	if (suid != (uid_t) -1)
751 		new->suid = suid;
752 	new->fsuid = new->euid;
753 
754 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
755 	if (retval < 0)
756 		goto error;
757 
758 	return commit_creds(new);
759 
760 error:
761 	abort_creds(new);
762 	return retval;
763 }
764 
765 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
766 {
767 	const struct cred *cred = current_cred();
768 	int retval;
769 
770 	if (!(retval   = put_user(cred->uid,  ruid)) &&
771 	    !(retval   = put_user(cred->euid, euid)))
772 		retval = put_user(cred->suid, suid);
773 
774 	return retval;
775 }
776 
777 /*
778  * Same as above, but for rgid, egid, sgid.
779  */
780 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
781 {
782 	const struct cred *old;
783 	struct cred *new;
784 	int retval;
785 
786 	new = prepare_creds();
787 	if (!new)
788 		return -ENOMEM;
789 	old = current_cred();
790 
791 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
792 	if (retval)
793 		goto error;
794 
795 	retval = -EPERM;
796 	if (!capable(CAP_SETGID)) {
797 		if (rgid != (gid_t) -1 && rgid != old->gid &&
798 		    rgid != old->egid  && rgid != old->sgid)
799 			goto error;
800 		if (egid != (gid_t) -1 && egid != old->gid &&
801 		    egid != old->egid  && egid != old->sgid)
802 			goto error;
803 		if (sgid != (gid_t) -1 && sgid != old->gid &&
804 		    sgid != old->egid  && sgid != old->sgid)
805 			goto error;
806 	}
807 
808 	if (rgid != (gid_t) -1)
809 		new->gid = rgid;
810 	if (egid != (gid_t) -1)
811 		new->egid = egid;
812 	if (sgid != (gid_t) -1)
813 		new->sgid = sgid;
814 	new->fsgid = new->egid;
815 
816 	return commit_creds(new);
817 
818 error:
819 	abort_creds(new);
820 	return retval;
821 }
822 
823 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
824 {
825 	const struct cred *cred = current_cred();
826 	int retval;
827 
828 	if (!(retval   = put_user(cred->gid,  rgid)) &&
829 	    !(retval   = put_user(cred->egid, egid)))
830 		retval = put_user(cred->sgid, sgid);
831 
832 	return retval;
833 }
834 
835 
836 /*
837  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
838  * is used for "access()" and for the NFS daemon (letting nfsd stay at
839  * whatever uid it wants to). It normally shadows "euid", except when
840  * explicitly set by setfsuid() or for access..
841  */
842 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
843 {
844 	const struct cred *old;
845 	struct cred *new;
846 	uid_t old_fsuid;
847 
848 	new = prepare_creds();
849 	if (!new)
850 		return current_fsuid();
851 	old = current_cred();
852 	old_fsuid = old->fsuid;
853 
854 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
855 		goto error;
856 
857 	if (uid == old->uid  || uid == old->euid  ||
858 	    uid == old->suid || uid == old->fsuid ||
859 	    capable(CAP_SETUID)) {
860 		if (uid != old_fsuid) {
861 			new->fsuid = uid;
862 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
863 				goto change_okay;
864 		}
865 	}
866 
867 error:
868 	abort_creds(new);
869 	return old_fsuid;
870 
871 change_okay:
872 	commit_creds(new);
873 	return old_fsuid;
874 }
875 
876 /*
877  * Samma på svenska..
878  */
879 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
880 {
881 	const struct cred *old;
882 	struct cred *new;
883 	gid_t old_fsgid;
884 
885 	new = prepare_creds();
886 	if (!new)
887 		return current_fsgid();
888 	old = current_cred();
889 	old_fsgid = old->fsgid;
890 
891 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
892 		goto error;
893 
894 	if (gid == old->gid  || gid == old->egid  ||
895 	    gid == old->sgid || gid == old->fsgid ||
896 	    capable(CAP_SETGID)) {
897 		if (gid != old_fsgid) {
898 			new->fsgid = gid;
899 			goto change_okay;
900 		}
901 	}
902 
903 error:
904 	abort_creds(new);
905 	return old_fsgid;
906 
907 change_okay:
908 	commit_creds(new);
909 	return old_fsgid;
910 }
911 
912 void do_sys_times(struct tms *tms)
913 {
914 	cputime_t tgutime, tgstime, cutime, cstime;
915 
916 	spin_lock_irq(&current->sighand->siglock);
917 	thread_group_times(current, &tgutime, &tgstime);
918 	cutime = current->signal->cutime;
919 	cstime = current->signal->cstime;
920 	spin_unlock_irq(&current->sighand->siglock);
921 	tms->tms_utime = cputime_to_clock_t(tgutime);
922 	tms->tms_stime = cputime_to_clock_t(tgstime);
923 	tms->tms_cutime = cputime_to_clock_t(cutime);
924 	tms->tms_cstime = cputime_to_clock_t(cstime);
925 }
926 
927 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
928 {
929 	if (tbuf) {
930 		struct tms tmp;
931 
932 		do_sys_times(&tmp);
933 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
934 			return -EFAULT;
935 	}
936 	force_successful_syscall_return();
937 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
938 }
939 
940 /*
941  * This needs some heavy checking ...
942  * I just haven't the stomach for it. I also don't fully
943  * understand sessions/pgrp etc. Let somebody who does explain it.
944  *
945  * OK, I think I have the protection semantics right.... this is really
946  * only important on a multi-user system anyway, to make sure one user
947  * can't send a signal to a process owned by another.  -TYT, 12/12/91
948  *
949  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
950  * LBT 04.03.94
951  */
952 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
953 {
954 	struct task_struct *p;
955 	struct task_struct *group_leader = current->group_leader;
956 	struct pid *pgrp;
957 	int err;
958 
959 	if (!pid)
960 		pid = task_pid_vnr(group_leader);
961 	if (!pgid)
962 		pgid = pid;
963 	if (pgid < 0)
964 		return -EINVAL;
965 
966 	/* From this point forward we keep holding onto the tasklist lock
967 	 * so that our parent does not change from under us. -DaveM
968 	 */
969 	write_lock_irq(&tasklist_lock);
970 
971 	err = -ESRCH;
972 	p = find_task_by_vpid(pid);
973 	if (!p)
974 		goto out;
975 
976 	err = -EINVAL;
977 	if (!thread_group_leader(p))
978 		goto out;
979 
980 	if (same_thread_group(p->real_parent, group_leader)) {
981 		err = -EPERM;
982 		if (task_session(p) != task_session(group_leader))
983 			goto out;
984 		err = -EACCES;
985 		if (p->did_exec)
986 			goto out;
987 	} else {
988 		err = -ESRCH;
989 		if (p != group_leader)
990 			goto out;
991 	}
992 
993 	err = -EPERM;
994 	if (p->signal->leader)
995 		goto out;
996 
997 	pgrp = task_pid(p);
998 	if (pgid != pid) {
999 		struct task_struct *g;
1000 
1001 		pgrp = find_vpid(pgid);
1002 		g = pid_task(pgrp, PIDTYPE_PGID);
1003 		if (!g || task_session(g) != task_session(group_leader))
1004 			goto out;
1005 	}
1006 
1007 	err = security_task_setpgid(p, pgid);
1008 	if (err)
1009 		goto out;
1010 
1011 	if (task_pgrp(p) != pgrp)
1012 		change_pid(p, PIDTYPE_PGID, pgrp);
1013 
1014 	err = 0;
1015 out:
1016 	/* All paths lead to here, thus we are safe. -DaveM */
1017 	write_unlock_irq(&tasklist_lock);
1018 	return err;
1019 }
1020 
1021 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1022 {
1023 	struct task_struct *p;
1024 	struct pid *grp;
1025 	int retval;
1026 
1027 	rcu_read_lock();
1028 	if (!pid)
1029 		grp = task_pgrp(current);
1030 	else {
1031 		retval = -ESRCH;
1032 		p = find_task_by_vpid(pid);
1033 		if (!p)
1034 			goto out;
1035 		grp = task_pgrp(p);
1036 		if (!grp)
1037 			goto out;
1038 
1039 		retval = security_task_getpgid(p);
1040 		if (retval)
1041 			goto out;
1042 	}
1043 	retval = pid_vnr(grp);
1044 out:
1045 	rcu_read_unlock();
1046 	return retval;
1047 }
1048 
1049 #ifdef __ARCH_WANT_SYS_GETPGRP
1050 
1051 SYSCALL_DEFINE0(getpgrp)
1052 {
1053 	return sys_getpgid(0);
1054 }
1055 
1056 #endif
1057 
1058 SYSCALL_DEFINE1(getsid, pid_t, pid)
1059 {
1060 	struct task_struct *p;
1061 	struct pid *sid;
1062 	int retval;
1063 
1064 	rcu_read_lock();
1065 	if (!pid)
1066 		sid = task_session(current);
1067 	else {
1068 		retval = -ESRCH;
1069 		p = find_task_by_vpid(pid);
1070 		if (!p)
1071 			goto out;
1072 		sid = task_session(p);
1073 		if (!sid)
1074 			goto out;
1075 
1076 		retval = security_task_getsid(p);
1077 		if (retval)
1078 			goto out;
1079 	}
1080 	retval = pid_vnr(sid);
1081 out:
1082 	rcu_read_unlock();
1083 	return retval;
1084 }
1085 
1086 SYSCALL_DEFINE0(setsid)
1087 {
1088 	struct task_struct *group_leader = current->group_leader;
1089 	struct pid *sid = task_pid(group_leader);
1090 	pid_t session = pid_vnr(sid);
1091 	int err = -EPERM;
1092 
1093 	write_lock_irq(&tasklist_lock);
1094 	/* Fail if I am already a session leader */
1095 	if (group_leader->signal->leader)
1096 		goto out;
1097 
1098 	/* Fail if a process group id already exists that equals the
1099 	 * proposed session id.
1100 	 */
1101 	if (pid_task(sid, PIDTYPE_PGID))
1102 		goto out;
1103 
1104 	group_leader->signal->leader = 1;
1105 	__set_special_pids(sid);
1106 
1107 	proc_clear_tty(group_leader);
1108 
1109 	err = session;
1110 out:
1111 	write_unlock_irq(&tasklist_lock);
1112 	if (err > 0)
1113 		proc_sid_connector(group_leader);
1114 	return err;
1115 }
1116 
1117 DECLARE_RWSEM(uts_sem);
1118 
1119 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1120 {
1121 	int errno = 0;
1122 
1123 	down_read(&uts_sem);
1124 	if (copy_to_user(name, utsname(), sizeof *name))
1125 		errno = -EFAULT;
1126 	up_read(&uts_sem);
1127 	return errno;
1128 }
1129 
1130 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1131 {
1132 	int errno;
1133 	char tmp[__NEW_UTS_LEN];
1134 
1135 	if (!capable(CAP_SYS_ADMIN))
1136 		return -EPERM;
1137 	if (len < 0 || len > __NEW_UTS_LEN)
1138 		return -EINVAL;
1139 	down_write(&uts_sem);
1140 	errno = -EFAULT;
1141 	if (!copy_from_user(tmp, name, len)) {
1142 		struct new_utsname *u = utsname();
1143 
1144 		memcpy(u->nodename, tmp, len);
1145 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1146 		errno = 0;
1147 	}
1148 	up_write(&uts_sem);
1149 	return errno;
1150 }
1151 
1152 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1153 
1154 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1155 {
1156 	int i, errno;
1157 	struct new_utsname *u;
1158 
1159 	if (len < 0)
1160 		return -EINVAL;
1161 	down_read(&uts_sem);
1162 	u = utsname();
1163 	i = 1 + strlen(u->nodename);
1164 	if (i > len)
1165 		i = len;
1166 	errno = 0;
1167 	if (copy_to_user(name, u->nodename, i))
1168 		errno = -EFAULT;
1169 	up_read(&uts_sem);
1170 	return errno;
1171 }
1172 
1173 #endif
1174 
1175 /*
1176  * Only setdomainname; getdomainname can be implemented by calling
1177  * uname()
1178  */
1179 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1180 {
1181 	int errno;
1182 	char tmp[__NEW_UTS_LEN];
1183 
1184 	if (!capable(CAP_SYS_ADMIN))
1185 		return -EPERM;
1186 	if (len < 0 || len > __NEW_UTS_LEN)
1187 		return -EINVAL;
1188 
1189 	down_write(&uts_sem);
1190 	errno = -EFAULT;
1191 	if (!copy_from_user(tmp, name, len)) {
1192 		struct new_utsname *u = utsname();
1193 
1194 		memcpy(u->domainname, tmp, len);
1195 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1196 		errno = 0;
1197 	}
1198 	up_write(&uts_sem);
1199 	return errno;
1200 }
1201 
1202 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1203 {
1204 	if (resource >= RLIM_NLIMITS)
1205 		return -EINVAL;
1206 	else {
1207 		struct rlimit value;
1208 		task_lock(current->group_leader);
1209 		value = current->signal->rlim[resource];
1210 		task_unlock(current->group_leader);
1211 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1212 	}
1213 }
1214 
1215 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1216 
1217 /*
1218  *	Back compatibility for getrlimit. Needed for some apps.
1219  */
1220 
1221 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1222 		struct rlimit __user *, rlim)
1223 {
1224 	struct rlimit x;
1225 	if (resource >= RLIM_NLIMITS)
1226 		return -EINVAL;
1227 
1228 	task_lock(current->group_leader);
1229 	x = current->signal->rlim[resource];
1230 	task_unlock(current->group_leader);
1231 	if (x.rlim_cur > 0x7FFFFFFF)
1232 		x.rlim_cur = 0x7FFFFFFF;
1233 	if (x.rlim_max > 0x7FFFFFFF)
1234 		x.rlim_max = 0x7FFFFFFF;
1235 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1236 }
1237 
1238 #endif
1239 
1240 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1241 {
1242 	struct rlimit new_rlim, *old_rlim;
1243 	int retval;
1244 
1245 	if (resource >= RLIM_NLIMITS)
1246 		return -EINVAL;
1247 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1248 		return -EFAULT;
1249 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1250 		return -EINVAL;
1251 	old_rlim = current->signal->rlim + resource;
1252 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1253 	    !capable(CAP_SYS_RESOURCE))
1254 		return -EPERM;
1255 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1256 		return -EPERM;
1257 
1258 	retval = security_task_setrlimit(resource, &new_rlim);
1259 	if (retval)
1260 		return retval;
1261 
1262 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1263 		/*
1264 		 * The caller is asking for an immediate RLIMIT_CPU
1265 		 * expiry.  But we use the zero value to mean "it was
1266 		 * never set".  So let's cheat and make it one second
1267 		 * instead
1268 		 */
1269 		new_rlim.rlim_cur = 1;
1270 	}
1271 
1272 	task_lock(current->group_leader);
1273 	*old_rlim = new_rlim;
1274 	task_unlock(current->group_leader);
1275 
1276 	if (resource != RLIMIT_CPU)
1277 		goto out;
1278 
1279 	/*
1280 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1281 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1282 	 * very long-standing error, and fixing it now risks breakage of
1283 	 * applications, so we live with it
1284 	 */
1285 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1286 		goto out;
1287 
1288 	update_rlimit_cpu(new_rlim.rlim_cur);
1289 out:
1290 	return 0;
1291 }
1292 
1293 /*
1294  * It would make sense to put struct rusage in the task_struct,
1295  * except that would make the task_struct be *really big*.  After
1296  * task_struct gets moved into malloc'ed memory, it would
1297  * make sense to do this.  It will make moving the rest of the information
1298  * a lot simpler!  (Which we're not doing right now because we're not
1299  * measuring them yet).
1300  *
1301  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1302  * races with threads incrementing their own counters.  But since word
1303  * reads are atomic, we either get new values or old values and we don't
1304  * care which for the sums.  We always take the siglock to protect reading
1305  * the c* fields from p->signal from races with exit.c updating those
1306  * fields when reaping, so a sample either gets all the additions of a
1307  * given child after it's reaped, or none so this sample is before reaping.
1308  *
1309  * Locking:
1310  * We need to take the siglock for CHILDEREN, SELF and BOTH
1311  * for  the cases current multithreaded, non-current single threaded
1312  * non-current multithreaded.  Thread traversal is now safe with
1313  * the siglock held.
1314  * Strictly speaking, we donot need to take the siglock if we are current and
1315  * single threaded,  as no one else can take our signal_struct away, no one
1316  * else can  reap the  children to update signal->c* counters, and no one else
1317  * can race with the signal-> fields. If we do not take any lock, the
1318  * signal-> fields could be read out of order while another thread was just
1319  * exiting. So we should  place a read memory barrier when we avoid the lock.
1320  * On the writer side,  write memory barrier is implied in  __exit_signal
1321  * as __exit_signal releases  the siglock spinlock after updating the signal->
1322  * fields. But we don't do this yet to keep things simple.
1323  *
1324  */
1325 
1326 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1327 {
1328 	r->ru_nvcsw += t->nvcsw;
1329 	r->ru_nivcsw += t->nivcsw;
1330 	r->ru_minflt += t->min_flt;
1331 	r->ru_majflt += t->maj_flt;
1332 	r->ru_inblock += task_io_get_inblock(t);
1333 	r->ru_oublock += task_io_get_oublock(t);
1334 }
1335 
1336 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1337 {
1338 	struct task_struct *t;
1339 	unsigned long flags;
1340 	cputime_t tgutime, tgstime, utime, stime;
1341 	unsigned long maxrss = 0;
1342 
1343 	memset((char *) r, 0, sizeof *r);
1344 	utime = stime = cputime_zero;
1345 
1346 	if (who == RUSAGE_THREAD) {
1347 		task_times(current, &utime, &stime);
1348 		accumulate_thread_rusage(p, r);
1349 		maxrss = p->signal->maxrss;
1350 		goto out;
1351 	}
1352 
1353 	if (!lock_task_sighand(p, &flags))
1354 		return;
1355 
1356 	switch (who) {
1357 		case RUSAGE_BOTH:
1358 		case RUSAGE_CHILDREN:
1359 			utime = p->signal->cutime;
1360 			stime = p->signal->cstime;
1361 			r->ru_nvcsw = p->signal->cnvcsw;
1362 			r->ru_nivcsw = p->signal->cnivcsw;
1363 			r->ru_minflt = p->signal->cmin_flt;
1364 			r->ru_majflt = p->signal->cmaj_flt;
1365 			r->ru_inblock = p->signal->cinblock;
1366 			r->ru_oublock = p->signal->coublock;
1367 			maxrss = p->signal->cmaxrss;
1368 
1369 			if (who == RUSAGE_CHILDREN)
1370 				break;
1371 
1372 		case RUSAGE_SELF:
1373 			thread_group_times(p, &tgutime, &tgstime);
1374 			utime = cputime_add(utime, tgutime);
1375 			stime = cputime_add(stime, tgstime);
1376 			r->ru_nvcsw += p->signal->nvcsw;
1377 			r->ru_nivcsw += p->signal->nivcsw;
1378 			r->ru_minflt += p->signal->min_flt;
1379 			r->ru_majflt += p->signal->maj_flt;
1380 			r->ru_inblock += p->signal->inblock;
1381 			r->ru_oublock += p->signal->oublock;
1382 			if (maxrss < p->signal->maxrss)
1383 				maxrss = p->signal->maxrss;
1384 			t = p;
1385 			do {
1386 				accumulate_thread_rusage(t, r);
1387 				t = next_thread(t);
1388 			} while (t != p);
1389 			break;
1390 
1391 		default:
1392 			BUG();
1393 	}
1394 	unlock_task_sighand(p, &flags);
1395 
1396 out:
1397 	cputime_to_timeval(utime, &r->ru_utime);
1398 	cputime_to_timeval(stime, &r->ru_stime);
1399 
1400 	if (who != RUSAGE_CHILDREN) {
1401 		struct mm_struct *mm = get_task_mm(p);
1402 		if (mm) {
1403 			setmax_mm_hiwater_rss(&maxrss, mm);
1404 			mmput(mm);
1405 		}
1406 	}
1407 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1408 }
1409 
1410 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1411 {
1412 	struct rusage r;
1413 	k_getrusage(p, who, &r);
1414 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1415 }
1416 
1417 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1418 {
1419 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1420 	    who != RUSAGE_THREAD)
1421 		return -EINVAL;
1422 	return getrusage(current, who, ru);
1423 }
1424 
1425 SYSCALL_DEFINE1(umask, int, mask)
1426 {
1427 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1428 	return mask;
1429 }
1430 
1431 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1432 		unsigned long, arg4, unsigned long, arg5)
1433 {
1434 	struct task_struct *me = current;
1435 	unsigned char comm[sizeof(me->comm)];
1436 	long error;
1437 
1438 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1439 	if (error != -ENOSYS)
1440 		return error;
1441 
1442 	error = 0;
1443 	switch (option) {
1444 		case PR_SET_PDEATHSIG:
1445 			if (!valid_signal(arg2)) {
1446 				error = -EINVAL;
1447 				break;
1448 			}
1449 			me->pdeath_signal = arg2;
1450 			error = 0;
1451 			break;
1452 		case PR_GET_PDEATHSIG:
1453 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1454 			break;
1455 		case PR_GET_DUMPABLE:
1456 			error = get_dumpable(me->mm);
1457 			break;
1458 		case PR_SET_DUMPABLE:
1459 			if (arg2 < 0 || arg2 > 1) {
1460 				error = -EINVAL;
1461 				break;
1462 			}
1463 			set_dumpable(me->mm, arg2);
1464 			error = 0;
1465 			break;
1466 
1467 		case PR_SET_UNALIGN:
1468 			error = SET_UNALIGN_CTL(me, arg2);
1469 			break;
1470 		case PR_GET_UNALIGN:
1471 			error = GET_UNALIGN_CTL(me, arg2);
1472 			break;
1473 		case PR_SET_FPEMU:
1474 			error = SET_FPEMU_CTL(me, arg2);
1475 			break;
1476 		case PR_GET_FPEMU:
1477 			error = GET_FPEMU_CTL(me, arg2);
1478 			break;
1479 		case PR_SET_FPEXC:
1480 			error = SET_FPEXC_CTL(me, arg2);
1481 			break;
1482 		case PR_GET_FPEXC:
1483 			error = GET_FPEXC_CTL(me, arg2);
1484 			break;
1485 		case PR_GET_TIMING:
1486 			error = PR_TIMING_STATISTICAL;
1487 			break;
1488 		case PR_SET_TIMING:
1489 			if (arg2 != PR_TIMING_STATISTICAL)
1490 				error = -EINVAL;
1491 			else
1492 				error = 0;
1493 			break;
1494 
1495 		case PR_SET_NAME:
1496 			comm[sizeof(me->comm)-1] = 0;
1497 			if (strncpy_from_user(comm, (char __user *)arg2,
1498 					      sizeof(me->comm) - 1) < 0)
1499 				return -EFAULT;
1500 			set_task_comm(me, comm);
1501 			return 0;
1502 		case PR_GET_NAME:
1503 			get_task_comm(comm, me);
1504 			if (copy_to_user((char __user *)arg2, comm,
1505 					 sizeof(comm)))
1506 				return -EFAULT;
1507 			return 0;
1508 		case PR_GET_ENDIAN:
1509 			error = GET_ENDIAN(me, arg2);
1510 			break;
1511 		case PR_SET_ENDIAN:
1512 			error = SET_ENDIAN(me, arg2);
1513 			break;
1514 
1515 		case PR_GET_SECCOMP:
1516 			error = prctl_get_seccomp();
1517 			break;
1518 		case PR_SET_SECCOMP:
1519 			error = prctl_set_seccomp(arg2);
1520 			break;
1521 		case PR_GET_TSC:
1522 			error = GET_TSC_CTL(arg2);
1523 			break;
1524 		case PR_SET_TSC:
1525 			error = SET_TSC_CTL(arg2);
1526 			break;
1527 		case PR_TASK_PERF_EVENTS_DISABLE:
1528 			error = perf_event_task_disable();
1529 			break;
1530 		case PR_TASK_PERF_EVENTS_ENABLE:
1531 			error = perf_event_task_enable();
1532 			break;
1533 		case PR_GET_TIMERSLACK:
1534 			error = current->timer_slack_ns;
1535 			break;
1536 		case PR_SET_TIMERSLACK:
1537 			if (arg2 <= 0)
1538 				current->timer_slack_ns =
1539 					current->default_timer_slack_ns;
1540 			else
1541 				current->timer_slack_ns = arg2;
1542 			error = 0;
1543 			break;
1544 		case PR_MCE_KILL:
1545 			if (arg4 | arg5)
1546 				return -EINVAL;
1547 			switch (arg2) {
1548 			case PR_MCE_KILL_CLEAR:
1549 				if (arg3 != 0)
1550 					return -EINVAL;
1551 				current->flags &= ~PF_MCE_PROCESS;
1552 				break;
1553 			case PR_MCE_KILL_SET:
1554 				current->flags |= PF_MCE_PROCESS;
1555 				if (arg3 == PR_MCE_KILL_EARLY)
1556 					current->flags |= PF_MCE_EARLY;
1557 				else if (arg3 == PR_MCE_KILL_LATE)
1558 					current->flags &= ~PF_MCE_EARLY;
1559 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1560 					current->flags &=
1561 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1562 				else
1563 					return -EINVAL;
1564 				break;
1565 			default:
1566 				return -EINVAL;
1567 			}
1568 			error = 0;
1569 			break;
1570 		case PR_MCE_KILL_GET:
1571 			if (arg2 | arg3 | arg4 | arg5)
1572 				return -EINVAL;
1573 			if (current->flags & PF_MCE_PROCESS)
1574 				error = (current->flags & PF_MCE_EARLY) ?
1575 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1576 			else
1577 				error = PR_MCE_KILL_DEFAULT;
1578 			break;
1579 		default:
1580 			error = -EINVAL;
1581 			break;
1582 	}
1583 	return error;
1584 }
1585 
1586 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1587 		struct getcpu_cache __user *, unused)
1588 {
1589 	int err = 0;
1590 	int cpu = raw_smp_processor_id();
1591 	if (cpup)
1592 		err |= put_user(cpu, cpup);
1593 	if (nodep)
1594 		err |= put_user(cpu_to_node(cpu), nodep);
1595 	return err ? -EFAULT : 0;
1596 }
1597 
1598 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1599 
1600 static void argv_cleanup(char **argv, char **envp)
1601 {
1602 	argv_free(argv);
1603 }
1604 
1605 /**
1606  * orderly_poweroff - Trigger an orderly system poweroff
1607  * @force: force poweroff if command execution fails
1608  *
1609  * This may be called from any context to trigger a system shutdown.
1610  * If the orderly shutdown fails, it will force an immediate shutdown.
1611  */
1612 int orderly_poweroff(bool force)
1613 {
1614 	int argc;
1615 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1616 	static char *envp[] = {
1617 		"HOME=/",
1618 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1619 		NULL
1620 	};
1621 	int ret = -ENOMEM;
1622 	struct subprocess_info *info;
1623 
1624 	if (argv == NULL) {
1625 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1626 		       __func__, poweroff_cmd);
1627 		goto out;
1628 	}
1629 
1630 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1631 	if (info == NULL) {
1632 		argv_free(argv);
1633 		goto out;
1634 	}
1635 
1636 	call_usermodehelper_setcleanup(info, argv_cleanup);
1637 
1638 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1639 
1640   out:
1641 	if (ret && force) {
1642 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1643 		       "forcing the issue\n");
1644 
1645 		/* I guess this should try to kick off some daemon to
1646 		   sync and poweroff asap.  Or not even bother syncing
1647 		   if we're doing an emergency shutdown? */
1648 		emergency_sync();
1649 		kernel_power_off();
1650 	}
1651 
1652 	return ret;
1653 }
1654 EXPORT_SYMBOL_GPL(orderly_poweroff);
1655