xref: /linux/kernel/sys.c (revision 7d11965ddb9b9b1e0a5d13c58345ada1ccbc663b)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
51 
52 #include <linux/sched.h>
53 #include <linux/rcupdate.h>
54 #include <linux/uidgid.h>
55 #include <linux/cred.h>
56 
57 #include <linux/kmsg_dump.h>
58 /* Move somewhere else to avoid recompiling? */
59 #include <generated/utsrelease.h>
60 
61 #include <asm/uaccess.h>
62 #include <asm/io.h>
63 #include <asm/unistd.h>
64 
65 #ifndef SET_UNALIGN_CTL
66 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
67 #endif
68 #ifndef GET_UNALIGN_CTL
69 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
70 #endif
71 #ifndef SET_FPEMU_CTL
72 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
73 #endif
74 #ifndef GET_FPEMU_CTL
75 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
76 #endif
77 #ifndef SET_FPEXC_CTL
78 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
79 #endif
80 #ifndef GET_FPEXC_CTL
81 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
82 #endif
83 #ifndef GET_ENDIAN
84 # define GET_ENDIAN(a,b)	(-EINVAL)
85 #endif
86 #ifndef SET_ENDIAN
87 # define SET_ENDIAN(a,b)	(-EINVAL)
88 #endif
89 #ifndef GET_TSC_CTL
90 # define GET_TSC_CTL(a)		(-EINVAL)
91 #endif
92 #ifndef SET_TSC_CTL
93 # define SET_TSC_CTL(a)		(-EINVAL)
94 #endif
95 
96 /*
97  * this is where the system-wide overflow UID and GID are defined, for
98  * architectures that now have 32-bit UID/GID but didn't in the past
99  */
100 
101 int overflowuid = DEFAULT_OVERFLOWUID;
102 int overflowgid = DEFAULT_OVERFLOWGID;
103 
104 EXPORT_SYMBOL(overflowuid);
105 EXPORT_SYMBOL(overflowgid);
106 
107 /*
108  * the same as above, but for filesystems which can only store a 16-bit
109  * UID and GID. as such, this is needed on all architectures
110  */
111 
112 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
113 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
114 
115 EXPORT_SYMBOL(fs_overflowuid);
116 EXPORT_SYMBOL(fs_overflowgid);
117 
118 /*
119  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
120  */
121 
122 int C_A_D = 1;
123 struct pid *cad_pid;
124 EXPORT_SYMBOL(cad_pid);
125 
126 /*
127  * If set, this is used for preparing the system to power off.
128  */
129 
130 void (*pm_power_off_prepare)(void);
131 
132 /*
133  * Returns true if current's euid is same as p's uid or euid,
134  * or has CAP_SYS_NICE to p's user_ns.
135  *
136  * Called with rcu_read_lock, creds are safe
137  */
138 static bool set_one_prio_perm(struct task_struct *p)
139 {
140 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
141 
142 	if (uid_eq(pcred->uid,  cred->euid) ||
143 	    uid_eq(pcred->euid, cred->euid))
144 		return true;
145 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
146 		return true;
147 	return false;
148 }
149 
150 /*
151  * set the priority of a task
152  * - the caller must hold the RCU read lock
153  */
154 static int set_one_prio(struct task_struct *p, int niceval, int error)
155 {
156 	int no_nice;
157 
158 	if (!set_one_prio_perm(p)) {
159 		error = -EPERM;
160 		goto out;
161 	}
162 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
163 		error = -EACCES;
164 		goto out;
165 	}
166 	no_nice = security_task_setnice(p, niceval);
167 	if (no_nice) {
168 		error = no_nice;
169 		goto out;
170 	}
171 	if (error == -ESRCH)
172 		error = 0;
173 	set_user_nice(p, niceval);
174 out:
175 	return error;
176 }
177 
178 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
179 {
180 	struct task_struct *g, *p;
181 	struct user_struct *user;
182 	const struct cred *cred = current_cred();
183 	int error = -EINVAL;
184 	struct pid *pgrp;
185 	kuid_t uid;
186 
187 	if (which > PRIO_USER || which < PRIO_PROCESS)
188 		goto out;
189 
190 	/* normalize: avoid signed division (rounding problems) */
191 	error = -ESRCH;
192 	if (niceval < -20)
193 		niceval = -20;
194 	if (niceval > 19)
195 		niceval = 19;
196 
197 	rcu_read_lock();
198 	read_lock(&tasklist_lock);
199 	switch (which) {
200 		case PRIO_PROCESS:
201 			if (who)
202 				p = find_task_by_vpid(who);
203 			else
204 				p = current;
205 			if (p)
206 				error = set_one_prio(p, niceval, error);
207 			break;
208 		case PRIO_PGRP:
209 			if (who)
210 				pgrp = find_vpid(who);
211 			else
212 				pgrp = task_pgrp(current);
213 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
214 				error = set_one_prio(p, niceval, error);
215 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
216 			break;
217 		case PRIO_USER:
218 			uid = make_kuid(cred->user_ns, who);
219 			user = cred->user;
220 			if (!who)
221 				uid = cred->uid;
222 			else if (!uid_eq(uid, cred->uid) &&
223 				 !(user = find_user(uid)))
224 				goto out_unlock;	/* No processes for this user */
225 
226 			do_each_thread(g, p) {
227 				if (uid_eq(task_uid(p), uid))
228 					error = set_one_prio(p, niceval, error);
229 			} while_each_thread(g, p);
230 			if (!uid_eq(uid, cred->uid))
231 				free_uid(user);		/* For find_user() */
232 			break;
233 	}
234 out_unlock:
235 	read_unlock(&tasklist_lock);
236 	rcu_read_unlock();
237 out:
238 	return error;
239 }
240 
241 /*
242  * Ugh. To avoid negative return values, "getpriority()" will
243  * not return the normal nice-value, but a negated value that
244  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
245  * to stay compatible.
246  */
247 SYSCALL_DEFINE2(getpriority, int, which, int, who)
248 {
249 	struct task_struct *g, *p;
250 	struct user_struct *user;
251 	const struct cred *cred = current_cred();
252 	long niceval, retval = -ESRCH;
253 	struct pid *pgrp;
254 	kuid_t uid;
255 
256 	if (which > PRIO_USER || which < PRIO_PROCESS)
257 		return -EINVAL;
258 
259 	rcu_read_lock();
260 	read_lock(&tasklist_lock);
261 	switch (which) {
262 		case PRIO_PROCESS:
263 			if (who)
264 				p = find_task_by_vpid(who);
265 			else
266 				p = current;
267 			if (p) {
268 				niceval = 20 - task_nice(p);
269 				if (niceval > retval)
270 					retval = niceval;
271 			}
272 			break;
273 		case PRIO_PGRP:
274 			if (who)
275 				pgrp = find_vpid(who);
276 			else
277 				pgrp = task_pgrp(current);
278 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
279 				niceval = 20 - task_nice(p);
280 				if (niceval > retval)
281 					retval = niceval;
282 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
283 			break;
284 		case PRIO_USER:
285 			uid = make_kuid(cred->user_ns, who);
286 			user = cred->user;
287 			if (!who)
288 				uid = cred->uid;
289 			else if (!uid_eq(uid, cred->uid) &&
290 				 !(user = find_user(uid)))
291 				goto out_unlock;	/* No processes for this user */
292 
293 			do_each_thread(g, p) {
294 				if (uid_eq(task_uid(p), uid)) {
295 					niceval = 20 - task_nice(p);
296 					if (niceval > retval)
297 						retval = niceval;
298 				}
299 			} while_each_thread(g, p);
300 			if (!uid_eq(uid, cred->uid))
301 				free_uid(user);		/* for find_user() */
302 			break;
303 	}
304 out_unlock:
305 	read_unlock(&tasklist_lock);
306 	rcu_read_unlock();
307 
308 	return retval;
309 }
310 
311 /**
312  *	emergency_restart - reboot the system
313  *
314  *	Without shutting down any hardware or taking any locks
315  *	reboot the system.  This is called when we know we are in
316  *	trouble so this is our best effort to reboot.  This is
317  *	safe to call in interrupt context.
318  */
319 void emergency_restart(void)
320 {
321 	kmsg_dump(KMSG_DUMP_EMERG);
322 	machine_emergency_restart();
323 }
324 EXPORT_SYMBOL_GPL(emergency_restart);
325 
326 void kernel_restart_prepare(char *cmd)
327 {
328 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
329 	system_state = SYSTEM_RESTART;
330 	usermodehelper_disable();
331 	device_shutdown();
332 }
333 
334 /**
335  *	register_reboot_notifier - Register function to be called at reboot time
336  *	@nb: Info about notifier function to be called
337  *
338  *	Registers a function with the list of functions
339  *	to be called at reboot time.
340  *
341  *	Currently always returns zero, as blocking_notifier_chain_register()
342  *	always returns zero.
343  */
344 int register_reboot_notifier(struct notifier_block *nb)
345 {
346 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
347 }
348 EXPORT_SYMBOL(register_reboot_notifier);
349 
350 /**
351  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
352  *	@nb: Hook to be unregistered
353  *
354  *	Unregisters a previously registered reboot
355  *	notifier function.
356  *
357  *	Returns zero on success, or %-ENOENT on failure.
358  */
359 int unregister_reboot_notifier(struct notifier_block *nb)
360 {
361 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
362 }
363 EXPORT_SYMBOL(unregister_reboot_notifier);
364 
365 /* Add backwards compatibility for stable trees. */
366 #ifndef PF_NO_SETAFFINITY
367 #define PF_NO_SETAFFINITY		PF_THREAD_BOUND
368 #endif
369 
370 static void migrate_to_reboot_cpu(void)
371 {
372 	/* The boot cpu is always logical cpu 0 */
373 	int cpu = 0;
374 
375 	cpu_hotplug_disable();
376 
377 	/* Make certain the cpu I'm about to reboot on is online */
378 	if (!cpu_online(cpu))
379 		cpu = cpumask_first(cpu_online_mask);
380 
381 	/* Prevent races with other tasks migrating this task */
382 	current->flags |= PF_NO_SETAFFINITY;
383 
384 	/* Make certain I only run on the appropriate processor */
385 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
386 }
387 
388 /**
389  *	kernel_restart - reboot the system
390  *	@cmd: pointer to buffer containing command to execute for restart
391  *		or %NULL
392  *
393  *	Shutdown everything and perform a clean reboot.
394  *	This is not safe to call in interrupt context.
395  */
396 void kernel_restart(char *cmd)
397 {
398 	kernel_restart_prepare(cmd);
399 	migrate_to_reboot_cpu();
400 	syscore_shutdown();
401 	if (!cmd)
402 		printk(KERN_EMERG "Restarting system.\n");
403 	else
404 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
405 	kmsg_dump(KMSG_DUMP_RESTART);
406 	machine_restart(cmd);
407 }
408 EXPORT_SYMBOL_GPL(kernel_restart);
409 
410 static void kernel_shutdown_prepare(enum system_states state)
411 {
412 	blocking_notifier_call_chain(&reboot_notifier_list,
413 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
414 	system_state = state;
415 	usermodehelper_disable();
416 	device_shutdown();
417 }
418 /**
419  *	kernel_halt - halt the system
420  *
421  *	Shutdown everything and perform a clean system halt.
422  */
423 void kernel_halt(void)
424 {
425 	kernel_shutdown_prepare(SYSTEM_HALT);
426 	migrate_to_reboot_cpu();
427 	syscore_shutdown();
428 	printk(KERN_EMERG "System halted.\n");
429 	kmsg_dump(KMSG_DUMP_HALT);
430 	machine_halt();
431 }
432 
433 EXPORT_SYMBOL_GPL(kernel_halt);
434 
435 /**
436  *	kernel_power_off - power_off the system
437  *
438  *	Shutdown everything and perform a clean system power_off.
439  */
440 void kernel_power_off(void)
441 {
442 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
443 	if (pm_power_off_prepare)
444 		pm_power_off_prepare();
445 	migrate_to_reboot_cpu();
446 	syscore_shutdown();
447 	printk(KERN_EMERG "Power down.\n");
448 	kmsg_dump(KMSG_DUMP_POWEROFF);
449 	machine_power_off();
450 }
451 EXPORT_SYMBOL_GPL(kernel_power_off);
452 
453 static DEFINE_MUTEX(reboot_mutex);
454 
455 /*
456  * Reboot system call: for obvious reasons only root may call it,
457  * and even root needs to set up some magic numbers in the registers
458  * so that some mistake won't make this reboot the whole machine.
459  * You can also set the meaning of the ctrl-alt-del-key here.
460  *
461  * reboot doesn't sync: do that yourself before calling this.
462  */
463 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
464 		void __user *, arg)
465 {
466 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
467 	char buffer[256];
468 	int ret = 0;
469 
470 	/* We only trust the superuser with rebooting the system. */
471 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
472 		return -EPERM;
473 
474 	/* For safety, we require "magic" arguments. */
475 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
476 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
477 	                magic2 != LINUX_REBOOT_MAGIC2A &&
478 			magic2 != LINUX_REBOOT_MAGIC2B &&
479 	                magic2 != LINUX_REBOOT_MAGIC2C))
480 		return -EINVAL;
481 
482 	/*
483 	 * If pid namespaces are enabled and the current task is in a child
484 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
485 	 * call do_exit().
486 	 */
487 	ret = reboot_pid_ns(pid_ns, cmd);
488 	if (ret)
489 		return ret;
490 
491 	/* Instead of trying to make the power_off code look like
492 	 * halt when pm_power_off is not set do it the easy way.
493 	 */
494 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
495 		cmd = LINUX_REBOOT_CMD_HALT;
496 
497 	mutex_lock(&reboot_mutex);
498 	switch (cmd) {
499 	case LINUX_REBOOT_CMD_RESTART:
500 		kernel_restart(NULL);
501 		break;
502 
503 	case LINUX_REBOOT_CMD_CAD_ON:
504 		C_A_D = 1;
505 		break;
506 
507 	case LINUX_REBOOT_CMD_CAD_OFF:
508 		C_A_D = 0;
509 		break;
510 
511 	case LINUX_REBOOT_CMD_HALT:
512 		kernel_halt();
513 		do_exit(0);
514 		panic("cannot halt");
515 
516 	case LINUX_REBOOT_CMD_POWER_OFF:
517 		kernel_power_off();
518 		do_exit(0);
519 		break;
520 
521 	case LINUX_REBOOT_CMD_RESTART2:
522 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
523 			ret = -EFAULT;
524 			break;
525 		}
526 		buffer[sizeof(buffer) - 1] = '\0';
527 
528 		kernel_restart(buffer);
529 		break;
530 
531 #ifdef CONFIG_KEXEC
532 	case LINUX_REBOOT_CMD_KEXEC:
533 		ret = kernel_kexec();
534 		break;
535 #endif
536 
537 #ifdef CONFIG_HIBERNATION
538 	case LINUX_REBOOT_CMD_SW_SUSPEND:
539 		ret = hibernate();
540 		break;
541 #endif
542 
543 	default:
544 		ret = -EINVAL;
545 		break;
546 	}
547 	mutex_unlock(&reboot_mutex);
548 	return ret;
549 }
550 
551 static void deferred_cad(struct work_struct *dummy)
552 {
553 	kernel_restart(NULL);
554 }
555 
556 /*
557  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
558  * As it's called within an interrupt, it may NOT sync: the only choice
559  * is whether to reboot at once, or just ignore the ctrl-alt-del.
560  */
561 void ctrl_alt_del(void)
562 {
563 	static DECLARE_WORK(cad_work, deferred_cad);
564 
565 	if (C_A_D)
566 		schedule_work(&cad_work);
567 	else
568 		kill_cad_pid(SIGINT, 1);
569 }
570 
571 /*
572  * Unprivileged users may change the real gid to the effective gid
573  * or vice versa.  (BSD-style)
574  *
575  * If you set the real gid at all, or set the effective gid to a value not
576  * equal to the real gid, then the saved gid is set to the new effective gid.
577  *
578  * This makes it possible for a setgid program to completely drop its
579  * privileges, which is often a useful assertion to make when you are doing
580  * a security audit over a program.
581  *
582  * The general idea is that a program which uses just setregid() will be
583  * 100% compatible with BSD.  A program which uses just setgid() will be
584  * 100% compatible with POSIX with saved IDs.
585  *
586  * SMP: There are not races, the GIDs are checked only by filesystem
587  *      operations (as far as semantic preservation is concerned).
588  */
589 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
590 {
591 	struct user_namespace *ns = current_user_ns();
592 	const struct cred *old;
593 	struct cred *new;
594 	int retval;
595 	kgid_t krgid, kegid;
596 
597 	krgid = make_kgid(ns, rgid);
598 	kegid = make_kgid(ns, egid);
599 
600 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
601 		return -EINVAL;
602 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
603 		return -EINVAL;
604 
605 	new = prepare_creds();
606 	if (!new)
607 		return -ENOMEM;
608 	old = current_cred();
609 
610 	retval = -EPERM;
611 	if (rgid != (gid_t) -1) {
612 		if (gid_eq(old->gid, krgid) ||
613 		    gid_eq(old->egid, krgid) ||
614 		    nsown_capable(CAP_SETGID))
615 			new->gid = krgid;
616 		else
617 			goto error;
618 	}
619 	if (egid != (gid_t) -1) {
620 		if (gid_eq(old->gid, kegid) ||
621 		    gid_eq(old->egid, kegid) ||
622 		    gid_eq(old->sgid, kegid) ||
623 		    nsown_capable(CAP_SETGID))
624 			new->egid = kegid;
625 		else
626 			goto error;
627 	}
628 
629 	if (rgid != (gid_t) -1 ||
630 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
631 		new->sgid = new->egid;
632 	new->fsgid = new->egid;
633 
634 	return commit_creds(new);
635 
636 error:
637 	abort_creds(new);
638 	return retval;
639 }
640 
641 /*
642  * setgid() is implemented like SysV w/ SAVED_IDS
643  *
644  * SMP: Same implicit races as above.
645  */
646 SYSCALL_DEFINE1(setgid, gid_t, gid)
647 {
648 	struct user_namespace *ns = current_user_ns();
649 	const struct cred *old;
650 	struct cred *new;
651 	int retval;
652 	kgid_t kgid;
653 
654 	kgid = make_kgid(ns, gid);
655 	if (!gid_valid(kgid))
656 		return -EINVAL;
657 
658 	new = prepare_creds();
659 	if (!new)
660 		return -ENOMEM;
661 	old = current_cred();
662 
663 	retval = -EPERM;
664 	if (nsown_capable(CAP_SETGID))
665 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
666 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
667 		new->egid = new->fsgid = kgid;
668 	else
669 		goto error;
670 
671 	return commit_creds(new);
672 
673 error:
674 	abort_creds(new);
675 	return retval;
676 }
677 
678 /*
679  * change the user struct in a credentials set to match the new UID
680  */
681 static int set_user(struct cred *new)
682 {
683 	struct user_struct *new_user;
684 
685 	new_user = alloc_uid(new->uid);
686 	if (!new_user)
687 		return -EAGAIN;
688 
689 	/*
690 	 * We don't fail in case of NPROC limit excess here because too many
691 	 * poorly written programs don't check set*uid() return code, assuming
692 	 * it never fails if called by root.  We may still enforce NPROC limit
693 	 * for programs doing set*uid()+execve() by harmlessly deferring the
694 	 * failure to the execve() stage.
695 	 */
696 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
697 			new_user != INIT_USER)
698 		current->flags |= PF_NPROC_EXCEEDED;
699 	else
700 		current->flags &= ~PF_NPROC_EXCEEDED;
701 
702 	free_uid(new->user);
703 	new->user = new_user;
704 	return 0;
705 }
706 
707 /*
708  * Unprivileged users may change the real uid to the effective uid
709  * or vice versa.  (BSD-style)
710  *
711  * If you set the real uid at all, or set the effective uid to a value not
712  * equal to the real uid, then the saved uid is set to the new effective uid.
713  *
714  * This makes it possible for a setuid program to completely drop its
715  * privileges, which is often a useful assertion to make when you are doing
716  * a security audit over a program.
717  *
718  * The general idea is that a program which uses just setreuid() will be
719  * 100% compatible with BSD.  A program which uses just setuid() will be
720  * 100% compatible with POSIX with saved IDs.
721  */
722 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
723 {
724 	struct user_namespace *ns = current_user_ns();
725 	const struct cred *old;
726 	struct cred *new;
727 	int retval;
728 	kuid_t kruid, keuid;
729 
730 	kruid = make_kuid(ns, ruid);
731 	keuid = make_kuid(ns, euid);
732 
733 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
734 		return -EINVAL;
735 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
736 		return -EINVAL;
737 
738 	new = prepare_creds();
739 	if (!new)
740 		return -ENOMEM;
741 	old = current_cred();
742 
743 	retval = -EPERM;
744 	if (ruid != (uid_t) -1) {
745 		new->uid = kruid;
746 		if (!uid_eq(old->uid, kruid) &&
747 		    !uid_eq(old->euid, kruid) &&
748 		    !nsown_capable(CAP_SETUID))
749 			goto error;
750 	}
751 
752 	if (euid != (uid_t) -1) {
753 		new->euid = keuid;
754 		if (!uid_eq(old->uid, keuid) &&
755 		    !uid_eq(old->euid, keuid) &&
756 		    !uid_eq(old->suid, keuid) &&
757 		    !nsown_capable(CAP_SETUID))
758 			goto error;
759 	}
760 
761 	if (!uid_eq(new->uid, old->uid)) {
762 		retval = set_user(new);
763 		if (retval < 0)
764 			goto error;
765 	}
766 	if (ruid != (uid_t) -1 ||
767 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
768 		new->suid = new->euid;
769 	new->fsuid = new->euid;
770 
771 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
772 	if (retval < 0)
773 		goto error;
774 
775 	return commit_creds(new);
776 
777 error:
778 	abort_creds(new);
779 	return retval;
780 }
781 
782 /*
783  * setuid() is implemented like SysV with SAVED_IDS
784  *
785  * Note that SAVED_ID's is deficient in that a setuid root program
786  * like sendmail, for example, cannot set its uid to be a normal
787  * user and then switch back, because if you're root, setuid() sets
788  * the saved uid too.  If you don't like this, blame the bright people
789  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
790  * will allow a root program to temporarily drop privileges and be able to
791  * regain them by swapping the real and effective uid.
792  */
793 SYSCALL_DEFINE1(setuid, uid_t, uid)
794 {
795 	struct user_namespace *ns = current_user_ns();
796 	const struct cred *old;
797 	struct cred *new;
798 	int retval;
799 	kuid_t kuid;
800 
801 	kuid = make_kuid(ns, uid);
802 	if (!uid_valid(kuid))
803 		return -EINVAL;
804 
805 	new = prepare_creds();
806 	if (!new)
807 		return -ENOMEM;
808 	old = current_cred();
809 
810 	retval = -EPERM;
811 	if (nsown_capable(CAP_SETUID)) {
812 		new->suid = new->uid = kuid;
813 		if (!uid_eq(kuid, old->uid)) {
814 			retval = set_user(new);
815 			if (retval < 0)
816 				goto error;
817 		}
818 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
819 		goto error;
820 	}
821 
822 	new->fsuid = new->euid = kuid;
823 
824 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
825 	if (retval < 0)
826 		goto error;
827 
828 	return commit_creds(new);
829 
830 error:
831 	abort_creds(new);
832 	return retval;
833 }
834 
835 
836 /*
837  * This function implements a generic ability to update ruid, euid,
838  * and suid.  This allows you to implement the 4.4 compatible seteuid().
839  */
840 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
841 {
842 	struct user_namespace *ns = current_user_ns();
843 	const struct cred *old;
844 	struct cred *new;
845 	int retval;
846 	kuid_t kruid, keuid, ksuid;
847 
848 	kruid = make_kuid(ns, ruid);
849 	keuid = make_kuid(ns, euid);
850 	ksuid = make_kuid(ns, suid);
851 
852 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
853 		return -EINVAL;
854 
855 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
856 		return -EINVAL;
857 
858 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
859 		return -EINVAL;
860 
861 	new = prepare_creds();
862 	if (!new)
863 		return -ENOMEM;
864 
865 	old = current_cred();
866 
867 	retval = -EPERM;
868 	if (!nsown_capable(CAP_SETUID)) {
869 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
870 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
871 			goto error;
872 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
873 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
874 			goto error;
875 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
876 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
877 			goto error;
878 	}
879 
880 	if (ruid != (uid_t) -1) {
881 		new->uid = kruid;
882 		if (!uid_eq(kruid, old->uid)) {
883 			retval = set_user(new);
884 			if (retval < 0)
885 				goto error;
886 		}
887 	}
888 	if (euid != (uid_t) -1)
889 		new->euid = keuid;
890 	if (suid != (uid_t) -1)
891 		new->suid = ksuid;
892 	new->fsuid = new->euid;
893 
894 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
895 	if (retval < 0)
896 		goto error;
897 
898 	return commit_creds(new);
899 
900 error:
901 	abort_creds(new);
902 	return retval;
903 }
904 
905 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
906 {
907 	const struct cred *cred = current_cred();
908 	int retval;
909 	uid_t ruid, euid, suid;
910 
911 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
912 	euid = from_kuid_munged(cred->user_ns, cred->euid);
913 	suid = from_kuid_munged(cred->user_ns, cred->suid);
914 
915 	if (!(retval   = put_user(ruid, ruidp)) &&
916 	    !(retval   = put_user(euid, euidp)))
917 		retval = put_user(suid, suidp);
918 
919 	return retval;
920 }
921 
922 /*
923  * Same as above, but for rgid, egid, sgid.
924  */
925 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
926 {
927 	struct user_namespace *ns = current_user_ns();
928 	const struct cred *old;
929 	struct cred *new;
930 	int retval;
931 	kgid_t krgid, kegid, ksgid;
932 
933 	krgid = make_kgid(ns, rgid);
934 	kegid = make_kgid(ns, egid);
935 	ksgid = make_kgid(ns, sgid);
936 
937 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
938 		return -EINVAL;
939 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
940 		return -EINVAL;
941 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
942 		return -EINVAL;
943 
944 	new = prepare_creds();
945 	if (!new)
946 		return -ENOMEM;
947 	old = current_cred();
948 
949 	retval = -EPERM;
950 	if (!nsown_capable(CAP_SETGID)) {
951 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
952 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
953 			goto error;
954 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
955 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
956 			goto error;
957 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
958 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
959 			goto error;
960 	}
961 
962 	if (rgid != (gid_t) -1)
963 		new->gid = krgid;
964 	if (egid != (gid_t) -1)
965 		new->egid = kegid;
966 	if (sgid != (gid_t) -1)
967 		new->sgid = ksgid;
968 	new->fsgid = new->egid;
969 
970 	return commit_creds(new);
971 
972 error:
973 	abort_creds(new);
974 	return retval;
975 }
976 
977 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
978 {
979 	const struct cred *cred = current_cred();
980 	int retval;
981 	gid_t rgid, egid, sgid;
982 
983 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
984 	egid = from_kgid_munged(cred->user_ns, cred->egid);
985 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
986 
987 	if (!(retval   = put_user(rgid, rgidp)) &&
988 	    !(retval   = put_user(egid, egidp)))
989 		retval = put_user(sgid, sgidp);
990 
991 	return retval;
992 }
993 
994 
995 /*
996  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
997  * is used for "access()" and for the NFS daemon (letting nfsd stay at
998  * whatever uid it wants to). It normally shadows "euid", except when
999  * explicitly set by setfsuid() or for access..
1000  */
1001 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1002 {
1003 	const struct cred *old;
1004 	struct cred *new;
1005 	uid_t old_fsuid;
1006 	kuid_t kuid;
1007 
1008 	old = current_cred();
1009 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
1010 
1011 	kuid = make_kuid(old->user_ns, uid);
1012 	if (!uid_valid(kuid))
1013 		return old_fsuid;
1014 
1015 	new = prepare_creds();
1016 	if (!new)
1017 		return old_fsuid;
1018 
1019 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
1020 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
1021 	    nsown_capable(CAP_SETUID)) {
1022 		if (!uid_eq(kuid, old->fsuid)) {
1023 			new->fsuid = kuid;
1024 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
1025 				goto change_okay;
1026 		}
1027 	}
1028 
1029 	abort_creds(new);
1030 	return old_fsuid;
1031 
1032 change_okay:
1033 	commit_creds(new);
1034 	return old_fsuid;
1035 }
1036 
1037 /*
1038  * Samma på svenska..
1039  */
1040 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1041 {
1042 	const struct cred *old;
1043 	struct cred *new;
1044 	gid_t old_fsgid;
1045 	kgid_t kgid;
1046 
1047 	old = current_cred();
1048 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1049 
1050 	kgid = make_kgid(old->user_ns, gid);
1051 	if (!gid_valid(kgid))
1052 		return old_fsgid;
1053 
1054 	new = prepare_creds();
1055 	if (!new)
1056 		return old_fsgid;
1057 
1058 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
1059 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1060 	    nsown_capable(CAP_SETGID)) {
1061 		if (!gid_eq(kgid, old->fsgid)) {
1062 			new->fsgid = kgid;
1063 			goto change_okay;
1064 		}
1065 	}
1066 
1067 	abort_creds(new);
1068 	return old_fsgid;
1069 
1070 change_okay:
1071 	commit_creds(new);
1072 	return old_fsgid;
1073 }
1074 
1075 /**
1076  * sys_getpid - return the thread group id of the current process
1077  *
1078  * Note, despite the name, this returns the tgid not the pid.  The tgid and
1079  * the pid are identical unless CLONE_THREAD was specified on clone() in
1080  * which case the tgid is the same in all threads of the same group.
1081  *
1082  * This is SMP safe as current->tgid does not change.
1083  */
1084 SYSCALL_DEFINE0(getpid)
1085 {
1086 	return task_tgid_vnr(current);
1087 }
1088 
1089 /* Thread ID - the internal kernel "pid" */
1090 SYSCALL_DEFINE0(gettid)
1091 {
1092 	return task_pid_vnr(current);
1093 }
1094 
1095 /*
1096  * Accessing ->real_parent is not SMP-safe, it could
1097  * change from under us. However, we can use a stale
1098  * value of ->real_parent under rcu_read_lock(), see
1099  * release_task()->call_rcu(delayed_put_task_struct).
1100  */
1101 SYSCALL_DEFINE0(getppid)
1102 {
1103 	int pid;
1104 
1105 	rcu_read_lock();
1106 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1107 	rcu_read_unlock();
1108 
1109 	return pid;
1110 }
1111 
1112 SYSCALL_DEFINE0(getuid)
1113 {
1114 	/* Only we change this so SMP safe */
1115 	return from_kuid_munged(current_user_ns(), current_uid());
1116 }
1117 
1118 SYSCALL_DEFINE0(geteuid)
1119 {
1120 	/* Only we change this so SMP safe */
1121 	return from_kuid_munged(current_user_ns(), current_euid());
1122 }
1123 
1124 SYSCALL_DEFINE0(getgid)
1125 {
1126 	/* Only we change this so SMP safe */
1127 	return from_kgid_munged(current_user_ns(), current_gid());
1128 }
1129 
1130 SYSCALL_DEFINE0(getegid)
1131 {
1132 	/* Only we change this so SMP safe */
1133 	return from_kgid_munged(current_user_ns(), current_egid());
1134 }
1135 
1136 void do_sys_times(struct tms *tms)
1137 {
1138 	cputime_t tgutime, tgstime, cutime, cstime;
1139 
1140 	spin_lock_irq(&current->sighand->siglock);
1141 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1142 	cutime = current->signal->cutime;
1143 	cstime = current->signal->cstime;
1144 	spin_unlock_irq(&current->sighand->siglock);
1145 	tms->tms_utime = cputime_to_clock_t(tgutime);
1146 	tms->tms_stime = cputime_to_clock_t(tgstime);
1147 	tms->tms_cutime = cputime_to_clock_t(cutime);
1148 	tms->tms_cstime = cputime_to_clock_t(cstime);
1149 }
1150 
1151 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1152 {
1153 	if (tbuf) {
1154 		struct tms tmp;
1155 
1156 		do_sys_times(&tmp);
1157 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1158 			return -EFAULT;
1159 	}
1160 	force_successful_syscall_return();
1161 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1162 }
1163 
1164 /*
1165  * This needs some heavy checking ...
1166  * I just haven't the stomach for it. I also don't fully
1167  * understand sessions/pgrp etc. Let somebody who does explain it.
1168  *
1169  * OK, I think I have the protection semantics right.... this is really
1170  * only important on a multi-user system anyway, to make sure one user
1171  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1172  *
1173  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1174  * LBT 04.03.94
1175  */
1176 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1177 {
1178 	struct task_struct *p;
1179 	struct task_struct *group_leader = current->group_leader;
1180 	struct pid *pgrp;
1181 	int err;
1182 
1183 	if (!pid)
1184 		pid = task_pid_vnr(group_leader);
1185 	if (!pgid)
1186 		pgid = pid;
1187 	if (pgid < 0)
1188 		return -EINVAL;
1189 	rcu_read_lock();
1190 
1191 	/* From this point forward we keep holding onto the tasklist lock
1192 	 * so that our parent does not change from under us. -DaveM
1193 	 */
1194 	write_lock_irq(&tasklist_lock);
1195 
1196 	err = -ESRCH;
1197 	p = find_task_by_vpid(pid);
1198 	if (!p)
1199 		goto out;
1200 
1201 	err = -EINVAL;
1202 	if (!thread_group_leader(p))
1203 		goto out;
1204 
1205 	if (same_thread_group(p->real_parent, group_leader)) {
1206 		err = -EPERM;
1207 		if (task_session(p) != task_session(group_leader))
1208 			goto out;
1209 		err = -EACCES;
1210 		if (p->did_exec)
1211 			goto out;
1212 	} else {
1213 		err = -ESRCH;
1214 		if (p != group_leader)
1215 			goto out;
1216 	}
1217 
1218 	err = -EPERM;
1219 	if (p->signal->leader)
1220 		goto out;
1221 
1222 	pgrp = task_pid(p);
1223 	if (pgid != pid) {
1224 		struct task_struct *g;
1225 
1226 		pgrp = find_vpid(pgid);
1227 		g = pid_task(pgrp, PIDTYPE_PGID);
1228 		if (!g || task_session(g) != task_session(group_leader))
1229 			goto out;
1230 	}
1231 
1232 	err = security_task_setpgid(p, pgid);
1233 	if (err)
1234 		goto out;
1235 
1236 	if (task_pgrp(p) != pgrp)
1237 		change_pid(p, PIDTYPE_PGID, pgrp);
1238 
1239 	err = 0;
1240 out:
1241 	/* All paths lead to here, thus we are safe. -DaveM */
1242 	write_unlock_irq(&tasklist_lock);
1243 	rcu_read_unlock();
1244 	return err;
1245 }
1246 
1247 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1248 {
1249 	struct task_struct *p;
1250 	struct pid *grp;
1251 	int retval;
1252 
1253 	rcu_read_lock();
1254 	if (!pid)
1255 		grp = task_pgrp(current);
1256 	else {
1257 		retval = -ESRCH;
1258 		p = find_task_by_vpid(pid);
1259 		if (!p)
1260 			goto out;
1261 		grp = task_pgrp(p);
1262 		if (!grp)
1263 			goto out;
1264 
1265 		retval = security_task_getpgid(p);
1266 		if (retval)
1267 			goto out;
1268 	}
1269 	retval = pid_vnr(grp);
1270 out:
1271 	rcu_read_unlock();
1272 	return retval;
1273 }
1274 
1275 #ifdef __ARCH_WANT_SYS_GETPGRP
1276 
1277 SYSCALL_DEFINE0(getpgrp)
1278 {
1279 	return sys_getpgid(0);
1280 }
1281 
1282 #endif
1283 
1284 SYSCALL_DEFINE1(getsid, pid_t, pid)
1285 {
1286 	struct task_struct *p;
1287 	struct pid *sid;
1288 	int retval;
1289 
1290 	rcu_read_lock();
1291 	if (!pid)
1292 		sid = task_session(current);
1293 	else {
1294 		retval = -ESRCH;
1295 		p = find_task_by_vpid(pid);
1296 		if (!p)
1297 			goto out;
1298 		sid = task_session(p);
1299 		if (!sid)
1300 			goto out;
1301 
1302 		retval = security_task_getsid(p);
1303 		if (retval)
1304 			goto out;
1305 	}
1306 	retval = pid_vnr(sid);
1307 out:
1308 	rcu_read_unlock();
1309 	return retval;
1310 }
1311 
1312 SYSCALL_DEFINE0(setsid)
1313 {
1314 	struct task_struct *group_leader = current->group_leader;
1315 	struct pid *sid = task_pid(group_leader);
1316 	pid_t session = pid_vnr(sid);
1317 	int err = -EPERM;
1318 
1319 	write_lock_irq(&tasklist_lock);
1320 	/* Fail if I am already a session leader */
1321 	if (group_leader->signal->leader)
1322 		goto out;
1323 
1324 	/* Fail if a process group id already exists that equals the
1325 	 * proposed session id.
1326 	 */
1327 	if (pid_task(sid, PIDTYPE_PGID))
1328 		goto out;
1329 
1330 	group_leader->signal->leader = 1;
1331 	__set_special_pids(sid);
1332 
1333 	proc_clear_tty(group_leader);
1334 
1335 	err = session;
1336 out:
1337 	write_unlock_irq(&tasklist_lock);
1338 	if (err > 0) {
1339 		proc_sid_connector(group_leader);
1340 		sched_autogroup_create_attach(group_leader);
1341 	}
1342 	return err;
1343 }
1344 
1345 DECLARE_RWSEM(uts_sem);
1346 
1347 #ifdef COMPAT_UTS_MACHINE
1348 #define override_architecture(name) \
1349 	(personality(current->personality) == PER_LINUX32 && \
1350 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1351 		      sizeof(COMPAT_UTS_MACHINE)))
1352 #else
1353 #define override_architecture(name)	0
1354 #endif
1355 
1356 /*
1357  * Work around broken programs that cannot handle "Linux 3.0".
1358  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1359  */
1360 static int override_release(char __user *release, size_t len)
1361 {
1362 	int ret = 0;
1363 
1364 	if (current->personality & UNAME26) {
1365 		const char *rest = UTS_RELEASE;
1366 		char buf[65] = { 0 };
1367 		int ndots = 0;
1368 		unsigned v;
1369 		size_t copy;
1370 
1371 		while (*rest) {
1372 			if (*rest == '.' && ++ndots >= 3)
1373 				break;
1374 			if (!isdigit(*rest) && *rest != '.')
1375 				break;
1376 			rest++;
1377 		}
1378 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1379 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1380 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1381 		ret = copy_to_user(release, buf, copy + 1);
1382 	}
1383 	return ret;
1384 }
1385 
1386 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1387 {
1388 	int errno = 0;
1389 
1390 	down_read(&uts_sem);
1391 	if (copy_to_user(name, utsname(), sizeof *name))
1392 		errno = -EFAULT;
1393 	up_read(&uts_sem);
1394 
1395 	if (!errno && override_release(name->release, sizeof(name->release)))
1396 		errno = -EFAULT;
1397 	if (!errno && override_architecture(name))
1398 		errno = -EFAULT;
1399 	return errno;
1400 }
1401 
1402 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1403 /*
1404  * Old cruft
1405  */
1406 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1407 {
1408 	int error = 0;
1409 
1410 	if (!name)
1411 		return -EFAULT;
1412 
1413 	down_read(&uts_sem);
1414 	if (copy_to_user(name, utsname(), sizeof(*name)))
1415 		error = -EFAULT;
1416 	up_read(&uts_sem);
1417 
1418 	if (!error && override_release(name->release, sizeof(name->release)))
1419 		error = -EFAULT;
1420 	if (!error && override_architecture(name))
1421 		error = -EFAULT;
1422 	return error;
1423 }
1424 
1425 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1426 {
1427 	int error;
1428 
1429 	if (!name)
1430 		return -EFAULT;
1431 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1432 		return -EFAULT;
1433 
1434 	down_read(&uts_sem);
1435 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1436 			       __OLD_UTS_LEN);
1437 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1438 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1439 				__OLD_UTS_LEN);
1440 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1441 	error |= __copy_to_user(&name->release, &utsname()->release,
1442 				__OLD_UTS_LEN);
1443 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1444 	error |= __copy_to_user(&name->version, &utsname()->version,
1445 				__OLD_UTS_LEN);
1446 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1447 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1448 				__OLD_UTS_LEN);
1449 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1450 	up_read(&uts_sem);
1451 
1452 	if (!error && override_architecture(name))
1453 		error = -EFAULT;
1454 	if (!error && override_release(name->release, sizeof(name->release)))
1455 		error = -EFAULT;
1456 	return error ? -EFAULT : 0;
1457 }
1458 #endif
1459 
1460 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1461 {
1462 	int errno;
1463 	char tmp[__NEW_UTS_LEN];
1464 
1465 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1466 		return -EPERM;
1467 
1468 	if (len < 0 || len > __NEW_UTS_LEN)
1469 		return -EINVAL;
1470 	down_write(&uts_sem);
1471 	errno = -EFAULT;
1472 	if (!copy_from_user(tmp, name, len)) {
1473 		struct new_utsname *u = utsname();
1474 
1475 		memcpy(u->nodename, tmp, len);
1476 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1477 		errno = 0;
1478 		uts_proc_notify(UTS_PROC_HOSTNAME);
1479 	}
1480 	up_write(&uts_sem);
1481 	return errno;
1482 }
1483 
1484 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1485 
1486 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1487 {
1488 	int i, errno;
1489 	struct new_utsname *u;
1490 
1491 	if (len < 0)
1492 		return -EINVAL;
1493 	down_read(&uts_sem);
1494 	u = utsname();
1495 	i = 1 + strlen(u->nodename);
1496 	if (i > len)
1497 		i = len;
1498 	errno = 0;
1499 	if (copy_to_user(name, u->nodename, i))
1500 		errno = -EFAULT;
1501 	up_read(&uts_sem);
1502 	return errno;
1503 }
1504 
1505 #endif
1506 
1507 /*
1508  * Only setdomainname; getdomainname can be implemented by calling
1509  * uname()
1510  */
1511 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1512 {
1513 	int errno;
1514 	char tmp[__NEW_UTS_LEN];
1515 
1516 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1517 		return -EPERM;
1518 	if (len < 0 || len > __NEW_UTS_LEN)
1519 		return -EINVAL;
1520 
1521 	down_write(&uts_sem);
1522 	errno = -EFAULT;
1523 	if (!copy_from_user(tmp, name, len)) {
1524 		struct new_utsname *u = utsname();
1525 
1526 		memcpy(u->domainname, tmp, len);
1527 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1528 		errno = 0;
1529 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1530 	}
1531 	up_write(&uts_sem);
1532 	return errno;
1533 }
1534 
1535 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1536 {
1537 	struct rlimit value;
1538 	int ret;
1539 
1540 	ret = do_prlimit(current, resource, NULL, &value);
1541 	if (!ret)
1542 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1543 
1544 	return ret;
1545 }
1546 
1547 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1548 
1549 /*
1550  *	Back compatibility for getrlimit. Needed for some apps.
1551  */
1552 
1553 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1554 		struct rlimit __user *, rlim)
1555 {
1556 	struct rlimit x;
1557 	if (resource >= RLIM_NLIMITS)
1558 		return -EINVAL;
1559 
1560 	task_lock(current->group_leader);
1561 	x = current->signal->rlim[resource];
1562 	task_unlock(current->group_leader);
1563 	if (x.rlim_cur > 0x7FFFFFFF)
1564 		x.rlim_cur = 0x7FFFFFFF;
1565 	if (x.rlim_max > 0x7FFFFFFF)
1566 		x.rlim_max = 0x7FFFFFFF;
1567 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1568 }
1569 
1570 #endif
1571 
1572 static inline bool rlim64_is_infinity(__u64 rlim64)
1573 {
1574 #if BITS_PER_LONG < 64
1575 	return rlim64 >= ULONG_MAX;
1576 #else
1577 	return rlim64 == RLIM64_INFINITY;
1578 #endif
1579 }
1580 
1581 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1582 {
1583 	if (rlim->rlim_cur == RLIM_INFINITY)
1584 		rlim64->rlim_cur = RLIM64_INFINITY;
1585 	else
1586 		rlim64->rlim_cur = rlim->rlim_cur;
1587 	if (rlim->rlim_max == RLIM_INFINITY)
1588 		rlim64->rlim_max = RLIM64_INFINITY;
1589 	else
1590 		rlim64->rlim_max = rlim->rlim_max;
1591 }
1592 
1593 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1594 {
1595 	if (rlim64_is_infinity(rlim64->rlim_cur))
1596 		rlim->rlim_cur = RLIM_INFINITY;
1597 	else
1598 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1599 	if (rlim64_is_infinity(rlim64->rlim_max))
1600 		rlim->rlim_max = RLIM_INFINITY;
1601 	else
1602 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1603 }
1604 
1605 /* make sure you are allowed to change @tsk limits before calling this */
1606 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1607 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1608 {
1609 	struct rlimit *rlim;
1610 	int retval = 0;
1611 
1612 	if (resource >= RLIM_NLIMITS)
1613 		return -EINVAL;
1614 	if (new_rlim) {
1615 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1616 			return -EINVAL;
1617 		if (resource == RLIMIT_NOFILE &&
1618 				new_rlim->rlim_max > sysctl_nr_open)
1619 			return -EPERM;
1620 	}
1621 
1622 	/* protect tsk->signal and tsk->sighand from disappearing */
1623 	read_lock(&tasklist_lock);
1624 	if (!tsk->sighand) {
1625 		retval = -ESRCH;
1626 		goto out;
1627 	}
1628 
1629 	rlim = tsk->signal->rlim + resource;
1630 	task_lock(tsk->group_leader);
1631 	if (new_rlim) {
1632 		/* Keep the capable check against init_user_ns until
1633 		   cgroups can contain all limits */
1634 		if (new_rlim->rlim_max > rlim->rlim_max &&
1635 				!capable(CAP_SYS_RESOURCE))
1636 			retval = -EPERM;
1637 		if (!retval)
1638 			retval = security_task_setrlimit(tsk->group_leader,
1639 					resource, new_rlim);
1640 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1641 			/*
1642 			 * The caller is asking for an immediate RLIMIT_CPU
1643 			 * expiry.  But we use the zero value to mean "it was
1644 			 * never set".  So let's cheat and make it one second
1645 			 * instead
1646 			 */
1647 			new_rlim->rlim_cur = 1;
1648 		}
1649 	}
1650 	if (!retval) {
1651 		if (old_rlim)
1652 			*old_rlim = *rlim;
1653 		if (new_rlim)
1654 			*rlim = *new_rlim;
1655 	}
1656 	task_unlock(tsk->group_leader);
1657 
1658 	/*
1659 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1660 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1661 	 * very long-standing error, and fixing it now risks breakage of
1662 	 * applications, so we live with it
1663 	 */
1664 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1665 			 new_rlim->rlim_cur != RLIM_INFINITY)
1666 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1667 out:
1668 	read_unlock(&tasklist_lock);
1669 	return retval;
1670 }
1671 
1672 /* rcu lock must be held */
1673 static int check_prlimit_permission(struct task_struct *task)
1674 {
1675 	const struct cred *cred = current_cred(), *tcred;
1676 
1677 	if (current == task)
1678 		return 0;
1679 
1680 	tcred = __task_cred(task);
1681 	if (uid_eq(cred->uid, tcred->euid) &&
1682 	    uid_eq(cred->uid, tcred->suid) &&
1683 	    uid_eq(cred->uid, tcred->uid)  &&
1684 	    gid_eq(cred->gid, tcred->egid) &&
1685 	    gid_eq(cred->gid, tcred->sgid) &&
1686 	    gid_eq(cred->gid, tcred->gid))
1687 		return 0;
1688 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1689 		return 0;
1690 
1691 	return -EPERM;
1692 }
1693 
1694 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1695 		const struct rlimit64 __user *, new_rlim,
1696 		struct rlimit64 __user *, old_rlim)
1697 {
1698 	struct rlimit64 old64, new64;
1699 	struct rlimit old, new;
1700 	struct task_struct *tsk;
1701 	int ret;
1702 
1703 	if (new_rlim) {
1704 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1705 			return -EFAULT;
1706 		rlim64_to_rlim(&new64, &new);
1707 	}
1708 
1709 	rcu_read_lock();
1710 	tsk = pid ? find_task_by_vpid(pid) : current;
1711 	if (!tsk) {
1712 		rcu_read_unlock();
1713 		return -ESRCH;
1714 	}
1715 	ret = check_prlimit_permission(tsk);
1716 	if (ret) {
1717 		rcu_read_unlock();
1718 		return ret;
1719 	}
1720 	get_task_struct(tsk);
1721 	rcu_read_unlock();
1722 
1723 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1724 			old_rlim ? &old : NULL);
1725 
1726 	if (!ret && old_rlim) {
1727 		rlim_to_rlim64(&old, &old64);
1728 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1729 			ret = -EFAULT;
1730 	}
1731 
1732 	put_task_struct(tsk);
1733 	return ret;
1734 }
1735 
1736 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1737 {
1738 	struct rlimit new_rlim;
1739 
1740 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1741 		return -EFAULT;
1742 	return do_prlimit(current, resource, &new_rlim, NULL);
1743 }
1744 
1745 /*
1746  * It would make sense to put struct rusage in the task_struct,
1747  * except that would make the task_struct be *really big*.  After
1748  * task_struct gets moved into malloc'ed memory, it would
1749  * make sense to do this.  It will make moving the rest of the information
1750  * a lot simpler!  (Which we're not doing right now because we're not
1751  * measuring them yet).
1752  *
1753  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1754  * races with threads incrementing their own counters.  But since word
1755  * reads are atomic, we either get new values or old values and we don't
1756  * care which for the sums.  We always take the siglock to protect reading
1757  * the c* fields from p->signal from races with exit.c updating those
1758  * fields when reaping, so a sample either gets all the additions of a
1759  * given child after it's reaped, or none so this sample is before reaping.
1760  *
1761  * Locking:
1762  * We need to take the siglock for CHILDEREN, SELF and BOTH
1763  * for  the cases current multithreaded, non-current single threaded
1764  * non-current multithreaded.  Thread traversal is now safe with
1765  * the siglock held.
1766  * Strictly speaking, we donot need to take the siglock if we are current and
1767  * single threaded,  as no one else can take our signal_struct away, no one
1768  * else can  reap the  children to update signal->c* counters, and no one else
1769  * can race with the signal-> fields. If we do not take any lock, the
1770  * signal-> fields could be read out of order while another thread was just
1771  * exiting. So we should  place a read memory barrier when we avoid the lock.
1772  * On the writer side,  write memory barrier is implied in  __exit_signal
1773  * as __exit_signal releases  the siglock spinlock after updating the signal->
1774  * fields. But we don't do this yet to keep things simple.
1775  *
1776  */
1777 
1778 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1779 {
1780 	r->ru_nvcsw += t->nvcsw;
1781 	r->ru_nivcsw += t->nivcsw;
1782 	r->ru_minflt += t->min_flt;
1783 	r->ru_majflt += t->maj_flt;
1784 	r->ru_inblock += task_io_get_inblock(t);
1785 	r->ru_oublock += task_io_get_oublock(t);
1786 }
1787 
1788 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1789 {
1790 	struct task_struct *t;
1791 	unsigned long flags;
1792 	cputime_t tgutime, tgstime, utime, stime;
1793 	unsigned long maxrss = 0;
1794 
1795 	memset((char *) r, 0, sizeof *r);
1796 	utime = stime = 0;
1797 
1798 	if (who == RUSAGE_THREAD) {
1799 		task_cputime_adjusted(current, &utime, &stime);
1800 		accumulate_thread_rusage(p, r);
1801 		maxrss = p->signal->maxrss;
1802 		goto out;
1803 	}
1804 
1805 	if (!lock_task_sighand(p, &flags))
1806 		return;
1807 
1808 	switch (who) {
1809 		case RUSAGE_BOTH:
1810 		case RUSAGE_CHILDREN:
1811 			utime = p->signal->cutime;
1812 			stime = p->signal->cstime;
1813 			r->ru_nvcsw = p->signal->cnvcsw;
1814 			r->ru_nivcsw = p->signal->cnivcsw;
1815 			r->ru_minflt = p->signal->cmin_flt;
1816 			r->ru_majflt = p->signal->cmaj_flt;
1817 			r->ru_inblock = p->signal->cinblock;
1818 			r->ru_oublock = p->signal->coublock;
1819 			maxrss = p->signal->cmaxrss;
1820 
1821 			if (who == RUSAGE_CHILDREN)
1822 				break;
1823 
1824 		case RUSAGE_SELF:
1825 			thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1826 			utime += tgutime;
1827 			stime += tgstime;
1828 			r->ru_nvcsw += p->signal->nvcsw;
1829 			r->ru_nivcsw += p->signal->nivcsw;
1830 			r->ru_minflt += p->signal->min_flt;
1831 			r->ru_majflt += p->signal->maj_flt;
1832 			r->ru_inblock += p->signal->inblock;
1833 			r->ru_oublock += p->signal->oublock;
1834 			if (maxrss < p->signal->maxrss)
1835 				maxrss = p->signal->maxrss;
1836 			t = p;
1837 			do {
1838 				accumulate_thread_rusage(t, r);
1839 				t = next_thread(t);
1840 			} while (t != p);
1841 			break;
1842 
1843 		default:
1844 			BUG();
1845 	}
1846 	unlock_task_sighand(p, &flags);
1847 
1848 out:
1849 	cputime_to_timeval(utime, &r->ru_utime);
1850 	cputime_to_timeval(stime, &r->ru_stime);
1851 
1852 	if (who != RUSAGE_CHILDREN) {
1853 		struct mm_struct *mm = get_task_mm(p);
1854 		if (mm) {
1855 			setmax_mm_hiwater_rss(&maxrss, mm);
1856 			mmput(mm);
1857 		}
1858 	}
1859 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1860 }
1861 
1862 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1863 {
1864 	struct rusage r;
1865 	k_getrusage(p, who, &r);
1866 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1867 }
1868 
1869 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1870 {
1871 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1872 	    who != RUSAGE_THREAD)
1873 		return -EINVAL;
1874 	return getrusage(current, who, ru);
1875 }
1876 
1877 #ifdef CONFIG_COMPAT
1878 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1879 {
1880 	struct rusage r;
1881 
1882 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1883 	    who != RUSAGE_THREAD)
1884 		return -EINVAL;
1885 
1886 	k_getrusage(current, who, &r);
1887 	return put_compat_rusage(&r, ru);
1888 }
1889 #endif
1890 
1891 SYSCALL_DEFINE1(umask, int, mask)
1892 {
1893 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1894 	return mask;
1895 }
1896 
1897 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1898 {
1899 	struct fd exe;
1900 	struct inode *inode;
1901 	int err;
1902 
1903 	exe = fdget(fd);
1904 	if (!exe.file)
1905 		return -EBADF;
1906 
1907 	inode = file_inode(exe.file);
1908 
1909 	/*
1910 	 * Because the original mm->exe_file points to executable file, make
1911 	 * sure that this one is executable as well, to avoid breaking an
1912 	 * overall picture.
1913 	 */
1914 	err = -EACCES;
1915 	if (!S_ISREG(inode->i_mode)	||
1916 	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1917 		goto exit;
1918 
1919 	err = inode_permission(inode, MAY_EXEC);
1920 	if (err)
1921 		goto exit;
1922 
1923 	down_write(&mm->mmap_sem);
1924 
1925 	/*
1926 	 * Forbid mm->exe_file change if old file still mapped.
1927 	 */
1928 	err = -EBUSY;
1929 	if (mm->exe_file) {
1930 		struct vm_area_struct *vma;
1931 
1932 		for (vma = mm->mmap; vma; vma = vma->vm_next)
1933 			if (vma->vm_file &&
1934 			    path_equal(&vma->vm_file->f_path,
1935 				       &mm->exe_file->f_path))
1936 				goto exit_unlock;
1937 	}
1938 
1939 	/*
1940 	 * The symlink can be changed only once, just to disallow arbitrary
1941 	 * transitions malicious software might bring in. This means one
1942 	 * could make a snapshot over all processes running and monitor
1943 	 * /proc/pid/exe changes to notice unusual activity if needed.
1944 	 */
1945 	err = -EPERM;
1946 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1947 		goto exit_unlock;
1948 
1949 	err = 0;
1950 	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
1951 exit_unlock:
1952 	up_write(&mm->mmap_sem);
1953 
1954 exit:
1955 	fdput(exe);
1956 	return err;
1957 }
1958 
1959 static int prctl_set_mm(int opt, unsigned long addr,
1960 			unsigned long arg4, unsigned long arg5)
1961 {
1962 	unsigned long rlim = rlimit(RLIMIT_DATA);
1963 	struct mm_struct *mm = current->mm;
1964 	struct vm_area_struct *vma;
1965 	int error;
1966 
1967 	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1968 		return -EINVAL;
1969 
1970 	if (!capable(CAP_SYS_RESOURCE))
1971 		return -EPERM;
1972 
1973 	if (opt == PR_SET_MM_EXE_FILE)
1974 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1975 
1976 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1977 		return -EINVAL;
1978 
1979 	error = -EINVAL;
1980 
1981 	down_read(&mm->mmap_sem);
1982 	vma = find_vma(mm, addr);
1983 
1984 	switch (opt) {
1985 	case PR_SET_MM_START_CODE:
1986 		mm->start_code = addr;
1987 		break;
1988 	case PR_SET_MM_END_CODE:
1989 		mm->end_code = addr;
1990 		break;
1991 	case PR_SET_MM_START_DATA:
1992 		mm->start_data = addr;
1993 		break;
1994 	case PR_SET_MM_END_DATA:
1995 		mm->end_data = addr;
1996 		break;
1997 
1998 	case PR_SET_MM_START_BRK:
1999 		if (addr <= mm->end_data)
2000 			goto out;
2001 
2002 		if (rlim < RLIM_INFINITY &&
2003 		    (mm->brk - addr) +
2004 		    (mm->end_data - mm->start_data) > rlim)
2005 			goto out;
2006 
2007 		mm->start_brk = addr;
2008 		break;
2009 
2010 	case PR_SET_MM_BRK:
2011 		if (addr <= mm->end_data)
2012 			goto out;
2013 
2014 		if (rlim < RLIM_INFINITY &&
2015 		    (addr - mm->start_brk) +
2016 		    (mm->end_data - mm->start_data) > rlim)
2017 			goto out;
2018 
2019 		mm->brk = addr;
2020 		break;
2021 
2022 	/*
2023 	 * If command line arguments and environment
2024 	 * are placed somewhere else on stack, we can
2025 	 * set them up here, ARG_START/END to setup
2026 	 * command line argumets and ENV_START/END
2027 	 * for environment.
2028 	 */
2029 	case PR_SET_MM_START_STACK:
2030 	case PR_SET_MM_ARG_START:
2031 	case PR_SET_MM_ARG_END:
2032 	case PR_SET_MM_ENV_START:
2033 	case PR_SET_MM_ENV_END:
2034 		if (!vma) {
2035 			error = -EFAULT;
2036 			goto out;
2037 		}
2038 		if (opt == PR_SET_MM_START_STACK)
2039 			mm->start_stack = addr;
2040 		else if (opt == PR_SET_MM_ARG_START)
2041 			mm->arg_start = addr;
2042 		else if (opt == PR_SET_MM_ARG_END)
2043 			mm->arg_end = addr;
2044 		else if (opt == PR_SET_MM_ENV_START)
2045 			mm->env_start = addr;
2046 		else if (opt == PR_SET_MM_ENV_END)
2047 			mm->env_end = addr;
2048 		break;
2049 
2050 	/*
2051 	 * This doesn't move auxiliary vector itself
2052 	 * since it's pinned to mm_struct, but allow
2053 	 * to fill vector with new values. It's up
2054 	 * to a caller to provide sane values here
2055 	 * otherwise user space tools which use this
2056 	 * vector might be unhappy.
2057 	 */
2058 	case PR_SET_MM_AUXV: {
2059 		unsigned long user_auxv[AT_VECTOR_SIZE];
2060 
2061 		if (arg4 > sizeof(user_auxv))
2062 			goto out;
2063 		up_read(&mm->mmap_sem);
2064 
2065 		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
2066 			return -EFAULT;
2067 
2068 		/* Make sure the last entry is always AT_NULL */
2069 		user_auxv[AT_VECTOR_SIZE - 2] = 0;
2070 		user_auxv[AT_VECTOR_SIZE - 1] = 0;
2071 
2072 		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2073 
2074 		task_lock(current);
2075 		memcpy(mm->saved_auxv, user_auxv, arg4);
2076 		task_unlock(current);
2077 
2078 		return 0;
2079 	}
2080 	default:
2081 		goto out;
2082 	}
2083 
2084 	error = 0;
2085 out:
2086 	up_read(&mm->mmap_sem);
2087 	return error;
2088 }
2089 
2090 #ifdef CONFIG_CHECKPOINT_RESTORE
2091 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2092 {
2093 	return put_user(me->clear_child_tid, tid_addr);
2094 }
2095 #else
2096 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2097 {
2098 	return -EINVAL;
2099 }
2100 #endif
2101 
2102 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2103 		unsigned long, arg4, unsigned long, arg5)
2104 {
2105 	struct task_struct *me = current;
2106 	unsigned char comm[sizeof(me->comm)];
2107 	long error;
2108 
2109 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2110 	if (error != -ENOSYS)
2111 		return error;
2112 
2113 	error = 0;
2114 	switch (option) {
2115 	case PR_SET_PDEATHSIG:
2116 		if (!valid_signal(arg2)) {
2117 			error = -EINVAL;
2118 			break;
2119 		}
2120 		me->pdeath_signal = arg2;
2121 		break;
2122 	case PR_GET_PDEATHSIG:
2123 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2124 		break;
2125 	case PR_GET_DUMPABLE:
2126 		error = get_dumpable(me->mm);
2127 		break;
2128 	case PR_SET_DUMPABLE:
2129 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2130 			error = -EINVAL;
2131 			break;
2132 		}
2133 		set_dumpable(me->mm, arg2);
2134 		break;
2135 
2136 	case PR_SET_UNALIGN:
2137 		error = SET_UNALIGN_CTL(me, arg2);
2138 		break;
2139 	case PR_GET_UNALIGN:
2140 		error = GET_UNALIGN_CTL(me, arg2);
2141 		break;
2142 	case PR_SET_FPEMU:
2143 		error = SET_FPEMU_CTL(me, arg2);
2144 		break;
2145 	case PR_GET_FPEMU:
2146 		error = GET_FPEMU_CTL(me, arg2);
2147 		break;
2148 	case PR_SET_FPEXC:
2149 		error = SET_FPEXC_CTL(me, arg2);
2150 		break;
2151 	case PR_GET_FPEXC:
2152 		error = GET_FPEXC_CTL(me, arg2);
2153 		break;
2154 	case PR_GET_TIMING:
2155 		error = PR_TIMING_STATISTICAL;
2156 		break;
2157 	case PR_SET_TIMING:
2158 		if (arg2 != PR_TIMING_STATISTICAL)
2159 			error = -EINVAL;
2160 		break;
2161 	case PR_SET_NAME:
2162 		comm[sizeof(me->comm) - 1] = 0;
2163 		if (strncpy_from_user(comm, (char __user *)arg2,
2164 				      sizeof(me->comm) - 1) < 0)
2165 			return -EFAULT;
2166 		set_task_comm(me, comm);
2167 		proc_comm_connector(me);
2168 		break;
2169 	case PR_GET_NAME:
2170 		get_task_comm(comm, me);
2171 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2172 			return -EFAULT;
2173 		break;
2174 	case PR_GET_ENDIAN:
2175 		error = GET_ENDIAN(me, arg2);
2176 		break;
2177 	case PR_SET_ENDIAN:
2178 		error = SET_ENDIAN(me, arg2);
2179 		break;
2180 	case PR_GET_SECCOMP:
2181 		error = prctl_get_seccomp();
2182 		break;
2183 	case PR_SET_SECCOMP:
2184 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2185 		break;
2186 	case PR_GET_TSC:
2187 		error = GET_TSC_CTL(arg2);
2188 		break;
2189 	case PR_SET_TSC:
2190 		error = SET_TSC_CTL(arg2);
2191 		break;
2192 	case PR_TASK_PERF_EVENTS_DISABLE:
2193 		error = perf_event_task_disable();
2194 		break;
2195 	case PR_TASK_PERF_EVENTS_ENABLE:
2196 		error = perf_event_task_enable();
2197 		break;
2198 	case PR_GET_TIMERSLACK:
2199 		error = current->timer_slack_ns;
2200 		break;
2201 	case PR_SET_TIMERSLACK:
2202 		if (arg2 <= 0)
2203 			current->timer_slack_ns =
2204 					current->default_timer_slack_ns;
2205 		else
2206 			current->timer_slack_ns = arg2;
2207 		break;
2208 	case PR_MCE_KILL:
2209 		if (arg4 | arg5)
2210 			return -EINVAL;
2211 		switch (arg2) {
2212 		case PR_MCE_KILL_CLEAR:
2213 			if (arg3 != 0)
2214 				return -EINVAL;
2215 			current->flags &= ~PF_MCE_PROCESS;
2216 			break;
2217 		case PR_MCE_KILL_SET:
2218 			current->flags |= PF_MCE_PROCESS;
2219 			if (arg3 == PR_MCE_KILL_EARLY)
2220 				current->flags |= PF_MCE_EARLY;
2221 			else if (arg3 == PR_MCE_KILL_LATE)
2222 				current->flags &= ~PF_MCE_EARLY;
2223 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2224 				current->flags &=
2225 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2226 			else
2227 				return -EINVAL;
2228 			break;
2229 		default:
2230 			return -EINVAL;
2231 		}
2232 		break;
2233 	case PR_MCE_KILL_GET:
2234 		if (arg2 | arg3 | arg4 | arg5)
2235 			return -EINVAL;
2236 		if (current->flags & PF_MCE_PROCESS)
2237 			error = (current->flags & PF_MCE_EARLY) ?
2238 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2239 		else
2240 			error = PR_MCE_KILL_DEFAULT;
2241 		break;
2242 	case PR_SET_MM:
2243 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2244 		break;
2245 	case PR_GET_TID_ADDRESS:
2246 		error = prctl_get_tid_address(me, (int __user **)arg2);
2247 		break;
2248 	case PR_SET_CHILD_SUBREAPER:
2249 		me->signal->is_child_subreaper = !!arg2;
2250 		break;
2251 	case PR_GET_CHILD_SUBREAPER:
2252 		error = put_user(me->signal->is_child_subreaper,
2253 				 (int __user *)arg2);
2254 		break;
2255 	case PR_SET_NO_NEW_PRIVS:
2256 		if (arg2 != 1 || arg3 || arg4 || arg5)
2257 			return -EINVAL;
2258 
2259 		current->no_new_privs = 1;
2260 		break;
2261 	case PR_GET_NO_NEW_PRIVS:
2262 		if (arg2 || arg3 || arg4 || arg5)
2263 			return -EINVAL;
2264 		return current->no_new_privs ? 1 : 0;
2265 	default:
2266 		error = -EINVAL;
2267 		break;
2268 	}
2269 	return error;
2270 }
2271 
2272 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2273 		struct getcpu_cache __user *, unused)
2274 {
2275 	int err = 0;
2276 	int cpu = raw_smp_processor_id();
2277 	if (cpup)
2278 		err |= put_user(cpu, cpup);
2279 	if (nodep)
2280 		err |= put_user(cpu_to_node(cpu), nodep);
2281 	return err ? -EFAULT : 0;
2282 }
2283 
2284 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2285 
2286 static int __orderly_poweroff(bool force)
2287 {
2288 	char **argv;
2289 	static char *envp[] = {
2290 		"HOME=/",
2291 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2292 		NULL
2293 	};
2294 	int ret;
2295 
2296 	argv = argv_split(GFP_KERNEL, poweroff_cmd, NULL);
2297 	if (argv) {
2298 		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2299 		argv_free(argv);
2300 	} else {
2301 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2302 					 __func__, poweroff_cmd);
2303 		ret = -ENOMEM;
2304 	}
2305 
2306 	if (ret && force) {
2307 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2308 					"forcing the issue\n");
2309 		/*
2310 		 * I guess this should try to kick off some daemon to sync and
2311 		 * poweroff asap.  Or not even bother syncing if we're doing an
2312 		 * emergency shutdown?
2313 		 */
2314 		emergency_sync();
2315 		kernel_power_off();
2316 	}
2317 
2318 	return ret;
2319 }
2320 
2321 static bool poweroff_force;
2322 
2323 static void poweroff_work_func(struct work_struct *work)
2324 {
2325 	__orderly_poweroff(poweroff_force);
2326 }
2327 
2328 static DECLARE_WORK(poweroff_work, poweroff_work_func);
2329 
2330 /**
2331  * orderly_poweroff - Trigger an orderly system poweroff
2332  * @force: force poweroff if command execution fails
2333  *
2334  * This may be called from any context to trigger a system shutdown.
2335  * If the orderly shutdown fails, it will force an immediate shutdown.
2336  */
2337 int orderly_poweroff(bool force)
2338 {
2339 	if (force) /* do not override the pending "true" */
2340 		poweroff_force = true;
2341 	schedule_work(&poweroff_work);
2342 	return 0;
2343 }
2344 EXPORT_SYMBOL_GPL(orderly_poweroff);
2345 
2346 /**
2347  * do_sysinfo - fill in sysinfo struct
2348  * @info: pointer to buffer to fill
2349  */
2350 static int do_sysinfo(struct sysinfo *info)
2351 {
2352 	unsigned long mem_total, sav_total;
2353 	unsigned int mem_unit, bitcount;
2354 	struct timespec tp;
2355 
2356 	memset(info, 0, sizeof(struct sysinfo));
2357 
2358 	ktime_get_ts(&tp);
2359 	monotonic_to_bootbased(&tp);
2360 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2361 
2362 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2363 
2364 	info->procs = nr_threads;
2365 
2366 	si_meminfo(info);
2367 	si_swapinfo(info);
2368 
2369 	/*
2370 	 * If the sum of all the available memory (i.e. ram + swap)
2371 	 * is less than can be stored in a 32 bit unsigned long then
2372 	 * we can be binary compatible with 2.2.x kernels.  If not,
2373 	 * well, in that case 2.2.x was broken anyways...
2374 	 *
2375 	 *  -Erik Andersen <andersee@debian.org>
2376 	 */
2377 
2378 	mem_total = info->totalram + info->totalswap;
2379 	if (mem_total < info->totalram || mem_total < info->totalswap)
2380 		goto out;
2381 	bitcount = 0;
2382 	mem_unit = info->mem_unit;
2383 	while (mem_unit > 1) {
2384 		bitcount++;
2385 		mem_unit >>= 1;
2386 		sav_total = mem_total;
2387 		mem_total <<= 1;
2388 		if (mem_total < sav_total)
2389 			goto out;
2390 	}
2391 
2392 	/*
2393 	 * If mem_total did not overflow, multiply all memory values by
2394 	 * info->mem_unit and set it to 1.  This leaves things compatible
2395 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2396 	 * kernels...
2397 	 */
2398 
2399 	info->mem_unit = 1;
2400 	info->totalram <<= bitcount;
2401 	info->freeram <<= bitcount;
2402 	info->sharedram <<= bitcount;
2403 	info->bufferram <<= bitcount;
2404 	info->totalswap <<= bitcount;
2405 	info->freeswap <<= bitcount;
2406 	info->totalhigh <<= bitcount;
2407 	info->freehigh <<= bitcount;
2408 
2409 out:
2410 	return 0;
2411 }
2412 
2413 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2414 {
2415 	struct sysinfo val;
2416 
2417 	do_sysinfo(&val);
2418 
2419 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2420 		return -EFAULT;
2421 
2422 	return 0;
2423 }
2424 
2425 #ifdef CONFIG_COMPAT
2426 struct compat_sysinfo {
2427 	s32 uptime;
2428 	u32 loads[3];
2429 	u32 totalram;
2430 	u32 freeram;
2431 	u32 sharedram;
2432 	u32 bufferram;
2433 	u32 totalswap;
2434 	u32 freeswap;
2435 	u16 procs;
2436 	u16 pad;
2437 	u32 totalhigh;
2438 	u32 freehigh;
2439 	u32 mem_unit;
2440 	char _f[20-2*sizeof(u32)-sizeof(int)];
2441 };
2442 
2443 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2444 {
2445 	struct sysinfo s;
2446 
2447 	do_sysinfo(&s);
2448 
2449 	/* Check to see if any memory value is too large for 32-bit and scale
2450 	 *  down if needed
2451 	 */
2452 	if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2453 		int bitcount = 0;
2454 
2455 		while (s.mem_unit < PAGE_SIZE) {
2456 			s.mem_unit <<= 1;
2457 			bitcount++;
2458 		}
2459 
2460 		s.totalram >>= bitcount;
2461 		s.freeram >>= bitcount;
2462 		s.sharedram >>= bitcount;
2463 		s.bufferram >>= bitcount;
2464 		s.totalswap >>= bitcount;
2465 		s.freeswap >>= bitcount;
2466 		s.totalhigh >>= bitcount;
2467 		s.freehigh >>= bitcount;
2468 	}
2469 
2470 	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2471 	    __put_user(s.uptime, &info->uptime) ||
2472 	    __put_user(s.loads[0], &info->loads[0]) ||
2473 	    __put_user(s.loads[1], &info->loads[1]) ||
2474 	    __put_user(s.loads[2], &info->loads[2]) ||
2475 	    __put_user(s.totalram, &info->totalram) ||
2476 	    __put_user(s.freeram, &info->freeram) ||
2477 	    __put_user(s.sharedram, &info->sharedram) ||
2478 	    __put_user(s.bufferram, &info->bufferram) ||
2479 	    __put_user(s.totalswap, &info->totalswap) ||
2480 	    __put_user(s.freeswap, &info->freeswap) ||
2481 	    __put_user(s.procs, &info->procs) ||
2482 	    __put_user(s.totalhigh, &info->totalhigh) ||
2483 	    __put_user(s.freehigh, &info->freehigh) ||
2484 	    __put_user(s.mem_unit, &info->mem_unit))
2485 		return -EFAULT;
2486 
2487 	return 0;
2488 }
2489 #endif /* CONFIG_COMPAT */
2490