1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/smp_lock.h> 12 #include <linux/notifier.h> 13 #include <linux/reboot.h> 14 #include <linux/prctl.h> 15 #include <linux/highuid.h> 16 #include <linux/fs.h> 17 #include <linux/resource.h> 18 #include <linux/kernel.h> 19 #include <linux/kexec.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 36 #include <linux/compat.h> 37 #include <linux/syscalls.h> 38 #include <linux/kprobes.h> 39 #include <linux/user_namespace.h> 40 41 #include <asm/uaccess.h> 42 #include <asm/io.h> 43 #include <asm/unistd.h> 44 45 #ifndef SET_UNALIGN_CTL 46 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 47 #endif 48 #ifndef GET_UNALIGN_CTL 49 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 50 #endif 51 #ifndef SET_FPEMU_CTL 52 # define SET_FPEMU_CTL(a,b) (-EINVAL) 53 #endif 54 #ifndef GET_FPEMU_CTL 55 # define GET_FPEMU_CTL(a,b) (-EINVAL) 56 #endif 57 #ifndef SET_FPEXC_CTL 58 # define SET_FPEXC_CTL(a,b) (-EINVAL) 59 #endif 60 #ifndef GET_FPEXC_CTL 61 # define GET_FPEXC_CTL(a,b) (-EINVAL) 62 #endif 63 #ifndef GET_ENDIAN 64 # define GET_ENDIAN(a,b) (-EINVAL) 65 #endif 66 #ifndef SET_ENDIAN 67 # define SET_ENDIAN(a,b) (-EINVAL) 68 #endif 69 70 /* 71 * this is where the system-wide overflow UID and GID are defined, for 72 * architectures that now have 32-bit UID/GID but didn't in the past 73 */ 74 75 int overflowuid = DEFAULT_OVERFLOWUID; 76 int overflowgid = DEFAULT_OVERFLOWGID; 77 78 #ifdef CONFIG_UID16 79 EXPORT_SYMBOL(overflowuid); 80 EXPORT_SYMBOL(overflowgid); 81 #endif 82 83 /* 84 * the same as above, but for filesystems which can only store a 16-bit 85 * UID and GID. as such, this is needed on all architectures 86 */ 87 88 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 89 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 90 91 EXPORT_SYMBOL(fs_overflowuid); 92 EXPORT_SYMBOL(fs_overflowgid); 93 94 /* 95 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 96 */ 97 98 int C_A_D = 1; 99 struct pid *cad_pid; 100 EXPORT_SYMBOL(cad_pid); 101 102 /* 103 * Notifier list for kernel code which wants to be called 104 * at shutdown. This is used to stop any idling DMA operations 105 * and the like. 106 */ 107 108 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list); 109 110 /* 111 * Notifier chain core routines. The exported routines below 112 * are layered on top of these, with appropriate locking added. 113 */ 114 115 static int notifier_chain_register(struct notifier_block **nl, 116 struct notifier_block *n) 117 { 118 while ((*nl) != NULL) { 119 if (n->priority > (*nl)->priority) 120 break; 121 nl = &((*nl)->next); 122 } 123 n->next = *nl; 124 rcu_assign_pointer(*nl, n); 125 return 0; 126 } 127 128 static int notifier_chain_unregister(struct notifier_block **nl, 129 struct notifier_block *n) 130 { 131 while ((*nl) != NULL) { 132 if ((*nl) == n) { 133 rcu_assign_pointer(*nl, n->next); 134 return 0; 135 } 136 nl = &((*nl)->next); 137 } 138 return -ENOENT; 139 } 140 141 /** 142 * notifier_call_chain - Informs the registered notifiers about an event. 143 * @nl: Pointer to head of the blocking notifier chain 144 * @val: Value passed unmodified to notifier function 145 * @v: Pointer passed unmodified to notifier function 146 * @nr_to_call: Number of notifier functions to be called. Don't care 147 * value of this parameter is -1. 148 * @nr_calls: Records the number of notifications sent. Don't care 149 * value of this field is NULL. 150 * @returns: notifier_call_chain returns the value returned by the 151 * last notifier function called. 152 */ 153 154 static int __kprobes notifier_call_chain(struct notifier_block **nl, 155 unsigned long val, void *v, 156 int nr_to_call, int *nr_calls) 157 { 158 int ret = NOTIFY_DONE; 159 struct notifier_block *nb, *next_nb; 160 161 nb = rcu_dereference(*nl); 162 163 while (nb && nr_to_call) { 164 next_nb = rcu_dereference(nb->next); 165 ret = nb->notifier_call(nb, val, v); 166 167 if (nr_calls) 168 (*nr_calls)++; 169 170 if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK) 171 break; 172 nb = next_nb; 173 nr_to_call--; 174 } 175 return ret; 176 } 177 178 /* 179 * Atomic notifier chain routines. Registration and unregistration 180 * use a spinlock, and call_chain is synchronized by RCU (no locks). 181 */ 182 183 /** 184 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain 185 * @nh: Pointer to head of the atomic notifier chain 186 * @n: New entry in notifier chain 187 * 188 * Adds a notifier to an atomic notifier chain. 189 * 190 * Currently always returns zero. 191 */ 192 193 int atomic_notifier_chain_register(struct atomic_notifier_head *nh, 194 struct notifier_block *n) 195 { 196 unsigned long flags; 197 int ret; 198 199 spin_lock_irqsave(&nh->lock, flags); 200 ret = notifier_chain_register(&nh->head, n); 201 spin_unlock_irqrestore(&nh->lock, flags); 202 return ret; 203 } 204 205 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register); 206 207 /** 208 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain 209 * @nh: Pointer to head of the atomic notifier chain 210 * @n: Entry to remove from notifier chain 211 * 212 * Removes a notifier from an atomic notifier chain. 213 * 214 * Returns zero on success or %-ENOENT on failure. 215 */ 216 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh, 217 struct notifier_block *n) 218 { 219 unsigned long flags; 220 int ret; 221 222 spin_lock_irqsave(&nh->lock, flags); 223 ret = notifier_chain_unregister(&nh->head, n); 224 spin_unlock_irqrestore(&nh->lock, flags); 225 synchronize_rcu(); 226 return ret; 227 } 228 229 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister); 230 231 /** 232 * __atomic_notifier_call_chain - Call functions in an atomic notifier chain 233 * @nh: Pointer to head of the atomic notifier chain 234 * @val: Value passed unmodified to notifier function 235 * @v: Pointer passed unmodified to notifier function 236 * @nr_to_call: See the comment for notifier_call_chain. 237 * @nr_calls: See the comment for notifier_call_chain. 238 * 239 * Calls each function in a notifier chain in turn. The functions 240 * run in an atomic context, so they must not block. 241 * This routine uses RCU to synchronize with changes to the chain. 242 * 243 * If the return value of the notifier can be and'ed 244 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain() 245 * will return immediately, with the return value of 246 * the notifier function which halted execution. 247 * Otherwise the return value is the return value 248 * of the last notifier function called. 249 */ 250 251 int __kprobes __atomic_notifier_call_chain(struct atomic_notifier_head *nh, 252 unsigned long val, void *v, 253 int nr_to_call, int *nr_calls) 254 { 255 int ret; 256 257 rcu_read_lock(); 258 ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls); 259 rcu_read_unlock(); 260 return ret; 261 } 262 263 EXPORT_SYMBOL_GPL(__atomic_notifier_call_chain); 264 265 int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh, 266 unsigned long val, void *v) 267 { 268 return __atomic_notifier_call_chain(nh, val, v, -1, NULL); 269 } 270 271 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain); 272 /* 273 * Blocking notifier chain routines. All access to the chain is 274 * synchronized by an rwsem. 275 */ 276 277 /** 278 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain 279 * @nh: Pointer to head of the blocking notifier chain 280 * @n: New entry in notifier chain 281 * 282 * Adds a notifier to a blocking notifier chain. 283 * Must be called in process context. 284 * 285 * Currently always returns zero. 286 */ 287 288 int blocking_notifier_chain_register(struct blocking_notifier_head *nh, 289 struct notifier_block *n) 290 { 291 int ret; 292 293 /* 294 * This code gets used during boot-up, when task switching is 295 * not yet working and interrupts must remain disabled. At 296 * such times we must not call down_write(). 297 */ 298 if (unlikely(system_state == SYSTEM_BOOTING)) 299 return notifier_chain_register(&nh->head, n); 300 301 down_write(&nh->rwsem); 302 ret = notifier_chain_register(&nh->head, n); 303 up_write(&nh->rwsem); 304 return ret; 305 } 306 307 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register); 308 309 /** 310 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain 311 * @nh: Pointer to head of the blocking notifier chain 312 * @n: Entry to remove from notifier chain 313 * 314 * Removes a notifier from a blocking notifier chain. 315 * Must be called from process context. 316 * 317 * Returns zero on success or %-ENOENT on failure. 318 */ 319 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh, 320 struct notifier_block *n) 321 { 322 int ret; 323 324 /* 325 * This code gets used during boot-up, when task switching is 326 * not yet working and interrupts must remain disabled. At 327 * such times we must not call down_write(). 328 */ 329 if (unlikely(system_state == SYSTEM_BOOTING)) 330 return notifier_chain_unregister(&nh->head, n); 331 332 down_write(&nh->rwsem); 333 ret = notifier_chain_unregister(&nh->head, n); 334 up_write(&nh->rwsem); 335 return ret; 336 } 337 338 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister); 339 340 /** 341 * __blocking_notifier_call_chain - Call functions in a blocking notifier chain 342 * @nh: Pointer to head of the blocking notifier chain 343 * @val: Value passed unmodified to notifier function 344 * @v: Pointer passed unmodified to notifier function 345 * @nr_to_call: See comment for notifier_call_chain. 346 * @nr_calls: See comment for notifier_call_chain. 347 * 348 * Calls each function in a notifier chain in turn. The functions 349 * run in a process context, so they are allowed to block. 350 * 351 * If the return value of the notifier can be and'ed 352 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain() 353 * will return immediately, with the return value of 354 * the notifier function which halted execution. 355 * Otherwise the return value is the return value 356 * of the last notifier function called. 357 */ 358 359 int __blocking_notifier_call_chain(struct blocking_notifier_head *nh, 360 unsigned long val, void *v, 361 int nr_to_call, int *nr_calls) 362 { 363 int ret = NOTIFY_DONE; 364 365 /* 366 * We check the head outside the lock, but if this access is 367 * racy then it does not matter what the result of the test 368 * is, we re-check the list after having taken the lock anyway: 369 */ 370 if (rcu_dereference(nh->head)) { 371 down_read(&nh->rwsem); 372 ret = notifier_call_chain(&nh->head, val, v, nr_to_call, 373 nr_calls); 374 up_read(&nh->rwsem); 375 } 376 return ret; 377 } 378 EXPORT_SYMBOL_GPL(__blocking_notifier_call_chain); 379 380 int blocking_notifier_call_chain(struct blocking_notifier_head *nh, 381 unsigned long val, void *v) 382 { 383 return __blocking_notifier_call_chain(nh, val, v, -1, NULL); 384 } 385 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain); 386 387 /* 388 * Raw notifier chain routines. There is no protection; 389 * the caller must provide it. Use at your own risk! 390 */ 391 392 /** 393 * raw_notifier_chain_register - Add notifier to a raw notifier chain 394 * @nh: Pointer to head of the raw notifier chain 395 * @n: New entry in notifier chain 396 * 397 * Adds a notifier to a raw notifier chain. 398 * All locking must be provided by the caller. 399 * 400 * Currently always returns zero. 401 */ 402 403 int raw_notifier_chain_register(struct raw_notifier_head *nh, 404 struct notifier_block *n) 405 { 406 return notifier_chain_register(&nh->head, n); 407 } 408 409 EXPORT_SYMBOL_GPL(raw_notifier_chain_register); 410 411 /** 412 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain 413 * @nh: Pointer to head of the raw notifier chain 414 * @n: Entry to remove from notifier chain 415 * 416 * Removes a notifier from a raw notifier chain. 417 * All locking must be provided by the caller. 418 * 419 * Returns zero on success or %-ENOENT on failure. 420 */ 421 int raw_notifier_chain_unregister(struct raw_notifier_head *nh, 422 struct notifier_block *n) 423 { 424 return notifier_chain_unregister(&nh->head, n); 425 } 426 427 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister); 428 429 /** 430 * __raw_notifier_call_chain - Call functions in a raw notifier chain 431 * @nh: Pointer to head of the raw notifier chain 432 * @val: Value passed unmodified to notifier function 433 * @v: Pointer passed unmodified to notifier function 434 * @nr_to_call: See comment for notifier_call_chain. 435 * @nr_calls: See comment for notifier_call_chain 436 * 437 * Calls each function in a notifier chain in turn. The functions 438 * run in an undefined context. 439 * All locking must be provided by the caller. 440 * 441 * If the return value of the notifier can be and'ed 442 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain() 443 * will return immediately, with the return value of 444 * the notifier function which halted execution. 445 * Otherwise the return value is the return value 446 * of the last notifier function called. 447 */ 448 449 int __raw_notifier_call_chain(struct raw_notifier_head *nh, 450 unsigned long val, void *v, 451 int nr_to_call, int *nr_calls) 452 { 453 return notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls); 454 } 455 456 EXPORT_SYMBOL_GPL(__raw_notifier_call_chain); 457 458 int raw_notifier_call_chain(struct raw_notifier_head *nh, 459 unsigned long val, void *v) 460 { 461 return __raw_notifier_call_chain(nh, val, v, -1, NULL); 462 } 463 464 EXPORT_SYMBOL_GPL(raw_notifier_call_chain); 465 466 /* 467 * SRCU notifier chain routines. Registration and unregistration 468 * use a mutex, and call_chain is synchronized by SRCU (no locks). 469 */ 470 471 /** 472 * srcu_notifier_chain_register - Add notifier to an SRCU notifier chain 473 * @nh: Pointer to head of the SRCU notifier chain 474 * @n: New entry in notifier chain 475 * 476 * Adds a notifier to an SRCU notifier chain. 477 * Must be called in process context. 478 * 479 * Currently always returns zero. 480 */ 481 482 int srcu_notifier_chain_register(struct srcu_notifier_head *nh, 483 struct notifier_block *n) 484 { 485 int ret; 486 487 /* 488 * This code gets used during boot-up, when task switching is 489 * not yet working and interrupts must remain disabled. At 490 * such times we must not call mutex_lock(). 491 */ 492 if (unlikely(system_state == SYSTEM_BOOTING)) 493 return notifier_chain_register(&nh->head, n); 494 495 mutex_lock(&nh->mutex); 496 ret = notifier_chain_register(&nh->head, n); 497 mutex_unlock(&nh->mutex); 498 return ret; 499 } 500 501 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register); 502 503 /** 504 * srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain 505 * @nh: Pointer to head of the SRCU notifier chain 506 * @n: Entry to remove from notifier chain 507 * 508 * Removes a notifier from an SRCU notifier chain. 509 * Must be called from process context. 510 * 511 * Returns zero on success or %-ENOENT on failure. 512 */ 513 int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh, 514 struct notifier_block *n) 515 { 516 int ret; 517 518 /* 519 * This code gets used during boot-up, when task switching is 520 * not yet working and interrupts must remain disabled. At 521 * such times we must not call mutex_lock(). 522 */ 523 if (unlikely(system_state == SYSTEM_BOOTING)) 524 return notifier_chain_unregister(&nh->head, n); 525 526 mutex_lock(&nh->mutex); 527 ret = notifier_chain_unregister(&nh->head, n); 528 mutex_unlock(&nh->mutex); 529 synchronize_srcu(&nh->srcu); 530 return ret; 531 } 532 533 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister); 534 535 /** 536 * __srcu_notifier_call_chain - Call functions in an SRCU notifier chain 537 * @nh: Pointer to head of the SRCU notifier chain 538 * @val: Value passed unmodified to notifier function 539 * @v: Pointer passed unmodified to notifier function 540 * @nr_to_call: See comment for notifier_call_chain. 541 * @nr_calls: See comment for notifier_call_chain 542 * 543 * Calls each function in a notifier chain in turn. The functions 544 * run in a process context, so they are allowed to block. 545 * 546 * If the return value of the notifier can be and'ed 547 * with %NOTIFY_STOP_MASK then srcu_notifier_call_chain() 548 * will return immediately, with the return value of 549 * the notifier function which halted execution. 550 * Otherwise the return value is the return value 551 * of the last notifier function called. 552 */ 553 554 int __srcu_notifier_call_chain(struct srcu_notifier_head *nh, 555 unsigned long val, void *v, 556 int nr_to_call, int *nr_calls) 557 { 558 int ret; 559 int idx; 560 561 idx = srcu_read_lock(&nh->srcu); 562 ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls); 563 srcu_read_unlock(&nh->srcu, idx); 564 return ret; 565 } 566 EXPORT_SYMBOL_GPL(__srcu_notifier_call_chain); 567 568 int srcu_notifier_call_chain(struct srcu_notifier_head *nh, 569 unsigned long val, void *v) 570 { 571 return __srcu_notifier_call_chain(nh, val, v, -1, NULL); 572 } 573 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain); 574 575 /** 576 * srcu_init_notifier_head - Initialize an SRCU notifier head 577 * @nh: Pointer to head of the srcu notifier chain 578 * 579 * Unlike other sorts of notifier heads, SRCU notifier heads require 580 * dynamic initialization. Be sure to call this routine before 581 * calling any of the other SRCU notifier routines for this head. 582 * 583 * If an SRCU notifier head is deallocated, it must first be cleaned 584 * up by calling srcu_cleanup_notifier_head(). Otherwise the head's 585 * per-cpu data (used by the SRCU mechanism) will leak. 586 */ 587 588 void srcu_init_notifier_head(struct srcu_notifier_head *nh) 589 { 590 mutex_init(&nh->mutex); 591 if (init_srcu_struct(&nh->srcu) < 0) 592 BUG(); 593 nh->head = NULL; 594 } 595 596 EXPORT_SYMBOL_GPL(srcu_init_notifier_head); 597 598 /** 599 * register_reboot_notifier - Register function to be called at reboot time 600 * @nb: Info about notifier function to be called 601 * 602 * Registers a function with the list of functions 603 * to be called at reboot time. 604 * 605 * Currently always returns zero, as blocking_notifier_chain_register() 606 * always returns zero. 607 */ 608 609 int register_reboot_notifier(struct notifier_block * nb) 610 { 611 return blocking_notifier_chain_register(&reboot_notifier_list, nb); 612 } 613 614 EXPORT_SYMBOL(register_reboot_notifier); 615 616 /** 617 * unregister_reboot_notifier - Unregister previously registered reboot notifier 618 * @nb: Hook to be unregistered 619 * 620 * Unregisters a previously registered reboot 621 * notifier function. 622 * 623 * Returns zero on success, or %-ENOENT on failure. 624 */ 625 626 int unregister_reboot_notifier(struct notifier_block * nb) 627 { 628 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb); 629 } 630 631 EXPORT_SYMBOL(unregister_reboot_notifier); 632 633 static int set_one_prio(struct task_struct *p, int niceval, int error) 634 { 635 int no_nice; 636 637 if (p->uid != current->euid && 638 p->euid != current->euid && !capable(CAP_SYS_NICE)) { 639 error = -EPERM; 640 goto out; 641 } 642 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 643 error = -EACCES; 644 goto out; 645 } 646 no_nice = security_task_setnice(p, niceval); 647 if (no_nice) { 648 error = no_nice; 649 goto out; 650 } 651 if (error == -ESRCH) 652 error = 0; 653 set_user_nice(p, niceval); 654 out: 655 return error; 656 } 657 658 asmlinkage long sys_setpriority(int which, int who, int niceval) 659 { 660 struct task_struct *g, *p; 661 struct user_struct *user; 662 int error = -EINVAL; 663 struct pid *pgrp; 664 665 if (which > PRIO_USER || which < PRIO_PROCESS) 666 goto out; 667 668 /* normalize: avoid signed division (rounding problems) */ 669 error = -ESRCH; 670 if (niceval < -20) 671 niceval = -20; 672 if (niceval > 19) 673 niceval = 19; 674 675 read_lock(&tasklist_lock); 676 switch (which) { 677 case PRIO_PROCESS: 678 if (who) 679 p = find_task_by_pid(who); 680 else 681 p = current; 682 if (p) 683 error = set_one_prio(p, niceval, error); 684 break; 685 case PRIO_PGRP: 686 if (who) 687 pgrp = find_pid(who); 688 else 689 pgrp = task_pgrp(current); 690 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 691 error = set_one_prio(p, niceval, error); 692 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 693 break; 694 case PRIO_USER: 695 user = current->user; 696 if (!who) 697 who = current->uid; 698 else 699 if ((who != current->uid) && !(user = find_user(who))) 700 goto out_unlock; /* No processes for this user */ 701 702 do_each_thread(g, p) 703 if (p->uid == who) 704 error = set_one_prio(p, niceval, error); 705 while_each_thread(g, p); 706 if (who != current->uid) 707 free_uid(user); /* For find_user() */ 708 break; 709 } 710 out_unlock: 711 read_unlock(&tasklist_lock); 712 out: 713 return error; 714 } 715 716 /* 717 * Ugh. To avoid negative return values, "getpriority()" will 718 * not return the normal nice-value, but a negated value that 719 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 720 * to stay compatible. 721 */ 722 asmlinkage long sys_getpriority(int which, int who) 723 { 724 struct task_struct *g, *p; 725 struct user_struct *user; 726 long niceval, retval = -ESRCH; 727 struct pid *pgrp; 728 729 if (which > PRIO_USER || which < PRIO_PROCESS) 730 return -EINVAL; 731 732 read_lock(&tasklist_lock); 733 switch (which) { 734 case PRIO_PROCESS: 735 if (who) 736 p = find_task_by_pid(who); 737 else 738 p = current; 739 if (p) { 740 niceval = 20 - task_nice(p); 741 if (niceval > retval) 742 retval = niceval; 743 } 744 break; 745 case PRIO_PGRP: 746 if (who) 747 pgrp = find_pid(who); 748 else 749 pgrp = task_pgrp(current); 750 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 751 niceval = 20 - task_nice(p); 752 if (niceval > retval) 753 retval = niceval; 754 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 755 break; 756 case PRIO_USER: 757 user = current->user; 758 if (!who) 759 who = current->uid; 760 else 761 if ((who != current->uid) && !(user = find_user(who))) 762 goto out_unlock; /* No processes for this user */ 763 764 do_each_thread(g, p) 765 if (p->uid == who) { 766 niceval = 20 - task_nice(p); 767 if (niceval > retval) 768 retval = niceval; 769 } 770 while_each_thread(g, p); 771 if (who != current->uid) 772 free_uid(user); /* for find_user() */ 773 break; 774 } 775 out_unlock: 776 read_unlock(&tasklist_lock); 777 778 return retval; 779 } 780 781 /** 782 * emergency_restart - reboot the system 783 * 784 * Without shutting down any hardware or taking any locks 785 * reboot the system. This is called when we know we are in 786 * trouble so this is our best effort to reboot. This is 787 * safe to call in interrupt context. 788 */ 789 void emergency_restart(void) 790 { 791 machine_emergency_restart(); 792 } 793 EXPORT_SYMBOL_GPL(emergency_restart); 794 795 static void kernel_restart_prepare(char *cmd) 796 { 797 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 798 system_state = SYSTEM_RESTART; 799 device_shutdown(); 800 } 801 802 /** 803 * kernel_restart - reboot the system 804 * @cmd: pointer to buffer containing command to execute for restart 805 * or %NULL 806 * 807 * Shutdown everything and perform a clean reboot. 808 * This is not safe to call in interrupt context. 809 */ 810 void kernel_restart(char *cmd) 811 { 812 kernel_restart_prepare(cmd); 813 if (!cmd) 814 printk(KERN_EMERG "Restarting system.\n"); 815 else 816 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 817 machine_restart(cmd); 818 } 819 EXPORT_SYMBOL_GPL(kernel_restart); 820 821 /** 822 * kernel_kexec - reboot the system 823 * 824 * Move into place and start executing a preloaded standalone 825 * executable. If nothing was preloaded return an error. 826 */ 827 static void kernel_kexec(void) 828 { 829 #ifdef CONFIG_KEXEC 830 struct kimage *image; 831 image = xchg(&kexec_image, NULL); 832 if (!image) 833 return; 834 kernel_restart_prepare(NULL); 835 printk(KERN_EMERG "Starting new kernel\n"); 836 machine_shutdown(); 837 machine_kexec(image); 838 #endif 839 } 840 841 void kernel_shutdown_prepare(enum system_states state) 842 { 843 blocking_notifier_call_chain(&reboot_notifier_list, 844 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 845 system_state = state; 846 device_shutdown(); 847 } 848 /** 849 * kernel_halt - halt the system 850 * 851 * Shutdown everything and perform a clean system halt. 852 */ 853 void kernel_halt(void) 854 { 855 kernel_shutdown_prepare(SYSTEM_HALT); 856 printk(KERN_EMERG "System halted.\n"); 857 machine_halt(); 858 } 859 860 EXPORT_SYMBOL_GPL(kernel_halt); 861 862 /** 863 * kernel_power_off - power_off the system 864 * 865 * Shutdown everything and perform a clean system power_off. 866 */ 867 void kernel_power_off(void) 868 { 869 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 870 printk(KERN_EMERG "Power down.\n"); 871 machine_power_off(); 872 } 873 EXPORT_SYMBOL_GPL(kernel_power_off); 874 /* 875 * Reboot system call: for obvious reasons only root may call it, 876 * and even root needs to set up some magic numbers in the registers 877 * so that some mistake won't make this reboot the whole machine. 878 * You can also set the meaning of the ctrl-alt-del-key here. 879 * 880 * reboot doesn't sync: do that yourself before calling this. 881 */ 882 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 883 { 884 char buffer[256]; 885 886 /* We only trust the superuser with rebooting the system. */ 887 if (!capable(CAP_SYS_BOOT)) 888 return -EPERM; 889 890 /* For safety, we require "magic" arguments. */ 891 if (magic1 != LINUX_REBOOT_MAGIC1 || 892 (magic2 != LINUX_REBOOT_MAGIC2 && 893 magic2 != LINUX_REBOOT_MAGIC2A && 894 magic2 != LINUX_REBOOT_MAGIC2B && 895 magic2 != LINUX_REBOOT_MAGIC2C)) 896 return -EINVAL; 897 898 /* Instead of trying to make the power_off code look like 899 * halt when pm_power_off is not set do it the easy way. 900 */ 901 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 902 cmd = LINUX_REBOOT_CMD_HALT; 903 904 lock_kernel(); 905 switch (cmd) { 906 case LINUX_REBOOT_CMD_RESTART: 907 kernel_restart(NULL); 908 break; 909 910 case LINUX_REBOOT_CMD_CAD_ON: 911 C_A_D = 1; 912 break; 913 914 case LINUX_REBOOT_CMD_CAD_OFF: 915 C_A_D = 0; 916 break; 917 918 case LINUX_REBOOT_CMD_HALT: 919 kernel_halt(); 920 unlock_kernel(); 921 do_exit(0); 922 break; 923 924 case LINUX_REBOOT_CMD_POWER_OFF: 925 kernel_power_off(); 926 unlock_kernel(); 927 do_exit(0); 928 break; 929 930 case LINUX_REBOOT_CMD_RESTART2: 931 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 932 unlock_kernel(); 933 return -EFAULT; 934 } 935 buffer[sizeof(buffer) - 1] = '\0'; 936 937 kernel_restart(buffer); 938 break; 939 940 case LINUX_REBOOT_CMD_KEXEC: 941 kernel_kexec(); 942 unlock_kernel(); 943 return -EINVAL; 944 945 #ifdef CONFIG_SOFTWARE_SUSPEND 946 case LINUX_REBOOT_CMD_SW_SUSPEND: 947 { 948 int ret = hibernate(); 949 unlock_kernel(); 950 return ret; 951 } 952 #endif 953 954 default: 955 unlock_kernel(); 956 return -EINVAL; 957 } 958 unlock_kernel(); 959 return 0; 960 } 961 962 static void deferred_cad(struct work_struct *dummy) 963 { 964 kernel_restart(NULL); 965 } 966 967 /* 968 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 969 * As it's called within an interrupt, it may NOT sync: the only choice 970 * is whether to reboot at once, or just ignore the ctrl-alt-del. 971 */ 972 void ctrl_alt_del(void) 973 { 974 static DECLARE_WORK(cad_work, deferred_cad); 975 976 if (C_A_D) 977 schedule_work(&cad_work); 978 else 979 kill_cad_pid(SIGINT, 1); 980 } 981 982 /* 983 * Unprivileged users may change the real gid to the effective gid 984 * or vice versa. (BSD-style) 985 * 986 * If you set the real gid at all, or set the effective gid to a value not 987 * equal to the real gid, then the saved gid is set to the new effective gid. 988 * 989 * This makes it possible for a setgid program to completely drop its 990 * privileges, which is often a useful assertion to make when you are doing 991 * a security audit over a program. 992 * 993 * The general idea is that a program which uses just setregid() will be 994 * 100% compatible with BSD. A program which uses just setgid() will be 995 * 100% compatible with POSIX with saved IDs. 996 * 997 * SMP: There are not races, the GIDs are checked only by filesystem 998 * operations (as far as semantic preservation is concerned). 999 */ 1000 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 1001 { 1002 int old_rgid = current->gid; 1003 int old_egid = current->egid; 1004 int new_rgid = old_rgid; 1005 int new_egid = old_egid; 1006 int retval; 1007 1008 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 1009 if (retval) 1010 return retval; 1011 1012 if (rgid != (gid_t) -1) { 1013 if ((old_rgid == rgid) || 1014 (current->egid==rgid) || 1015 capable(CAP_SETGID)) 1016 new_rgid = rgid; 1017 else 1018 return -EPERM; 1019 } 1020 if (egid != (gid_t) -1) { 1021 if ((old_rgid == egid) || 1022 (current->egid == egid) || 1023 (current->sgid == egid) || 1024 capable(CAP_SETGID)) 1025 new_egid = egid; 1026 else 1027 return -EPERM; 1028 } 1029 if (new_egid != old_egid) { 1030 current->mm->dumpable = suid_dumpable; 1031 smp_wmb(); 1032 } 1033 if (rgid != (gid_t) -1 || 1034 (egid != (gid_t) -1 && egid != old_rgid)) 1035 current->sgid = new_egid; 1036 current->fsgid = new_egid; 1037 current->egid = new_egid; 1038 current->gid = new_rgid; 1039 key_fsgid_changed(current); 1040 proc_id_connector(current, PROC_EVENT_GID); 1041 return 0; 1042 } 1043 1044 /* 1045 * setgid() is implemented like SysV w/ SAVED_IDS 1046 * 1047 * SMP: Same implicit races as above. 1048 */ 1049 asmlinkage long sys_setgid(gid_t gid) 1050 { 1051 int old_egid = current->egid; 1052 int retval; 1053 1054 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 1055 if (retval) 1056 return retval; 1057 1058 if (capable(CAP_SETGID)) { 1059 if (old_egid != gid) { 1060 current->mm->dumpable = suid_dumpable; 1061 smp_wmb(); 1062 } 1063 current->gid = current->egid = current->sgid = current->fsgid = gid; 1064 } else if ((gid == current->gid) || (gid == current->sgid)) { 1065 if (old_egid != gid) { 1066 current->mm->dumpable = suid_dumpable; 1067 smp_wmb(); 1068 } 1069 current->egid = current->fsgid = gid; 1070 } 1071 else 1072 return -EPERM; 1073 1074 key_fsgid_changed(current); 1075 proc_id_connector(current, PROC_EVENT_GID); 1076 return 0; 1077 } 1078 1079 static int set_user(uid_t new_ruid, int dumpclear) 1080 { 1081 struct user_struct *new_user; 1082 1083 new_user = alloc_uid(current->nsproxy->user_ns, new_ruid); 1084 if (!new_user) 1085 return -EAGAIN; 1086 1087 if (atomic_read(&new_user->processes) >= 1088 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 1089 new_user != current->nsproxy->user_ns->root_user) { 1090 free_uid(new_user); 1091 return -EAGAIN; 1092 } 1093 1094 switch_uid(new_user); 1095 1096 if (dumpclear) { 1097 current->mm->dumpable = suid_dumpable; 1098 smp_wmb(); 1099 } 1100 current->uid = new_ruid; 1101 return 0; 1102 } 1103 1104 /* 1105 * Unprivileged users may change the real uid to the effective uid 1106 * or vice versa. (BSD-style) 1107 * 1108 * If you set the real uid at all, or set the effective uid to a value not 1109 * equal to the real uid, then the saved uid is set to the new effective uid. 1110 * 1111 * This makes it possible for a setuid program to completely drop its 1112 * privileges, which is often a useful assertion to make when you are doing 1113 * a security audit over a program. 1114 * 1115 * The general idea is that a program which uses just setreuid() will be 1116 * 100% compatible with BSD. A program which uses just setuid() will be 1117 * 100% compatible with POSIX with saved IDs. 1118 */ 1119 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 1120 { 1121 int old_ruid, old_euid, old_suid, new_ruid, new_euid; 1122 int retval; 1123 1124 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 1125 if (retval) 1126 return retval; 1127 1128 new_ruid = old_ruid = current->uid; 1129 new_euid = old_euid = current->euid; 1130 old_suid = current->suid; 1131 1132 if (ruid != (uid_t) -1) { 1133 new_ruid = ruid; 1134 if ((old_ruid != ruid) && 1135 (current->euid != ruid) && 1136 !capable(CAP_SETUID)) 1137 return -EPERM; 1138 } 1139 1140 if (euid != (uid_t) -1) { 1141 new_euid = euid; 1142 if ((old_ruid != euid) && 1143 (current->euid != euid) && 1144 (current->suid != euid) && 1145 !capable(CAP_SETUID)) 1146 return -EPERM; 1147 } 1148 1149 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) 1150 return -EAGAIN; 1151 1152 if (new_euid != old_euid) { 1153 current->mm->dumpable = suid_dumpable; 1154 smp_wmb(); 1155 } 1156 current->fsuid = current->euid = new_euid; 1157 if (ruid != (uid_t) -1 || 1158 (euid != (uid_t) -1 && euid != old_ruid)) 1159 current->suid = current->euid; 1160 current->fsuid = current->euid; 1161 1162 key_fsuid_changed(current); 1163 proc_id_connector(current, PROC_EVENT_UID); 1164 1165 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); 1166 } 1167 1168 1169 1170 /* 1171 * setuid() is implemented like SysV with SAVED_IDS 1172 * 1173 * Note that SAVED_ID's is deficient in that a setuid root program 1174 * like sendmail, for example, cannot set its uid to be a normal 1175 * user and then switch back, because if you're root, setuid() sets 1176 * the saved uid too. If you don't like this, blame the bright people 1177 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 1178 * will allow a root program to temporarily drop privileges and be able to 1179 * regain them by swapping the real and effective uid. 1180 */ 1181 asmlinkage long sys_setuid(uid_t uid) 1182 { 1183 int old_euid = current->euid; 1184 int old_ruid, old_suid, new_suid; 1185 int retval; 1186 1187 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 1188 if (retval) 1189 return retval; 1190 1191 old_ruid = current->uid; 1192 old_suid = current->suid; 1193 new_suid = old_suid; 1194 1195 if (capable(CAP_SETUID)) { 1196 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) 1197 return -EAGAIN; 1198 new_suid = uid; 1199 } else if ((uid != current->uid) && (uid != new_suid)) 1200 return -EPERM; 1201 1202 if (old_euid != uid) { 1203 current->mm->dumpable = suid_dumpable; 1204 smp_wmb(); 1205 } 1206 current->fsuid = current->euid = uid; 1207 current->suid = new_suid; 1208 1209 key_fsuid_changed(current); 1210 proc_id_connector(current, PROC_EVENT_UID); 1211 1212 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); 1213 } 1214 1215 1216 /* 1217 * This function implements a generic ability to update ruid, euid, 1218 * and suid. This allows you to implement the 4.4 compatible seteuid(). 1219 */ 1220 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 1221 { 1222 int old_ruid = current->uid; 1223 int old_euid = current->euid; 1224 int old_suid = current->suid; 1225 int retval; 1226 1227 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 1228 if (retval) 1229 return retval; 1230 1231 if (!capable(CAP_SETUID)) { 1232 if ((ruid != (uid_t) -1) && (ruid != current->uid) && 1233 (ruid != current->euid) && (ruid != current->suid)) 1234 return -EPERM; 1235 if ((euid != (uid_t) -1) && (euid != current->uid) && 1236 (euid != current->euid) && (euid != current->suid)) 1237 return -EPERM; 1238 if ((suid != (uid_t) -1) && (suid != current->uid) && 1239 (suid != current->euid) && (suid != current->suid)) 1240 return -EPERM; 1241 } 1242 if (ruid != (uid_t) -1) { 1243 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) 1244 return -EAGAIN; 1245 } 1246 if (euid != (uid_t) -1) { 1247 if (euid != current->euid) { 1248 current->mm->dumpable = suid_dumpable; 1249 smp_wmb(); 1250 } 1251 current->euid = euid; 1252 } 1253 current->fsuid = current->euid; 1254 if (suid != (uid_t) -1) 1255 current->suid = suid; 1256 1257 key_fsuid_changed(current); 1258 proc_id_connector(current, PROC_EVENT_UID); 1259 1260 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); 1261 } 1262 1263 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 1264 { 1265 int retval; 1266 1267 if (!(retval = put_user(current->uid, ruid)) && 1268 !(retval = put_user(current->euid, euid))) 1269 retval = put_user(current->suid, suid); 1270 1271 return retval; 1272 } 1273 1274 /* 1275 * Same as above, but for rgid, egid, sgid. 1276 */ 1277 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 1278 { 1279 int retval; 1280 1281 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 1282 if (retval) 1283 return retval; 1284 1285 if (!capable(CAP_SETGID)) { 1286 if ((rgid != (gid_t) -1) && (rgid != current->gid) && 1287 (rgid != current->egid) && (rgid != current->sgid)) 1288 return -EPERM; 1289 if ((egid != (gid_t) -1) && (egid != current->gid) && 1290 (egid != current->egid) && (egid != current->sgid)) 1291 return -EPERM; 1292 if ((sgid != (gid_t) -1) && (sgid != current->gid) && 1293 (sgid != current->egid) && (sgid != current->sgid)) 1294 return -EPERM; 1295 } 1296 if (egid != (gid_t) -1) { 1297 if (egid != current->egid) { 1298 current->mm->dumpable = suid_dumpable; 1299 smp_wmb(); 1300 } 1301 current->egid = egid; 1302 } 1303 current->fsgid = current->egid; 1304 if (rgid != (gid_t) -1) 1305 current->gid = rgid; 1306 if (sgid != (gid_t) -1) 1307 current->sgid = sgid; 1308 1309 key_fsgid_changed(current); 1310 proc_id_connector(current, PROC_EVENT_GID); 1311 return 0; 1312 } 1313 1314 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 1315 { 1316 int retval; 1317 1318 if (!(retval = put_user(current->gid, rgid)) && 1319 !(retval = put_user(current->egid, egid))) 1320 retval = put_user(current->sgid, sgid); 1321 1322 return retval; 1323 } 1324 1325 1326 /* 1327 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 1328 * is used for "access()" and for the NFS daemon (letting nfsd stay at 1329 * whatever uid it wants to). It normally shadows "euid", except when 1330 * explicitly set by setfsuid() or for access.. 1331 */ 1332 asmlinkage long sys_setfsuid(uid_t uid) 1333 { 1334 int old_fsuid; 1335 1336 old_fsuid = current->fsuid; 1337 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) 1338 return old_fsuid; 1339 1340 if (uid == current->uid || uid == current->euid || 1341 uid == current->suid || uid == current->fsuid || 1342 capable(CAP_SETUID)) { 1343 if (uid != old_fsuid) { 1344 current->mm->dumpable = suid_dumpable; 1345 smp_wmb(); 1346 } 1347 current->fsuid = uid; 1348 } 1349 1350 key_fsuid_changed(current); 1351 proc_id_connector(current, PROC_EVENT_UID); 1352 1353 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); 1354 1355 return old_fsuid; 1356 } 1357 1358 /* 1359 * Samma på svenska.. 1360 */ 1361 asmlinkage long sys_setfsgid(gid_t gid) 1362 { 1363 int old_fsgid; 1364 1365 old_fsgid = current->fsgid; 1366 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 1367 return old_fsgid; 1368 1369 if (gid == current->gid || gid == current->egid || 1370 gid == current->sgid || gid == current->fsgid || 1371 capable(CAP_SETGID)) { 1372 if (gid != old_fsgid) { 1373 current->mm->dumpable = suid_dumpable; 1374 smp_wmb(); 1375 } 1376 current->fsgid = gid; 1377 key_fsgid_changed(current); 1378 proc_id_connector(current, PROC_EVENT_GID); 1379 } 1380 return old_fsgid; 1381 } 1382 1383 asmlinkage long sys_times(struct tms __user * tbuf) 1384 { 1385 /* 1386 * In the SMP world we might just be unlucky and have one of 1387 * the times increment as we use it. Since the value is an 1388 * atomically safe type this is just fine. Conceptually its 1389 * as if the syscall took an instant longer to occur. 1390 */ 1391 if (tbuf) { 1392 struct tms tmp; 1393 struct task_struct *tsk = current; 1394 struct task_struct *t; 1395 cputime_t utime, stime, cutime, cstime; 1396 1397 spin_lock_irq(&tsk->sighand->siglock); 1398 utime = tsk->signal->utime; 1399 stime = tsk->signal->stime; 1400 t = tsk; 1401 do { 1402 utime = cputime_add(utime, t->utime); 1403 stime = cputime_add(stime, t->stime); 1404 t = next_thread(t); 1405 } while (t != tsk); 1406 1407 cutime = tsk->signal->cutime; 1408 cstime = tsk->signal->cstime; 1409 spin_unlock_irq(&tsk->sighand->siglock); 1410 1411 tmp.tms_utime = cputime_to_clock_t(utime); 1412 tmp.tms_stime = cputime_to_clock_t(stime); 1413 tmp.tms_cutime = cputime_to_clock_t(cutime); 1414 tmp.tms_cstime = cputime_to_clock_t(cstime); 1415 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 1416 return -EFAULT; 1417 } 1418 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 1419 } 1420 1421 /* 1422 * This needs some heavy checking ... 1423 * I just haven't the stomach for it. I also don't fully 1424 * understand sessions/pgrp etc. Let somebody who does explain it. 1425 * 1426 * OK, I think I have the protection semantics right.... this is really 1427 * only important on a multi-user system anyway, to make sure one user 1428 * can't send a signal to a process owned by another. -TYT, 12/12/91 1429 * 1430 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 1431 * LBT 04.03.94 1432 */ 1433 1434 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 1435 { 1436 struct task_struct *p; 1437 struct task_struct *group_leader = current->group_leader; 1438 int err = -EINVAL; 1439 1440 if (!pid) 1441 pid = group_leader->pid; 1442 if (!pgid) 1443 pgid = pid; 1444 if (pgid < 0) 1445 return -EINVAL; 1446 1447 /* From this point forward we keep holding onto the tasklist lock 1448 * so that our parent does not change from under us. -DaveM 1449 */ 1450 write_lock_irq(&tasklist_lock); 1451 1452 err = -ESRCH; 1453 p = find_task_by_pid(pid); 1454 if (!p) 1455 goto out; 1456 1457 err = -EINVAL; 1458 if (!thread_group_leader(p)) 1459 goto out; 1460 1461 if (p->real_parent == group_leader) { 1462 err = -EPERM; 1463 if (task_session(p) != task_session(group_leader)) 1464 goto out; 1465 err = -EACCES; 1466 if (p->did_exec) 1467 goto out; 1468 } else { 1469 err = -ESRCH; 1470 if (p != group_leader) 1471 goto out; 1472 } 1473 1474 err = -EPERM; 1475 if (p->signal->leader) 1476 goto out; 1477 1478 if (pgid != pid) { 1479 struct task_struct *g = 1480 find_task_by_pid_type(PIDTYPE_PGID, pgid); 1481 1482 if (!g || task_session(g) != task_session(group_leader)) 1483 goto out; 1484 } 1485 1486 err = security_task_setpgid(p, pgid); 1487 if (err) 1488 goto out; 1489 1490 if (process_group(p) != pgid) { 1491 detach_pid(p, PIDTYPE_PGID); 1492 p->signal->pgrp = pgid; 1493 attach_pid(p, PIDTYPE_PGID, find_pid(pgid)); 1494 } 1495 1496 err = 0; 1497 out: 1498 /* All paths lead to here, thus we are safe. -DaveM */ 1499 write_unlock_irq(&tasklist_lock); 1500 return err; 1501 } 1502 1503 asmlinkage long sys_getpgid(pid_t pid) 1504 { 1505 if (!pid) 1506 return process_group(current); 1507 else { 1508 int retval; 1509 struct task_struct *p; 1510 1511 read_lock(&tasklist_lock); 1512 p = find_task_by_pid(pid); 1513 1514 retval = -ESRCH; 1515 if (p) { 1516 retval = security_task_getpgid(p); 1517 if (!retval) 1518 retval = process_group(p); 1519 } 1520 read_unlock(&tasklist_lock); 1521 return retval; 1522 } 1523 } 1524 1525 #ifdef __ARCH_WANT_SYS_GETPGRP 1526 1527 asmlinkage long sys_getpgrp(void) 1528 { 1529 /* SMP - assuming writes are word atomic this is fine */ 1530 return process_group(current); 1531 } 1532 1533 #endif 1534 1535 asmlinkage long sys_getsid(pid_t pid) 1536 { 1537 if (!pid) 1538 return process_session(current); 1539 else { 1540 int retval; 1541 struct task_struct *p; 1542 1543 read_lock(&tasklist_lock); 1544 p = find_task_by_pid(pid); 1545 1546 retval = -ESRCH; 1547 if (p) { 1548 retval = security_task_getsid(p); 1549 if (!retval) 1550 retval = process_session(p); 1551 } 1552 read_unlock(&tasklist_lock); 1553 return retval; 1554 } 1555 } 1556 1557 asmlinkage long sys_setsid(void) 1558 { 1559 struct task_struct *group_leader = current->group_leader; 1560 pid_t session; 1561 int err = -EPERM; 1562 1563 write_lock_irq(&tasklist_lock); 1564 1565 /* Fail if I am already a session leader */ 1566 if (group_leader->signal->leader) 1567 goto out; 1568 1569 session = group_leader->pid; 1570 /* Fail if a process group id already exists that equals the 1571 * proposed session id. 1572 * 1573 * Don't check if session id == 1 because kernel threads use this 1574 * session id and so the check will always fail and make it so 1575 * init cannot successfully call setsid. 1576 */ 1577 if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session)) 1578 goto out; 1579 1580 group_leader->signal->leader = 1; 1581 __set_special_pids(session, session); 1582 1583 spin_lock(&group_leader->sighand->siglock); 1584 group_leader->signal->tty = NULL; 1585 spin_unlock(&group_leader->sighand->siglock); 1586 1587 err = process_group(group_leader); 1588 out: 1589 write_unlock_irq(&tasklist_lock); 1590 return err; 1591 } 1592 1593 /* 1594 * Supplementary group IDs 1595 */ 1596 1597 /* init to 2 - one for init_task, one to ensure it is never freed */ 1598 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1599 1600 struct group_info *groups_alloc(int gidsetsize) 1601 { 1602 struct group_info *group_info; 1603 int nblocks; 1604 int i; 1605 1606 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1607 /* Make sure we always allocate at least one indirect block pointer */ 1608 nblocks = nblocks ? : 1; 1609 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1610 if (!group_info) 1611 return NULL; 1612 group_info->ngroups = gidsetsize; 1613 group_info->nblocks = nblocks; 1614 atomic_set(&group_info->usage, 1); 1615 1616 if (gidsetsize <= NGROUPS_SMALL) 1617 group_info->blocks[0] = group_info->small_block; 1618 else { 1619 for (i = 0; i < nblocks; i++) { 1620 gid_t *b; 1621 b = (void *)__get_free_page(GFP_USER); 1622 if (!b) 1623 goto out_undo_partial_alloc; 1624 group_info->blocks[i] = b; 1625 } 1626 } 1627 return group_info; 1628 1629 out_undo_partial_alloc: 1630 while (--i >= 0) { 1631 free_page((unsigned long)group_info->blocks[i]); 1632 } 1633 kfree(group_info); 1634 return NULL; 1635 } 1636 1637 EXPORT_SYMBOL(groups_alloc); 1638 1639 void groups_free(struct group_info *group_info) 1640 { 1641 if (group_info->blocks[0] != group_info->small_block) { 1642 int i; 1643 for (i = 0; i < group_info->nblocks; i++) 1644 free_page((unsigned long)group_info->blocks[i]); 1645 } 1646 kfree(group_info); 1647 } 1648 1649 EXPORT_SYMBOL(groups_free); 1650 1651 /* export the group_info to a user-space array */ 1652 static int groups_to_user(gid_t __user *grouplist, 1653 struct group_info *group_info) 1654 { 1655 int i; 1656 int count = group_info->ngroups; 1657 1658 for (i = 0; i < group_info->nblocks; i++) { 1659 int cp_count = min(NGROUPS_PER_BLOCK, count); 1660 int off = i * NGROUPS_PER_BLOCK; 1661 int len = cp_count * sizeof(*grouplist); 1662 1663 if (copy_to_user(grouplist+off, group_info->blocks[i], len)) 1664 return -EFAULT; 1665 1666 count -= cp_count; 1667 } 1668 return 0; 1669 } 1670 1671 /* fill a group_info from a user-space array - it must be allocated already */ 1672 static int groups_from_user(struct group_info *group_info, 1673 gid_t __user *grouplist) 1674 { 1675 int i; 1676 int count = group_info->ngroups; 1677 1678 for (i = 0; i < group_info->nblocks; i++) { 1679 int cp_count = min(NGROUPS_PER_BLOCK, count); 1680 int off = i * NGROUPS_PER_BLOCK; 1681 int len = cp_count * sizeof(*grouplist); 1682 1683 if (copy_from_user(group_info->blocks[i], grouplist+off, len)) 1684 return -EFAULT; 1685 1686 count -= cp_count; 1687 } 1688 return 0; 1689 } 1690 1691 /* a simple Shell sort */ 1692 static void groups_sort(struct group_info *group_info) 1693 { 1694 int base, max, stride; 1695 int gidsetsize = group_info->ngroups; 1696 1697 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1698 ; /* nothing */ 1699 stride /= 3; 1700 1701 while (stride) { 1702 max = gidsetsize - stride; 1703 for (base = 0; base < max; base++) { 1704 int left = base; 1705 int right = left + stride; 1706 gid_t tmp = GROUP_AT(group_info, right); 1707 1708 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1709 GROUP_AT(group_info, right) = 1710 GROUP_AT(group_info, left); 1711 right = left; 1712 left -= stride; 1713 } 1714 GROUP_AT(group_info, right) = tmp; 1715 } 1716 stride /= 3; 1717 } 1718 } 1719 1720 /* a simple bsearch */ 1721 int groups_search(struct group_info *group_info, gid_t grp) 1722 { 1723 unsigned int left, right; 1724 1725 if (!group_info) 1726 return 0; 1727 1728 left = 0; 1729 right = group_info->ngroups; 1730 while (left < right) { 1731 unsigned int mid = (left+right)/2; 1732 int cmp = grp - GROUP_AT(group_info, mid); 1733 if (cmp > 0) 1734 left = mid + 1; 1735 else if (cmp < 0) 1736 right = mid; 1737 else 1738 return 1; 1739 } 1740 return 0; 1741 } 1742 1743 /* validate and set current->group_info */ 1744 int set_current_groups(struct group_info *group_info) 1745 { 1746 int retval; 1747 struct group_info *old_info; 1748 1749 retval = security_task_setgroups(group_info); 1750 if (retval) 1751 return retval; 1752 1753 groups_sort(group_info); 1754 get_group_info(group_info); 1755 1756 task_lock(current); 1757 old_info = current->group_info; 1758 current->group_info = group_info; 1759 task_unlock(current); 1760 1761 put_group_info(old_info); 1762 1763 return 0; 1764 } 1765 1766 EXPORT_SYMBOL(set_current_groups); 1767 1768 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1769 { 1770 int i = 0; 1771 1772 /* 1773 * SMP: Nobody else can change our grouplist. Thus we are 1774 * safe. 1775 */ 1776 1777 if (gidsetsize < 0) 1778 return -EINVAL; 1779 1780 /* no need to grab task_lock here; it cannot change */ 1781 i = current->group_info->ngroups; 1782 if (gidsetsize) { 1783 if (i > gidsetsize) { 1784 i = -EINVAL; 1785 goto out; 1786 } 1787 if (groups_to_user(grouplist, current->group_info)) { 1788 i = -EFAULT; 1789 goto out; 1790 } 1791 } 1792 out: 1793 return i; 1794 } 1795 1796 /* 1797 * SMP: Our groups are copy-on-write. We can set them safely 1798 * without another task interfering. 1799 */ 1800 1801 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1802 { 1803 struct group_info *group_info; 1804 int retval; 1805 1806 if (!capable(CAP_SETGID)) 1807 return -EPERM; 1808 if ((unsigned)gidsetsize > NGROUPS_MAX) 1809 return -EINVAL; 1810 1811 group_info = groups_alloc(gidsetsize); 1812 if (!group_info) 1813 return -ENOMEM; 1814 retval = groups_from_user(group_info, grouplist); 1815 if (retval) { 1816 put_group_info(group_info); 1817 return retval; 1818 } 1819 1820 retval = set_current_groups(group_info); 1821 put_group_info(group_info); 1822 1823 return retval; 1824 } 1825 1826 /* 1827 * Check whether we're fsgid/egid or in the supplemental group.. 1828 */ 1829 int in_group_p(gid_t grp) 1830 { 1831 int retval = 1; 1832 if (grp != current->fsgid) 1833 retval = groups_search(current->group_info, grp); 1834 return retval; 1835 } 1836 1837 EXPORT_SYMBOL(in_group_p); 1838 1839 int in_egroup_p(gid_t grp) 1840 { 1841 int retval = 1; 1842 if (grp != current->egid) 1843 retval = groups_search(current->group_info, grp); 1844 return retval; 1845 } 1846 1847 EXPORT_SYMBOL(in_egroup_p); 1848 1849 DECLARE_RWSEM(uts_sem); 1850 1851 EXPORT_SYMBOL(uts_sem); 1852 1853 asmlinkage long sys_newuname(struct new_utsname __user * name) 1854 { 1855 int errno = 0; 1856 1857 down_read(&uts_sem); 1858 if (copy_to_user(name, utsname(), sizeof *name)) 1859 errno = -EFAULT; 1860 up_read(&uts_sem); 1861 return errno; 1862 } 1863 1864 asmlinkage long sys_sethostname(char __user *name, int len) 1865 { 1866 int errno; 1867 char tmp[__NEW_UTS_LEN]; 1868 1869 if (!capable(CAP_SYS_ADMIN)) 1870 return -EPERM; 1871 if (len < 0 || len > __NEW_UTS_LEN) 1872 return -EINVAL; 1873 down_write(&uts_sem); 1874 errno = -EFAULT; 1875 if (!copy_from_user(tmp, name, len)) { 1876 memcpy(utsname()->nodename, tmp, len); 1877 utsname()->nodename[len] = 0; 1878 errno = 0; 1879 } 1880 up_write(&uts_sem); 1881 return errno; 1882 } 1883 1884 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1885 1886 asmlinkage long sys_gethostname(char __user *name, int len) 1887 { 1888 int i, errno; 1889 1890 if (len < 0) 1891 return -EINVAL; 1892 down_read(&uts_sem); 1893 i = 1 + strlen(utsname()->nodename); 1894 if (i > len) 1895 i = len; 1896 errno = 0; 1897 if (copy_to_user(name, utsname()->nodename, i)) 1898 errno = -EFAULT; 1899 up_read(&uts_sem); 1900 return errno; 1901 } 1902 1903 #endif 1904 1905 /* 1906 * Only setdomainname; getdomainname can be implemented by calling 1907 * uname() 1908 */ 1909 asmlinkage long sys_setdomainname(char __user *name, int len) 1910 { 1911 int errno; 1912 char tmp[__NEW_UTS_LEN]; 1913 1914 if (!capable(CAP_SYS_ADMIN)) 1915 return -EPERM; 1916 if (len < 0 || len > __NEW_UTS_LEN) 1917 return -EINVAL; 1918 1919 down_write(&uts_sem); 1920 errno = -EFAULT; 1921 if (!copy_from_user(tmp, name, len)) { 1922 memcpy(utsname()->domainname, tmp, len); 1923 utsname()->domainname[len] = 0; 1924 errno = 0; 1925 } 1926 up_write(&uts_sem); 1927 return errno; 1928 } 1929 1930 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1931 { 1932 if (resource >= RLIM_NLIMITS) 1933 return -EINVAL; 1934 else { 1935 struct rlimit value; 1936 task_lock(current->group_leader); 1937 value = current->signal->rlim[resource]; 1938 task_unlock(current->group_leader); 1939 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1940 } 1941 } 1942 1943 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1944 1945 /* 1946 * Back compatibility for getrlimit. Needed for some apps. 1947 */ 1948 1949 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1950 { 1951 struct rlimit x; 1952 if (resource >= RLIM_NLIMITS) 1953 return -EINVAL; 1954 1955 task_lock(current->group_leader); 1956 x = current->signal->rlim[resource]; 1957 task_unlock(current->group_leader); 1958 if (x.rlim_cur > 0x7FFFFFFF) 1959 x.rlim_cur = 0x7FFFFFFF; 1960 if (x.rlim_max > 0x7FFFFFFF) 1961 x.rlim_max = 0x7FFFFFFF; 1962 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1963 } 1964 1965 #endif 1966 1967 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1968 { 1969 struct rlimit new_rlim, *old_rlim; 1970 unsigned long it_prof_secs; 1971 int retval; 1972 1973 if (resource >= RLIM_NLIMITS) 1974 return -EINVAL; 1975 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1976 return -EFAULT; 1977 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1978 return -EINVAL; 1979 old_rlim = current->signal->rlim + resource; 1980 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1981 !capable(CAP_SYS_RESOURCE)) 1982 return -EPERM; 1983 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) 1984 return -EPERM; 1985 1986 retval = security_task_setrlimit(resource, &new_rlim); 1987 if (retval) 1988 return retval; 1989 1990 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) { 1991 /* 1992 * The caller is asking for an immediate RLIMIT_CPU 1993 * expiry. But we use the zero value to mean "it was 1994 * never set". So let's cheat and make it one second 1995 * instead 1996 */ 1997 new_rlim.rlim_cur = 1; 1998 } 1999 2000 task_lock(current->group_leader); 2001 *old_rlim = new_rlim; 2002 task_unlock(current->group_leader); 2003 2004 if (resource != RLIMIT_CPU) 2005 goto out; 2006 2007 /* 2008 * RLIMIT_CPU handling. Note that the kernel fails to return an error 2009 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 2010 * very long-standing error, and fixing it now risks breakage of 2011 * applications, so we live with it 2012 */ 2013 if (new_rlim.rlim_cur == RLIM_INFINITY) 2014 goto out; 2015 2016 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires); 2017 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) { 2018 unsigned long rlim_cur = new_rlim.rlim_cur; 2019 cputime_t cputime; 2020 2021 cputime = secs_to_cputime(rlim_cur); 2022 read_lock(&tasklist_lock); 2023 spin_lock_irq(¤t->sighand->siglock); 2024 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); 2025 spin_unlock_irq(¤t->sighand->siglock); 2026 read_unlock(&tasklist_lock); 2027 } 2028 out: 2029 return 0; 2030 } 2031 2032 /* 2033 * It would make sense to put struct rusage in the task_struct, 2034 * except that would make the task_struct be *really big*. After 2035 * task_struct gets moved into malloc'ed memory, it would 2036 * make sense to do this. It will make moving the rest of the information 2037 * a lot simpler! (Which we're not doing right now because we're not 2038 * measuring them yet). 2039 * 2040 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 2041 * races with threads incrementing their own counters. But since word 2042 * reads are atomic, we either get new values or old values and we don't 2043 * care which for the sums. We always take the siglock to protect reading 2044 * the c* fields from p->signal from races with exit.c updating those 2045 * fields when reaping, so a sample either gets all the additions of a 2046 * given child after it's reaped, or none so this sample is before reaping. 2047 * 2048 * Locking: 2049 * We need to take the siglock for CHILDEREN, SELF and BOTH 2050 * for the cases current multithreaded, non-current single threaded 2051 * non-current multithreaded. Thread traversal is now safe with 2052 * the siglock held. 2053 * Strictly speaking, we donot need to take the siglock if we are current and 2054 * single threaded, as no one else can take our signal_struct away, no one 2055 * else can reap the children to update signal->c* counters, and no one else 2056 * can race with the signal-> fields. If we do not take any lock, the 2057 * signal-> fields could be read out of order while another thread was just 2058 * exiting. So we should place a read memory barrier when we avoid the lock. 2059 * On the writer side, write memory barrier is implied in __exit_signal 2060 * as __exit_signal releases the siglock spinlock after updating the signal-> 2061 * fields. But we don't do this yet to keep things simple. 2062 * 2063 */ 2064 2065 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 2066 { 2067 struct task_struct *t; 2068 unsigned long flags; 2069 cputime_t utime, stime; 2070 2071 memset((char *) r, 0, sizeof *r); 2072 utime = stime = cputime_zero; 2073 2074 rcu_read_lock(); 2075 if (!lock_task_sighand(p, &flags)) { 2076 rcu_read_unlock(); 2077 return; 2078 } 2079 2080 switch (who) { 2081 case RUSAGE_BOTH: 2082 case RUSAGE_CHILDREN: 2083 utime = p->signal->cutime; 2084 stime = p->signal->cstime; 2085 r->ru_nvcsw = p->signal->cnvcsw; 2086 r->ru_nivcsw = p->signal->cnivcsw; 2087 r->ru_minflt = p->signal->cmin_flt; 2088 r->ru_majflt = p->signal->cmaj_flt; 2089 r->ru_inblock = p->signal->cinblock; 2090 r->ru_oublock = p->signal->coublock; 2091 2092 if (who == RUSAGE_CHILDREN) 2093 break; 2094 2095 case RUSAGE_SELF: 2096 utime = cputime_add(utime, p->signal->utime); 2097 stime = cputime_add(stime, p->signal->stime); 2098 r->ru_nvcsw += p->signal->nvcsw; 2099 r->ru_nivcsw += p->signal->nivcsw; 2100 r->ru_minflt += p->signal->min_flt; 2101 r->ru_majflt += p->signal->maj_flt; 2102 r->ru_inblock += p->signal->inblock; 2103 r->ru_oublock += p->signal->oublock; 2104 t = p; 2105 do { 2106 utime = cputime_add(utime, t->utime); 2107 stime = cputime_add(stime, t->stime); 2108 r->ru_nvcsw += t->nvcsw; 2109 r->ru_nivcsw += t->nivcsw; 2110 r->ru_minflt += t->min_flt; 2111 r->ru_majflt += t->maj_flt; 2112 r->ru_inblock += task_io_get_inblock(t); 2113 r->ru_oublock += task_io_get_oublock(t); 2114 t = next_thread(t); 2115 } while (t != p); 2116 break; 2117 2118 default: 2119 BUG(); 2120 } 2121 2122 unlock_task_sighand(p, &flags); 2123 rcu_read_unlock(); 2124 2125 cputime_to_timeval(utime, &r->ru_utime); 2126 cputime_to_timeval(stime, &r->ru_stime); 2127 } 2128 2129 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 2130 { 2131 struct rusage r; 2132 k_getrusage(p, who, &r); 2133 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 2134 } 2135 2136 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 2137 { 2138 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) 2139 return -EINVAL; 2140 return getrusage(current, who, ru); 2141 } 2142 2143 asmlinkage long sys_umask(int mask) 2144 { 2145 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 2146 return mask; 2147 } 2148 2149 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 2150 unsigned long arg4, unsigned long arg5) 2151 { 2152 long error; 2153 2154 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 2155 if (error) 2156 return error; 2157 2158 switch (option) { 2159 case PR_SET_PDEATHSIG: 2160 if (!valid_signal(arg2)) { 2161 error = -EINVAL; 2162 break; 2163 } 2164 current->pdeath_signal = arg2; 2165 break; 2166 case PR_GET_PDEATHSIG: 2167 error = put_user(current->pdeath_signal, (int __user *)arg2); 2168 break; 2169 case PR_GET_DUMPABLE: 2170 error = current->mm->dumpable; 2171 break; 2172 case PR_SET_DUMPABLE: 2173 if (arg2 < 0 || arg2 > 1) { 2174 error = -EINVAL; 2175 break; 2176 } 2177 current->mm->dumpable = arg2; 2178 break; 2179 2180 case PR_SET_UNALIGN: 2181 error = SET_UNALIGN_CTL(current, arg2); 2182 break; 2183 case PR_GET_UNALIGN: 2184 error = GET_UNALIGN_CTL(current, arg2); 2185 break; 2186 case PR_SET_FPEMU: 2187 error = SET_FPEMU_CTL(current, arg2); 2188 break; 2189 case PR_GET_FPEMU: 2190 error = GET_FPEMU_CTL(current, arg2); 2191 break; 2192 case PR_SET_FPEXC: 2193 error = SET_FPEXC_CTL(current, arg2); 2194 break; 2195 case PR_GET_FPEXC: 2196 error = GET_FPEXC_CTL(current, arg2); 2197 break; 2198 case PR_GET_TIMING: 2199 error = PR_TIMING_STATISTICAL; 2200 break; 2201 case PR_SET_TIMING: 2202 if (arg2 == PR_TIMING_STATISTICAL) 2203 error = 0; 2204 else 2205 error = -EINVAL; 2206 break; 2207 2208 case PR_GET_KEEPCAPS: 2209 if (current->keep_capabilities) 2210 error = 1; 2211 break; 2212 case PR_SET_KEEPCAPS: 2213 if (arg2 != 0 && arg2 != 1) { 2214 error = -EINVAL; 2215 break; 2216 } 2217 current->keep_capabilities = arg2; 2218 break; 2219 case PR_SET_NAME: { 2220 struct task_struct *me = current; 2221 unsigned char ncomm[sizeof(me->comm)]; 2222 2223 ncomm[sizeof(me->comm)-1] = 0; 2224 if (strncpy_from_user(ncomm, (char __user *)arg2, 2225 sizeof(me->comm)-1) < 0) 2226 return -EFAULT; 2227 set_task_comm(me, ncomm); 2228 return 0; 2229 } 2230 case PR_GET_NAME: { 2231 struct task_struct *me = current; 2232 unsigned char tcomm[sizeof(me->comm)]; 2233 2234 get_task_comm(tcomm, me); 2235 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) 2236 return -EFAULT; 2237 return 0; 2238 } 2239 case PR_GET_ENDIAN: 2240 error = GET_ENDIAN(current, arg2); 2241 break; 2242 case PR_SET_ENDIAN: 2243 error = SET_ENDIAN(current, arg2); 2244 break; 2245 2246 case PR_GET_SECCOMP: 2247 error = prctl_get_seccomp(); 2248 break; 2249 case PR_SET_SECCOMP: 2250 error = prctl_set_seccomp(arg2); 2251 break; 2252 2253 default: 2254 error = -EINVAL; 2255 break; 2256 } 2257 return error; 2258 } 2259 2260 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep, 2261 struct getcpu_cache __user *cache) 2262 { 2263 int err = 0; 2264 int cpu = raw_smp_processor_id(); 2265 if (cpup) 2266 err |= put_user(cpu, cpup); 2267 if (nodep) 2268 err |= put_user(cpu_to_node(cpu), nodep); 2269 if (cache) { 2270 /* 2271 * The cache is not needed for this implementation, 2272 * but make sure user programs pass something 2273 * valid. vsyscall implementations can instead make 2274 * good use of the cache. Only use t0 and t1 because 2275 * these are available in both 32bit and 64bit ABI (no 2276 * need for a compat_getcpu). 32bit has enough 2277 * padding 2278 */ 2279 unsigned long t0, t1; 2280 get_user(t0, &cache->blob[0]); 2281 get_user(t1, &cache->blob[1]); 2282 t0++; 2283 t1++; 2284 put_user(t0, &cache->blob[0]); 2285 put_user(t1, &cache->blob[1]); 2286 } 2287 return err ? -EFAULT : 0; 2288 } 2289