1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/sys.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/mm_inline.h> 11 #include <linux/utsname.h> 12 #include <linux/mman.h> 13 #include <linux/reboot.h> 14 #include <linux/prctl.h> 15 #include <linux/highuid.h> 16 #include <linux/fs.h> 17 #include <linux/kmod.h> 18 #include <linux/ksm.h> 19 #include <linux/perf_event.h> 20 #include <linux/resource.h> 21 #include <linux/kernel.h> 22 #include <linux/workqueue.h> 23 #include <linux/capability.h> 24 #include <linux/device.h> 25 #include <linux/key.h> 26 #include <linux/times.h> 27 #include <linux/posix-timers.h> 28 #include <linux/security.h> 29 #include <linux/random.h> 30 #include <linux/suspend.h> 31 #include <linux/tty.h> 32 #include <linux/signal.h> 33 #include <linux/cn_proc.h> 34 #include <linux/getcpu.h> 35 #include <linux/task_io_accounting_ops.h> 36 #include <linux/seccomp.h> 37 #include <linux/cpu.h> 38 #include <linux/personality.h> 39 #include <linux/ptrace.h> 40 #include <linux/fs_struct.h> 41 #include <linux/file.h> 42 #include <linux/mount.h> 43 #include <linux/gfp.h> 44 #include <linux/syscore_ops.h> 45 #include <linux/version.h> 46 #include <linux/ctype.h> 47 #include <linux/syscall_user_dispatch.h> 48 49 #include <linux/compat.h> 50 #include <linux/syscalls.h> 51 #include <linux/kprobes.h> 52 #include <linux/user_namespace.h> 53 #include <linux/time_namespace.h> 54 #include <linux/binfmts.h> 55 56 #include <linux/sched.h> 57 #include <linux/sched/autogroup.h> 58 #include <linux/sched/loadavg.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/mm.h> 61 #include <linux/sched/coredump.h> 62 #include <linux/sched/task.h> 63 #include <linux/sched/cputime.h> 64 #include <linux/rcupdate.h> 65 #include <linux/uidgid.h> 66 #include <linux/cred.h> 67 68 #include <linux/nospec.h> 69 70 #include <linux/kmsg_dump.h> 71 /* Move somewhere else to avoid recompiling? */ 72 #include <generated/utsrelease.h> 73 74 #include <linux/uaccess.h> 75 #include <asm/io.h> 76 #include <asm/unistd.h> 77 78 #include <trace/events/task.h> 79 80 #include "uid16.h" 81 82 #ifndef SET_UNALIGN_CTL 83 # define SET_UNALIGN_CTL(a, b) (-EINVAL) 84 #endif 85 #ifndef GET_UNALIGN_CTL 86 # define GET_UNALIGN_CTL(a, b) (-EINVAL) 87 #endif 88 #ifndef SET_FPEMU_CTL 89 # define SET_FPEMU_CTL(a, b) (-EINVAL) 90 #endif 91 #ifndef GET_FPEMU_CTL 92 # define GET_FPEMU_CTL(a, b) (-EINVAL) 93 #endif 94 #ifndef SET_FPEXC_CTL 95 # define SET_FPEXC_CTL(a, b) (-EINVAL) 96 #endif 97 #ifndef GET_FPEXC_CTL 98 # define GET_FPEXC_CTL(a, b) (-EINVAL) 99 #endif 100 #ifndef GET_ENDIAN 101 # define GET_ENDIAN(a, b) (-EINVAL) 102 #endif 103 #ifndef SET_ENDIAN 104 # define SET_ENDIAN(a, b) (-EINVAL) 105 #endif 106 #ifndef GET_TSC_CTL 107 # define GET_TSC_CTL(a) (-EINVAL) 108 #endif 109 #ifndef SET_TSC_CTL 110 # define SET_TSC_CTL(a) (-EINVAL) 111 #endif 112 #ifndef GET_FP_MODE 113 # define GET_FP_MODE(a) (-EINVAL) 114 #endif 115 #ifndef SET_FP_MODE 116 # define SET_FP_MODE(a,b) (-EINVAL) 117 #endif 118 #ifndef SVE_SET_VL 119 # define SVE_SET_VL(a) (-EINVAL) 120 #endif 121 #ifndef SVE_GET_VL 122 # define SVE_GET_VL() (-EINVAL) 123 #endif 124 #ifndef SME_SET_VL 125 # define SME_SET_VL(a) (-EINVAL) 126 #endif 127 #ifndef SME_GET_VL 128 # define SME_GET_VL() (-EINVAL) 129 #endif 130 #ifndef PAC_RESET_KEYS 131 # define PAC_RESET_KEYS(a, b) (-EINVAL) 132 #endif 133 #ifndef PAC_SET_ENABLED_KEYS 134 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL) 135 #endif 136 #ifndef PAC_GET_ENABLED_KEYS 137 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL) 138 #endif 139 #ifndef SET_TAGGED_ADDR_CTRL 140 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL) 141 #endif 142 #ifndef GET_TAGGED_ADDR_CTRL 143 # define GET_TAGGED_ADDR_CTRL() (-EINVAL) 144 #endif 145 #ifndef RISCV_V_SET_CONTROL 146 # define RISCV_V_SET_CONTROL(a) (-EINVAL) 147 #endif 148 #ifndef RISCV_V_GET_CONTROL 149 # define RISCV_V_GET_CONTROL() (-EINVAL) 150 #endif 151 #ifndef RISCV_SET_ICACHE_FLUSH_CTX 152 # define RISCV_SET_ICACHE_FLUSH_CTX(a, b) (-EINVAL) 153 #endif 154 #ifndef PPC_GET_DEXCR_ASPECT 155 # define PPC_GET_DEXCR_ASPECT(a, b) (-EINVAL) 156 #endif 157 #ifndef PPC_SET_DEXCR_ASPECT 158 # define PPC_SET_DEXCR_ASPECT(a, b, c) (-EINVAL) 159 #endif 160 161 /* 162 * this is where the system-wide overflow UID and GID are defined, for 163 * architectures that now have 32-bit UID/GID but didn't in the past 164 */ 165 166 int overflowuid = DEFAULT_OVERFLOWUID; 167 int overflowgid = DEFAULT_OVERFLOWGID; 168 169 EXPORT_SYMBOL(overflowuid); 170 EXPORT_SYMBOL(overflowgid); 171 172 /* 173 * the same as above, but for filesystems which can only store a 16-bit 174 * UID and GID. as such, this is needed on all architectures 175 */ 176 177 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 178 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID; 179 180 EXPORT_SYMBOL(fs_overflowuid); 181 EXPORT_SYMBOL(fs_overflowgid); 182 183 /* 184 * Returns true if current's euid is same as p's uid or euid, 185 * or has CAP_SYS_NICE to p's user_ns. 186 * 187 * Called with rcu_read_lock, creds are safe 188 */ 189 static bool set_one_prio_perm(struct task_struct *p) 190 { 191 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 192 193 if (uid_eq(pcred->uid, cred->euid) || 194 uid_eq(pcred->euid, cred->euid)) 195 return true; 196 if (ns_capable(pcred->user_ns, CAP_SYS_NICE)) 197 return true; 198 return false; 199 } 200 201 /* 202 * set the priority of a task 203 * - the caller must hold the RCU read lock 204 */ 205 static int set_one_prio(struct task_struct *p, int niceval, int error) 206 { 207 int no_nice; 208 209 if (!set_one_prio_perm(p)) { 210 error = -EPERM; 211 goto out; 212 } 213 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 214 error = -EACCES; 215 goto out; 216 } 217 no_nice = security_task_setnice(p, niceval); 218 if (no_nice) { 219 error = no_nice; 220 goto out; 221 } 222 if (error == -ESRCH) 223 error = 0; 224 set_user_nice(p, niceval); 225 out: 226 return error; 227 } 228 229 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 230 { 231 struct task_struct *g, *p; 232 struct user_struct *user; 233 const struct cred *cred = current_cred(); 234 int error = -EINVAL; 235 struct pid *pgrp; 236 kuid_t uid; 237 238 if (which > PRIO_USER || which < PRIO_PROCESS) 239 goto out; 240 241 /* normalize: avoid signed division (rounding problems) */ 242 error = -ESRCH; 243 if (niceval < MIN_NICE) 244 niceval = MIN_NICE; 245 if (niceval > MAX_NICE) 246 niceval = MAX_NICE; 247 248 rcu_read_lock(); 249 switch (which) { 250 case PRIO_PROCESS: 251 if (who) 252 p = find_task_by_vpid(who); 253 else 254 p = current; 255 if (p) 256 error = set_one_prio(p, niceval, error); 257 break; 258 case PRIO_PGRP: 259 if (who) 260 pgrp = find_vpid(who); 261 else 262 pgrp = task_pgrp(current); 263 read_lock(&tasklist_lock); 264 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 265 error = set_one_prio(p, niceval, error); 266 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 267 read_unlock(&tasklist_lock); 268 break; 269 case PRIO_USER: 270 uid = make_kuid(cred->user_ns, who); 271 user = cred->user; 272 if (!who) 273 uid = cred->uid; 274 else if (!uid_eq(uid, cred->uid)) { 275 user = find_user(uid); 276 if (!user) 277 goto out_unlock; /* No processes for this user */ 278 } 279 for_each_process_thread(g, p) { 280 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) 281 error = set_one_prio(p, niceval, error); 282 } 283 if (!uid_eq(uid, cred->uid)) 284 free_uid(user); /* For find_user() */ 285 break; 286 } 287 out_unlock: 288 rcu_read_unlock(); 289 out: 290 return error; 291 } 292 293 /* 294 * Ugh. To avoid negative return values, "getpriority()" will 295 * not return the normal nice-value, but a negated value that 296 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 297 * to stay compatible. 298 */ 299 SYSCALL_DEFINE2(getpriority, int, which, int, who) 300 { 301 struct task_struct *g, *p; 302 struct user_struct *user; 303 const struct cred *cred = current_cred(); 304 long niceval, retval = -ESRCH; 305 struct pid *pgrp; 306 kuid_t uid; 307 308 if (which > PRIO_USER || which < PRIO_PROCESS) 309 return -EINVAL; 310 311 rcu_read_lock(); 312 switch (which) { 313 case PRIO_PROCESS: 314 if (who) 315 p = find_task_by_vpid(who); 316 else 317 p = current; 318 if (p) { 319 niceval = nice_to_rlimit(task_nice(p)); 320 if (niceval > retval) 321 retval = niceval; 322 } 323 break; 324 case PRIO_PGRP: 325 if (who) 326 pgrp = find_vpid(who); 327 else 328 pgrp = task_pgrp(current); 329 read_lock(&tasklist_lock); 330 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 331 niceval = nice_to_rlimit(task_nice(p)); 332 if (niceval > retval) 333 retval = niceval; 334 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 335 read_unlock(&tasklist_lock); 336 break; 337 case PRIO_USER: 338 uid = make_kuid(cred->user_ns, who); 339 user = cred->user; 340 if (!who) 341 uid = cred->uid; 342 else if (!uid_eq(uid, cred->uid)) { 343 user = find_user(uid); 344 if (!user) 345 goto out_unlock; /* No processes for this user */ 346 } 347 for_each_process_thread(g, p) { 348 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) { 349 niceval = nice_to_rlimit(task_nice(p)); 350 if (niceval > retval) 351 retval = niceval; 352 } 353 } 354 if (!uid_eq(uid, cred->uid)) 355 free_uid(user); /* for find_user() */ 356 break; 357 } 358 out_unlock: 359 rcu_read_unlock(); 360 361 return retval; 362 } 363 364 /* 365 * Unprivileged users may change the real gid to the effective gid 366 * or vice versa. (BSD-style) 367 * 368 * If you set the real gid at all, or set the effective gid to a value not 369 * equal to the real gid, then the saved gid is set to the new effective gid. 370 * 371 * This makes it possible for a setgid program to completely drop its 372 * privileges, which is often a useful assertion to make when you are doing 373 * a security audit over a program. 374 * 375 * The general idea is that a program which uses just setregid() will be 376 * 100% compatible with BSD. A program which uses just setgid() will be 377 * 100% compatible with POSIX with saved IDs. 378 * 379 * SMP: There are not races, the GIDs are checked only by filesystem 380 * operations (as far as semantic preservation is concerned). 381 */ 382 #ifdef CONFIG_MULTIUSER 383 long __sys_setregid(gid_t rgid, gid_t egid) 384 { 385 struct user_namespace *ns = current_user_ns(); 386 const struct cred *old; 387 struct cred *new; 388 int retval; 389 kgid_t krgid, kegid; 390 391 krgid = make_kgid(ns, rgid); 392 kegid = make_kgid(ns, egid); 393 394 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 395 return -EINVAL; 396 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 397 return -EINVAL; 398 399 new = prepare_creds(); 400 if (!new) 401 return -ENOMEM; 402 old = current_cred(); 403 404 retval = -EPERM; 405 if (rgid != (gid_t) -1) { 406 if (gid_eq(old->gid, krgid) || 407 gid_eq(old->egid, krgid) || 408 ns_capable_setid(old->user_ns, CAP_SETGID)) 409 new->gid = krgid; 410 else 411 goto error; 412 } 413 if (egid != (gid_t) -1) { 414 if (gid_eq(old->gid, kegid) || 415 gid_eq(old->egid, kegid) || 416 gid_eq(old->sgid, kegid) || 417 ns_capable_setid(old->user_ns, CAP_SETGID)) 418 new->egid = kegid; 419 else 420 goto error; 421 } 422 423 if (rgid != (gid_t) -1 || 424 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid))) 425 new->sgid = new->egid; 426 new->fsgid = new->egid; 427 428 retval = security_task_fix_setgid(new, old, LSM_SETID_RE); 429 if (retval < 0) 430 goto error; 431 432 return commit_creds(new); 433 434 error: 435 abort_creds(new); 436 return retval; 437 } 438 439 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 440 { 441 return __sys_setregid(rgid, egid); 442 } 443 444 /* 445 * setgid() is implemented like SysV w/ SAVED_IDS 446 * 447 * SMP: Same implicit races as above. 448 */ 449 long __sys_setgid(gid_t gid) 450 { 451 struct user_namespace *ns = current_user_ns(); 452 const struct cred *old; 453 struct cred *new; 454 int retval; 455 kgid_t kgid; 456 457 kgid = make_kgid(ns, gid); 458 if (!gid_valid(kgid)) 459 return -EINVAL; 460 461 new = prepare_creds(); 462 if (!new) 463 return -ENOMEM; 464 old = current_cred(); 465 466 retval = -EPERM; 467 if (ns_capable_setid(old->user_ns, CAP_SETGID)) 468 new->gid = new->egid = new->sgid = new->fsgid = kgid; 469 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid)) 470 new->egid = new->fsgid = kgid; 471 else 472 goto error; 473 474 retval = security_task_fix_setgid(new, old, LSM_SETID_ID); 475 if (retval < 0) 476 goto error; 477 478 return commit_creds(new); 479 480 error: 481 abort_creds(new); 482 return retval; 483 } 484 485 SYSCALL_DEFINE1(setgid, gid_t, gid) 486 { 487 return __sys_setgid(gid); 488 } 489 490 /* 491 * change the user struct in a credentials set to match the new UID 492 */ 493 static int set_user(struct cred *new) 494 { 495 struct user_struct *new_user; 496 497 new_user = alloc_uid(new->uid); 498 if (!new_user) 499 return -EAGAIN; 500 501 free_uid(new->user); 502 new->user = new_user; 503 return 0; 504 } 505 506 static void flag_nproc_exceeded(struct cred *new) 507 { 508 if (new->ucounts == current_ucounts()) 509 return; 510 511 /* 512 * We don't fail in case of NPROC limit excess here because too many 513 * poorly written programs don't check set*uid() return code, assuming 514 * it never fails if called by root. We may still enforce NPROC limit 515 * for programs doing set*uid()+execve() by harmlessly deferring the 516 * failure to the execve() stage. 517 */ 518 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) && 519 new->user != INIT_USER) 520 current->flags |= PF_NPROC_EXCEEDED; 521 else 522 current->flags &= ~PF_NPROC_EXCEEDED; 523 } 524 525 /* 526 * Unprivileged users may change the real uid to the effective uid 527 * or vice versa. (BSD-style) 528 * 529 * If you set the real uid at all, or set the effective uid to a value not 530 * equal to the real uid, then the saved uid is set to the new effective uid. 531 * 532 * This makes it possible for a setuid program to completely drop its 533 * privileges, which is often a useful assertion to make when you are doing 534 * a security audit over a program. 535 * 536 * The general idea is that a program which uses just setreuid() will be 537 * 100% compatible with BSD. A program which uses just setuid() will be 538 * 100% compatible with POSIX with saved IDs. 539 */ 540 long __sys_setreuid(uid_t ruid, uid_t euid) 541 { 542 struct user_namespace *ns = current_user_ns(); 543 const struct cred *old; 544 struct cred *new; 545 int retval; 546 kuid_t kruid, keuid; 547 548 kruid = make_kuid(ns, ruid); 549 keuid = make_kuid(ns, euid); 550 551 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 552 return -EINVAL; 553 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 554 return -EINVAL; 555 556 new = prepare_creds(); 557 if (!new) 558 return -ENOMEM; 559 old = current_cred(); 560 561 retval = -EPERM; 562 if (ruid != (uid_t) -1) { 563 new->uid = kruid; 564 if (!uid_eq(old->uid, kruid) && 565 !uid_eq(old->euid, kruid) && 566 !ns_capable_setid(old->user_ns, CAP_SETUID)) 567 goto error; 568 } 569 570 if (euid != (uid_t) -1) { 571 new->euid = keuid; 572 if (!uid_eq(old->uid, keuid) && 573 !uid_eq(old->euid, keuid) && 574 !uid_eq(old->suid, keuid) && 575 !ns_capable_setid(old->user_ns, CAP_SETUID)) 576 goto error; 577 } 578 579 if (!uid_eq(new->uid, old->uid)) { 580 retval = set_user(new); 581 if (retval < 0) 582 goto error; 583 } 584 if (ruid != (uid_t) -1 || 585 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid))) 586 new->suid = new->euid; 587 new->fsuid = new->euid; 588 589 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 590 if (retval < 0) 591 goto error; 592 593 retval = set_cred_ucounts(new); 594 if (retval < 0) 595 goto error; 596 597 flag_nproc_exceeded(new); 598 return commit_creds(new); 599 600 error: 601 abort_creds(new); 602 return retval; 603 } 604 605 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 606 { 607 return __sys_setreuid(ruid, euid); 608 } 609 610 /* 611 * setuid() is implemented like SysV with SAVED_IDS 612 * 613 * Note that SAVED_ID's is deficient in that a setuid root program 614 * like sendmail, for example, cannot set its uid to be a normal 615 * user and then switch back, because if you're root, setuid() sets 616 * the saved uid too. If you don't like this, blame the bright people 617 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 618 * will allow a root program to temporarily drop privileges and be able to 619 * regain them by swapping the real and effective uid. 620 */ 621 long __sys_setuid(uid_t uid) 622 { 623 struct user_namespace *ns = current_user_ns(); 624 const struct cred *old; 625 struct cred *new; 626 int retval; 627 kuid_t kuid; 628 629 kuid = make_kuid(ns, uid); 630 if (!uid_valid(kuid)) 631 return -EINVAL; 632 633 new = prepare_creds(); 634 if (!new) 635 return -ENOMEM; 636 old = current_cred(); 637 638 retval = -EPERM; 639 if (ns_capable_setid(old->user_ns, CAP_SETUID)) { 640 new->suid = new->uid = kuid; 641 if (!uid_eq(kuid, old->uid)) { 642 retval = set_user(new); 643 if (retval < 0) 644 goto error; 645 } 646 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) { 647 goto error; 648 } 649 650 new->fsuid = new->euid = kuid; 651 652 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 653 if (retval < 0) 654 goto error; 655 656 retval = set_cred_ucounts(new); 657 if (retval < 0) 658 goto error; 659 660 flag_nproc_exceeded(new); 661 return commit_creds(new); 662 663 error: 664 abort_creds(new); 665 return retval; 666 } 667 668 SYSCALL_DEFINE1(setuid, uid_t, uid) 669 { 670 return __sys_setuid(uid); 671 } 672 673 674 /* 675 * This function implements a generic ability to update ruid, euid, 676 * and suid. This allows you to implement the 4.4 compatible seteuid(). 677 */ 678 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 679 { 680 struct user_namespace *ns = current_user_ns(); 681 const struct cred *old; 682 struct cred *new; 683 int retval; 684 kuid_t kruid, keuid, ksuid; 685 bool ruid_new, euid_new, suid_new; 686 687 kruid = make_kuid(ns, ruid); 688 keuid = make_kuid(ns, euid); 689 ksuid = make_kuid(ns, suid); 690 691 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 692 return -EINVAL; 693 694 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 695 return -EINVAL; 696 697 if ((suid != (uid_t) -1) && !uid_valid(ksuid)) 698 return -EINVAL; 699 700 old = current_cred(); 701 702 /* check for no-op */ 703 if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) && 704 (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) && 705 uid_eq(keuid, old->fsuid))) && 706 (suid == (uid_t) -1 || uid_eq(ksuid, old->suid))) 707 return 0; 708 709 ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) && 710 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid); 711 euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) && 712 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid); 713 suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) && 714 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid); 715 if ((ruid_new || euid_new || suid_new) && 716 !ns_capable_setid(old->user_ns, CAP_SETUID)) 717 return -EPERM; 718 719 new = prepare_creds(); 720 if (!new) 721 return -ENOMEM; 722 723 if (ruid != (uid_t) -1) { 724 new->uid = kruid; 725 if (!uid_eq(kruid, old->uid)) { 726 retval = set_user(new); 727 if (retval < 0) 728 goto error; 729 } 730 } 731 if (euid != (uid_t) -1) 732 new->euid = keuid; 733 if (suid != (uid_t) -1) 734 new->suid = ksuid; 735 new->fsuid = new->euid; 736 737 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 738 if (retval < 0) 739 goto error; 740 741 retval = set_cred_ucounts(new); 742 if (retval < 0) 743 goto error; 744 745 flag_nproc_exceeded(new); 746 return commit_creds(new); 747 748 error: 749 abort_creds(new); 750 return retval; 751 } 752 753 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 754 { 755 return __sys_setresuid(ruid, euid, suid); 756 } 757 758 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp) 759 { 760 const struct cred *cred = current_cred(); 761 int retval; 762 uid_t ruid, euid, suid; 763 764 ruid = from_kuid_munged(cred->user_ns, cred->uid); 765 euid = from_kuid_munged(cred->user_ns, cred->euid); 766 suid = from_kuid_munged(cred->user_ns, cred->suid); 767 768 retval = put_user(ruid, ruidp); 769 if (!retval) { 770 retval = put_user(euid, euidp); 771 if (!retval) 772 return put_user(suid, suidp); 773 } 774 return retval; 775 } 776 777 /* 778 * Same as above, but for rgid, egid, sgid. 779 */ 780 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 781 { 782 struct user_namespace *ns = current_user_ns(); 783 const struct cred *old; 784 struct cred *new; 785 int retval; 786 kgid_t krgid, kegid, ksgid; 787 bool rgid_new, egid_new, sgid_new; 788 789 krgid = make_kgid(ns, rgid); 790 kegid = make_kgid(ns, egid); 791 ksgid = make_kgid(ns, sgid); 792 793 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 794 return -EINVAL; 795 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 796 return -EINVAL; 797 if ((sgid != (gid_t) -1) && !gid_valid(ksgid)) 798 return -EINVAL; 799 800 old = current_cred(); 801 802 /* check for no-op */ 803 if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) && 804 (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) && 805 gid_eq(kegid, old->fsgid))) && 806 (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid))) 807 return 0; 808 809 rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) && 810 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid); 811 egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) && 812 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid); 813 sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) && 814 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid); 815 if ((rgid_new || egid_new || sgid_new) && 816 !ns_capable_setid(old->user_ns, CAP_SETGID)) 817 return -EPERM; 818 819 new = prepare_creds(); 820 if (!new) 821 return -ENOMEM; 822 823 if (rgid != (gid_t) -1) 824 new->gid = krgid; 825 if (egid != (gid_t) -1) 826 new->egid = kegid; 827 if (sgid != (gid_t) -1) 828 new->sgid = ksgid; 829 new->fsgid = new->egid; 830 831 retval = security_task_fix_setgid(new, old, LSM_SETID_RES); 832 if (retval < 0) 833 goto error; 834 835 return commit_creds(new); 836 837 error: 838 abort_creds(new); 839 return retval; 840 } 841 842 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 843 { 844 return __sys_setresgid(rgid, egid, sgid); 845 } 846 847 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp) 848 { 849 const struct cred *cred = current_cred(); 850 int retval; 851 gid_t rgid, egid, sgid; 852 853 rgid = from_kgid_munged(cred->user_ns, cred->gid); 854 egid = from_kgid_munged(cred->user_ns, cred->egid); 855 sgid = from_kgid_munged(cred->user_ns, cred->sgid); 856 857 retval = put_user(rgid, rgidp); 858 if (!retval) { 859 retval = put_user(egid, egidp); 860 if (!retval) 861 retval = put_user(sgid, sgidp); 862 } 863 864 return retval; 865 } 866 867 868 /* 869 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 870 * is used for "access()" and for the NFS daemon (letting nfsd stay at 871 * whatever uid it wants to). It normally shadows "euid", except when 872 * explicitly set by setfsuid() or for access.. 873 */ 874 long __sys_setfsuid(uid_t uid) 875 { 876 const struct cred *old; 877 struct cred *new; 878 uid_t old_fsuid; 879 kuid_t kuid; 880 881 old = current_cred(); 882 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid); 883 884 kuid = make_kuid(old->user_ns, uid); 885 if (!uid_valid(kuid)) 886 return old_fsuid; 887 888 new = prepare_creds(); 889 if (!new) 890 return old_fsuid; 891 892 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) || 893 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) || 894 ns_capable_setid(old->user_ns, CAP_SETUID)) { 895 if (!uid_eq(kuid, old->fsuid)) { 896 new->fsuid = kuid; 897 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 898 goto change_okay; 899 } 900 } 901 902 abort_creds(new); 903 return old_fsuid; 904 905 change_okay: 906 commit_creds(new); 907 return old_fsuid; 908 } 909 910 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 911 { 912 return __sys_setfsuid(uid); 913 } 914 915 /* 916 * Samma på svenska.. 917 */ 918 long __sys_setfsgid(gid_t gid) 919 { 920 const struct cred *old; 921 struct cred *new; 922 gid_t old_fsgid; 923 kgid_t kgid; 924 925 old = current_cred(); 926 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid); 927 928 kgid = make_kgid(old->user_ns, gid); 929 if (!gid_valid(kgid)) 930 return old_fsgid; 931 932 new = prepare_creds(); 933 if (!new) 934 return old_fsgid; 935 936 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) || 937 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) || 938 ns_capable_setid(old->user_ns, CAP_SETGID)) { 939 if (!gid_eq(kgid, old->fsgid)) { 940 new->fsgid = kgid; 941 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0) 942 goto change_okay; 943 } 944 } 945 946 abort_creds(new); 947 return old_fsgid; 948 949 change_okay: 950 commit_creds(new); 951 return old_fsgid; 952 } 953 954 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 955 { 956 return __sys_setfsgid(gid); 957 } 958 #endif /* CONFIG_MULTIUSER */ 959 960 /** 961 * sys_getpid - return the thread group id of the current process 962 * 963 * Note, despite the name, this returns the tgid not the pid. The tgid and 964 * the pid are identical unless CLONE_THREAD was specified on clone() in 965 * which case the tgid is the same in all threads of the same group. 966 * 967 * This is SMP safe as current->tgid does not change. 968 */ 969 SYSCALL_DEFINE0(getpid) 970 { 971 return task_tgid_vnr(current); 972 } 973 974 /* Thread ID - the internal kernel "pid" */ 975 SYSCALL_DEFINE0(gettid) 976 { 977 return task_pid_vnr(current); 978 } 979 980 /* 981 * Accessing ->real_parent is not SMP-safe, it could 982 * change from under us. However, we can use a stale 983 * value of ->real_parent under rcu_read_lock(), see 984 * release_task()->call_rcu(delayed_put_task_struct). 985 */ 986 SYSCALL_DEFINE0(getppid) 987 { 988 int pid; 989 990 rcu_read_lock(); 991 pid = task_tgid_vnr(rcu_dereference(current->real_parent)); 992 rcu_read_unlock(); 993 994 return pid; 995 } 996 997 SYSCALL_DEFINE0(getuid) 998 { 999 /* Only we change this so SMP safe */ 1000 return from_kuid_munged(current_user_ns(), current_uid()); 1001 } 1002 1003 SYSCALL_DEFINE0(geteuid) 1004 { 1005 /* Only we change this so SMP safe */ 1006 return from_kuid_munged(current_user_ns(), current_euid()); 1007 } 1008 1009 SYSCALL_DEFINE0(getgid) 1010 { 1011 /* Only we change this so SMP safe */ 1012 return from_kgid_munged(current_user_ns(), current_gid()); 1013 } 1014 1015 SYSCALL_DEFINE0(getegid) 1016 { 1017 /* Only we change this so SMP safe */ 1018 return from_kgid_munged(current_user_ns(), current_egid()); 1019 } 1020 1021 static void do_sys_times(struct tms *tms) 1022 { 1023 u64 tgutime, tgstime, cutime, cstime; 1024 1025 thread_group_cputime_adjusted(current, &tgutime, &tgstime); 1026 cutime = current->signal->cutime; 1027 cstime = current->signal->cstime; 1028 tms->tms_utime = nsec_to_clock_t(tgutime); 1029 tms->tms_stime = nsec_to_clock_t(tgstime); 1030 tms->tms_cutime = nsec_to_clock_t(cutime); 1031 tms->tms_cstime = nsec_to_clock_t(cstime); 1032 } 1033 1034 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 1035 { 1036 if (tbuf) { 1037 struct tms tmp; 1038 1039 do_sys_times(&tmp); 1040 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 1041 return -EFAULT; 1042 } 1043 force_successful_syscall_return(); 1044 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 1045 } 1046 1047 #ifdef CONFIG_COMPAT 1048 static compat_clock_t clock_t_to_compat_clock_t(clock_t x) 1049 { 1050 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x)); 1051 } 1052 1053 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf) 1054 { 1055 if (tbuf) { 1056 struct tms tms; 1057 struct compat_tms tmp; 1058 1059 do_sys_times(&tms); 1060 /* Convert our struct tms to the compat version. */ 1061 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime); 1062 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime); 1063 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime); 1064 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime); 1065 if (copy_to_user(tbuf, &tmp, sizeof(tmp))) 1066 return -EFAULT; 1067 } 1068 force_successful_syscall_return(); 1069 return compat_jiffies_to_clock_t(jiffies); 1070 } 1071 #endif 1072 1073 /* 1074 * This needs some heavy checking ... 1075 * I just haven't the stomach for it. I also don't fully 1076 * understand sessions/pgrp etc. Let somebody who does explain it. 1077 * 1078 * OK, I think I have the protection semantics right.... this is really 1079 * only important on a multi-user system anyway, to make sure one user 1080 * can't send a signal to a process owned by another. -TYT, 12/12/91 1081 * 1082 * !PF_FORKNOEXEC check to conform completely to POSIX. 1083 */ 1084 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 1085 { 1086 struct task_struct *p; 1087 struct task_struct *group_leader = current->group_leader; 1088 struct pid *pids[PIDTYPE_MAX] = { 0 }; 1089 struct pid *pgrp; 1090 int err; 1091 1092 if (!pid) 1093 pid = task_pid_vnr(group_leader); 1094 if (!pgid) 1095 pgid = pid; 1096 if (pgid < 0) 1097 return -EINVAL; 1098 rcu_read_lock(); 1099 1100 /* From this point forward we keep holding onto the tasklist lock 1101 * so that our parent does not change from under us. -DaveM 1102 */ 1103 write_lock_irq(&tasklist_lock); 1104 1105 err = -ESRCH; 1106 p = find_task_by_vpid(pid); 1107 if (!p) 1108 goto out; 1109 1110 err = -EINVAL; 1111 if (!thread_group_leader(p)) 1112 goto out; 1113 1114 if (same_thread_group(p->real_parent, group_leader)) { 1115 err = -EPERM; 1116 if (task_session(p) != task_session(group_leader)) 1117 goto out; 1118 err = -EACCES; 1119 if (!(p->flags & PF_FORKNOEXEC)) 1120 goto out; 1121 } else { 1122 err = -ESRCH; 1123 if (p != group_leader) 1124 goto out; 1125 } 1126 1127 err = -EPERM; 1128 if (p->signal->leader) 1129 goto out; 1130 1131 pgrp = task_pid(p); 1132 if (pgid != pid) { 1133 struct task_struct *g; 1134 1135 pgrp = find_vpid(pgid); 1136 g = pid_task(pgrp, PIDTYPE_PGID); 1137 if (!g || task_session(g) != task_session(group_leader)) 1138 goto out; 1139 } 1140 1141 err = security_task_setpgid(p, pgid); 1142 if (err) 1143 goto out; 1144 1145 if (task_pgrp(p) != pgrp) 1146 change_pid(pids, p, PIDTYPE_PGID, pgrp); 1147 1148 err = 0; 1149 out: 1150 /* All paths lead to here, thus we are safe. -DaveM */ 1151 write_unlock_irq(&tasklist_lock); 1152 rcu_read_unlock(); 1153 free_pids(pids); 1154 return err; 1155 } 1156 1157 static int do_getpgid(pid_t pid) 1158 { 1159 struct task_struct *p; 1160 struct pid *grp; 1161 int retval; 1162 1163 rcu_read_lock(); 1164 if (!pid) 1165 grp = task_pgrp(current); 1166 else { 1167 retval = -ESRCH; 1168 p = find_task_by_vpid(pid); 1169 if (!p) 1170 goto out; 1171 grp = task_pgrp(p); 1172 if (!grp) 1173 goto out; 1174 1175 retval = security_task_getpgid(p); 1176 if (retval) 1177 goto out; 1178 } 1179 retval = pid_vnr(grp); 1180 out: 1181 rcu_read_unlock(); 1182 return retval; 1183 } 1184 1185 SYSCALL_DEFINE1(getpgid, pid_t, pid) 1186 { 1187 return do_getpgid(pid); 1188 } 1189 1190 #ifdef __ARCH_WANT_SYS_GETPGRP 1191 1192 SYSCALL_DEFINE0(getpgrp) 1193 { 1194 return do_getpgid(0); 1195 } 1196 1197 #endif 1198 1199 SYSCALL_DEFINE1(getsid, pid_t, pid) 1200 { 1201 struct task_struct *p; 1202 struct pid *sid; 1203 int retval; 1204 1205 rcu_read_lock(); 1206 if (!pid) 1207 sid = task_session(current); 1208 else { 1209 retval = -ESRCH; 1210 p = find_task_by_vpid(pid); 1211 if (!p) 1212 goto out; 1213 sid = task_session(p); 1214 if (!sid) 1215 goto out; 1216 1217 retval = security_task_getsid(p); 1218 if (retval) 1219 goto out; 1220 } 1221 retval = pid_vnr(sid); 1222 out: 1223 rcu_read_unlock(); 1224 return retval; 1225 } 1226 1227 static void set_special_pids(struct pid **pids, struct pid *pid) 1228 { 1229 struct task_struct *curr = current->group_leader; 1230 1231 if (task_session(curr) != pid) 1232 change_pid(pids, curr, PIDTYPE_SID, pid); 1233 1234 if (task_pgrp(curr) != pid) 1235 change_pid(pids, curr, PIDTYPE_PGID, pid); 1236 } 1237 1238 int ksys_setsid(void) 1239 { 1240 struct task_struct *group_leader = current->group_leader; 1241 struct pid *sid = task_pid(group_leader); 1242 struct pid *pids[PIDTYPE_MAX] = { 0 }; 1243 pid_t session = pid_vnr(sid); 1244 int err = -EPERM; 1245 1246 write_lock_irq(&tasklist_lock); 1247 /* Fail if I am already a session leader */ 1248 if (group_leader->signal->leader) 1249 goto out; 1250 1251 /* Fail if a process group id already exists that equals the 1252 * proposed session id. 1253 */ 1254 if (pid_task(sid, PIDTYPE_PGID)) 1255 goto out; 1256 1257 group_leader->signal->leader = 1; 1258 set_special_pids(pids, sid); 1259 1260 proc_clear_tty(group_leader); 1261 1262 err = session; 1263 out: 1264 write_unlock_irq(&tasklist_lock); 1265 free_pids(pids); 1266 if (err > 0) { 1267 proc_sid_connector(group_leader); 1268 sched_autogroup_create_attach(group_leader); 1269 } 1270 return err; 1271 } 1272 1273 SYSCALL_DEFINE0(setsid) 1274 { 1275 return ksys_setsid(); 1276 } 1277 1278 DECLARE_RWSEM(uts_sem); 1279 1280 #ifdef COMPAT_UTS_MACHINE 1281 #define override_architecture(name) \ 1282 (personality(current->personality) == PER_LINUX32 && \ 1283 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ 1284 sizeof(COMPAT_UTS_MACHINE))) 1285 #else 1286 #define override_architecture(name) 0 1287 #endif 1288 1289 /* 1290 * Work around broken programs that cannot handle "Linux 3.0". 1291 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 1292 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be 1293 * 2.6.60. 1294 */ 1295 static int override_release(char __user *release, size_t len) 1296 { 1297 int ret = 0; 1298 1299 if (current->personality & UNAME26) { 1300 const char *rest = UTS_RELEASE; 1301 char buf[65] = { 0 }; 1302 int ndots = 0; 1303 unsigned v; 1304 size_t copy; 1305 1306 while (*rest) { 1307 if (*rest == '.' && ++ndots >= 3) 1308 break; 1309 if (!isdigit(*rest) && *rest != '.') 1310 break; 1311 rest++; 1312 } 1313 v = LINUX_VERSION_PATCHLEVEL + 60; 1314 copy = clamp_t(size_t, len, 1, sizeof(buf)); 1315 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest); 1316 ret = copy_to_user(release, buf, copy + 1); 1317 } 1318 return ret; 1319 } 1320 1321 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1322 { 1323 struct new_utsname tmp; 1324 1325 down_read(&uts_sem); 1326 memcpy(&tmp, utsname(), sizeof(tmp)); 1327 up_read(&uts_sem); 1328 if (copy_to_user(name, &tmp, sizeof(tmp))) 1329 return -EFAULT; 1330 1331 if (override_release(name->release, sizeof(name->release))) 1332 return -EFAULT; 1333 if (override_architecture(name)) 1334 return -EFAULT; 1335 return 0; 1336 } 1337 1338 #ifdef __ARCH_WANT_SYS_OLD_UNAME 1339 /* 1340 * Old cruft 1341 */ 1342 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) 1343 { 1344 struct old_utsname tmp; 1345 1346 if (!name) 1347 return -EFAULT; 1348 1349 down_read(&uts_sem); 1350 memcpy(&tmp, utsname(), sizeof(tmp)); 1351 up_read(&uts_sem); 1352 if (copy_to_user(name, &tmp, sizeof(tmp))) 1353 return -EFAULT; 1354 1355 if (override_release(name->release, sizeof(name->release))) 1356 return -EFAULT; 1357 if (override_architecture(name)) 1358 return -EFAULT; 1359 return 0; 1360 } 1361 1362 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) 1363 { 1364 struct oldold_utsname tmp; 1365 1366 if (!name) 1367 return -EFAULT; 1368 1369 memset(&tmp, 0, sizeof(tmp)); 1370 1371 down_read(&uts_sem); 1372 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN); 1373 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN); 1374 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN); 1375 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN); 1376 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN); 1377 up_read(&uts_sem); 1378 if (copy_to_user(name, &tmp, sizeof(tmp))) 1379 return -EFAULT; 1380 1381 if (override_architecture(name)) 1382 return -EFAULT; 1383 if (override_release(name->release, sizeof(name->release))) 1384 return -EFAULT; 1385 return 0; 1386 } 1387 #endif 1388 1389 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1390 { 1391 int errno; 1392 char tmp[__NEW_UTS_LEN]; 1393 1394 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1395 return -EPERM; 1396 1397 if (len < 0 || len > __NEW_UTS_LEN) 1398 return -EINVAL; 1399 errno = -EFAULT; 1400 if (!copy_from_user(tmp, name, len)) { 1401 struct new_utsname *u; 1402 1403 add_device_randomness(tmp, len); 1404 down_write(&uts_sem); 1405 u = utsname(); 1406 memcpy(u->nodename, tmp, len); 1407 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1408 errno = 0; 1409 uts_proc_notify(UTS_PROC_HOSTNAME); 1410 up_write(&uts_sem); 1411 } 1412 return errno; 1413 } 1414 1415 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1416 1417 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1418 { 1419 int i; 1420 struct new_utsname *u; 1421 char tmp[__NEW_UTS_LEN + 1]; 1422 1423 if (len < 0) 1424 return -EINVAL; 1425 down_read(&uts_sem); 1426 u = utsname(); 1427 i = 1 + strlen(u->nodename); 1428 if (i > len) 1429 i = len; 1430 memcpy(tmp, u->nodename, i); 1431 up_read(&uts_sem); 1432 if (copy_to_user(name, tmp, i)) 1433 return -EFAULT; 1434 return 0; 1435 } 1436 1437 #endif 1438 1439 /* 1440 * Only setdomainname; getdomainname can be implemented by calling 1441 * uname() 1442 */ 1443 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1444 { 1445 int errno; 1446 char tmp[__NEW_UTS_LEN]; 1447 1448 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1449 return -EPERM; 1450 if (len < 0 || len > __NEW_UTS_LEN) 1451 return -EINVAL; 1452 1453 errno = -EFAULT; 1454 if (!copy_from_user(tmp, name, len)) { 1455 struct new_utsname *u; 1456 1457 add_device_randomness(tmp, len); 1458 down_write(&uts_sem); 1459 u = utsname(); 1460 memcpy(u->domainname, tmp, len); 1461 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1462 errno = 0; 1463 uts_proc_notify(UTS_PROC_DOMAINNAME); 1464 up_write(&uts_sem); 1465 } 1466 return errno; 1467 } 1468 1469 /* make sure you are allowed to change @tsk limits before calling this */ 1470 static int do_prlimit(struct task_struct *tsk, unsigned int resource, 1471 struct rlimit *new_rlim, struct rlimit *old_rlim) 1472 { 1473 struct rlimit *rlim; 1474 int retval = 0; 1475 1476 if (resource >= RLIM_NLIMITS) 1477 return -EINVAL; 1478 resource = array_index_nospec(resource, RLIM_NLIMITS); 1479 1480 if (new_rlim) { 1481 if (new_rlim->rlim_cur > new_rlim->rlim_max) 1482 return -EINVAL; 1483 if (resource == RLIMIT_NOFILE && 1484 new_rlim->rlim_max > sysctl_nr_open) 1485 return -EPERM; 1486 } 1487 1488 /* Holding a refcount on tsk protects tsk->signal from disappearing. */ 1489 rlim = tsk->signal->rlim + resource; 1490 task_lock(tsk->group_leader); 1491 if (new_rlim) { 1492 /* 1493 * Keep the capable check against init_user_ns until cgroups can 1494 * contain all limits. 1495 */ 1496 if (new_rlim->rlim_max > rlim->rlim_max && 1497 !capable(CAP_SYS_RESOURCE)) 1498 retval = -EPERM; 1499 if (!retval) 1500 retval = security_task_setrlimit(tsk, resource, new_rlim); 1501 } 1502 if (!retval) { 1503 if (old_rlim) 1504 *old_rlim = *rlim; 1505 if (new_rlim) 1506 *rlim = *new_rlim; 1507 } 1508 task_unlock(tsk->group_leader); 1509 1510 /* 1511 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not 1512 * infinite. In case of RLIM_INFINITY the posix CPU timer code 1513 * ignores the rlimit. 1514 */ 1515 if (!retval && new_rlim && resource == RLIMIT_CPU && 1516 new_rlim->rlim_cur != RLIM_INFINITY && 1517 IS_ENABLED(CONFIG_POSIX_TIMERS)) { 1518 /* 1519 * update_rlimit_cpu can fail if the task is exiting, but there 1520 * may be other tasks in the thread group that are not exiting, 1521 * and they need their cpu timers adjusted. 1522 * 1523 * The group_leader is the last task to be released, so if we 1524 * cannot update_rlimit_cpu on it, then the entire process is 1525 * exiting and we do not need to update at all. 1526 */ 1527 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur); 1528 } 1529 1530 return retval; 1531 } 1532 1533 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1534 { 1535 struct rlimit value; 1536 int ret; 1537 1538 ret = do_prlimit(current, resource, NULL, &value); 1539 if (!ret) 1540 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1541 1542 return ret; 1543 } 1544 1545 #ifdef CONFIG_COMPAT 1546 1547 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource, 1548 struct compat_rlimit __user *, rlim) 1549 { 1550 struct rlimit r; 1551 struct compat_rlimit r32; 1552 1553 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit))) 1554 return -EFAULT; 1555 1556 if (r32.rlim_cur == COMPAT_RLIM_INFINITY) 1557 r.rlim_cur = RLIM_INFINITY; 1558 else 1559 r.rlim_cur = r32.rlim_cur; 1560 if (r32.rlim_max == COMPAT_RLIM_INFINITY) 1561 r.rlim_max = RLIM_INFINITY; 1562 else 1563 r.rlim_max = r32.rlim_max; 1564 return do_prlimit(current, resource, &r, NULL); 1565 } 1566 1567 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource, 1568 struct compat_rlimit __user *, rlim) 1569 { 1570 struct rlimit r; 1571 int ret; 1572 1573 ret = do_prlimit(current, resource, NULL, &r); 1574 if (!ret) { 1575 struct compat_rlimit r32; 1576 if (r.rlim_cur > COMPAT_RLIM_INFINITY) 1577 r32.rlim_cur = COMPAT_RLIM_INFINITY; 1578 else 1579 r32.rlim_cur = r.rlim_cur; 1580 if (r.rlim_max > COMPAT_RLIM_INFINITY) 1581 r32.rlim_max = COMPAT_RLIM_INFINITY; 1582 else 1583 r32.rlim_max = r.rlim_max; 1584 1585 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit))) 1586 return -EFAULT; 1587 } 1588 return ret; 1589 } 1590 1591 #endif 1592 1593 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1594 1595 /* 1596 * Back compatibility for getrlimit. Needed for some apps. 1597 */ 1598 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1599 struct rlimit __user *, rlim) 1600 { 1601 struct rlimit x; 1602 if (resource >= RLIM_NLIMITS) 1603 return -EINVAL; 1604 1605 resource = array_index_nospec(resource, RLIM_NLIMITS); 1606 task_lock(current->group_leader); 1607 x = current->signal->rlim[resource]; 1608 task_unlock(current->group_leader); 1609 if (x.rlim_cur > 0x7FFFFFFF) 1610 x.rlim_cur = 0x7FFFFFFF; 1611 if (x.rlim_max > 0x7FFFFFFF) 1612 x.rlim_max = 0x7FFFFFFF; 1613 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0; 1614 } 1615 1616 #ifdef CONFIG_COMPAT 1617 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1618 struct compat_rlimit __user *, rlim) 1619 { 1620 struct rlimit r; 1621 1622 if (resource >= RLIM_NLIMITS) 1623 return -EINVAL; 1624 1625 resource = array_index_nospec(resource, RLIM_NLIMITS); 1626 task_lock(current->group_leader); 1627 r = current->signal->rlim[resource]; 1628 task_unlock(current->group_leader); 1629 if (r.rlim_cur > 0x7FFFFFFF) 1630 r.rlim_cur = 0x7FFFFFFF; 1631 if (r.rlim_max > 0x7FFFFFFF) 1632 r.rlim_max = 0x7FFFFFFF; 1633 1634 if (put_user(r.rlim_cur, &rlim->rlim_cur) || 1635 put_user(r.rlim_max, &rlim->rlim_max)) 1636 return -EFAULT; 1637 return 0; 1638 } 1639 #endif 1640 1641 #endif 1642 1643 static inline bool rlim64_is_infinity(__u64 rlim64) 1644 { 1645 #if BITS_PER_LONG < 64 1646 return rlim64 >= ULONG_MAX; 1647 #else 1648 return rlim64 == RLIM64_INFINITY; 1649 #endif 1650 } 1651 1652 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) 1653 { 1654 if (rlim->rlim_cur == RLIM_INFINITY) 1655 rlim64->rlim_cur = RLIM64_INFINITY; 1656 else 1657 rlim64->rlim_cur = rlim->rlim_cur; 1658 if (rlim->rlim_max == RLIM_INFINITY) 1659 rlim64->rlim_max = RLIM64_INFINITY; 1660 else 1661 rlim64->rlim_max = rlim->rlim_max; 1662 } 1663 1664 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) 1665 { 1666 if (rlim64_is_infinity(rlim64->rlim_cur)) 1667 rlim->rlim_cur = RLIM_INFINITY; 1668 else 1669 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; 1670 if (rlim64_is_infinity(rlim64->rlim_max)) 1671 rlim->rlim_max = RLIM_INFINITY; 1672 else 1673 rlim->rlim_max = (unsigned long)rlim64->rlim_max; 1674 } 1675 1676 /* rcu lock must be held */ 1677 static int check_prlimit_permission(struct task_struct *task, 1678 unsigned int flags) 1679 { 1680 const struct cred *cred = current_cred(), *tcred; 1681 bool id_match; 1682 1683 if (current == task) 1684 return 0; 1685 1686 tcred = __task_cred(task); 1687 id_match = (uid_eq(cred->uid, tcred->euid) && 1688 uid_eq(cred->uid, tcred->suid) && 1689 uid_eq(cred->uid, tcred->uid) && 1690 gid_eq(cred->gid, tcred->egid) && 1691 gid_eq(cred->gid, tcred->sgid) && 1692 gid_eq(cred->gid, tcred->gid)); 1693 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE)) 1694 return -EPERM; 1695 1696 return security_task_prlimit(cred, tcred, flags); 1697 } 1698 1699 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, 1700 const struct rlimit64 __user *, new_rlim, 1701 struct rlimit64 __user *, old_rlim) 1702 { 1703 struct rlimit64 old64, new64; 1704 struct rlimit old, new; 1705 struct task_struct *tsk; 1706 unsigned int checkflags = 0; 1707 int ret; 1708 1709 if (old_rlim) 1710 checkflags |= LSM_PRLIMIT_READ; 1711 1712 if (new_rlim) { 1713 if (copy_from_user(&new64, new_rlim, sizeof(new64))) 1714 return -EFAULT; 1715 rlim64_to_rlim(&new64, &new); 1716 checkflags |= LSM_PRLIMIT_WRITE; 1717 } 1718 1719 rcu_read_lock(); 1720 tsk = pid ? find_task_by_vpid(pid) : current; 1721 if (!tsk) { 1722 rcu_read_unlock(); 1723 return -ESRCH; 1724 } 1725 ret = check_prlimit_permission(tsk, checkflags); 1726 if (ret) { 1727 rcu_read_unlock(); 1728 return ret; 1729 } 1730 get_task_struct(tsk); 1731 rcu_read_unlock(); 1732 1733 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, 1734 old_rlim ? &old : NULL); 1735 1736 if (!ret && old_rlim) { 1737 rlim_to_rlim64(&old, &old64); 1738 if (copy_to_user(old_rlim, &old64, sizeof(old64))) 1739 ret = -EFAULT; 1740 } 1741 1742 put_task_struct(tsk); 1743 return ret; 1744 } 1745 1746 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1747 { 1748 struct rlimit new_rlim; 1749 1750 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1751 return -EFAULT; 1752 return do_prlimit(current, resource, &new_rlim, NULL); 1753 } 1754 1755 /* 1756 * It would make sense to put struct rusage in the task_struct, 1757 * except that would make the task_struct be *really big*. After 1758 * task_struct gets moved into malloc'ed memory, it would 1759 * make sense to do this. It will make moving the rest of the information 1760 * a lot simpler! (Which we're not doing right now because we're not 1761 * measuring them yet). 1762 * 1763 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1764 * races with threads incrementing their own counters. But since word 1765 * reads are atomic, we either get new values or old values and we don't 1766 * care which for the sums. We always take the siglock to protect reading 1767 * the c* fields from p->signal from races with exit.c updating those 1768 * fields when reaping, so a sample either gets all the additions of a 1769 * given child after it's reaped, or none so this sample is before reaping. 1770 * 1771 * Locking: 1772 * We need to take the siglock for CHILDEREN, SELF and BOTH 1773 * for the cases current multithreaded, non-current single threaded 1774 * non-current multithreaded. Thread traversal is now safe with 1775 * the siglock held. 1776 * Strictly speaking, we donot need to take the siglock if we are current and 1777 * single threaded, as no one else can take our signal_struct away, no one 1778 * else can reap the children to update signal->c* counters, and no one else 1779 * can race with the signal-> fields. If we do not take any lock, the 1780 * signal-> fields could be read out of order while another thread was just 1781 * exiting. So we should place a read memory barrier when we avoid the lock. 1782 * On the writer side, write memory barrier is implied in __exit_signal 1783 * as __exit_signal releases the siglock spinlock after updating the signal-> 1784 * fields. But we don't do this yet to keep things simple. 1785 * 1786 */ 1787 1788 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1789 { 1790 r->ru_nvcsw += t->nvcsw; 1791 r->ru_nivcsw += t->nivcsw; 1792 r->ru_minflt += t->min_flt; 1793 r->ru_majflt += t->maj_flt; 1794 r->ru_inblock += task_io_get_inblock(t); 1795 r->ru_oublock += task_io_get_oublock(t); 1796 } 1797 1798 void getrusage(struct task_struct *p, int who, struct rusage *r) 1799 { 1800 struct task_struct *t; 1801 unsigned long flags; 1802 u64 tgutime, tgstime, utime, stime; 1803 unsigned long maxrss; 1804 struct mm_struct *mm; 1805 struct signal_struct *sig = p->signal; 1806 unsigned int seq = 0; 1807 1808 retry: 1809 memset(r, 0, sizeof(*r)); 1810 utime = stime = 0; 1811 maxrss = 0; 1812 1813 if (who == RUSAGE_THREAD) { 1814 task_cputime_adjusted(current, &utime, &stime); 1815 accumulate_thread_rusage(p, r); 1816 maxrss = sig->maxrss; 1817 goto out_thread; 1818 } 1819 1820 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 1821 1822 switch (who) { 1823 case RUSAGE_BOTH: 1824 case RUSAGE_CHILDREN: 1825 utime = sig->cutime; 1826 stime = sig->cstime; 1827 r->ru_nvcsw = sig->cnvcsw; 1828 r->ru_nivcsw = sig->cnivcsw; 1829 r->ru_minflt = sig->cmin_flt; 1830 r->ru_majflt = sig->cmaj_flt; 1831 r->ru_inblock = sig->cinblock; 1832 r->ru_oublock = sig->coublock; 1833 maxrss = sig->cmaxrss; 1834 1835 if (who == RUSAGE_CHILDREN) 1836 break; 1837 fallthrough; 1838 1839 case RUSAGE_SELF: 1840 r->ru_nvcsw += sig->nvcsw; 1841 r->ru_nivcsw += sig->nivcsw; 1842 r->ru_minflt += sig->min_flt; 1843 r->ru_majflt += sig->maj_flt; 1844 r->ru_inblock += sig->inblock; 1845 r->ru_oublock += sig->oublock; 1846 if (maxrss < sig->maxrss) 1847 maxrss = sig->maxrss; 1848 1849 rcu_read_lock(); 1850 __for_each_thread(sig, t) 1851 accumulate_thread_rusage(t, r); 1852 rcu_read_unlock(); 1853 1854 break; 1855 1856 default: 1857 BUG(); 1858 } 1859 1860 if (need_seqretry(&sig->stats_lock, seq)) { 1861 seq = 1; 1862 goto retry; 1863 } 1864 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 1865 1866 if (who == RUSAGE_CHILDREN) 1867 goto out_children; 1868 1869 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1870 utime += tgutime; 1871 stime += tgstime; 1872 1873 out_thread: 1874 mm = get_task_mm(p); 1875 if (mm) { 1876 setmax_mm_hiwater_rss(&maxrss, mm); 1877 mmput(mm); 1878 } 1879 1880 out_children: 1881 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ 1882 r->ru_utime = ns_to_kernel_old_timeval(utime); 1883 r->ru_stime = ns_to_kernel_old_timeval(stime); 1884 } 1885 1886 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1887 { 1888 struct rusage r; 1889 1890 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1891 who != RUSAGE_THREAD) 1892 return -EINVAL; 1893 1894 getrusage(current, who, &r); 1895 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1896 } 1897 1898 #ifdef CONFIG_COMPAT 1899 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru) 1900 { 1901 struct rusage r; 1902 1903 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1904 who != RUSAGE_THREAD) 1905 return -EINVAL; 1906 1907 getrusage(current, who, &r); 1908 return put_compat_rusage(&r, ru); 1909 } 1910 #endif 1911 1912 SYSCALL_DEFINE1(umask, int, mask) 1913 { 1914 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1915 return mask; 1916 } 1917 1918 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd) 1919 { 1920 CLASS(fd, exe)(fd); 1921 struct inode *inode; 1922 int err; 1923 1924 if (fd_empty(exe)) 1925 return -EBADF; 1926 1927 inode = file_inode(fd_file(exe)); 1928 1929 /* 1930 * Because the original mm->exe_file points to executable file, make 1931 * sure that this one is executable as well, to avoid breaking an 1932 * overall picture. 1933 */ 1934 if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path)) 1935 return -EACCES; 1936 1937 err = file_permission(fd_file(exe), MAY_EXEC); 1938 if (err) 1939 return err; 1940 1941 return replace_mm_exe_file(mm, fd_file(exe)); 1942 } 1943 1944 /* 1945 * Check arithmetic relations of passed addresses. 1946 * 1947 * WARNING: we don't require any capability here so be very careful 1948 * in what is allowed for modification from userspace. 1949 */ 1950 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map) 1951 { 1952 unsigned long mmap_max_addr = TASK_SIZE; 1953 int error = -EINVAL, i; 1954 1955 static const unsigned char offsets[] = { 1956 offsetof(struct prctl_mm_map, start_code), 1957 offsetof(struct prctl_mm_map, end_code), 1958 offsetof(struct prctl_mm_map, start_data), 1959 offsetof(struct prctl_mm_map, end_data), 1960 offsetof(struct prctl_mm_map, start_brk), 1961 offsetof(struct prctl_mm_map, brk), 1962 offsetof(struct prctl_mm_map, start_stack), 1963 offsetof(struct prctl_mm_map, arg_start), 1964 offsetof(struct prctl_mm_map, arg_end), 1965 offsetof(struct prctl_mm_map, env_start), 1966 offsetof(struct prctl_mm_map, env_end), 1967 }; 1968 1969 /* 1970 * Make sure the members are not somewhere outside 1971 * of allowed address space. 1972 */ 1973 for (i = 0; i < ARRAY_SIZE(offsets); i++) { 1974 u64 val = *(u64 *)((char *)prctl_map + offsets[i]); 1975 1976 if ((unsigned long)val >= mmap_max_addr || 1977 (unsigned long)val < mmap_min_addr) 1978 goto out; 1979 } 1980 1981 /* 1982 * Make sure the pairs are ordered. 1983 */ 1984 #define __prctl_check_order(__m1, __op, __m2) \ 1985 ((unsigned long)prctl_map->__m1 __op \ 1986 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL 1987 error = __prctl_check_order(start_code, <, end_code); 1988 error |= __prctl_check_order(start_data,<=, end_data); 1989 error |= __prctl_check_order(start_brk, <=, brk); 1990 error |= __prctl_check_order(arg_start, <=, arg_end); 1991 error |= __prctl_check_order(env_start, <=, env_end); 1992 if (error) 1993 goto out; 1994 #undef __prctl_check_order 1995 1996 error = -EINVAL; 1997 1998 /* 1999 * Neither we should allow to override limits if they set. 2000 */ 2001 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk, 2002 prctl_map->start_brk, prctl_map->end_data, 2003 prctl_map->start_data)) 2004 goto out; 2005 2006 error = 0; 2007 out: 2008 return error; 2009 } 2010 2011 #ifdef CONFIG_CHECKPOINT_RESTORE 2012 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size) 2013 { 2014 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, }; 2015 unsigned long user_auxv[AT_VECTOR_SIZE]; 2016 struct mm_struct *mm = current->mm; 2017 int error; 2018 2019 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 2020 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256); 2021 2022 if (opt == PR_SET_MM_MAP_SIZE) 2023 return put_user((unsigned int)sizeof(prctl_map), 2024 (unsigned int __user *)addr); 2025 2026 if (data_size != sizeof(prctl_map)) 2027 return -EINVAL; 2028 2029 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map))) 2030 return -EFAULT; 2031 2032 error = validate_prctl_map_addr(&prctl_map); 2033 if (error) 2034 return error; 2035 2036 if (prctl_map.auxv_size) { 2037 /* 2038 * Someone is trying to cheat the auxv vector. 2039 */ 2040 if (!prctl_map.auxv || 2041 prctl_map.auxv_size > sizeof(mm->saved_auxv)) 2042 return -EINVAL; 2043 2044 memset(user_auxv, 0, sizeof(user_auxv)); 2045 if (copy_from_user(user_auxv, 2046 (const void __user *)prctl_map.auxv, 2047 prctl_map.auxv_size)) 2048 return -EFAULT; 2049 2050 /* Last entry must be AT_NULL as specification requires */ 2051 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL; 2052 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL; 2053 } 2054 2055 if (prctl_map.exe_fd != (u32)-1) { 2056 /* 2057 * Check if the current user is checkpoint/restore capable. 2058 * At the time of this writing, it checks for CAP_SYS_ADMIN 2059 * or CAP_CHECKPOINT_RESTORE. 2060 * Note that a user with access to ptrace can masquerade an 2061 * arbitrary program as any executable, even setuid ones. 2062 * This may have implications in the tomoyo subsystem. 2063 */ 2064 if (!checkpoint_restore_ns_capable(current_user_ns())) 2065 return -EPERM; 2066 2067 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd); 2068 if (error) 2069 return error; 2070 } 2071 2072 /* 2073 * arg_lock protects concurrent updates but we still need mmap_lock for 2074 * read to exclude races with sys_brk. 2075 */ 2076 mmap_read_lock(mm); 2077 2078 /* 2079 * We don't validate if these members are pointing to 2080 * real present VMAs because application may have correspond 2081 * VMAs already unmapped and kernel uses these members for statistics 2082 * output in procfs mostly, except 2083 * 2084 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups 2085 * for VMAs when updating these members so anything wrong written 2086 * here cause kernel to swear at userspace program but won't lead 2087 * to any problem in kernel itself 2088 */ 2089 2090 spin_lock(&mm->arg_lock); 2091 mm->start_code = prctl_map.start_code; 2092 mm->end_code = prctl_map.end_code; 2093 mm->start_data = prctl_map.start_data; 2094 mm->end_data = prctl_map.end_data; 2095 mm->start_brk = prctl_map.start_brk; 2096 mm->brk = prctl_map.brk; 2097 mm->start_stack = prctl_map.start_stack; 2098 mm->arg_start = prctl_map.arg_start; 2099 mm->arg_end = prctl_map.arg_end; 2100 mm->env_start = prctl_map.env_start; 2101 mm->env_end = prctl_map.env_end; 2102 spin_unlock(&mm->arg_lock); 2103 2104 /* 2105 * Note this update of @saved_auxv is lockless thus 2106 * if someone reads this member in procfs while we're 2107 * updating -- it may get partly updated results. It's 2108 * known and acceptable trade off: we leave it as is to 2109 * not introduce additional locks here making the kernel 2110 * more complex. 2111 */ 2112 if (prctl_map.auxv_size) 2113 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv)); 2114 2115 mmap_read_unlock(mm); 2116 return 0; 2117 } 2118 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2119 2120 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr, 2121 unsigned long len) 2122 { 2123 /* 2124 * This doesn't move the auxiliary vector itself since it's pinned to 2125 * mm_struct, but it permits filling the vector with new values. It's 2126 * up to the caller to provide sane values here, otherwise userspace 2127 * tools which use this vector might be unhappy. 2128 */ 2129 unsigned long user_auxv[AT_VECTOR_SIZE] = {}; 2130 2131 if (len > sizeof(user_auxv)) 2132 return -EINVAL; 2133 2134 if (copy_from_user(user_auxv, (const void __user *)addr, len)) 2135 return -EFAULT; 2136 2137 /* Make sure the last entry is always AT_NULL */ 2138 user_auxv[AT_VECTOR_SIZE - 2] = 0; 2139 user_auxv[AT_VECTOR_SIZE - 1] = 0; 2140 2141 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 2142 2143 task_lock(current); 2144 memcpy(mm->saved_auxv, user_auxv, len); 2145 task_unlock(current); 2146 2147 return 0; 2148 } 2149 2150 static int prctl_set_mm(int opt, unsigned long addr, 2151 unsigned long arg4, unsigned long arg5) 2152 { 2153 struct mm_struct *mm = current->mm; 2154 struct prctl_mm_map prctl_map = { 2155 .auxv = NULL, 2156 .auxv_size = 0, 2157 .exe_fd = -1, 2158 }; 2159 struct vm_area_struct *vma; 2160 int error; 2161 2162 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV && 2163 opt != PR_SET_MM_MAP && 2164 opt != PR_SET_MM_MAP_SIZE))) 2165 return -EINVAL; 2166 2167 #ifdef CONFIG_CHECKPOINT_RESTORE 2168 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE) 2169 return prctl_set_mm_map(opt, (const void __user *)addr, arg4); 2170 #endif 2171 2172 if (!capable(CAP_SYS_RESOURCE)) 2173 return -EPERM; 2174 2175 if (opt == PR_SET_MM_EXE_FILE) 2176 return prctl_set_mm_exe_file(mm, (unsigned int)addr); 2177 2178 if (opt == PR_SET_MM_AUXV) 2179 return prctl_set_auxv(mm, addr, arg4); 2180 2181 if (addr >= TASK_SIZE || addr < mmap_min_addr) 2182 return -EINVAL; 2183 2184 error = -EINVAL; 2185 2186 /* 2187 * arg_lock protects concurrent updates of arg boundaries, we need 2188 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr 2189 * validation. 2190 */ 2191 mmap_read_lock(mm); 2192 vma = find_vma(mm, addr); 2193 2194 spin_lock(&mm->arg_lock); 2195 prctl_map.start_code = mm->start_code; 2196 prctl_map.end_code = mm->end_code; 2197 prctl_map.start_data = mm->start_data; 2198 prctl_map.end_data = mm->end_data; 2199 prctl_map.start_brk = mm->start_brk; 2200 prctl_map.brk = mm->brk; 2201 prctl_map.start_stack = mm->start_stack; 2202 prctl_map.arg_start = mm->arg_start; 2203 prctl_map.arg_end = mm->arg_end; 2204 prctl_map.env_start = mm->env_start; 2205 prctl_map.env_end = mm->env_end; 2206 2207 switch (opt) { 2208 case PR_SET_MM_START_CODE: 2209 prctl_map.start_code = addr; 2210 break; 2211 case PR_SET_MM_END_CODE: 2212 prctl_map.end_code = addr; 2213 break; 2214 case PR_SET_MM_START_DATA: 2215 prctl_map.start_data = addr; 2216 break; 2217 case PR_SET_MM_END_DATA: 2218 prctl_map.end_data = addr; 2219 break; 2220 case PR_SET_MM_START_STACK: 2221 prctl_map.start_stack = addr; 2222 break; 2223 case PR_SET_MM_START_BRK: 2224 prctl_map.start_brk = addr; 2225 break; 2226 case PR_SET_MM_BRK: 2227 prctl_map.brk = addr; 2228 break; 2229 case PR_SET_MM_ARG_START: 2230 prctl_map.arg_start = addr; 2231 break; 2232 case PR_SET_MM_ARG_END: 2233 prctl_map.arg_end = addr; 2234 break; 2235 case PR_SET_MM_ENV_START: 2236 prctl_map.env_start = addr; 2237 break; 2238 case PR_SET_MM_ENV_END: 2239 prctl_map.env_end = addr; 2240 break; 2241 default: 2242 goto out; 2243 } 2244 2245 error = validate_prctl_map_addr(&prctl_map); 2246 if (error) 2247 goto out; 2248 2249 switch (opt) { 2250 /* 2251 * If command line arguments and environment 2252 * are placed somewhere else on stack, we can 2253 * set them up here, ARG_START/END to setup 2254 * command line arguments and ENV_START/END 2255 * for environment. 2256 */ 2257 case PR_SET_MM_START_STACK: 2258 case PR_SET_MM_ARG_START: 2259 case PR_SET_MM_ARG_END: 2260 case PR_SET_MM_ENV_START: 2261 case PR_SET_MM_ENV_END: 2262 if (!vma) { 2263 error = -EFAULT; 2264 goto out; 2265 } 2266 } 2267 2268 mm->start_code = prctl_map.start_code; 2269 mm->end_code = prctl_map.end_code; 2270 mm->start_data = prctl_map.start_data; 2271 mm->end_data = prctl_map.end_data; 2272 mm->start_brk = prctl_map.start_brk; 2273 mm->brk = prctl_map.brk; 2274 mm->start_stack = prctl_map.start_stack; 2275 mm->arg_start = prctl_map.arg_start; 2276 mm->arg_end = prctl_map.arg_end; 2277 mm->env_start = prctl_map.env_start; 2278 mm->env_end = prctl_map.env_end; 2279 2280 error = 0; 2281 out: 2282 spin_unlock(&mm->arg_lock); 2283 mmap_read_unlock(mm); 2284 return error; 2285 } 2286 2287 #ifdef CONFIG_CHECKPOINT_RESTORE 2288 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) 2289 { 2290 return put_user(me->clear_child_tid, tid_addr); 2291 } 2292 #else 2293 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) 2294 { 2295 return -EINVAL; 2296 } 2297 #endif 2298 2299 static int propagate_has_child_subreaper(struct task_struct *p, void *data) 2300 { 2301 /* 2302 * If task has has_child_subreaper - all its descendants 2303 * already have these flag too and new descendants will 2304 * inherit it on fork, skip them. 2305 * 2306 * If we've found child_reaper - skip descendants in 2307 * it's subtree as they will never get out pidns. 2308 */ 2309 if (p->signal->has_child_subreaper || 2310 is_child_reaper(task_pid(p))) 2311 return 0; 2312 2313 p->signal->has_child_subreaper = 1; 2314 return 1; 2315 } 2316 2317 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which) 2318 { 2319 return -EINVAL; 2320 } 2321 2322 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which, 2323 unsigned long ctrl) 2324 { 2325 return -EINVAL; 2326 } 2327 2328 int __weak arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status) 2329 { 2330 return -EINVAL; 2331 } 2332 2333 int __weak arch_set_shadow_stack_status(struct task_struct *t, unsigned long status) 2334 { 2335 return -EINVAL; 2336 } 2337 2338 int __weak arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status) 2339 { 2340 return -EINVAL; 2341 } 2342 2343 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE) 2344 2345 #ifdef CONFIG_ANON_VMA_NAME 2346 2347 #define ANON_VMA_NAME_MAX_LEN 80 2348 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]" 2349 2350 static inline bool is_valid_name_char(char ch) 2351 { 2352 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */ 2353 return ch > 0x1f && ch < 0x7f && 2354 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch); 2355 } 2356 2357 static int prctl_set_vma(unsigned long opt, unsigned long addr, 2358 unsigned long size, unsigned long arg) 2359 { 2360 struct mm_struct *mm = current->mm; 2361 const char __user *uname; 2362 struct anon_vma_name *anon_name = NULL; 2363 int error; 2364 2365 switch (opt) { 2366 case PR_SET_VMA_ANON_NAME: 2367 uname = (const char __user *)arg; 2368 if (uname) { 2369 char *name, *pch; 2370 2371 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN); 2372 if (IS_ERR(name)) 2373 return PTR_ERR(name); 2374 2375 for (pch = name; *pch != '\0'; pch++) { 2376 if (!is_valid_name_char(*pch)) { 2377 kfree(name); 2378 return -EINVAL; 2379 } 2380 } 2381 /* anon_vma has its own copy */ 2382 anon_name = anon_vma_name_alloc(name); 2383 kfree(name); 2384 if (!anon_name) 2385 return -ENOMEM; 2386 2387 } 2388 2389 mmap_write_lock(mm); 2390 error = madvise_set_anon_name(mm, addr, size, anon_name); 2391 mmap_write_unlock(mm); 2392 anon_vma_name_put(anon_name); 2393 break; 2394 default: 2395 error = -EINVAL; 2396 } 2397 2398 return error; 2399 } 2400 2401 #else /* CONFIG_ANON_VMA_NAME */ 2402 static int prctl_set_vma(unsigned long opt, unsigned long start, 2403 unsigned long size, unsigned long arg) 2404 { 2405 return -EINVAL; 2406 } 2407 #endif /* CONFIG_ANON_VMA_NAME */ 2408 2409 static inline unsigned long get_current_mdwe(void) 2410 { 2411 unsigned long ret = 0; 2412 2413 if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags)) 2414 ret |= PR_MDWE_REFUSE_EXEC_GAIN; 2415 if (test_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags)) 2416 ret |= PR_MDWE_NO_INHERIT; 2417 2418 return ret; 2419 } 2420 2421 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3, 2422 unsigned long arg4, unsigned long arg5) 2423 { 2424 unsigned long current_bits; 2425 2426 if (arg3 || arg4 || arg5) 2427 return -EINVAL; 2428 2429 if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT)) 2430 return -EINVAL; 2431 2432 /* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */ 2433 if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN)) 2434 return -EINVAL; 2435 2436 /* 2437 * EOPNOTSUPP might be more appropriate here in principle, but 2438 * existing userspace depends on EINVAL specifically. 2439 */ 2440 if (!arch_memory_deny_write_exec_supported()) 2441 return -EINVAL; 2442 2443 current_bits = get_current_mdwe(); 2444 if (current_bits && current_bits != bits) 2445 return -EPERM; /* Cannot unset the flags */ 2446 2447 if (bits & PR_MDWE_NO_INHERIT) 2448 set_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags); 2449 if (bits & PR_MDWE_REFUSE_EXEC_GAIN) 2450 set_bit(MMF_HAS_MDWE, ¤t->mm->flags); 2451 2452 return 0; 2453 } 2454 2455 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3, 2456 unsigned long arg4, unsigned long arg5) 2457 { 2458 if (arg2 || arg3 || arg4 || arg5) 2459 return -EINVAL; 2460 return get_current_mdwe(); 2461 } 2462 2463 static int prctl_get_auxv(void __user *addr, unsigned long len) 2464 { 2465 struct mm_struct *mm = current->mm; 2466 unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len); 2467 2468 if (size && copy_to_user(addr, mm->saved_auxv, size)) 2469 return -EFAULT; 2470 return sizeof(mm->saved_auxv); 2471 } 2472 2473 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 2474 unsigned long, arg4, unsigned long, arg5) 2475 { 2476 struct task_struct *me = current; 2477 unsigned char comm[sizeof(me->comm)]; 2478 long error; 2479 2480 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 2481 if (error != -ENOSYS) 2482 return error; 2483 2484 error = 0; 2485 switch (option) { 2486 case PR_SET_PDEATHSIG: 2487 if (!valid_signal(arg2)) { 2488 error = -EINVAL; 2489 break; 2490 } 2491 me->pdeath_signal = arg2; 2492 break; 2493 case PR_GET_PDEATHSIG: 2494 error = put_user(me->pdeath_signal, (int __user *)arg2); 2495 break; 2496 case PR_GET_DUMPABLE: 2497 error = get_dumpable(me->mm); 2498 break; 2499 case PR_SET_DUMPABLE: 2500 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) { 2501 error = -EINVAL; 2502 break; 2503 } 2504 set_dumpable(me->mm, arg2); 2505 break; 2506 2507 case PR_SET_UNALIGN: 2508 error = SET_UNALIGN_CTL(me, arg2); 2509 break; 2510 case PR_GET_UNALIGN: 2511 error = GET_UNALIGN_CTL(me, arg2); 2512 break; 2513 case PR_SET_FPEMU: 2514 error = SET_FPEMU_CTL(me, arg2); 2515 break; 2516 case PR_GET_FPEMU: 2517 error = GET_FPEMU_CTL(me, arg2); 2518 break; 2519 case PR_SET_FPEXC: 2520 error = SET_FPEXC_CTL(me, arg2); 2521 break; 2522 case PR_GET_FPEXC: 2523 error = GET_FPEXC_CTL(me, arg2); 2524 break; 2525 case PR_GET_TIMING: 2526 error = PR_TIMING_STATISTICAL; 2527 break; 2528 case PR_SET_TIMING: 2529 if (arg2 != PR_TIMING_STATISTICAL) 2530 error = -EINVAL; 2531 break; 2532 case PR_SET_NAME: 2533 comm[sizeof(me->comm) - 1] = 0; 2534 if (strncpy_from_user(comm, (char __user *)arg2, 2535 sizeof(me->comm) - 1) < 0) 2536 return -EFAULT; 2537 set_task_comm(me, comm); 2538 proc_comm_connector(me); 2539 break; 2540 case PR_GET_NAME: 2541 get_task_comm(comm, me); 2542 if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) 2543 return -EFAULT; 2544 break; 2545 case PR_GET_ENDIAN: 2546 error = GET_ENDIAN(me, arg2); 2547 break; 2548 case PR_SET_ENDIAN: 2549 error = SET_ENDIAN(me, arg2); 2550 break; 2551 case PR_GET_SECCOMP: 2552 error = prctl_get_seccomp(); 2553 break; 2554 case PR_SET_SECCOMP: 2555 error = prctl_set_seccomp(arg2, (char __user *)arg3); 2556 break; 2557 case PR_GET_TSC: 2558 error = GET_TSC_CTL(arg2); 2559 break; 2560 case PR_SET_TSC: 2561 error = SET_TSC_CTL(arg2); 2562 break; 2563 case PR_TASK_PERF_EVENTS_DISABLE: 2564 error = perf_event_task_disable(); 2565 break; 2566 case PR_TASK_PERF_EVENTS_ENABLE: 2567 error = perf_event_task_enable(); 2568 break; 2569 case PR_GET_TIMERSLACK: 2570 if (current->timer_slack_ns > ULONG_MAX) 2571 error = ULONG_MAX; 2572 else 2573 error = current->timer_slack_ns; 2574 break; 2575 case PR_SET_TIMERSLACK: 2576 if (rt_or_dl_task_policy(current)) 2577 break; 2578 if (arg2 <= 0) 2579 current->timer_slack_ns = 2580 current->default_timer_slack_ns; 2581 else 2582 current->timer_slack_ns = arg2; 2583 break; 2584 case PR_MCE_KILL: 2585 if (arg4 | arg5) 2586 return -EINVAL; 2587 switch (arg2) { 2588 case PR_MCE_KILL_CLEAR: 2589 if (arg3 != 0) 2590 return -EINVAL; 2591 current->flags &= ~PF_MCE_PROCESS; 2592 break; 2593 case PR_MCE_KILL_SET: 2594 current->flags |= PF_MCE_PROCESS; 2595 if (arg3 == PR_MCE_KILL_EARLY) 2596 current->flags |= PF_MCE_EARLY; 2597 else if (arg3 == PR_MCE_KILL_LATE) 2598 current->flags &= ~PF_MCE_EARLY; 2599 else if (arg3 == PR_MCE_KILL_DEFAULT) 2600 current->flags &= 2601 ~(PF_MCE_EARLY|PF_MCE_PROCESS); 2602 else 2603 return -EINVAL; 2604 break; 2605 default: 2606 return -EINVAL; 2607 } 2608 break; 2609 case PR_MCE_KILL_GET: 2610 if (arg2 | arg3 | arg4 | arg5) 2611 return -EINVAL; 2612 if (current->flags & PF_MCE_PROCESS) 2613 error = (current->flags & PF_MCE_EARLY) ? 2614 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; 2615 else 2616 error = PR_MCE_KILL_DEFAULT; 2617 break; 2618 case PR_SET_MM: 2619 error = prctl_set_mm(arg2, arg3, arg4, arg5); 2620 break; 2621 case PR_GET_TID_ADDRESS: 2622 error = prctl_get_tid_address(me, (int __user * __user *)arg2); 2623 break; 2624 case PR_SET_CHILD_SUBREAPER: 2625 me->signal->is_child_subreaper = !!arg2; 2626 if (!arg2) 2627 break; 2628 2629 walk_process_tree(me, propagate_has_child_subreaper, NULL); 2630 break; 2631 case PR_GET_CHILD_SUBREAPER: 2632 error = put_user(me->signal->is_child_subreaper, 2633 (int __user *)arg2); 2634 break; 2635 case PR_SET_NO_NEW_PRIVS: 2636 if (arg2 != 1 || arg3 || arg4 || arg5) 2637 return -EINVAL; 2638 2639 task_set_no_new_privs(current); 2640 break; 2641 case PR_GET_NO_NEW_PRIVS: 2642 if (arg2 || arg3 || arg4 || arg5) 2643 return -EINVAL; 2644 return task_no_new_privs(current) ? 1 : 0; 2645 case PR_GET_THP_DISABLE: 2646 if (arg2 || arg3 || arg4 || arg5) 2647 return -EINVAL; 2648 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags); 2649 break; 2650 case PR_SET_THP_DISABLE: 2651 if (arg3 || arg4 || arg5) 2652 return -EINVAL; 2653 if (mmap_write_lock_killable(me->mm)) 2654 return -EINTR; 2655 if (arg2) 2656 set_bit(MMF_DISABLE_THP, &me->mm->flags); 2657 else 2658 clear_bit(MMF_DISABLE_THP, &me->mm->flags); 2659 mmap_write_unlock(me->mm); 2660 break; 2661 case PR_MPX_ENABLE_MANAGEMENT: 2662 case PR_MPX_DISABLE_MANAGEMENT: 2663 /* No longer implemented: */ 2664 return -EINVAL; 2665 case PR_SET_FP_MODE: 2666 error = SET_FP_MODE(me, arg2); 2667 break; 2668 case PR_GET_FP_MODE: 2669 error = GET_FP_MODE(me); 2670 break; 2671 case PR_SVE_SET_VL: 2672 error = SVE_SET_VL(arg2); 2673 break; 2674 case PR_SVE_GET_VL: 2675 error = SVE_GET_VL(); 2676 break; 2677 case PR_SME_SET_VL: 2678 error = SME_SET_VL(arg2); 2679 break; 2680 case PR_SME_GET_VL: 2681 error = SME_GET_VL(); 2682 break; 2683 case PR_GET_SPECULATION_CTRL: 2684 if (arg3 || arg4 || arg5) 2685 return -EINVAL; 2686 error = arch_prctl_spec_ctrl_get(me, arg2); 2687 break; 2688 case PR_SET_SPECULATION_CTRL: 2689 if (arg4 || arg5) 2690 return -EINVAL; 2691 error = arch_prctl_spec_ctrl_set(me, arg2, arg3); 2692 break; 2693 case PR_PAC_RESET_KEYS: 2694 if (arg3 || arg4 || arg5) 2695 return -EINVAL; 2696 error = PAC_RESET_KEYS(me, arg2); 2697 break; 2698 case PR_PAC_SET_ENABLED_KEYS: 2699 if (arg4 || arg5) 2700 return -EINVAL; 2701 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3); 2702 break; 2703 case PR_PAC_GET_ENABLED_KEYS: 2704 if (arg2 || arg3 || arg4 || arg5) 2705 return -EINVAL; 2706 error = PAC_GET_ENABLED_KEYS(me); 2707 break; 2708 case PR_SET_TAGGED_ADDR_CTRL: 2709 if (arg3 || arg4 || arg5) 2710 return -EINVAL; 2711 error = SET_TAGGED_ADDR_CTRL(arg2); 2712 break; 2713 case PR_GET_TAGGED_ADDR_CTRL: 2714 if (arg2 || arg3 || arg4 || arg5) 2715 return -EINVAL; 2716 error = GET_TAGGED_ADDR_CTRL(); 2717 break; 2718 case PR_SET_IO_FLUSHER: 2719 if (!capable(CAP_SYS_RESOURCE)) 2720 return -EPERM; 2721 2722 if (arg3 || arg4 || arg5) 2723 return -EINVAL; 2724 2725 if (arg2 == 1) 2726 current->flags |= PR_IO_FLUSHER; 2727 else if (!arg2) 2728 current->flags &= ~PR_IO_FLUSHER; 2729 else 2730 return -EINVAL; 2731 break; 2732 case PR_GET_IO_FLUSHER: 2733 if (!capable(CAP_SYS_RESOURCE)) 2734 return -EPERM; 2735 2736 if (arg2 || arg3 || arg4 || arg5) 2737 return -EINVAL; 2738 2739 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER; 2740 break; 2741 case PR_SET_SYSCALL_USER_DISPATCH: 2742 error = set_syscall_user_dispatch(arg2, arg3, arg4, 2743 (char __user *) arg5); 2744 break; 2745 #ifdef CONFIG_SCHED_CORE 2746 case PR_SCHED_CORE: 2747 error = sched_core_share_pid(arg2, arg3, arg4, arg5); 2748 break; 2749 #endif 2750 case PR_SET_MDWE: 2751 error = prctl_set_mdwe(arg2, arg3, arg4, arg5); 2752 break; 2753 case PR_GET_MDWE: 2754 error = prctl_get_mdwe(arg2, arg3, arg4, arg5); 2755 break; 2756 case PR_PPC_GET_DEXCR: 2757 if (arg3 || arg4 || arg5) 2758 return -EINVAL; 2759 error = PPC_GET_DEXCR_ASPECT(me, arg2); 2760 break; 2761 case PR_PPC_SET_DEXCR: 2762 if (arg4 || arg5) 2763 return -EINVAL; 2764 error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3); 2765 break; 2766 case PR_SET_VMA: 2767 error = prctl_set_vma(arg2, arg3, arg4, arg5); 2768 break; 2769 case PR_GET_AUXV: 2770 if (arg4 || arg5) 2771 return -EINVAL; 2772 error = prctl_get_auxv((void __user *)arg2, arg3); 2773 break; 2774 #ifdef CONFIG_KSM 2775 case PR_SET_MEMORY_MERGE: 2776 if (arg3 || arg4 || arg5) 2777 return -EINVAL; 2778 if (mmap_write_lock_killable(me->mm)) 2779 return -EINTR; 2780 2781 if (arg2) 2782 error = ksm_enable_merge_any(me->mm); 2783 else 2784 error = ksm_disable_merge_any(me->mm); 2785 mmap_write_unlock(me->mm); 2786 break; 2787 case PR_GET_MEMORY_MERGE: 2788 if (arg2 || arg3 || arg4 || arg5) 2789 return -EINVAL; 2790 2791 error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags); 2792 break; 2793 #endif 2794 case PR_RISCV_V_SET_CONTROL: 2795 error = RISCV_V_SET_CONTROL(arg2); 2796 break; 2797 case PR_RISCV_V_GET_CONTROL: 2798 error = RISCV_V_GET_CONTROL(); 2799 break; 2800 case PR_RISCV_SET_ICACHE_FLUSH_CTX: 2801 error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3); 2802 break; 2803 case PR_GET_SHADOW_STACK_STATUS: 2804 if (arg3 || arg4 || arg5) 2805 return -EINVAL; 2806 error = arch_get_shadow_stack_status(me, (unsigned long __user *) arg2); 2807 break; 2808 case PR_SET_SHADOW_STACK_STATUS: 2809 if (arg3 || arg4 || arg5) 2810 return -EINVAL; 2811 error = arch_set_shadow_stack_status(me, arg2); 2812 break; 2813 case PR_LOCK_SHADOW_STACK_STATUS: 2814 if (arg3 || arg4 || arg5) 2815 return -EINVAL; 2816 error = arch_lock_shadow_stack_status(me, arg2); 2817 break; 2818 case PR_TIMER_CREATE_RESTORE_IDS: 2819 if (arg3 || arg4 || arg5) 2820 return -EINVAL; 2821 error = posixtimer_create_prctl(arg2); 2822 break; 2823 default: 2824 trace_task_prctl_unknown(option, arg2, arg3, arg4, arg5); 2825 error = -EINVAL; 2826 break; 2827 } 2828 return error; 2829 } 2830 2831 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 2832 struct getcpu_cache __user *, unused) 2833 { 2834 int err = 0; 2835 int cpu = raw_smp_processor_id(); 2836 2837 if (cpup) 2838 err |= put_user(cpu, cpup); 2839 if (nodep) 2840 err |= put_user(cpu_to_node(cpu), nodep); 2841 return err ? -EFAULT : 0; 2842 } 2843 2844 /** 2845 * do_sysinfo - fill in sysinfo struct 2846 * @info: pointer to buffer to fill 2847 */ 2848 static int do_sysinfo(struct sysinfo *info) 2849 { 2850 unsigned long mem_total, sav_total; 2851 unsigned int mem_unit, bitcount; 2852 struct timespec64 tp; 2853 2854 memset(info, 0, sizeof(struct sysinfo)); 2855 2856 ktime_get_boottime_ts64(&tp); 2857 timens_add_boottime(&tp); 2858 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); 2859 2860 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); 2861 2862 info->procs = nr_threads; 2863 2864 si_meminfo(info); 2865 si_swapinfo(info); 2866 2867 /* 2868 * If the sum of all the available memory (i.e. ram + swap) 2869 * is less than can be stored in a 32 bit unsigned long then 2870 * we can be binary compatible with 2.2.x kernels. If not, 2871 * well, in that case 2.2.x was broken anyways... 2872 * 2873 * -Erik Andersen <andersee@debian.org> 2874 */ 2875 2876 mem_total = info->totalram + info->totalswap; 2877 if (mem_total < info->totalram || mem_total < info->totalswap) 2878 goto out; 2879 bitcount = 0; 2880 mem_unit = info->mem_unit; 2881 while (mem_unit > 1) { 2882 bitcount++; 2883 mem_unit >>= 1; 2884 sav_total = mem_total; 2885 mem_total <<= 1; 2886 if (mem_total < sav_total) 2887 goto out; 2888 } 2889 2890 /* 2891 * If mem_total did not overflow, multiply all memory values by 2892 * info->mem_unit and set it to 1. This leaves things compatible 2893 * with 2.2.x, and also retains compatibility with earlier 2.4.x 2894 * kernels... 2895 */ 2896 2897 info->mem_unit = 1; 2898 info->totalram <<= bitcount; 2899 info->freeram <<= bitcount; 2900 info->sharedram <<= bitcount; 2901 info->bufferram <<= bitcount; 2902 info->totalswap <<= bitcount; 2903 info->freeswap <<= bitcount; 2904 info->totalhigh <<= bitcount; 2905 info->freehigh <<= bitcount; 2906 2907 out: 2908 return 0; 2909 } 2910 2911 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) 2912 { 2913 struct sysinfo val; 2914 2915 do_sysinfo(&val); 2916 2917 if (copy_to_user(info, &val, sizeof(struct sysinfo))) 2918 return -EFAULT; 2919 2920 return 0; 2921 } 2922 2923 #ifdef CONFIG_COMPAT 2924 struct compat_sysinfo { 2925 s32 uptime; 2926 u32 loads[3]; 2927 u32 totalram; 2928 u32 freeram; 2929 u32 sharedram; 2930 u32 bufferram; 2931 u32 totalswap; 2932 u32 freeswap; 2933 u16 procs; 2934 u16 pad; 2935 u32 totalhigh; 2936 u32 freehigh; 2937 u32 mem_unit; 2938 char _f[20-2*sizeof(u32)-sizeof(int)]; 2939 }; 2940 2941 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info) 2942 { 2943 struct sysinfo s; 2944 struct compat_sysinfo s_32; 2945 2946 do_sysinfo(&s); 2947 2948 /* Check to see if any memory value is too large for 32-bit and scale 2949 * down if needed 2950 */ 2951 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) { 2952 int bitcount = 0; 2953 2954 while (s.mem_unit < PAGE_SIZE) { 2955 s.mem_unit <<= 1; 2956 bitcount++; 2957 } 2958 2959 s.totalram >>= bitcount; 2960 s.freeram >>= bitcount; 2961 s.sharedram >>= bitcount; 2962 s.bufferram >>= bitcount; 2963 s.totalswap >>= bitcount; 2964 s.freeswap >>= bitcount; 2965 s.totalhigh >>= bitcount; 2966 s.freehigh >>= bitcount; 2967 } 2968 2969 memset(&s_32, 0, sizeof(s_32)); 2970 s_32.uptime = s.uptime; 2971 s_32.loads[0] = s.loads[0]; 2972 s_32.loads[1] = s.loads[1]; 2973 s_32.loads[2] = s.loads[2]; 2974 s_32.totalram = s.totalram; 2975 s_32.freeram = s.freeram; 2976 s_32.sharedram = s.sharedram; 2977 s_32.bufferram = s.bufferram; 2978 s_32.totalswap = s.totalswap; 2979 s_32.freeswap = s.freeswap; 2980 s_32.procs = s.procs; 2981 s_32.totalhigh = s.totalhigh; 2982 s_32.freehigh = s.freehigh; 2983 s_32.mem_unit = s.mem_unit; 2984 if (copy_to_user(info, &s_32, sizeof(s_32))) 2985 return -EFAULT; 2986 return 0; 2987 } 2988 #endif /* CONFIG_COMPAT */ 2989