xref: /linux/kernel/sys.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 
37 #include <linux/compat.h>
38 #include <linux/syscalls.h>
39 #include <linux/kprobes.h>
40 #include <linux/user_namespace.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/unistd.h>
45 
46 #ifndef SET_UNALIGN_CTL
47 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
48 #endif
49 #ifndef GET_UNALIGN_CTL
50 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
51 #endif
52 #ifndef SET_FPEMU_CTL
53 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
54 #endif
55 #ifndef GET_FPEMU_CTL
56 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
57 #endif
58 #ifndef SET_FPEXC_CTL
59 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
60 #endif
61 #ifndef GET_FPEXC_CTL
62 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
63 #endif
64 #ifndef GET_ENDIAN
65 # define GET_ENDIAN(a,b)	(-EINVAL)
66 #endif
67 #ifndef SET_ENDIAN
68 # define SET_ENDIAN(a,b)	(-EINVAL)
69 #endif
70 #ifndef GET_TSC_CTL
71 # define GET_TSC_CTL(a)		(-EINVAL)
72 #endif
73 #ifndef SET_TSC_CTL
74 # define SET_TSC_CTL(a)		(-EINVAL)
75 #endif
76 
77 /*
78  * this is where the system-wide overflow UID and GID are defined, for
79  * architectures that now have 32-bit UID/GID but didn't in the past
80  */
81 
82 int overflowuid = DEFAULT_OVERFLOWUID;
83 int overflowgid = DEFAULT_OVERFLOWGID;
84 
85 #ifdef CONFIG_UID16
86 EXPORT_SYMBOL(overflowuid);
87 EXPORT_SYMBOL(overflowgid);
88 #endif
89 
90 /*
91  * the same as above, but for filesystems which can only store a 16-bit
92  * UID and GID. as such, this is needed on all architectures
93  */
94 
95 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
96 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
97 
98 EXPORT_SYMBOL(fs_overflowuid);
99 EXPORT_SYMBOL(fs_overflowgid);
100 
101 /*
102  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
103  */
104 
105 int C_A_D = 1;
106 struct pid *cad_pid;
107 EXPORT_SYMBOL(cad_pid);
108 
109 /*
110  * If set, this is used for preparing the system to power off.
111  */
112 
113 void (*pm_power_off_prepare)(void);
114 
115 static int set_one_prio(struct task_struct *p, int niceval, int error)
116 {
117 	int no_nice;
118 
119 	if (p->uid != current->euid &&
120 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
121 		error = -EPERM;
122 		goto out;
123 	}
124 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
125 		error = -EACCES;
126 		goto out;
127 	}
128 	no_nice = security_task_setnice(p, niceval);
129 	if (no_nice) {
130 		error = no_nice;
131 		goto out;
132 	}
133 	if (error == -ESRCH)
134 		error = 0;
135 	set_user_nice(p, niceval);
136 out:
137 	return error;
138 }
139 
140 asmlinkage long sys_setpriority(int which, int who, int niceval)
141 {
142 	struct task_struct *g, *p;
143 	struct user_struct *user;
144 	int error = -EINVAL;
145 	struct pid *pgrp;
146 
147 	if (which > PRIO_USER || which < PRIO_PROCESS)
148 		goto out;
149 
150 	/* normalize: avoid signed division (rounding problems) */
151 	error = -ESRCH;
152 	if (niceval < -20)
153 		niceval = -20;
154 	if (niceval > 19)
155 		niceval = 19;
156 
157 	read_lock(&tasklist_lock);
158 	switch (which) {
159 		case PRIO_PROCESS:
160 			if (who)
161 				p = find_task_by_vpid(who);
162 			else
163 				p = current;
164 			if (p)
165 				error = set_one_prio(p, niceval, error);
166 			break;
167 		case PRIO_PGRP:
168 			if (who)
169 				pgrp = find_vpid(who);
170 			else
171 				pgrp = task_pgrp(current);
172 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
173 				error = set_one_prio(p, niceval, error);
174 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
175 			break;
176 		case PRIO_USER:
177 			user = current->user;
178 			if (!who)
179 				who = current->uid;
180 			else
181 				if ((who != current->uid) && !(user = find_user(who)))
182 					goto out_unlock;	/* No processes for this user */
183 
184 			do_each_thread(g, p)
185 				if (p->uid == who)
186 					error = set_one_prio(p, niceval, error);
187 			while_each_thread(g, p);
188 			if (who != current->uid)
189 				free_uid(user);		/* For find_user() */
190 			break;
191 	}
192 out_unlock:
193 	read_unlock(&tasklist_lock);
194 out:
195 	return error;
196 }
197 
198 /*
199  * Ugh. To avoid negative return values, "getpriority()" will
200  * not return the normal nice-value, but a negated value that
201  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
202  * to stay compatible.
203  */
204 asmlinkage long sys_getpriority(int which, int who)
205 {
206 	struct task_struct *g, *p;
207 	struct user_struct *user;
208 	long niceval, retval = -ESRCH;
209 	struct pid *pgrp;
210 
211 	if (which > PRIO_USER || which < PRIO_PROCESS)
212 		return -EINVAL;
213 
214 	read_lock(&tasklist_lock);
215 	switch (which) {
216 		case PRIO_PROCESS:
217 			if (who)
218 				p = find_task_by_vpid(who);
219 			else
220 				p = current;
221 			if (p) {
222 				niceval = 20 - task_nice(p);
223 				if (niceval > retval)
224 					retval = niceval;
225 			}
226 			break;
227 		case PRIO_PGRP:
228 			if (who)
229 				pgrp = find_vpid(who);
230 			else
231 				pgrp = task_pgrp(current);
232 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
233 				niceval = 20 - task_nice(p);
234 				if (niceval > retval)
235 					retval = niceval;
236 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
237 			break;
238 		case PRIO_USER:
239 			user = current->user;
240 			if (!who)
241 				who = current->uid;
242 			else
243 				if ((who != current->uid) && !(user = find_user(who)))
244 					goto out_unlock;	/* No processes for this user */
245 
246 			do_each_thread(g, p)
247 				if (p->uid == who) {
248 					niceval = 20 - task_nice(p);
249 					if (niceval > retval)
250 						retval = niceval;
251 				}
252 			while_each_thread(g, p);
253 			if (who != current->uid)
254 				free_uid(user);		/* for find_user() */
255 			break;
256 	}
257 out_unlock:
258 	read_unlock(&tasklist_lock);
259 
260 	return retval;
261 }
262 
263 /**
264  *	emergency_restart - reboot the system
265  *
266  *	Without shutting down any hardware or taking any locks
267  *	reboot the system.  This is called when we know we are in
268  *	trouble so this is our best effort to reboot.  This is
269  *	safe to call in interrupt context.
270  */
271 void emergency_restart(void)
272 {
273 	machine_emergency_restart();
274 }
275 EXPORT_SYMBOL_GPL(emergency_restart);
276 
277 void kernel_restart_prepare(char *cmd)
278 {
279 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
280 	system_state = SYSTEM_RESTART;
281 	device_shutdown();
282 	sysdev_shutdown();
283 }
284 
285 /**
286  *	kernel_restart - reboot the system
287  *	@cmd: pointer to buffer containing command to execute for restart
288  *		or %NULL
289  *
290  *	Shutdown everything and perform a clean reboot.
291  *	This is not safe to call in interrupt context.
292  */
293 void kernel_restart(char *cmd)
294 {
295 	kernel_restart_prepare(cmd);
296 	if (!cmd)
297 		printk(KERN_EMERG "Restarting system.\n");
298 	else
299 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
300 	machine_restart(cmd);
301 }
302 EXPORT_SYMBOL_GPL(kernel_restart);
303 
304 static void kernel_shutdown_prepare(enum system_states state)
305 {
306 	blocking_notifier_call_chain(&reboot_notifier_list,
307 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
308 	system_state = state;
309 	device_shutdown();
310 }
311 /**
312  *	kernel_halt - halt the system
313  *
314  *	Shutdown everything and perform a clean system halt.
315  */
316 void kernel_halt(void)
317 {
318 	kernel_shutdown_prepare(SYSTEM_HALT);
319 	sysdev_shutdown();
320 	printk(KERN_EMERG "System halted.\n");
321 	machine_halt();
322 }
323 
324 EXPORT_SYMBOL_GPL(kernel_halt);
325 
326 /**
327  *	kernel_power_off - power_off the system
328  *
329  *	Shutdown everything and perform a clean system power_off.
330  */
331 void kernel_power_off(void)
332 {
333 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
334 	if (pm_power_off_prepare)
335 		pm_power_off_prepare();
336 	disable_nonboot_cpus();
337 	sysdev_shutdown();
338 	printk(KERN_EMERG "Power down.\n");
339 	machine_power_off();
340 }
341 EXPORT_SYMBOL_GPL(kernel_power_off);
342 /*
343  * Reboot system call: for obvious reasons only root may call it,
344  * and even root needs to set up some magic numbers in the registers
345  * so that some mistake won't make this reboot the whole machine.
346  * You can also set the meaning of the ctrl-alt-del-key here.
347  *
348  * reboot doesn't sync: do that yourself before calling this.
349  */
350 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
351 {
352 	char buffer[256];
353 
354 	/* We only trust the superuser with rebooting the system. */
355 	if (!capable(CAP_SYS_BOOT))
356 		return -EPERM;
357 
358 	/* For safety, we require "magic" arguments. */
359 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
360 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
361 	                magic2 != LINUX_REBOOT_MAGIC2A &&
362 			magic2 != LINUX_REBOOT_MAGIC2B &&
363 	                magic2 != LINUX_REBOOT_MAGIC2C))
364 		return -EINVAL;
365 
366 	/* Instead of trying to make the power_off code look like
367 	 * halt when pm_power_off is not set do it the easy way.
368 	 */
369 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
370 		cmd = LINUX_REBOOT_CMD_HALT;
371 
372 	lock_kernel();
373 	switch (cmd) {
374 	case LINUX_REBOOT_CMD_RESTART:
375 		kernel_restart(NULL);
376 		break;
377 
378 	case LINUX_REBOOT_CMD_CAD_ON:
379 		C_A_D = 1;
380 		break;
381 
382 	case LINUX_REBOOT_CMD_CAD_OFF:
383 		C_A_D = 0;
384 		break;
385 
386 	case LINUX_REBOOT_CMD_HALT:
387 		kernel_halt();
388 		unlock_kernel();
389 		do_exit(0);
390 		break;
391 
392 	case LINUX_REBOOT_CMD_POWER_OFF:
393 		kernel_power_off();
394 		unlock_kernel();
395 		do_exit(0);
396 		break;
397 
398 	case LINUX_REBOOT_CMD_RESTART2:
399 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
400 			unlock_kernel();
401 			return -EFAULT;
402 		}
403 		buffer[sizeof(buffer) - 1] = '\0';
404 
405 		kernel_restart(buffer);
406 		break;
407 
408 #ifdef CONFIG_KEXEC
409 	case LINUX_REBOOT_CMD_KEXEC:
410 		{
411 			int ret;
412 			ret = kernel_kexec();
413 			unlock_kernel();
414 			return ret;
415 		}
416 #endif
417 
418 #ifdef CONFIG_HIBERNATION
419 	case LINUX_REBOOT_CMD_SW_SUSPEND:
420 		{
421 			int ret = hibernate();
422 			unlock_kernel();
423 			return ret;
424 		}
425 #endif
426 
427 	default:
428 		unlock_kernel();
429 		return -EINVAL;
430 	}
431 	unlock_kernel();
432 	return 0;
433 }
434 
435 static void deferred_cad(struct work_struct *dummy)
436 {
437 	kernel_restart(NULL);
438 }
439 
440 /*
441  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
442  * As it's called within an interrupt, it may NOT sync: the only choice
443  * is whether to reboot at once, or just ignore the ctrl-alt-del.
444  */
445 void ctrl_alt_del(void)
446 {
447 	static DECLARE_WORK(cad_work, deferred_cad);
448 
449 	if (C_A_D)
450 		schedule_work(&cad_work);
451 	else
452 		kill_cad_pid(SIGINT, 1);
453 }
454 
455 /*
456  * Unprivileged users may change the real gid to the effective gid
457  * or vice versa.  (BSD-style)
458  *
459  * If you set the real gid at all, or set the effective gid to a value not
460  * equal to the real gid, then the saved gid is set to the new effective gid.
461  *
462  * This makes it possible for a setgid program to completely drop its
463  * privileges, which is often a useful assertion to make when you are doing
464  * a security audit over a program.
465  *
466  * The general idea is that a program which uses just setregid() will be
467  * 100% compatible with BSD.  A program which uses just setgid() will be
468  * 100% compatible with POSIX with saved IDs.
469  *
470  * SMP: There are not races, the GIDs are checked only by filesystem
471  *      operations (as far as semantic preservation is concerned).
472  */
473 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
474 {
475 	int old_rgid = current->gid;
476 	int old_egid = current->egid;
477 	int new_rgid = old_rgid;
478 	int new_egid = old_egid;
479 	int retval;
480 
481 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
482 	if (retval)
483 		return retval;
484 
485 	if (rgid != (gid_t) -1) {
486 		if ((old_rgid == rgid) ||
487 		    (current->egid==rgid) ||
488 		    capable(CAP_SETGID))
489 			new_rgid = rgid;
490 		else
491 			return -EPERM;
492 	}
493 	if (egid != (gid_t) -1) {
494 		if ((old_rgid == egid) ||
495 		    (current->egid == egid) ||
496 		    (current->sgid == egid) ||
497 		    capable(CAP_SETGID))
498 			new_egid = egid;
499 		else
500 			return -EPERM;
501 	}
502 	if (new_egid != old_egid) {
503 		set_dumpable(current->mm, suid_dumpable);
504 		smp_wmb();
505 	}
506 	if (rgid != (gid_t) -1 ||
507 	    (egid != (gid_t) -1 && egid != old_rgid))
508 		current->sgid = new_egid;
509 	current->fsgid = new_egid;
510 	current->egid = new_egid;
511 	current->gid = new_rgid;
512 	key_fsgid_changed(current);
513 	proc_id_connector(current, PROC_EVENT_GID);
514 	return 0;
515 }
516 
517 /*
518  * setgid() is implemented like SysV w/ SAVED_IDS
519  *
520  * SMP: Same implicit races as above.
521  */
522 asmlinkage long sys_setgid(gid_t gid)
523 {
524 	int old_egid = current->egid;
525 	int retval;
526 
527 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
528 	if (retval)
529 		return retval;
530 
531 	if (capable(CAP_SETGID)) {
532 		if (old_egid != gid) {
533 			set_dumpable(current->mm, suid_dumpable);
534 			smp_wmb();
535 		}
536 		current->gid = current->egid = current->sgid = current->fsgid = gid;
537 	} else if ((gid == current->gid) || (gid == current->sgid)) {
538 		if (old_egid != gid) {
539 			set_dumpable(current->mm, suid_dumpable);
540 			smp_wmb();
541 		}
542 		current->egid = current->fsgid = gid;
543 	}
544 	else
545 		return -EPERM;
546 
547 	key_fsgid_changed(current);
548 	proc_id_connector(current, PROC_EVENT_GID);
549 	return 0;
550 }
551 
552 static int set_user(uid_t new_ruid, int dumpclear)
553 {
554 	struct user_struct *new_user;
555 
556 	new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
557 	if (!new_user)
558 		return -EAGAIN;
559 
560 	if (atomic_read(&new_user->processes) >=
561 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
562 			new_user != current->nsproxy->user_ns->root_user) {
563 		free_uid(new_user);
564 		return -EAGAIN;
565 	}
566 
567 	switch_uid(new_user);
568 
569 	if (dumpclear) {
570 		set_dumpable(current->mm, suid_dumpable);
571 		smp_wmb();
572 	}
573 	current->uid = new_ruid;
574 	return 0;
575 }
576 
577 /*
578  * Unprivileged users may change the real uid to the effective uid
579  * or vice versa.  (BSD-style)
580  *
581  * If you set the real uid at all, or set the effective uid to a value not
582  * equal to the real uid, then the saved uid is set to the new effective uid.
583  *
584  * This makes it possible for a setuid program to completely drop its
585  * privileges, which is often a useful assertion to make when you are doing
586  * a security audit over a program.
587  *
588  * The general idea is that a program which uses just setreuid() will be
589  * 100% compatible with BSD.  A program which uses just setuid() will be
590  * 100% compatible with POSIX with saved IDs.
591  */
592 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
593 {
594 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
595 	int retval;
596 
597 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
598 	if (retval)
599 		return retval;
600 
601 	new_ruid = old_ruid = current->uid;
602 	new_euid = old_euid = current->euid;
603 	old_suid = current->suid;
604 
605 	if (ruid != (uid_t) -1) {
606 		new_ruid = ruid;
607 		if ((old_ruid != ruid) &&
608 		    (current->euid != ruid) &&
609 		    !capable(CAP_SETUID))
610 			return -EPERM;
611 	}
612 
613 	if (euid != (uid_t) -1) {
614 		new_euid = euid;
615 		if ((old_ruid != euid) &&
616 		    (current->euid != euid) &&
617 		    (current->suid != euid) &&
618 		    !capable(CAP_SETUID))
619 			return -EPERM;
620 	}
621 
622 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
623 		return -EAGAIN;
624 
625 	if (new_euid != old_euid) {
626 		set_dumpable(current->mm, suid_dumpable);
627 		smp_wmb();
628 	}
629 	current->fsuid = current->euid = new_euid;
630 	if (ruid != (uid_t) -1 ||
631 	    (euid != (uid_t) -1 && euid != old_ruid))
632 		current->suid = current->euid;
633 	current->fsuid = current->euid;
634 
635 	key_fsuid_changed(current);
636 	proc_id_connector(current, PROC_EVENT_UID);
637 
638 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
639 }
640 
641 
642 
643 /*
644  * setuid() is implemented like SysV with SAVED_IDS
645  *
646  * Note that SAVED_ID's is deficient in that a setuid root program
647  * like sendmail, for example, cannot set its uid to be a normal
648  * user and then switch back, because if you're root, setuid() sets
649  * the saved uid too.  If you don't like this, blame the bright people
650  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
651  * will allow a root program to temporarily drop privileges and be able to
652  * regain them by swapping the real and effective uid.
653  */
654 asmlinkage long sys_setuid(uid_t uid)
655 {
656 	int old_euid = current->euid;
657 	int old_ruid, old_suid, new_suid;
658 	int retval;
659 
660 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
661 	if (retval)
662 		return retval;
663 
664 	old_ruid = current->uid;
665 	old_suid = current->suid;
666 	new_suid = old_suid;
667 
668 	if (capable(CAP_SETUID)) {
669 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
670 			return -EAGAIN;
671 		new_suid = uid;
672 	} else if ((uid != current->uid) && (uid != new_suid))
673 		return -EPERM;
674 
675 	if (old_euid != uid) {
676 		set_dumpable(current->mm, suid_dumpable);
677 		smp_wmb();
678 	}
679 	current->fsuid = current->euid = uid;
680 	current->suid = new_suid;
681 
682 	key_fsuid_changed(current);
683 	proc_id_connector(current, PROC_EVENT_UID);
684 
685 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
686 }
687 
688 
689 /*
690  * This function implements a generic ability to update ruid, euid,
691  * and suid.  This allows you to implement the 4.4 compatible seteuid().
692  */
693 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
694 {
695 	int old_ruid = current->uid;
696 	int old_euid = current->euid;
697 	int old_suid = current->suid;
698 	int retval;
699 
700 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
701 	if (retval)
702 		return retval;
703 
704 	if (!capable(CAP_SETUID)) {
705 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
706 		    (ruid != current->euid) && (ruid != current->suid))
707 			return -EPERM;
708 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
709 		    (euid != current->euid) && (euid != current->suid))
710 			return -EPERM;
711 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
712 		    (suid != current->euid) && (suid != current->suid))
713 			return -EPERM;
714 	}
715 	if (ruid != (uid_t) -1) {
716 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
717 			return -EAGAIN;
718 	}
719 	if (euid != (uid_t) -1) {
720 		if (euid != current->euid) {
721 			set_dumpable(current->mm, suid_dumpable);
722 			smp_wmb();
723 		}
724 		current->euid = euid;
725 	}
726 	current->fsuid = current->euid;
727 	if (suid != (uid_t) -1)
728 		current->suid = suid;
729 
730 	key_fsuid_changed(current);
731 	proc_id_connector(current, PROC_EVENT_UID);
732 
733 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
734 }
735 
736 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
737 {
738 	int retval;
739 
740 	if (!(retval = put_user(current->uid, ruid)) &&
741 	    !(retval = put_user(current->euid, euid)))
742 		retval = put_user(current->suid, suid);
743 
744 	return retval;
745 }
746 
747 /*
748  * Same as above, but for rgid, egid, sgid.
749  */
750 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
751 {
752 	int retval;
753 
754 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
755 	if (retval)
756 		return retval;
757 
758 	if (!capable(CAP_SETGID)) {
759 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
760 		    (rgid != current->egid) && (rgid != current->sgid))
761 			return -EPERM;
762 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
763 		    (egid != current->egid) && (egid != current->sgid))
764 			return -EPERM;
765 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
766 		    (sgid != current->egid) && (sgid != current->sgid))
767 			return -EPERM;
768 	}
769 	if (egid != (gid_t) -1) {
770 		if (egid != current->egid) {
771 			set_dumpable(current->mm, suid_dumpable);
772 			smp_wmb();
773 		}
774 		current->egid = egid;
775 	}
776 	current->fsgid = current->egid;
777 	if (rgid != (gid_t) -1)
778 		current->gid = rgid;
779 	if (sgid != (gid_t) -1)
780 		current->sgid = sgid;
781 
782 	key_fsgid_changed(current);
783 	proc_id_connector(current, PROC_EVENT_GID);
784 	return 0;
785 }
786 
787 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
788 {
789 	int retval;
790 
791 	if (!(retval = put_user(current->gid, rgid)) &&
792 	    !(retval = put_user(current->egid, egid)))
793 		retval = put_user(current->sgid, sgid);
794 
795 	return retval;
796 }
797 
798 
799 /*
800  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
801  * is used for "access()" and for the NFS daemon (letting nfsd stay at
802  * whatever uid it wants to). It normally shadows "euid", except when
803  * explicitly set by setfsuid() or for access..
804  */
805 asmlinkage long sys_setfsuid(uid_t uid)
806 {
807 	int old_fsuid;
808 
809 	old_fsuid = current->fsuid;
810 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
811 		return old_fsuid;
812 
813 	if (uid == current->uid || uid == current->euid ||
814 	    uid == current->suid || uid == current->fsuid ||
815 	    capable(CAP_SETUID)) {
816 		if (uid != old_fsuid) {
817 			set_dumpable(current->mm, suid_dumpable);
818 			smp_wmb();
819 		}
820 		current->fsuid = uid;
821 	}
822 
823 	key_fsuid_changed(current);
824 	proc_id_connector(current, PROC_EVENT_UID);
825 
826 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
827 
828 	return old_fsuid;
829 }
830 
831 /*
832  * Samma på svenska..
833  */
834 asmlinkage long sys_setfsgid(gid_t gid)
835 {
836 	int old_fsgid;
837 
838 	old_fsgid = current->fsgid;
839 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
840 		return old_fsgid;
841 
842 	if (gid == current->gid || gid == current->egid ||
843 	    gid == current->sgid || gid == current->fsgid ||
844 	    capable(CAP_SETGID)) {
845 		if (gid != old_fsgid) {
846 			set_dumpable(current->mm, suid_dumpable);
847 			smp_wmb();
848 		}
849 		current->fsgid = gid;
850 		key_fsgid_changed(current);
851 		proc_id_connector(current, PROC_EVENT_GID);
852 	}
853 	return old_fsgid;
854 }
855 
856 void do_sys_times(struct tms *tms)
857 {
858 	struct task_cputime cputime;
859 	cputime_t cutime, cstime;
860 
861 	spin_lock_irq(&current->sighand->siglock);
862 	thread_group_cputime(current, &cputime);
863 	cutime = current->signal->cutime;
864 	cstime = current->signal->cstime;
865 	spin_unlock_irq(&current->sighand->siglock);
866 	tms->tms_utime = cputime_to_clock_t(cputime.utime);
867 	tms->tms_stime = cputime_to_clock_t(cputime.stime);
868 	tms->tms_cutime = cputime_to_clock_t(cutime);
869 	tms->tms_cstime = cputime_to_clock_t(cstime);
870 }
871 
872 asmlinkage long sys_times(struct tms __user * tbuf)
873 {
874 	if (tbuf) {
875 		struct tms tmp;
876 
877 		do_sys_times(&tmp);
878 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
879 			return -EFAULT;
880 	}
881 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
882 }
883 
884 /*
885  * This needs some heavy checking ...
886  * I just haven't the stomach for it. I also don't fully
887  * understand sessions/pgrp etc. Let somebody who does explain it.
888  *
889  * OK, I think I have the protection semantics right.... this is really
890  * only important on a multi-user system anyway, to make sure one user
891  * can't send a signal to a process owned by another.  -TYT, 12/12/91
892  *
893  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
894  * LBT 04.03.94
895  */
896 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
897 {
898 	struct task_struct *p;
899 	struct task_struct *group_leader = current->group_leader;
900 	struct pid *pgrp;
901 	int err;
902 
903 	if (!pid)
904 		pid = task_pid_vnr(group_leader);
905 	if (!pgid)
906 		pgid = pid;
907 	if (pgid < 0)
908 		return -EINVAL;
909 
910 	/* From this point forward we keep holding onto the tasklist lock
911 	 * so that our parent does not change from under us. -DaveM
912 	 */
913 	write_lock_irq(&tasklist_lock);
914 
915 	err = -ESRCH;
916 	p = find_task_by_vpid(pid);
917 	if (!p)
918 		goto out;
919 
920 	err = -EINVAL;
921 	if (!thread_group_leader(p))
922 		goto out;
923 
924 	if (same_thread_group(p->real_parent, group_leader)) {
925 		err = -EPERM;
926 		if (task_session(p) != task_session(group_leader))
927 			goto out;
928 		err = -EACCES;
929 		if (p->did_exec)
930 			goto out;
931 	} else {
932 		err = -ESRCH;
933 		if (p != group_leader)
934 			goto out;
935 	}
936 
937 	err = -EPERM;
938 	if (p->signal->leader)
939 		goto out;
940 
941 	pgrp = task_pid(p);
942 	if (pgid != pid) {
943 		struct task_struct *g;
944 
945 		pgrp = find_vpid(pgid);
946 		g = pid_task(pgrp, PIDTYPE_PGID);
947 		if (!g || task_session(g) != task_session(group_leader))
948 			goto out;
949 	}
950 
951 	err = security_task_setpgid(p, pgid);
952 	if (err)
953 		goto out;
954 
955 	if (task_pgrp(p) != pgrp) {
956 		change_pid(p, PIDTYPE_PGID, pgrp);
957 		set_task_pgrp(p, pid_nr(pgrp));
958 	}
959 
960 	err = 0;
961 out:
962 	/* All paths lead to here, thus we are safe. -DaveM */
963 	write_unlock_irq(&tasklist_lock);
964 	return err;
965 }
966 
967 asmlinkage long sys_getpgid(pid_t pid)
968 {
969 	struct task_struct *p;
970 	struct pid *grp;
971 	int retval;
972 
973 	rcu_read_lock();
974 	if (!pid)
975 		grp = task_pgrp(current);
976 	else {
977 		retval = -ESRCH;
978 		p = find_task_by_vpid(pid);
979 		if (!p)
980 			goto out;
981 		grp = task_pgrp(p);
982 		if (!grp)
983 			goto out;
984 
985 		retval = security_task_getpgid(p);
986 		if (retval)
987 			goto out;
988 	}
989 	retval = pid_vnr(grp);
990 out:
991 	rcu_read_unlock();
992 	return retval;
993 }
994 
995 #ifdef __ARCH_WANT_SYS_GETPGRP
996 
997 asmlinkage long sys_getpgrp(void)
998 {
999 	return sys_getpgid(0);
1000 }
1001 
1002 #endif
1003 
1004 asmlinkage long sys_getsid(pid_t pid)
1005 {
1006 	struct task_struct *p;
1007 	struct pid *sid;
1008 	int retval;
1009 
1010 	rcu_read_lock();
1011 	if (!pid)
1012 		sid = task_session(current);
1013 	else {
1014 		retval = -ESRCH;
1015 		p = find_task_by_vpid(pid);
1016 		if (!p)
1017 			goto out;
1018 		sid = task_session(p);
1019 		if (!sid)
1020 			goto out;
1021 
1022 		retval = security_task_getsid(p);
1023 		if (retval)
1024 			goto out;
1025 	}
1026 	retval = pid_vnr(sid);
1027 out:
1028 	rcu_read_unlock();
1029 	return retval;
1030 }
1031 
1032 asmlinkage long sys_setsid(void)
1033 {
1034 	struct task_struct *group_leader = current->group_leader;
1035 	struct pid *sid = task_pid(group_leader);
1036 	pid_t session = pid_vnr(sid);
1037 	int err = -EPERM;
1038 
1039 	write_lock_irq(&tasklist_lock);
1040 	/* Fail if I am already a session leader */
1041 	if (group_leader->signal->leader)
1042 		goto out;
1043 
1044 	/* Fail if a process group id already exists that equals the
1045 	 * proposed session id.
1046 	 */
1047 	if (pid_task(sid, PIDTYPE_PGID))
1048 		goto out;
1049 
1050 	group_leader->signal->leader = 1;
1051 	__set_special_pids(sid);
1052 
1053 	proc_clear_tty(group_leader);
1054 
1055 	err = session;
1056 out:
1057 	write_unlock_irq(&tasklist_lock);
1058 	return err;
1059 }
1060 
1061 /*
1062  * Supplementary group IDs
1063  */
1064 
1065 /* init to 2 - one for init_task, one to ensure it is never freed */
1066 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1067 
1068 struct group_info *groups_alloc(int gidsetsize)
1069 {
1070 	struct group_info *group_info;
1071 	int nblocks;
1072 	int i;
1073 
1074 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1075 	/* Make sure we always allocate at least one indirect block pointer */
1076 	nblocks = nblocks ? : 1;
1077 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1078 	if (!group_info)
1079 		return NULL;
1080 	group_info->ngroups = gidsetsize;
1081 	group_info->nblocks = nblocks;
1082 	atomic_set(&group_info->usage, 1);
1083 
1084 	if (gidsetsize <= NGROUPS_SMALL)
1085 		group_info->blocks[0] = group_info->small_block;
1086 	else {
1087 		for (i = 0; i < nblocks; i++) {
1088 			gid_t *b;
1089 			b = (void *)__get_free_page(GFP_USER);
1090 			if (!b)
1091 				goto out_undo_partial_alloc;
1092 			group_info->blocks[i] = b;
1093 		}
1094 	}
1095 	return group_info;
1096 
1097 out_undo_partial_alloc:
1098 	while (--i >= 0) {
1099 		free_page((unsigned long)group_info->blocks[i]);
1100 	}
1101 	kfree(group_info);
1102 	return NULL;
1103 }
1104 
1105 EXPORT_SYMBOL(groups_alloc);
1106 
1107 void groups_free(struct group_info *group_info)
1108 {
1109 	if (group_info->blocks[0] != group_info->small_block) {
1110 		int i;
1111 		for (i = 0; i < group_info->nblocks; i++)
1112 			free_page((unsigned long)group_info->blocks[i]);
1113 	}
1114 	kfree(group_info);
1115 }
1116 
1117 EXPORT_SYMBOL(groups_free);
1118 
1119 /* export the group_info to a user-space array */
1120 static int groups_to_user(gid_t __user *grouplist,
1121     struct group_info *group_info)
1122 {
1123 	int i;
1124 	unsigned int count = group_info->ngroups;
1125 
1126 	for (i = 0; i < group_info->nblocks; i++) {
1127 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1128 		unsigned int len = cp_count * sizeof(*grouplist);
1129 
1130 		if (copy_to_user(grouplist, group_info->blocks[i], len))
1131 			return -EFAULT;
1132 
1133 		grouplist += NGROUPS_PER_BLOCK;
1134 		count -= cp_count;
1135 	}
1136 	return 0;
1137 }
1138 
1139 /* fill a group_info from a user-space array - it must be allocated already */
1140 static int groups_from_user(struct group_info *group_info,
1141     gid_t __user *grouplist)
1142 {
1143 	int i;
1144 	unsigned int count = group_info->ngroups;
1145 
1146 	for (i = 0; i < group_info->nblocks; i++) {
1147 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1148 		unsigned int len = cp_count * sizeof(*grouplist);
1149 
1150 		if (copy_from_user(group_info->blocks[i], grouplist, len))
1151 			return -EFAULT;
1152 
1153 		grouplist += NGROUPS_PER_BLOCK;
1154 		count -= cp_count;
1155 	}
1156 	return 0;
1157 }
1158 
1159 /* a simple Shell sort */
1160 static void groups_sort(struct group_info *group_info)
1161 {
1162 	int base, max, stride;
1163 	int gidsetsize = group_info->ngroups;
1164 
1165 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1166 		; /* nothing */
1167 	stride /= 3;
1168 
1169 	while (stride) {
1170 		max = gidsetsize - stride;
1171 		for (base = 0; base < max; base++) {
1172 			int left = base;
1173 			int right = left + stride;
1174 			gid_t tmp = GROUP_AT(group_info, right);
1175 
1176 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1177 				GROUP_AT(group_info, right) =
1178 				    GROUP_AT(group_info, left);
1179 				right = left;
1180 				left -= stride;
1181 			}
1182 			GROUP_AT(group_info, right) = tmp;
1183 		}
1184 		stride /= 3;
1185 	}
1186 }
1187 
1188 /* a simple bsearch */
1189 int groups_search(struct group_info *group_info, gid_t grp)
1190 {
1191 	unsigned int left, right;
1192 
1193 	if (!group_info)
1194 		return 0;
1195 
1196 	left = 0;
1197 	right = group_info->ngroups;
1198 	while (left < right) {
1199 		unsigned int mid = (left+right)/2;
1200 		int cmp = grp - GROUP_AT(group_info, mid);
1201 		if (cmp > 0)
1202 			left = mid + 1;
1203 		else if (cmp < 0)
1204 			right = mid;
1205 		else
1206 			return 1;
1207 	}
1208 	return 0;
1209 }
1210 
1211 /* validate and set current->group_info */
1212 int set_current_groups(struct group_info *group_info)
1213 {
1214 	int retval;
1215 	struct group_info *old_info;
1216 
1217 	retval = security_task_setgroups(group_info);
1218 	if (retval)
1219 		return retval;
1220 
1221 	groups_sort(group_info);
1222 	get_group_info(group_info);
1223 
1224 	task_lock(current);
1225 	old_info = current->group_info;
1226 	current->group_info = group_info;
1227 	task_unlock(current);
1228 
1229 	put_group_info(old_info);
1230 
1231 	return 0;
1232 }
1233 
1234 EXPORT_SYMBOL(set_current_groups);
1235 
1236 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1237 {
1238 	int i = 0;
1239 
1240 	/*
1241 	 *	SMP: Nobody else can change our grouplist. Thus we are
1242 	 *	safe.
1243 	 */
1244 
1245 	if (gidsetsize < 0)
1246 		return -EINVAL;
1247 
1248 	/* no need to grab task_lock here; it cannot change */
1249 	i = current->group_info->ngroups;
1250 	if (gidsetsize) {
1251 		if (i > gidsetsize) {
1252 			i = -EINVAL;
1253 			goto out;
1254 		}
1255 		if (groups_to_user(grouplist, current->group_info)) {
1256 			i = -EFAULT;
1257 			goto out;
1258 		}
1259 	}
1260 out:
1261 	return i;
1262 }
1263 
1264 /*
1265  *	SMP: Our groups are copy-on-write. We can set them safely
1266  *	without another task interfering.
1267  */
1268 
1269 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1270 {
1271 	struct group_info *group_info;
1272 	int retval;
1273 
1274 	if (!capable(CAP_SETGID))
1275 		return -EPERM;
1276 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1277 		return -EINVAL;
1278 
1279 	group_info = groups_alloc(gidsetsize);
1280 	if (!group_info)
1281 		return -ENOMEM;
1282 	retval = groups_from_user(group_info, grouplist);
1283 	if (retval) {
1284 		put_group_info(group_info);
1285 		return retval;
1286 	}
1287 
1288 	retval = set_current_groups(group_info);
1289 	put_group_info(group_info);
1290 
1291 	return retval;
1292 }
1293 
1294 /*
1295  * Check whether we're fsgid/egid or in the supplemental group..
1296  */
1297 int in_group_p(gid_t grp)
1298 {
1299 	int retval = 1;
1300 	if (grp != current->fsgid)
1301 		retval = groups_search(current->group_info, grp);
1302 	return retval;
1303 }
1304 
1305 EXPORT_SYMBOL(in_group_p);
1306 
1307 int in_egroup_p(gid_t grp)
1308 {
1309 	int retval = 1;
1310 	if (grp != current->egid)
1311 		retval = groups_search(current->group_info, grp);
1312 	return retval;
1313 }
1314 
1315 EXPORT_SYMBOL(in_egroup_p);
1316 
1317 DECLARE_RWSEM(uts_sem);
1318 
1319 asmlinkage long sys_newuname(struct new_utsname __user * name)
1320 {
1321 	int errno = 0;
1322 
1323 	down_read(&uts_sem);
1324 	if (copy_to_user(name, utsname(), sizeof *name))
1325 		errno = -EFAULT;
1326 	up_read(&uts_sem);
1327 	return errno;
1328 }
1329 
1330 asmlinkage long sys_sethostname(char __user *name, int len)
1331 {
1332 	int errno;
1333 	char tmp[__NEW_UTS_LEN];
1334 
1335 	if (!capable(CAP_SYS_ADMIN))
1336 		return -EPERM;
1337 	if (len < 0 || len > __NEW_UTS_LEN)
1338 		return -EINVAL;
1339 	down_write(&uts_sem);
1340 	errno = -EFAULT;
1341 	if (!copy_from_user(tmp, name, len)) {
1342 		struct new_utsname *u = utsname();
1343 
1344 		memcpy(u->nodename, tmp, len);
1345 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1346 		errno = 0;
1347 	}
1348 	up_write(&uts_sem);
1349 	return errno;
1350 }
1351 
1352 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1353 
1354 asmlinkage long sys_gethostname(char __user *name, int len)
1355 {
1356 	int i, errno;
1357 	struct new_utsname *u;
1358 
1359 	if (len < 0)
1360 		return -EINVAL;
1361 	down_read(&uts_sem);
1362 	u = utsname();
1363 	i = 1 + strlen(u->nodename);
1364 	if (i > len)
1365 		i = len;
1366 	errno = 0;
1367 	if (copy_to_user(name, u->nodename, i))
1368 		errno = -EFAULT;
1369 	up_read(&uts_sem);
1370 	return errno;
1371 }
1372 
1373 #endif
1374 
1375 /*
1376  * Only setdomainname; getdomainname can be implemented by calling
1377  * uname()
1378  */
1379 asmlinkage long sys_setdomainname(char __user *name, int len)
1380 {
1381 	int errno;
1382 	char tmp[__NEW_UTS_LEN];
1383 
1384 	if (!capable(CAP_SYS_ADMIN))
1385 		return -EPERM;
1386 	if (len < 0 || len > __NEW_UTS_LEN)
1387 		return -EINVAL;
1388 
1389 	down_write(&uts_sem);
1390 	errno = -EFAULT;
1391 	if (!copy_from_user(tmp, name, len)) {
1392 		struct new_utsname *u = utsname();
1393 
1394 		memcpy(u->domainname, tmp, len);
1395 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1396 		errno = 0;
1397 	}
1398 	up_write(&uts_sem);
1399 	return errno;
1400 }
1401 
1402 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1403 {
1404 	if (resource >= RLIM_NLIMITS)
1405 		return -EINVAL;
1406 	else {
1407 		struct rlimit value;
1408 		task_lock(current->group_leader);
1409 		value = current->signal->rlim[resource];
1410 		task_unlock(current->group_leader);
1411 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1412 	}
1413 }
1414 
1415 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1416 
1417 /*
1418  *	Back compatibility for getrlimit. Needed for some apps.
1419  */
1420 
1421 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1422 {
1423 	struct rlimit x;
1424 	if (resource >= RLIM_NLIMITS)
1425 		return -EINVAL;
1426 
1427 	task_lock(current->group_leader);
1428 	x = current->signal->rlim[resource];
1429 	task_unlock(current->group_leader);
1430 	if (x.rlim_cur > 0x7FFFFFFF)
1431 		x.rlim_cur = 0x7FFFFFFF;
1432 	if (x.rlim_max > 0x7FFFFFFF)
1433 		x.rlim_max = 0x7FFFFFFF;
1434 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1435 }
1436 
1437 #endif
1438 
1439 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1440 {
1441 	struct rlimit new_rlim, *old_rlim;
1442 	int retval;
1443 
1444 	if (resource >= RLIM_NLIMITS)
1445 		return -EINVAL;
1446 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1447 		return -EFAULT;
1448 	old_rlim = current->signal->rlim + resource;
1449 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1450 	    !capable(CAP_SYS_RESOURCE))
1451 		return -EPERM;
1452 
1453 	if (resource == RLIMIT_NOFILE) {
1454 		if (new_rlim.rlim_max == RLIM_INFINITY)
1455 			new_rlim.rlim_max = sysctl_nr_open;
1456 		if (new_rlim.rlim_cur == RLIM_INFINITY)
1457 			new_rlim.rlim_cur = sysctl_nr_open;
1458 		if (new_rlim.rlim_max > sysctl_nr_open)
1459 			return -EPERM;
1460 	}
1461 
1462 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1463 		return -EINVAL;
1464 
1465 	retval = security_task_setrlimit(resource, &new_rlim);
1466 	if (retval)
1467 		return retval;
1468 
1469 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1470 		/*
1471 		 * The caller is asking for an immediate RLIMIT_CPU
1472 		 * expiry.  But we use the zero value to mean "it was
1473 		 * never set".  So let's cheat and make it one second
1474 		 * instead
1475 		 */
1476 		new_rlim.rlim_cur = 1;
1477 	}
1478 
1479 	task_lock(current->group_leader);
1480 	*old_rlim = new_rlim;
1481 	task_unlock(current->group_leader);
1482 
1483 	if (resource != RLIMIT_CPU)
1484 		goto out;
1485 
1486 	/*
1487 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1488 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1489 	 * very long-standing error, and fixing it now risks breakage of
1490 	 * applications, so we live with it
1491 	 */
1492 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1493 		goto out;
1494 
1495 	update_rlimit_cpu(new_rlim.rlim_cur);
1496 out:
1497 	return 0;
1498 }
1499 
1500 /*
1501  * It would make sense to put struct rusage in the task_struct,
1502  * except that would make the task_struct be *really big*.  After
1503  * task_struct gets moved into malloc'ed memory, it would
1504  * make sense to do this.  It will make moving the rest of the information
1505  * a lot simpler!  (Which we're not doing right now because we're not
1506  * measuring them yet).
1507  *
1508  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1509  * races with threads incrementing their own counters.  But since word
1510  * reads are atomic, we either get new values or old values and we don't
1511  * care which for the sums.  We always take the siglock to protect reading
1512  * the c* fields from p->signal from races with exit.c updating those
1513  * fields when reaping, so a sample either gets all the additions of a
1514  * given child after it's reaped, or none so this sample is before reaping.
1515  *
1516  * Locking:
1517  * We need to take the siglock for CHILDEREN, SELF and BOTH
1518  * for  the cases current multithreaded, non-current single threaded
1519  * non-current multithreaded.  Thread traversal is now safe with
1520  * the siglock held.
1521  * Strictly speaking, we donot need to take the siglock if we are current and
1522  * single threaded,  as no one else can take our signal_struct away, no one
1523  * else can  reap the  children to update signal->c* counters, and no one else
1524  * can race with the signal-> fields. If we do not take any lock, the
1525  * signal-> fields could be read out of order while another thread was just
1526  * exiting. So we should  place a read memory barrier when we avoid the lock.
1527  * On the writer side,  write memory barrier is implied in  __exit_signal
1528  * as __exit_signal releases  the siglock spinlock after updating the signal->
1529  * fields. But we don't do this yet to keep things simple.
1530  *
1531  */
1532 
1533 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1534 {
1535 	r->ru_nvcsw += t->nvcsw;
1536 	r->ru_nivcsw += t->nivcsw;
1537 	r->ru_minflt += t->min_flt;
1538 	r->ru_majflt += t->maj_flt;
1539 	r->ru_inblock += task_io_get_inblock(t);
1540 	r->ru_oublock += task_io_get_oublock(t);
1541 }
1542 
1543 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1544 {
1545 	struct task_struct *t;
1546 	unsigned long flags;
1547 	cputime_t utime, stime;
1548 	struct task_cputime cputime;
1549 
1550 	memset((char *) r, 0, sizeof *r);
1551 	utime = stime = cputime_zero;
1552 
1553 	if (who == RUSAGE_THREAD) {
1554 		accumulate_thread_rusage(p, r);
1555 		goto out;
1556 	}
1557 
1558 	if (!lock_task_sighand(p, &flags))
1559 		return;
1560 
1561 	switch (who) {
1562 		case RUSAGE_BOTH:
1563 		case RUSAGE_CHILDREN:
1564 			utime = p->signal->cutime;
1565 			stime = p->signal->cstime;
1566 			r->ru_nvcsw = p->signal->cnvcsw;
1567 			r->ru_nivcsw = p->signal->cnivcsw;
1568 			r->ru_minflt = p->signal->cmin_flt;
1569 			r->ru_majflt = p->signal->cmaj_flt;
1570 			r->ru_inblock = p->signal->cinblock;
1571 			r->ru_oublock = p->signal->coublock;
1572 
1573 			if (who == RUSAGE_CHILDREN)
1574 				break;
1575 
1576 		case RUSAGE_SELF:
1577 			thread_group_cputime(p, &cputime);
1578 			utime = cputime_add(utime, cputime.utime);
1579 			stime = cputime_add(stime, cputime.stime);
1580 			r->ru_nvcsw += p->signal->nvcsw;
1581 			r->ru_nivcsw += p->signal->nivcsw;
1582 			r->ru_minflt += p->signal->min_flt;
1583 			r->ru_majflt += p->signal->maj_flt;
1584 			r->ru_inblock += p->signal->inblock;
1585 			r->ru_oublock += p->signal->oublock;
1586 			t = p;
1587 			do {
1588 				accumulate_thread_rusage(t, r);
1589 				t = next_thread(t);
1590 			} while (t != p);
1591 			break;
1592 
1593 		default:
1594 			BUG();
1595 	}
1596 	unlock_task_sighand(p, &flags);
1597 
1598 out:
1599 	cputime_to_timeval(utime, &r->ru_utime);
1600 	cputime_to_timeval(stime, &r->ru_stime);
1601 }
1602 
1603 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1604 {
1605 	struct rusage r;
1606 	k_getrusage(p, who, &r);
1607 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1608 }
1609 
1610 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1611 {
1612 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1613 	    who != RUSAGE_THREAD)
1614 		return -EINVAL;
1615 	return getrusage(current, who, ru);
1616 }
1617 
1618 asmlinkage long sys_umask(int mask)
1619 {
1620 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1621 	return mask;
1622 }
1623 
1624 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1625 			  unsigned long arg4, unsigned long arg5)
1626 {
1627 	long error = 0;
1628 
1629 	if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error))
1630 		return error;
1631 
1632 	switch (option) {
1633 		case PR_SET_PDEATHSIG:
1634 			if (!valid_signal(arg2)) {
1635 				error = -EINVAL;
1636 				break;
1637 			}
1638 			current->pdeath_signal = arg2;
1639 			break;
1640 		case PR_GET_PDEATHSIG:
1641 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1642 			break;
1643 		case PR_GET_DUMPABLE:
1644 			error = get_dumpable(current->mm);
1645 			break;
1646 		case PR_SET_DUMPABLE:
1647 			if (arg2 < 0 || arg2 > 1) {
1648 				error = -EINVAL;
1649 				break;
1650 			}
1651 			set_dumpable(current->mm, arg2);
1652 			break;
1653 
1654 		case PR_SET_UNALIGN:
1655 			error = SET_UNALIGN_CTL(current, arg2);
1656 			break;
1657 		case PR_GET_UNALIGN:
1658 			error = GET_UNALIGN_CTL(current, arg2);
1659 			break;
1660 		case PR_SET_FPEMU:
1661 			error = SET_FPEMU_CTL(current, arg2);
1662 			break;
1663 		case PR_GET_FPEMU:
1664 			error = GET_FPEMU_CTL(current, arg2);
1665 			break;
1666 		case PR_SET_FPEXC:
1667 			error = SET_FPEXC_CTL(current, arg2);
1668 			break;
1669 		case PR_GET_FPEXC:
1670 			error = GET_FPEXC_CTL(current, arg2);
1671 			break;
1672 		case PR_GET_TIMING:
1673 			error = PR_TIMING_STATISTICAL;
1674 			break;
1675 		case PR_SET_TIMING:
1676 			if (arg2 != PR_TIMING_STATISTICAL)
1677 				error = -EINVAL;
1678 			break;
1679 
1680 		case PR_SET_NAME: {
1681 			struct task_struct *me = current;
1682 			unsigned char ncomm[sizeof(me->comm)];
1683 
1684 			ncomm[sizeof(me->comm)-1] = 0;
1685 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1686 						sizeof(me->comm)-1) < 0)
1687 				return -EFAULT;
1688 			set_task_comm(me, ncomm);
1689 			return 0;
1690 		}
1691 		case PR_GET_NAME: {
1692 			struct task_struct *me = current;
1693 			unsigned char tcomm[sizeof(me->comm)];
1694 
1695 			get_task_comm(tcomm, me);
1696 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1697 				return -EFAULT;
1698 			return 0;
1699 		}
1700 		case PR_GET_ENDIAN:
1701 			error = GET_ENDIAN(current, arg2);
1702 			break;
1703 		case PR_SET_ENDIAN:
1704 			error = SET_ENDIAN(current, arg2);
1705 			break;
1706 
1707 		case PR_GET_SECCOMP:
1708 			error = prctl_get_seccomp();
1709 			break;
1710 		case PR_SET_SECCOMP:
1711 			error = prctl_set_seccomp(arg2);
1712 			break;
1713 		case PR_GET_TSC:
1714 			error = GET_TSC_CTL(arg2);
1715 			break;
1716 		case PR_SET_TSC:
1717 			error = SET_TSC_CTL(arg2);
1718 			break;
1719 		case PR_GET_TIMERSLACK:
1720 			error = current->timer_slack_ns;
1721 			break;
1722 		case PR_SET_TIMERSLACK:
1723 			if (arg2 <= 0)
1724 				current->timer_slack_ns =
1725 					current->default_timer_slack_ns;
1726 			else
1727 				current->timer_slack_ns = arg2;
1728 			break;
1729 		default:
1730 			error = -EINVAL;
1731 			break;
1732 	}
1733 	return error;
1734 }
1735 
1736 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
1737 			   struct getcpu_cache __user *unused)
1738 {
1739 	int err = 0;
1740 	int cpu = raw_smp_processor_id();
1741 	if (cpup)
1742 		err |= put_user(cpu, cpup);
1743 	if (nodep)
1744 		err |= put_user(cpu_to_node(cpu), nodep);
1745 	return err ? -EFAULT : 0;
1746 }
1747 
1748 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1749 
1750 static void argv_cleanup(char **argv, char **envp)
1751 {
1752 	argv_free(argv);
1753 }
1754 
1755 /**
1756  * orderly_poweroff - Trigger an orderly system poweroff
1757  * @force: force poweroff if command execution fails
1758  *
1759  * This may be called from any context to trigger a system shutdown.
1760  * If the orderly shutdown fails, it will force an immediate shutdown.
1761  */
1762 int orderly_poweroff(bool force)
1763 {
1764 	int argc;
1765 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1766 	static char *envp[] = {
1767 		"HOME=/",
1768 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1769 		NULL
1770 	};
1771 	int ret = -ENOMEM;
1772 	struct subprocess_info *info;
1773 
1774 	if (argv == NULL) {
1775 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1776 		       __func__, poweroff_cmd);
1777 		goto out;
1778 	}
1779 
1780 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1781 	if (info == NULL) {
1782 		argv_free(argv);
1783 		goto out;
1784 	}
1785 
1786 	call_usermodehelper_setcleanup(info, argv_cleanup);
1787 
1788 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1789 
1790   out:
1791 	if (ret && force) {
1792 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1793 		       "forcing the issue\n");
1794 
1795 		/* I guess this should try to kick off some daemon to
1796 		   sync and poweroff asap.  Or not even bother syncing
1797 		   if we're doing an emergency shutdown? */
1798 		emergency_sync();
1799 		kernel_power_off();
1800 	}
1801 
1802 	return ret;
1803 }
1804 EXPORT_SYMBOL_GPL(orderly_poweroff);
1805