xref: /linux/kernel/sys.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 
51 #include <linux/kmsg_dump.h>
52 /* Move somewhere else to avoid recompiling? */
53 #include <generated/utsrelease.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/unistd.h>
58 
59 #ifndef SET_UNALIGN_CTL
60 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
61 #endif
62 #ifndef GET_UNALIGN_CTL
63 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
64 #endif
65 #ifndef SET_FPEMU_CTL
66 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
67 #endif
68 #ifndef GET_FPEMU_CTL
69 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
70 #endif
71 #ifndef SET_FPEXC_CTL
72 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
73 #endif
74 #ifndef GET_FPEXC_CTL
75 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
76 #endif
77 #ifndef GET_ENDIAN
78 # define GET_ENDIAN(a,b)	(-EINVAL)
79 #endif
80 #ifndef SET_ENDIAN
81 # define SET_ENDIAN(a,b)	(-EINVAL)
82 #endif
83 #ifndef GET_TSC_CTL
84 # define GET_TSC_CTL(a)		(-EINVAL)
85 #endif
86 #ifndef SET_TSC_CTL
87 # define SET_TSC_CTL(a)		(-EINVAL)
88 #endif
89 
90 /*
91  * this is where the system-wide overflow UID and GID are defined, for
92  * architectures that now have 32-bit UID/GID but didn't in the past
93  */
94 
95 int overflowuid = DEFAULT_OVERFLOWUID;
96 int overflowgid = DEFAULT_OVERFLOWGID;
97 
98 EXPORT_SYMBOL(overflowuid);
99 EXPORT_SYMBOL(overflowgid);
100 
101 /*
102  * the same as above, but for filesystems which can only store a 16-bit
103  * UID and GID. as such, this is needed on all architectures
104  */
105 
106 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
107 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
108 
109 EXPORT_SYMBOL(fs_overflowuid);
110 EXPORT_SYMBOL(fs_overflowgid);
111 
112 /*
113  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114  */
115 
116 int C_A_D = 1;
117 struct pid *cad_pid;
118 EXPORT_SYMBOL(cad_pid);
119 
120 /*
121  * If set, this is used for preparing the system to power off.
122  */
123 
124 void (*pm_power_off_prepare)(void);
125 
126 /*
127  * Returns true if current's euid is same as p's uid or euid,
128  * or has CAP_SYS_NICE to p's user_ns.
129  *
130  * Called with rcu_read_lock, creds are safe
131  */
132 static bool set_one_prio_perm(struct task_struct *p)
133 {
134 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
135 
136 	if (uid_eq(pcred->uid,  cred->euid) ||
137 	    uid_eq(pcred->euid, cred->euid))
138 		return true;
139 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
140 		return true;
141 	return false;
142 }
143 
144 /*
145  * set the priority of a task
146  * - the caller must hold the RCU read lock
147  */
148 static int set_one_prio(struct task_struct *p, int niceval, int error)
149 {
150 	int no_nice;
151 
152 	if (!set_one_prio_perm(p)) {
153 		error = -EPERM;
154 		goto out;
155 	}
156 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
157 		error = -EACCES;
158 		goto out;
159 	}
160 	no_nice = security_task_setnice(p, niceval);
161 	if (no_nice) {
162 		error = no_nice;
163 		goto out;
164 	}
165 	if (error == -ESRCH)
166 		error = 0;
167 	set_user_nice(p, niceval);
168 out:
169 	return error;
170 }
171 
172 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
173 {
174 	struct task_struct *g, *p;
175 	struct user_struct *user;
176 	const struct cred *cred = current_cred();
177 	int error = -EINVAL;
178 	struct pid *pgrp;
179 	kuid_t uid;
180 
181 	if (which > PRIO_USER || which < PRIO_PROCESS)
182 		goto out;
183 
184 	/* normalize: avoid signed division (rounding problems) */
185 	error = -ESRCH;
186 	if (niceval < -20)
187 		niceval = -20;
188 	if (niceval > 19)
189 		niceval = 19;
190 
191 	rcu_read_lock();
192 	read_lock(&tasklist_lock);
193 	switch (which) {
194 		case PRIO_PROCESS:
195 			if (who)
196 				p = find_task_by_vpid(who);
197 			else
198 				p = current;
199 			if (p)
200 				error = set_one_prio(p, niceval, error);
201 			break;
202 		case PRIO_PGRP:
203 			if (who)
204 				pgrp = find_vpid(who);
205 			else
206 				pgrp = task_pgrp(current);
207 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
208 				error = set_one_prio(p, niceval, error);
209 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
210 			break;
211 		case PRIO_USER:
212 			uid = make_kuid(cred->user_ns, who);
213 			user = cred->user;
214 			if (!who)
215 				uid = cred->uid;
216 			else if (!uid_eq(uid, cred->uid) &&
217 				 !(user = find_user(uid)))
218 				goto out_unlock;	/* No processes for this user */
219 
220 			do_each_thread(g, p) {
221 				if (uid_eq(task_uid(p), uid))
222 					error = set_one_prio(p, niceval, error);
223 			} while_each_thread(g, p);
224 			if (!uid_eq(uid, cred->uid))
225 				free_uid(user);		/* For find_user() */
226 			break;
227 	}
228 out_unlock:
229 	read_unlock(&tasklist_lock);
230 	rcu_read_unlock();
231 out:
232 	return error;
233 }
234 
235 /*
236  * Ugh. To avoid negative return values, "getpriority()" will
237  * not return the normal nice-value, but a negated value that
238  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
239  * to stay compatible.
240  */
241 SYSCALL_DEFINE2(getpriority, int, which, int, who)
242 {
243 	struct task_struct *g, *p;
244 	struct user_struct *user;
245 	const struct cred *cred = current_cred();
246 	long niceval, retval = -ESRCH;
247 	struct pid *pgrp;
248 	kuid_t uid;
249 
250 	if (which > PRIO_USER || which < PRIO_PROCESS)
251 		return -EINVAL;
252 
253 	rcu_read_lock();
254 	read_lock(&tasklist_lock);
255 	switch (which) {
256 		case PRIO_PROCESS:
257 			if (who)
258 				p = find_task_by_vpid(who);
259 			else
260 				p = current;
261 			if (p) {
262 				niceval = 20 - task_nice(p);
263 				if (niceval > retval)
264 					retval = niceval;
265 			}
266 			break;
267 		case PRIO_PGRP:
268 			if (who)
269 				pgrp = find_vpid(who);
270 			else
271 				pgrp = task_pgrp(current);
272 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
273 				niceval = 20 - task_nice(p);
274 				if (niceval > retval)
275 					retval = niceval;
276 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
277 			break;
278 		case PRIO_USER:
279 			uid = make_kuid(cred->user_ns, who);
280 			user = cred->user;
281 			if (!who)
282 				uid = cred->uid;
283 			else if (!uid_eq(uid, cred->uid) &&
284 				 !(user = find_user(uid)))
285 				goto out_unlock;	/* No processes for this user */
286 
287 			do_each_thread(g, p) {
288 				if (uid_eq(task_uid(p), uid)) {
289 					niceval = 20 - task_nice(p);
290 					if (niceval > retval)
291 						retval = niceval;
292 				}
293 			} while_each_thread(g, p);
294 			if (!uid_eq(uid, cred->uid))
295 				free_uid(user);		/* for find_user() */
296 			break;
297 	}
298 out_unlock:
299 	read_unlock(&tasklist_lock);
300 	rcu_read_unlock();
301 
302 	return retval;
303 }
304 
305 /**
306  *	emergency_restart - reboot the system
307  *
308  *	Without shutting down any hardware or taking any locks
309  *	reboot the system.  This is called when we know we are in
310  *	trouble so this is our best effort to reboot.  This is
311  *	safe to call in interrupt context.
312  */
313 void emergency_restart(void)
314 {
315 	kmsg_dump(KMSG_DUMP_EMERG);
316 	machine_emergency_restart();
317 }
318 EXPORT_SYMBOL_GPL(emergency_restart);
319 
320 void kernel_restart_prepare(char *cmd)
321 {
322 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
323 	system_state = SYSTEM_RESTART;
324 	usermodehelper_disable();
325 	device_shutdown();
326 	syscore_shutdown();
327 }
328 
329 /**
330  *	register_reboot_notifier - Register function to be called at reboot time
331  *	@nb: Info about notifier function to be called
332  *
333  *	Registers a function with the list of functions
334  *	to be called at reboot time.
335  *
336  *	Currently always returns zero, as blocking_notifier_chain_register()
337  *	always returns zero.
338  */
339 int register_reboot_notifier(struct notifier_block *nb)
340 {
341 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
342 }
343 EXPORT_SYMBOL(register_reboot_notifier);
344 
345 /**
346  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
347  *	@nb: Hook to be unregistered
348  *
349  *	Unregisters a previously registered reboot
350  *	notifier function.
351  *
352  *	Returns zero on success, or %-ENOENT on failure.
353  */
354 int unregister_reboot_notifier(struct notifier_block *nb)
355 {
356 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
357 }
358 EXPORT_SYMBOL(unregister_reboot_notifier);
359 
360 /**
361  *	kernel_restart - reboot the system
362  *	@cmd: pointer to buffer containing command to execute for restart
363  *		or %NULL
364  *
365  *	Shutdown everything and perform a clean reboot.
366  *	This is not safe to call in interrupt context.
367  */
368 void kernel_restart(char *cmd)
369 {
370 	kernel_restart_prepare(cmd);
371 	disable_nonboot_cpus();
372 	if (!cmd)
373 		printk(KERN_EMERG "Restarting system.\n");
374 	else
375 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
376 	kmsg_dump(KMSG_DUMP_RESTART);
377 	machine_restart(cmd);
378 }
379 EXPORT_SYMBOL_GPL(kernel_restart);
380 
381 static void kernel_shutdown_prepare(enum system_states state)
382 {
383 	blocking_notifier_call_chain(&reboot_notifier_list,
384 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
385 	system_state = state;
386 	usermodehelper_disable();
387 	device_shutdown();
388 }
389 /**
390  *	kernel_halt - halt the system
391  *
392  *	Shutdown everything and perform a clean system halt.
393  */
394 void kernel_halt(void)
395 {
396 	kernel_shutdown_prepare(SYSTEM_HALT);
397 	syscore_shutdown();
398 	printk(KERN_EMERG "System halted.\n");
399 	kmsg_dump(KMSG_DUMP_HALT);
400 	machine_halt();
401 }
402 
403 EXPORT_SYMBOL_GPL(kernel_halt);
404 
405 /**
406  *	kernel_power_off - power_off the system
407  *
408  *	Shutdown everything and perform a clean system power_off.
409  */
410 void kernel_power_off(void)
411 {
412 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
413 	if (pm_power_off_prepare)
414 		pm_power_off_prepare();
415 	disable_nonboot_cpus();
416 	syscore_shutdown();
417 	printk(KERN_EMERG "Power down.\n");
418 	kmsg_dump(KMSG_DUMP_POWEROFF);
419 	machine_power_off();
420 }
421 EXPORT_SYMBOL_GPL(kernel_power_off);
422 
423 static DEFINE_MUTEX(reboot_mutex);
424 
425 /*
426  * Reboot system call: for obvious reasons only root may call it,
427  * and even root needs to set up some magic numbers in the registers
428  * so that some mistake won't make this reboot the whole machine.
429  * You can also set the meaning of the ctrl-alt-del-key here.
430  *
431  * reboot doesn't sync: do that yourself before calling this.
432  */
433 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
434 		void __user *, arg)
435 {
436 	char buffer[256];
437 	int ret = 0;
438 
439 	/* We only trust the superuser with rebooting the system. */
440 	if (!capable(CAP_SYS_BOOT))
441 		return -EPERM;
442 
443 	/* For safety, we require "magic" arguments. */
444 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
445 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
446 	                magic2 != LINUX_REBOOT_MAGIC2A &&
447 			magic2 != LINUX_REBOOT_MAGIC2B &&
448 	                magic2 != LINUX_REBOOT_MAGIC2C))
449 		return -EINVAL;
450 
451 	/*
452 	 * If pid namespaces are enabled and the current task is in a child
453 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
454 	 * call do_exit().
455 	 */
456 	ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
457 	if (ret)
458 		return ret;
459 
460 	/* Instead of trying to make the power_off code look like
461 	 * halt when pm_power_off is not set do it the easy way.
462 	 */
463 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
464 		cmd = LINUX_REBOOT_CMD_HALT;
465 
466 	mutex_lock(&reboot_mutex);
467 	switch (cmd) {
468 	case LINUX_REBOOT_CMD_RESTART:
469 		kernel_restart(NULL);
470 		break;
471 
472 	case LINUX_REBOOT_CMD_CAD_ON:
473 		C_A_D = 1;
474 		break;
475 
476 	case LINUX_REBOOT_CMD_CAD_OFF:
477 		C_A_D = 0;
478 		break;
479 
480 	case LINUX_REBOOT_CMD_HALT:
481 		kernel_halt();
482 		do_exit(0);
483 		panic("cannot halt");
484 
485 	case LINUX_REBOOT_CMD_POWER_OFF:
486 		kernel_power_off();
487 		do_exit(0);
488 		break;
489 
490 	case LINUX_REBOOT_CMD_RESTART2:
491 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
492 			ret = -EFAULT;
493 			break;
494 		}
495 		buffer[sizeof(buffer) - 1] = '\0';
496 
497 		kernel_restart(buffer);
498 		break;
499 
500 #ifdef CONFIG_KEXEC
501 	case LINUX_REBOOT_CMD_KEXEC:
502 		ret = kernel_kexec();
503 		break;
504 #endif
505 
506 #ifdef CONFIG_HIBERNATION
507 	case LINUX_REBOOT_CMD_SW_SUSPEND:
508 		ret = hibernate();
509 		break;
510 #endif
511 
512 	default:
513 		ret = -EINVAL;
514 		break;
515 	}
516 	mutex_unlock(&reboot_mutex);
517 	return ret;
518 }
519 
520 static void deferred_cad(struct work_struct *dummy)
521 {
522 	kernel_restart(NULL);
523 }
524 
525 /*
526  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
527  * As it's called within an interrupt, it may NOT sync: the only choice
528  * is whether to reboot at once, or just ignore the ctrl-alt-del.
529  */
530 void ctrl_alt_del(void)
531 {
532 	static DECLARE_WORK(cad_work, deferred_cad);
533 
534 	if (C_A_D)
535 		schedule_work(&cad_work);
536 	else
537 		kill_cad_pid(SIGINT, 1);
538 }
539 
540 /*
541  * Unprivileged users may change the real gid to the effective gid
542  * or vice versa.  (BSD-style)
543  *
544  * If you set the real gid at all, or set the effective gid to a value not
545  * equal to the real gid, then the saved gid is set to the new effective gid.
546  *
547  * This makes it possible for a setgid program to completely drop its
548  * privileges, which is often a useful assertion to make when you are doing
549  * a security audit over a program.
550  *
551  * The general idea is that a program which uses just setregid() will be
552  * 100% compatible with BSD.  A program which uses just setgid() will be
553  * 100% compatible with POSIX with saved IDs.
554  *
555  * SMP: There are not races, the GIDs are checked only by filesystem
556  *      operations (as far as semantic preservation is concerned).
557  */
558 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
559 {
560 	struct user_namespace *ns = current_user_ns();
561 	const struct cred *old;
562 	struct cred *new;
563 	int retval;
564 	kgid_t krgid, kegid;
565 
566 	krgid = make_kgid(ns, rgid);
567 	kegid = make_kgid(ns, egid);
568 
569 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
570 		return -EINVAL;
571 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
572 		return -EINVAL;
573 
574 	new = prepare_creds();
575 	if (!new)
576 		return -ENOMEM;
577 	old = current_cred();
578 
579 	retval = -EPERM;
580 	if (rgid != (gid_t) -1) {
581 		if (gid_eq(old->gid, krgid) ||
582 		    gid_eq(old->egid, krgid) ||
583 		    nsown_capable(CAP_SETGID))
584 			new->gid = krgid;
585 		else
586 			goto error;
587 	}
588 	if (egid != (gid_t) -1) {
589 		if (gid_eq(old->gid, kegid) ||
590 		    gid_eq(old->egid, kegid) ||
591 		    gid_eq(old->sgid, kegid) ||
592 		    nsown_capable(CAP_SETGID))
593 			new->egid = kegid;
594 		else
595 			goto error;
596 	}
597 
598 	if (rgid != (gid_t) -1 ||
599 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
600 		new->sgid = new->egid;
601 	new->fsgid = new->egid;
602 
603 	return commit_creds(new);
604 
605 error:
606 	abort_creds(new);
607 	return retval;
608 }
609 
610 /*
611  * setgid() is implemented like SysV w/ SAVED_IDS
612  *
613  * SMP: Same implicit races as above.
614  */
615 SYSCALL_DEFINE1(setgid, gid_t, gid)
616 {
617 	struct user_namespace *ns = current_user_ns();
618 	const struct cred *old;
619 	struct cred *new;
620 	int retval;
621 	kgid_t kgid;
622 
623 	kgid = make_kgid(ns, gid);
624 	if (!gid_valid(kgid))
625 		return -EINVAL;
626 
627 	new = prepare_creds();
628 	if (!new)
629 		return -ENOMEM;
630 	old = current_cred();
631 
632 	retval = -EPERM;
633 	if (nsown_capable(CAP_SETGID))
634 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
635 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
636 		new->egid = new->fsgid = kgid;
637 	else
638 		goto error;
639 
640 	return commit_creds(new);
641 
642 error:
643 	abort_creds(new);
644 	return retval;
645 }
646 
647 /*
648  * change the user struct in a credentials set to match the new UID
649  */
650 static int set_user(struct cred *new)
651 {
652 	struct user_struct *new_user;
653 
654 	new_user = alloc_uid(new->uid);
655 	if (!new_user)
656 		return -EAGAIN;
657 
658 	/*
659 	 * We don't fail in case of NPROC limit excess here because too many
660 	 * poorly written programs don't check set*uid() return code, assuming
661 	 * it never fails if called by root.  We may still enforce NPROC limit
662 	 * for programs doing set*uid()+execve() by harmlessly deferring the
663 	 * failure to the execve() stage.
664 	 */
665 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
666 			new_user != INIT_USER)
667 		current->flags |= PF_NPROC_EXCEEDED;
668 	else
669 		current->flags &= ~PF_NPROC_EXCEEDED;
670 
671 	free_uid(new->user);
672 	new->user = new_user;
673 	return 0;
674 }
675 
676 /*
677  * Unprivileged users may change the real uid to the effective uid
678  * or vice versa.  (BSD-style)
679  *
680  * If you set the real uid at all, or set the effective uid to a value not
681  * equal to the real uid, then the saved uid is set to the new effective uid.
682  *
683  * This makes it possible for a setuid program to completely drop its
684  * privileges, which is often a useful assertion to make when you are doing
685  * a security audit over a program.
686  *
687  * The general idea is that a program which uses just setreuid() will be
688  * 100% compatible with BSD.  A program which uses just setuid() will be
689  * 100% compatible with POSIX with saved IDs.
690  */
691 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
692 {
693 	struct user_namespace *ns = current_user_ns();
694 	const struct cred *old;
695 	struct cred *new;
696 	int retval;
697 	kuid_t kruid, keuid;
698 
699 	kruid = make_kuid(ns, ruid);
700 	keuid = make_kuid(ns, euid);
701 
702 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
703 		return -EINVAL;
704 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
705 		return -EINVAL;
706 
707 	new = prepare_creds();
708 	if (!new)
709 		return -ENOMEM;
710 	old = current_cred();
711 
712 	retval = -EPERM;
713 	if (ruid != (uid_t) -1) {
714 		new->uid = kruid;
715 		if (!uid_eq(old->uid, kruid) &&
716 		    !uid_eq(old->euid, kruid) &&
717 		    !nsown_capable(CAP_SETUID))
718 			goto error;
719 	}
720 
721 	if (euid != (uid_t) -1) {
722 		new->euid = keuid;
723 		if (!uid_eq(old->uid, keuid) &&
724 		    !uid_eq(old->euid, keuid) &&
725 		    !uid_eq(old->suid, keuid) &&
726 		    !nsown_capable(CAP_SETUID))
727 			goto error;
728 	}
729 
730 	if (!uid_eq(new->uid, old->uid)) {
731 		retval = set_user(new);
732 		if (retval < 0)
733 			goto error;
734 	}
735 	if (ruid != (uid_t) -1 ||
736 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
737 		new->suid = new->euid;
738 	new->fsuid = new->euid;
739 
740 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
741 	if (retval < 0)
742 		goto error;
743 
744 	return commit_creds(new);
745 
746 error:
747 	abort_creds(new);
748 	return retval;
749 }
750 
751 /*
752  * setuid() is implemented like SysV with SAVED_IDS
753  *
754  * Note that SAVED_ID's is deficient in that a setuid root program
755  * like sendmail, for example, cannot set its uid to be a normal
756  * user and then switch back, because if you're root, setuid() sets
757  * the saved uid too.  If you don't like this, blame the bright people
758  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
759  * will allow a root program to temporarily drop privileges and be able to
760  * regain them by swapping the real and effective uid.
761  */
762 SYSCALL_DEFINE1(setuid, uid_t, uid)
763 {
764 	struct user_namespace *ns = current_user_ns();
765 	const struct cred *old;
766 	struct cred *new;
767 	int retval;
768 	kuid_t kuid;
769 
770 	kuid = make_kuid(ns, uid);
771 	if (!uid_valid(kuid))
772 		return -EINVAL;
773 
774 	new = prepare_creds();
775 	if (!new)
776 		return -ENOMEM;
777 	old = current_cred();
778 
779 	retval = -EPERM;
780 	if (nsown_capable(CAP_SETUID)) {
781 		new->suid = new->uid = kuid;
782 		if (!uid_eq(kuid, old->uid)) {
783 			retval = set_user(new);
784 			if (retval < 0)
785 				goto error;
786 		}
787 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
788 		goto error;
789 	}
790 
791 	new->fsuid = new->euid = kuid;
792 
793 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
794 	if (retval < 0)
795 		goto error;
796 
797 	return commit_creds(new);
798 
799 error:
800 	abort_creds(new);
801 	return retval;
802 }
803 
804 
805 /*
806  * This function implements a generic ability to update ruid, euid,
807  * and suid.  This allows you to implement the 4.4 compatible seteuid().
808  */
809 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
810 {
811 	struct user_namespace *ns = current_user_ns();
812 	const struct cred *old;
813 	struct cred *new;
814 	int retval;
815 	kuid_t kruid, keuid, ksuid;
816 
817 	kruid = make_kuid(ns, ruid);
818 	keuid = make_kuid(ns, euid);
819 	ksuid = make_kuid(ns, suid);
820 
821 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
822 		return -EINVAL;
823 
824 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
825 		return -EINVAL;
826 
827 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
828 		return -EINVAL;
829 
830 	new = prepare_creds();
831 	if (!new)
832 		return -ENOMEM;
833 
834 	old = current_cred();
835 
836 	retval = -EPERM;
837 	if (!nsown_capable(CAP_SETUID)) {
838 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
839 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
840 			goto error;
841 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
842 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
843 			goto error;
844 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
845 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
846 			goto error;
847 	}
848 
849 	if (ruid != (uid_t) -1) {
850 		new->uid = kruid;
851 		if (!uid_eq(kruid, old->uid)) {
852 			retval = set_user(new);
853 			if (retval < 0)
854 				goto error;
855 		}
856 	}
857 	if (euid != (uid_t) -1)
858 		new->euid = keuid;
859 	if (suid != (uid_t) -1)
860 		new->suid = ksuid;
861 	new->fsuid = new->euid;
862 
863 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
864 	if (retval < 0)
865 		goto error;
866 
867 	return commit_creds(new);
868 
869 error:
870 	abort_creds(new);
871 	return retval;
872 }
873 
874 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
875 {
876 	const struct cred *cred = current_cred();
877 	int retval;
878 	uid_t ruid, euid, suid;
879 
880 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
881 	euid = from_kuid_munged(cred->user_ns, cred->euid);
882 	suid = from_kuid_munged(cred->user_ns, cred->suid);
883 
884 	if (!(retval   = put_user(ruid, ruidp)) &&
885 	    !(retval   = put_user(euid, euidp)))
886 		retval = put_user(suid, suidp);
887 
888 	return retval;
889 }
890 
891 /*
892  * Same as above, but for rgid, egid, sgid.
893  */
894 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
895 {
896 	struct user_namespace *ns = current_user_ns();
897 	const struct cred *old;
898 	struct cred *new;
899 	int retval;
900 	kgid_t krgid, kegid, ksgid;
901 
902 	krgid = make_kgid(ns, rgid);
903 	kegid = make_kgid(ns, egid);
904 	ksgid = make_kgid(ns, sgid);
905 
906 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
907 		return -EINVAL;
908 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
909 		return -EINVAL;
910 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
911 		return -EINVAL;
912 
913 	new = prepare_creds();
914 	if (!new)
915 		return -ENOMEM;
916 	old = current_cred();
917 
918 	retval = -EPERM;
919 	if (!nsown_capable(CAP_SETGID)) {
920 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
921 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
922 			goto error;
923 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
924 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
925 			goto error;
926 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
927 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
928 			goto error;
929 	}
930 
931 	if (rgid != (gid_t) -1)
932 		new->gid = krgid;
933 	if (egid != (gid_t) -1)
934 		new->egid = kegid;
935 	if (sgid != (gid_t) -1)
936 		new->sgid = ksgid;
937 	new->fsgid = new->egid;
938 
939 	return commit_creds(new);
940 
941 error:
942 	abort_creds(new);
943 	return retval;
944 }
945 
946 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
947 {
948 	const struct cred *cred = current_cred();
949 	int retval;
950 	gid_t rgid, egid, sgid;
951 
952 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
953 	egid = from_kgid_munged(cred->user_ns, cred->egid);
954 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
955 
956 	if (!(retval   = put_user(rgid, rgidp)) &&
957 	    !(retval   = put_user(egid, egidp)))
958 		retval = put_user(sgid, sgidp);
959 
960 	return retval;
961 }
962 
963 
964 /*
965  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
966  * is used for "access()" and for the NFS daemon (letting nfsd stay at
967  * whatever uid it wants to). It normally shadows "euid", except when
968  * explicitly set by setfsuid() or for access..
969  */
970 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
971 {
972 	const struct cred *old;
973 	struct cred *new;
974 	uid_t old_fsuid;
975 	kuid_t kuid;
976 
977 	old = current_cred();
978 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
979 
980 	kuid = make_kuid(old->user_ns, uid);
981 	if (!uid_valid(kuid))
982 		return old_fsuid;
983 
984 	new = prepare_creds();
985 	if (!new)
986 		return old_fsuid;
987 
988 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
989 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
990 	    nsown_capable(CAP_SETUID)) {
991 		if (!uid_eq(kuid, old->fsuid)) {
992 			new->fsuid = kuid;
993 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
994 				goto change_okay;
995 		}
996 	}
997 
998 	abort_creds(new);
999 	return old_fsuid;
1000 
1001 change_okay:
1002 	commit_creds(new);
1003 	return old_fsuid;
1004 }
1005 
1006 /*
1007  * Samma på svenska..
1008  */
1009 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1010 {
1011 	const struct cred *old;
1012 	struct cred *new;
1013 	gid_t old_fsgid;
1014 	kgid_t kgid;
1015 
1016 	old = current_cred();
1017 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1018 
1019 	kgid = make_kgid(old->user_ns, gid);
1020 	if (!gid_valid(kgid))
1021 		return old_fsgid;
1022 
1023 	new = prepare_creds();
1024 	if (!new)
1025 		return old_fsgid;
1026 
1027 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
1028 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1029 	    nsown_capable(CAP_SETGID)) {
1030 		if (!gid_eq(kgid, old->fsgid)) {
1031 			new->fsgid = kgid;
1032 			goto change_okay;
1033 		}
1034 	}
1035 
1036 	abort_creds(new);
1037 	return old_fsgid;
1038 
1039 change_okay:
1040 	commit_creds(new);
1041 	return old_fsgid;
1042 }
1043 
1044 void do_sys_times(struct tms *tms)
1045 {
1046 	cputime_t tgutime, tgstime, cutime, cstime;
1047 
1048 	spin_lock_irq(&current->sighand->siglock);
1049 	thread_group_times(current, &tgutime, &tgstime);
1050 	cutime = current->signal->cutime;
1051 	cstime = current->signal->cstime;
1052 	spin_unlock_irq(&current->sighand->siglock);
1053 	tms->tms_utime = cputime_to_clock_t(tgutime);
1054 	tms->tms_stime = cputime_to_clock_t(tgstime);
1055 	tms->tms_cutime = cputime_to_clock_t(cutime);
1056 	tms->tms_cstime = cputime_to_clock_t(cstime);
1057 }
1058 
1059 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1060 {
1061 	if (tbuf) {
1062 		struct tms tmp;
1063 
1064 		do_sys_times(&tmp);
1065 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1066 			return -EFAULT;
1067 	}
1068 	force_successful_syscall_return();
1069 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1070 }
1071 
1072 /*
1073  * This needs some heavy checking ...
1074  * I just haven't the stomach for it. I also don't fully
1075  * understand sessions/pgrp etc. Let somebody who does explain it.
1076  *
1077  * OK, I think I have the protection semantics right.... this is really
1078  * only important on a multi-user system anyway, to make sure one user
1079  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1080  *
1081  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1082  * LBT 04.03.94
1083  */
1084 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1085 {
1086 	struct task_struct *p;
1087 	struct task_struct *group_leader = current->group_leader;
1088 	struct pid *pgrp;
1089 	int err;
1090 
1091 	if (!pid)
1092 		pid = task_pid_vnr(group_leader);
1093 	if (!pgid)
1094 		pgid = pid;
1095 	if (pgid < 0)
1096 		return -EINVAL;
1097 	rcu_read_lock();
1098 
1099 	/* From this point forward we keep holding onto the tasklist lock
1100 	 * so that our parent does not change from under us. -DaveM
1101 	 */
1102 	write_lock_irq(&tasklist_lock);
1103 
1104 	err = -ESRCH;
1105 	p = find_task_by_vpid(pid);
1106 	if (!p)
1107 		goto out;
1108 
1109 	err = -EINVAL;
1110 	if (!thread_group_leader(p))
1111 		goto out;
1112 
1113 	if (same_thread_group(p->real_parent, group_leader)) {
1114 		err = -EPERM;
1115 		if (task_session(p) != task_session(group_leader))
1116 			goto out;
1117 		err = -EACCES;
1118 		if (p->did_exec)
1119 			goto out;
1120 	} else {
1121 		err = -ESRCH;
1122 		if (p != group_leader)
1123 			goto out;
1124 	}
1125 
1126 	err = -EPERM;
1127 	if (p->signal->leader)
1128 		goto out;
1129 
1130 	pgrp = task_pid(p);
1131 	if (pgid != pid) {
1132 		struct task_struct *g;
1133 
1134 		pgrp = find_vpid(pgid);
1135 		g = pid_task(pgrp, PIDTYPE_PGID);
1136 		if (!g || task_session(g) != task_session(group_leader))
1137 			goto out;
1138 	}
1139 
1140 	err = security_task_setpgid(p, pgid);
1141 	if (err)
1142 		goto out;
1143 
1144 	if (task_pgrp(p) != pgrp)
1145 		change_pid(p, PIDTYPE_PGID, pgrp);
1146 
1147 	err = 0;
1148 out:
1149 	/* All paths lead to here, thus we are safe. -DaveM */
1150 	write_unlock_irq(&tasklist_lock);
1151 	rcu_read_unlock();
1152 	return err;
1153 }
1154 
1155 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1156 {
1157 	struct task_struct *p;
1158 	struct pid *grp;
1159 	int retval;
1160 
1161 	rcu_read_lock();
1162 	if (!pid)
1163 		grp = task_pgrp(current);
1164 	else {
1165 		retval = -ESRCH;
1166 		p = find_task_by_vpid(pid);
1167 		if (!p)
1168 			goto out;
1169 		grp = task_pgrp(p);
1170 		if (!grp)
1171 			goto out;
1172 
1173 		retval = security_task_getpgid(p);
1174 		if (retval)
1175 			goto out;
1176 	}
1177 	retval = pid_vnr(grp);
1178 out:
1179 	rcu_read_unlock();
1180 	return retval;
1181 }
1182 
1183 #ifdef __ARCH_WANT_SYS_GETPGRP
1184 
1185 SYSCALL_DEFINE0(getpgrp)
1186 {
1187 	return sys_getpgid(0);
1188 }
1189 
1190 #endif
1191 
1192 SYSCALL_DEFINE1(getsid, pid_t, pid)
1193 {
1194 	struct task_struct *p;
1195 	struct pid *sid;
1196 	int retval;
1197 
1198 	rcu_read_lock();
1199 	if (!pid)
1200 		sid = task_session(current);
1201 	else {
1202 		retval = -ESRCH;
1203 		p = find_task_by_vpid(pid);
1204 		if (!p)
1205 			goto out;
1206 		sid = task_session(p);
1207 		if (!sid)
1208 			goto out;
1209 
1210 		retval = security_task_getsid(p);
1211 		if (retval)
1212 			goto out;
1213 	}
1214 	retval = pid_vnr(sid);
1215 out:
1216 	rcu_read_unlock();
1217 	return retval;
1218 }
1219 
1220 SYSCALL_DEFINE0(setsid)
1221 {
1222 	struct task_struct *group_leader = current->group_leader;
1223 	struct pid *sid = task_pid(group_leader);
1224 	pid_t session = pid_vnr(sid);
1225 	int err = -EPERM;
1226 
1227 	write_lock_irq(&tasklist_lock);
1228 	/* Fail if I am already a session leader */
1229 	if (group_leader->signal->leader)
1230 		goto out;
1231 
1232 	/* Fail if a process group id already exists that equals the
1233 	 * proposed session id.
1234 	 */
1235 	if (pid_task(sid, PIDTYPE_PGID))
1236 		goto out;
1237 
1238 	group_leader->signal->leader = 1;
1239 	__set_special_pids(sid);
1240 
1241 	proc_clear_tty(group_leader);
1242 
1243 	err = session;
1244 out:
1245 	write_unlock_irq(&tasklist_lock);
1246 	if (err > 0) {
1247 		proc_sid_connector(group_leader);
1248 		sched_autogroup_create_attach(group_leader);
1249 	}
1250 	return err;
1251 }
1252 
1253 DECLARE_RWSEM(uts_sem);
1254 
1255 #ifdef COMPAT_UTS_MACHINE
1256 #define override_architecture(name) \
1257 	(personality(current->personality) == PER_LINUX32 && \
1258 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1259 		      sizeof(COMPAT_UTS_MACHINE)))
1260 #else
1261 #define override_architecture(name)	0
1262 #endif
1263 
1264 /*
1265  * Work around broken programs that cannot handle "Linux 3.0".
1266  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1267  */
1268 static int override_release(char __user *release, int len)
1269 {
1270 	int ret = 0;
1271 	char buf[65];
1272 
1273 	if (current->personality & UNAME26) {
1274 		char *rest = UTS_RELEASE;
1275 		int ndots = 0;
1276 		unsigned v;
1277 
1278 		while (*rest) {
1279 			if (*rest == '.' && ++ndots >= 3)
1280 				break;
1281 			if (!isdigit(*rest) && *rest != '.')
1282 				break;
1283 			rest++;
1284 		}
1285 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1286 		snprintf(buf, len, "2.6.%u%s", v, rest);
1287 		ret = copy_to_user(release, buf, len);
1288 	}
1289 	return ret;
1290 }
1291 
1292 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1293 {
1294 	int errno = 0;
1295 
1296 	down_read(&uts_sem);
1297 	if (copy_to_user(name, utsname(), sizeof *name))
1298 		errno = -EFAULT;
1299 	up_read(&uts_sem);
1300 
1301 	if (!errno && override_release(name->release, sizeof(name->release)))
1302 		errno = -EFAULT;
1303 	if (!errno && override_architecture(name))
1304 		errno = -EFAULT;
1305 	return errno;
1306 }
1307 
1308 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1309 /*
1310  * Old cruft
1311  */
1312 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1313 {
1314 	int error = 0;
1315 
1316 	if (!name)
1317 		return -EFAULT;
1318 
1319 	down_read(&uts_sem);
1320 	if (copy_to_user(name, utsname(), sizeof(*name)))
1321 		error = -EFAULT;
1322 	up_read(&uts_sem);
1323 
1324 	if (!error && override_release(name->release, sizeof(name->release)))
1325 		error = -EFAULT;
1326 	if (!error && override_architecture(name))
1327 		error = -EFAULT;
1328 	return error;
1329 }
1330 
1331 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1332 {
1333 	int error;
1334 
1335 	if (!name)
1336 		return -EFAULT;
1337 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1338 		return -EFAULT;
1339 
1340 	down_read(&uts_sem);
1341 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1342 			       __OLD_UTS_LEN);
1343 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1344 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1345 				__OLD_UTS_LEN);
1346 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1347 	error |= __copy_to_user(&name->release, &utsname()->release,
1348 				__OLD_UTS_LEN);
1349 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1350 	error |= __copy_to_user(&name->version, &utsname()->version,
1351 				__OLD_UTS_LEN);
1352 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1353 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1354 				__OLD_UTS_LEN);
1355 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1356 	up_read(&uts_sem);
1357 
1358 	if (!error && override_architecture(name))
1359 		error = -EFAULT;
1360 	if (!error && override_release(name->release, sizeof(name->release)))
1361 		error = -EFAULT;
1362 	return error ? -EFAULT : 0;
1363 }
1364 #endif
1365 
1366 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1367 {
1368 	int errno;
1369 	char tmp[__NEW_UTS_LEN];
1370 
1371 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1372 		return -EPERM;
1373 
1374 	if (len < 0 || len > __NEW_UTS_LEN)
1375 		return -EINVAL;
1376 	down_write(&uts_sem);
1377 	errno = -EFAULT;
1378 	if (!copy_from_user(tmp, name, len)) {
1379 		struct new_utsname *u = utsname();
1380 
1381 		memcpy(u->nodename, tmp, len);
1382 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1383 		errno = 0;
1384 		uts_proc_notify(UTS_PROC_HOSTNAME);
1385 	}
1386 	up_write(&uts_sem);
1387 	return errno;
1388 }
1389 
1390 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1391 
1392 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1393 {
1394 	int i, errno;
1395 	struct new_utsname *u;
1396 
1397 	if (len < 0)
1398 		return -EINVAL;
1399 	down_read(&uts_sem);
1400 	u = utsname();
1401 	i = 1 + strlen(u->nodename);
1402 	if (i > len)
1403 		i = len;
1404 	errno = 0;
1405 	if (copy_to_user(name, u->nodename, i))
1406 		errno = -EFAULT;
1407 	up_read(&uts_sem);
1408 	return errno;
1409 }
1410 
1411 #endif
1412 
1413 /*
1414  * Only setdomainname; getdomainname can be implemented by calling
1415  * uname()
1416  */
1417 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1418 {
1419 	int errno;
1420 	char tmp[__NEW_UTS_LEN];
1421 
1422 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1423 		return -EPERM;
1424 	if (len < 0 || len > __NEW_UTS_LEN)
1425 		return -EINVAL;
1426 
1427 	down_write(&uts_sem);
1428 	errno = -EFAULT;
1429 	if (!copy_from_user(tmp, name, len)) {
1430 		struct new_utsname *u = utsname();
1431 
1432 		memcpy(u->domainname, tmp, len);
1433 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1434 		errno = 0;
1435 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1436 	}
1437 	up_write(&uts_sem);
1438 	return errno;
1439 }
1440 
1441 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1442 {
1443 	struct rlimit value;
1444 	int ret;
1445 
1446 	ret = do_prlimit(current, resource, NULL, &value);
1447 	if (!ret)
1448 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1449 
1450 	return ret;
1451 }
1452 
1453 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1454 
1455 /*
1456  *	Back compatibility for getrlimit. Needed for some apps.
1457  */
1458 
1459 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1460 		struct rlimit __user *, rlim)
1461 {
1462 	struct rlimit x;
1463 	if (resource >= RLIM_NLIMITS)
1464 		return -EINVAL;
1465 
1466 	task_lock(current->group_leader);
1467 	x = current->signal->rlim[resource];
1468 	task_unlock(current->group_leader);
1469 	if (x.rlim_cur > 0x7FFFFFFF)
1470 		x.rlim_cur = 0x7FFFFFFF;
1471 	if (x.rlim_max > 0x7FFFFFFF)
1472 		x.rlim_max = 0x7FFFFFFF;
1473 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1474 }
1475 
1476 #endif
1477 
1478 static inline bool rlim64_is_infinity(__u64 rlim64)
1479 {
1480 #if BITS_PER_LONG < 64
1481 	return rlim64 >= ULONG_MAX;
1482 #else
1483 	return rlim64 == RLIM64_INFINITY;
1484 #endif
1485 }
1486 
1487 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1488 {
1489 	if (rlim->rlim_cur == RLIM_INFINITY)
1490 		rlim64->rlim_cur = RLIM64_INFINITY;
1491 	else
1492 		rlim64->rlim_cur = rlim->rlim_cur;
1493 	if (rlim->rlim_max == RLIM_INFINITY)
1494 		rlim64->rlim_max = RLIM64_INFINITY;
1495 	else
1496 		rlim64->rlim_max = rlim->rlim_max;
1497 }
1498 
1499 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1500 {
1501 	if (rlim64_is_infinity(rlim64->rlim_cur))
1502 		rlim->rlim_cur = RLIM_INFINITY;
1503 	else
1504 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1505 	if (rlim64_is_infinity(rlim64->rlim_max))
1506 		rlim->rlim_max = RLIM_INFINITY;
1507 	else
1508 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1509 }
1510 
1511 /* make sure you are allowed to change @tsk limits before calling this */
1512 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1513 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1514 {
1515 	struct rlimit *rlim;
1516 	int retval = 0;
1517 
1518 	if (resource >= RLIM_NLIMITS)
1519 		return -EINVAL;
1520 	if (new_rlim) {
1521 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1522 			return -EINVAL;
1523 		if (resource == RLIMIT_NOFILE &&
1524 				new_rlim->rlim_max > sysctl_nr_open)
1525 			return -EPERM;
1526 	}
1527 
1528 	/* protect tsk->signal and tsk->sighand from disappearing */
1529 	read_lock(&tasklist_lock);
1530 	if (!tsk->sighand) {
1531 		retval = -ESRCH;
1532 		goto out;
1533 	}
1534 
1535 	rlim = tsk->signal->rlim + resource;
1536 	task_lock(tsk->group_leader);
1537 	if (new_rlim) {
1538 		/* Keep the capable check against init_user_ns until
1539 		   cgroups can contain all limits */
1540 		if (new_rlim->rlim_max > rlim->rlim_max &&
1541 				!capable(CAP_SYS_RESOURCE))
1542 			retval = -EPERM;
1543 		if (!retval)
1544 			retval = security_task_setrlimit(tsk->group_leader,
1545 					resource, new_rlim);
1546 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1547 			/*
1548 			 * The caller is asking for an immediate RLIMIT_CPU
1549 			 * expiry.  But we use the zero value to mean "it was
1550 			 * never set".  So let's cheat and make it one second
1551 			 * instead
1552 			 */
1553 			new_rlim->rlim_cur = 1;
1554 		}
1555 	}
1556 	if (!retval) {
1557 		if (old_rlim)
1558 			*old_rlim = *rlim;
1559 		if (new_rlim)
1560 			*rlim = *new_rlim;
1561 	}
1562 	task_unlock(tsk->group_leader);
1563 
1564 	/*
1565 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1566 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1567 	 * very long-standing error, and fixing it now risks breakage of
1568 	 * applications, so we live with it
1569 	 */
1570 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1571 			 new_rlim->rlim_cur != RLIM_INFINITY)
1572 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1573 out:
1574 	read_unlock(&tasklist_lock);
1575 	return retval;
1576 }
1577 
1578 /* rcu lock must be held */
1579 static int check_prlimit_permission(struct task_struct *task)
1580 {
1581 	const struct cred *cred = current_cred(), *tcred;
1582 
1583 	if (current == task)
1584 		return 0;
1585 
1586 	tcred = __task_cred(task);
1587 	if (uid_eq(cred->uid, tcred->euid) &&
1588 	    uid_eq(cred->uid, tcred->suid) &&
1589 	    uid_eq(cred->uid, tcred->uid)  &&
1590 	    gid_eq(cred->gid, tcred->egid) &&
1591 	    gid_eq(cred->gid, tcred->sgid) &&
1592 	    gid_eq(cred->gid, tcred->gid))
1593 		return 0;
1594 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1595 		return 0;
1596 
1597 	return -EPERM;
1598 }
1599 
1600 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1601 		const struct rlimit64 __user *, new_rlim,
1602 		struct rlimit64 __user *, old_rlim)
1603 {
1604 	struct rlimit64 old64, new64;
1605 	struct rlimit old, new;
1606 	struct task_struct *tsk;
1607 	int ret;
1608 
1609 	if (new_rlim) {
1610 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1611 			return -EFAULT;
1612 		rlim64_to_rlim(&new64, &new);
1613 	}
1614 
1615 	rcu_read_lock();
1616 	tsk = pid ? find_task_by_vpid(pid) : current;
1617 	if (!tsk) {
1618 		rcu_read_unlock();
1619 		return -ESRCH;
1620 	}
1621 	ret = check_prlimit_permission(tsk);
1622 	if (ret) {
1623 		rcu_read_unlock();
1624 		return ret;
1625 	}
1626 	get_task_struct(tsk);
1627 	rcu_read_unlock();
1628 
1629 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1630 			old_rlim ? &old : NULL);
1631 
1632 	if (!ret && old_rlim) {
1633 		rlim_to_rlim64(&old, &old64);
1634 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1635 			ret = -EFAULT;
1636 	}
1637 
1638 	put_task_struct(tsk);
1639 	return ret;
1640 }
1641 
1642 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1643 {
1644 	struct rlimit new_rlim;
1645 
1646 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1647 		return -EFAULT;
1648 	return do_prlimit(current, resource, &new_rlim, NULL);
1649 }
1650 
1651 /*
1652  * It would make sense to put struct rusage in the task_struct,
1653  * except that would make the task_struct be *really big*.  After
1654  * task_struct gets moved into malloc'ed memory, it would
1655  * make sense to do this.  It will make moving the rest of the information
1656  * a lot simpler!  (Which we're not doing right now because we're not
1657  * measuring them yet).
1658  *
1659  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1660  * races with threads incrementing their own counters.  But since word
1661  * reads are atomic, we either get new values or old values and we don't
1662  * care which for the sums.  We always take the siglock to protect reading
1663  * the c* fields from p->signal from races with exit.c updating those
1664  * fields when reaping, so a sample either gets all the additions of a
1665  * given child after it's reaped, or none so this sample is before reaping.
1666  *
1667  * Locking:
1668  * We need to take the siglock for CHILDEREN, SELF and BOTH
1669  * for  the cases current multithreaded, non-current single threaded
1670  * non-current multithreaded.  Thread traversal is now safe with
1671  * the siglock held.
1672  * Strictly speaking, we donot need to take the siglock if we are current and
1673  * single threaded,  as no one else can take our signal_struct away, no one
1674  * else can  reap the  children to update signal->c* counters, and no one else
1675  * can race with the signal-> fields. If we do not take any lock, the
1676  * signal-> fields could be read out of order while another thread was just
1677  * exiting. So we should  place a read memory barrier when we avoid the lock.
1678  * On the writer side,  write memory barrier is implied in  __exit_signal
1679  * as __exit_signal releases  the siglock spinlock after updating the signal->
1680  * fields. But we don't do this yet to keep things simple.
1681  *
1682  */
1683 
1684 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1685 {
1686 	r->ru_nvcsw += t->nvcsw;
1687 	r->ru_nivcsw += t->nivcsw;
1688 	r->ru_minflt += t->min_flt;
1689 	r->ru_majflt += t->maj_flt;
1690 	r->ru_inblock += task_io_get_inblock(t);
1691 	r->ru_oublock += task_io_get_oublock(t);
1692 }
1693 
1694 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1695 {
1696 	struct task_struct *t;
1697 	unsigned long flags;
1698 	cputime_t tgutime, tgstime, utime, stime;
1699 	unsigned long maxrss = 0;
1700 
1701 	memset((char *) r, 0, sizeof *r);
1702 	utime = stime = 0;
1703 
1704 	if (who == RUSAGE_THREAD) {
1705 		task_times(current, &utime, &stime);
1706 		accumulate_thread_rusage(p, r);
1707 		maxrss = p->signal->maxrss;
1708 		goto out;
1709 	}
1710 
1711 	if (!lock_task_sighand(p, &flags))
1712 		return;
1713 
1714 	switch (who) {
1715 		case RUSAGE_BOTH:
1716 		case RUSAGE_CHILDREN:
1717 			utime = p->signal->cutime;
1718 			stime = p->signal->cstime;
1719 			r->ru_nvcsw = p->signal->cnvcsw;
1720 			r->ru_nivcsw = p->signal->cnivcsw;
1721 			r->ru_minflt = p->signal->cmin_flt;
1722 			r->ru_majflt = p->signal->cmaj_flt;
1723 			r->ru_inblock = p->signal->cinblock;
1724 			r->ru_oublock = p->signal->coublock;
1725 			maxrss = p->signal->cmaxrss;
1726 
1727 			if (who == RUSAGE_CHILDREN)
1728 				break;
1729 
1730 		case RUSAGE_SELF:
1731 			thread_group_times(p, &tgutime, &tgstime);
1732 			utime += tgutime;
1733 			stime += tgstime;
1734 			r->ru_nvcsw += p->signal->nvcsw;
1735 			r->ru_nivcsw += p->signal->nivcsw;
1736 			r->ru_minflt += p->signal->min_flt;
1737 			r->ru_majflt += p->signal->maj_flt;
1738 			r->ru_inblock += p->signal->inblock;
1739 			r->ru_oublock += p->signal->oublock;
1740 			if (maxrss < p->signal->maxrss)
1741 				maxrss = p->signal->maxrss;
1742 			t = p;
1743 			do {
1744 				accumulate_thread_rusage(t, r);
1745 				t = next_thread(t);
1746 			} while (t != p);
1747 			break;
1748 
1749 		default:
1750 			BUG();
1751 	}
1752 	unlock_task_sighand(p, &flags);
1753 
1754 out:
1755 	cputime_to_timeval(utime, &r->ru_utime);
1756 	cputime_to_timeval(stime, &r->ru_stime);
1757 
1758 	if (who != RUSAGE_CHILDREN) {
1759 		struct mm_struct *mm = get_task_mm(p);
1760 		if (mm) {
1761 			setmax_mm_hiwater_rss(&maxrss, mm);
1762 			mmput(mm);
1763 		}
1764 	}
1765 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1766 }
1767 
1768 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1769 {
1770 	struct rusage r;
1771 	k_getrusage(p, who, &r);
1772 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1773 }
1774 
1775 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1776 {
1777 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1778 	    who != RUSAGE_THREAD)
1779 		return -EINVAL;
1780 	return getrusage(current, who, ru);
1781 }
1782 
1783 SYSCALL_DEFINE1(umask, int, mask)
1784 {
1785 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1786 	return mask;
1787 }
1788 
1789 #ifdef CONFIG_CHECKPOINT_RESTORE
1790 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1791 {
1792 	struct fd exe;
1793 	struct dentry *dentry;
1794 	int err;
1795 
1796 	exe = fdget(fd);
1797 	if (!exe.file)
1798 		return -EBADF;
1799 
1800 	dentry = exe.file->f_path.dentry;
1801 
1802 	/*
1803 	 * Because the original mm->exe_file points to executable file, make
1804 	 * sure that this one is executable as well, to avoid breaking an
1805 	 * overall picture.
1806 	 */
1807 	err = -EACCES;
1808 	if (!S_ISREG(dentry->d_inode->i_mode)	||
1809 	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1810 		goto exit;
1811 
1812 	err = inode_permission(dentry->d_inode, MAY_EXEC);
1813 	if (err)
1814 		goto exit;
1815 
1816 	down_write(&mm->mmap_sem);
1817 
1818 	/*
1819 	 * Forbid mm->exe_file change if old file still mapped.
1820 	 */
1821 	err = -EBUSY;
1822 	if (mm->exe_file) {
1823 		struct vm_area_struct *vma;
1824 
1825 		for (vma = mm->mmap; vma; vma = vma->vm_next)
1826 			if (vma->vm_file &&
1827 			    path_equal(&vma->vm_file->f_path,
1828 				       &mm->exe_file->f_path))
1829 				goto exit_unlock;
1830 	}
1831 
1832 	/*
1833 	 * The symlink can be changed only once, just to disallow arbitrary
1834 	 * transitions malicious software might bring in. This means one
1835 	 * could make a snapshot over all processes running and monitor
1836 	 * /proc/pid/exe changes to notice unusual activity if needed.
1837 	 */
1838 	err = -EPERM;
1839 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1840 		goto exit_unlock;
1841 
1842 	err = 0;
1843 	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
1844 exit_unlock:
1845 	up_write(&mm->mmap_sem);
1846 
1847 exit:
1848 	fdput(exe);
1849 	return err;
1850 }
1851 
1852 static int prctl_set_mm(int opt, unsigned long addr,
1853 			unsigned long arg4, unsigned long arg5)
1854 {
1855 	unsigned long rlim = rlimit(RLIMIT_DATA);
1856 	struct mm_struct *mm = current->mm;
1857 	struct vm_area_struct *vma;
1858 	int error;
1859 
1860 	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1861 		return -EINVAL;
1862 
1863 	if (!capable(CAP_SYS_RESOURCE))
1864 		return -EPERM;
1865 
1866 	if (opt == PR_SET_MM_EXE_FILE)
1867 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1868 
1869 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1870 		return -EINVAL;
1871 
1872 	error = -EINVAL;
1873 
1874 	down_read(&mm->mmap_sem);
1875 	vma = find_vma(mm, addr);
1876 
1877 	switch (opt) {
1878 	case PR_SET_MM_START_CODE:
1879 		mm->start_code = addr;
1880 		break;
1881 	case PR_SET_MM_END_CODE:
1882 		mm->end_code = addr;
1883 		break;
1884 	case PR_SET_MM_START_DATA:
1885 		mm->start_data = addr;
1886 		break;
1887 	case PR_SET_MM_END_DATA:
1888 		mm->end_data = addr;
1889 		break;
1890 
1891 	case PR_SET_MM_START_BRK:
1892 		if (addr <= mm->end_data)
1893 			goto out;
1894 
1895 		if (rlim < RLIM_INFINITY &&
1896 		    (mm->brk - addr) +
1897 		    (mm->end_data - mm->start_data) > rlim)
1898 			goto out;
1899 
1900 		mm->start_brk = addr;
1901 		break;
1902 
1903 	case PR_SET_MM_BRK:
1904 		if (addr <= mm->end_data)
1905 			goto out;
1906 
1907 		if (rlim < RLIM_INFINITY &&
1908 		    (addr - mm->start_brk) +
1909 		    (mm->end_data - mm->start_data) > rlim)
1910 			goto out;
1911 
1912 		mm->brk = addr;
1913 		break;
1914 
1915 	/*
1916 	 * If command line arguments and environment
1917 	 * are placed somewhere else on stack, we can
1918 	 * set them up here, ARG_START/END to setup
1919 	 * command line argumets and ENV_START/END
1920 	 * for environment.
1921 	 */
1922 	case PR_SET_MM_START_STACK:
1923 	case PR_SET_MM_ARG_START:
1924 	case PR_SET_MM_ARG_END:
1925 	case PR_SET_MM_ENV_START:
1926 	case PR_SET_MM_ENV_END:
1927 		if (!vma) {
1928 			error = -EFAULT;
1929 			goto out;
1930 		}
1931 		if (opt == PR_SET_MM_START_STACK)
1932 			mm->start_stack = addr;
1933 		else if (opt == PR_SET_MM_ARG_START)
1934 			mm->arg_start = addr;
1935 		else if (opt == PR_SET_MM_ARG_END)
1936 			mm->arg_end = addr;
1937 		else if (opt == PR_SET_MM_ENV_START)
1938 			mm->env_start = addr;
1939 		else if (opt == PR_SET_MM_ENV_END)
1940 			mm->env_end = addr;
1941 		break;
1942 
1943 	/*
1944 	 * This doesn't move auxiliary vector itself
1945 	 * since it's pinned to mm_struct, but allow
1946 	 * to fill vector with new values. It's up
1947 	 * to a caller to provide sane values here
1948 	 * otherwise user space tools which use this
1949 	 * vector might be unhappy.
1950 	 */
1951 	case PR_SET_MM_AUXV: {
1952 		unsigned long user_auxv[AT_VECTOR_SIZE];
1953 
1954 		if (arg4 > sizeof(user_auxv))
1955 			goto out;
1956 		up_read(&mm->mmap_sem);
1957 
1958 		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1959 			return -EFAULT;
1960 
1961 		/* Make sure the last entry is always AT_NULL */
1962 		user_auxv[AT_VECTOR_SIZE - 2] = 0;
1963 		user_auxv[AT_VECTOR_SIZE - 1] = 0;
1964 
1965 		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1966 
1967 		task_lock(current);
1968 		memcpy(mm->saved_auxv, user_auxv, arg4);
1969 		task_unlock(current);
1970 
1971 		return 0;
1972 	}
1973 	default:
1974 		goto out;
1975 	}
1976 
1977 	error = 0;
1978 out:
1979 	up_read(&mm->mmap_sem);
1980 	return error;
1981 }
1982 
1983 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1984 {
1985 	return put_user(me->clear_child_tid, tid_addr);
1986 }
1987 
1988 #else /* CONFIG_CHECKPOINT_RESTORE */
1989 static int prctl_set_mm(int opt, unsigned long addr,
1990 			unsigned long arg4, unsigned long arg5)
1991 {
1992 	return -EINVAL;
1993 }
1994 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1995 {
1996 	return -EINVAL;
1997 }
1998 #endif
1999 
2000 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2001 		unsigned long, arg4, unsigned long, arg5)
2002 {
2003 	struct task_struct *me = current;
2004 	unsigned char comm[sizeof(me->comm)];
2005 	long error;
2006 
2007 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2008 	if (error != -ENOSYS)
2009 		return error;
2010 
2011 	error = 0;
2012 	switch (option) {
2013 		case PR_SET_PDEATHSIG:
2014 			if (!valid_signal(arg2)) {
2015 				error = -EINVAL;
2016 				break;
2017 			}
2018 			me->pdeath_signal = arg2;
2019 			break;
2020 		case PR_GET_PDEATHSIG:
2021 			error = put_user(me->pdeath_signal, (int __user *)arg2);
2022 			break;
2023 		case PR_GET_DUMPABLE:
2024 			error = get_dumpable(me->mm);
2025 			break;
2026 		case PR_SET_DUMPABLE:
2027 			if (arg2 < 0 || arg2 > 1) {
2028 				error = -EINVAL;
2029 				break;
2030 			}
2031 			set_dumpable(me->mm, arg2);
2032 			break;
2033 
2034 		case PR_SET_UNALIGN:
2035 			error = SET_UNALIGN_CTL(me, arg2);
2036 			break;
2037 		case PR_GET_UNALIGN:
2038 			error = GET_UNALIGN_CTL(me, arg2);
2039 			break;
2040 		case PR_SET_FPEMU:
2041 			error = SET_FPEMU_CTL(me, arg2);
2042 			break;
2043 		case PR_GET_FPEMU:
2044 			error = GET_FPEMU_CTL(me, arg2);
2045 			break;
2046 		case PR_SET_FPEXC:
2047 			error = SET_FPEXC_CTL(me, arg2);
2048 			break;
2049 		case PR_GET_FPEXC:
2050 			error = GET_FPEXC_CTL(me, arg2);
2051 			break;
2052 		case PR_GET_TIMING:
2053 			error = PR_TIMING_STATISTICAL;
2054 			break;
2055 		case PR_SET_TIMING:
2056 			if (arg2 != PR_TIMING_STATISTICAL)
2057 				error = -EINVAL;
2058 			break;
2059 		case PR_SET_NAME:
2060 			comm[sizeof(me->comm)-1] = 0;
2061 			if (strncpy_from_user(comm, (char __user *)arg2,
2062 					      sizeof(me->comm) - 1) < 0)
2063 				return -EFAULT;
2064 			set_task_comm(me, comm);
2065 			proc_comm_connector(me);
2066 			break;
2067 		case PR_GET_NAME:
2068 			get_task_comm(comm, me);
2069 			if (copy_to_user((char __user *)arg2, comm,
2070 					 sizeof(comm)))
2071 				return -EFAULT;
2072 			break;
2073 		case PR_GET_ENDIAN:
2074 			error = GET_ENDIAN(me, arg2);
2075 			break;
2076 		case PR_SET_ENDIAN:
2077 			error = SET_ENDIAN(me, arg2);
2078 			break;
2079 		case PR_GET_SECCOMP:
2080 			error = prctl_get_seccomp();
2081 			break;
2082 		case PR_SET_SECCOMP:
2083 			error = prctl_set_seccomp(arg2, (char __user *)arg3);
2084 			break;
2085 		case PR_GET_TSC:
2086 			error = GET_TSC_CTL(arg2);
2087 			break;
2088 		case PR_SET_TSC:
2089 			error = SET_TSC_CTL(arg2);
2090 			break;
2091 		case PR_TASK_PERF_EVENTS_DISABLE:
2092 			error = perf_event_task_disable();
2093 			break;
2094 		case PR_TASK_PERF_EVENTS_ENABLE:
2095 			error = perf_event_task_enable();
2096 			break;
2097 		case PR_GET_TIMERSLACK:
2098 			error = current->timer_slack_ns;
2099 			break;
2100 		case PR_SET_TIMERSLACK:
2101 			if (arg2 <= 0)
2102 				current->timer_slack_ns =
2103 					current->default_timer_slack_ns;
2104 			else
2105 				current->timer_slack_ns = arg2;
2106 			break;
2107 		case PR_MCE_KILL:
2108 			if (arg4 | arg5)
2109 				return -EINVAL;
2110 			switch (arg2) {
2111 			case PR_MCE_KILL_CLEAR:
2112 				if (arg3 != 0)
2113 					return -EINVAL;
2114 				current->flags &= ~PF_MCE_PROCESS;
2115 				break;
2116 			case PR_MCE_KILL_SET:
2117 				current->flags |= PF_MCE_PROCESS;
2118 				if (arg3 == PR_MCE_KILL_EARLY)
2119 					current->flags |= PF_MCE_EARLY;
2120 				else if (arg3 == PR_MCE_KILL_LATE)
2121 					current->flags &= ~PF_MCE_EARLY;
2122 				else if (arg3 == PR_MCE_KILL_DEFAULT)
2123 					current->flags &=
2124 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2125 				else
2126 					return -EINVAL;
2127 				break;
2128 			default:
2129 				return -EINVAL;
2130 			}
2131 			break;
2132 		case PR_MCE_KILL_GET:
2133 			if (arg2 | arg3 | arg4 | arg5)
2134 				return -EINVAL;
2135 			if (current->flags & PF_MCE_PROCESS)
2136 				error = (current->flags & PF_MCE_EARLY) ?
2137 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2138 			else
2139 				error = PR_MCE_KILL_DEFAULT;
2140 			break;
2141 		case PR_SET_MM:
2142 			error = prctl_set_mm(arg2, arg3, arg4, arg5);
2143 			break;
2144 		case PR_GET_TID_ADDRESS:
2145 			error = prctl_get_tid_address(me, (int __user **)arg2);
2146 			break;
2147 		case PR_SET_CHILD_SUBREAPER:
2148 			me->signal->is_child_subreaper = !!arg2;
2149 			break;
2150 		case PR_GET_CHILD_SUBREAPER:
2151 			error = put_user(me->signal->is_child_subreaper,
2152 					 (int __user *) arg2);
2153 			break;
2154 		case PR_SET_NO_NEW_PRIVS:
2155 			if (arg2 != 1 || arg3 || arg4 || arg5)
2156 				return -EINVAL;
2157 
2158 			current->no_new_privs = 1;
2159 			break;
2160 		case PR_GET_NO_NEW_PRIVS:
2161 			if (arg2 || arg3 || arg4 || arg5)
2162 				return -EINVAL;
2163 			return current->no_new_privs ? 1 : 0;
2164 		default:
2165 			error = -EINVAL;
2166 			break;
2167 	}
2168 	return error;
2169 }
2170 
2171 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2172 		struct getcpu_cache __user *, unused)
2173 {
2174 	int err = 0;
2175 	int cpu = raw_smp_processor_id();
2176 	if (cpup)
2177 		err |= put_user(cpu, cpup);
2178 	if (nodep)
2179 		err |= put_user(cpu_to_node(cpu), nodep);
2180 	return err ? -EFAULT : 0;
2181 }
2182 
2183 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2184 
2185 static void argv_cleanup(struct subprocess_info *info)
2186 {
2187 	argv_free(info->argv);
2188 }
2189 
2190 static int __orderly_poweroff(void)
2191 {
2192 	int argc;
2193 	char **argv;
2194 	static char *envp[] = {
2195 		"HOME=/",
2196 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2197 		NULL
2198 	};
2199 	int ret;
2200 
2201 	argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2202 	if (argv == NULL) {
2203 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2204 		       __func__, poweroff_cmd);
2205 		return -ENOMEM;
2206 	}
2207 
2208 	ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_WAIT_EXEC,
2209 				      NULL, argv_cleanup, NULL);
2210 	if (ret == -ENOMEM)
2211 		argv_free(argv);
2212 
2213 	return ret;
2214 }
2215 
2216 /**
2217  * orderly_poweroff - Trigger an orderly system poweroff
2218  * @force: force poweroff if command execution fails
2219  *
2220  * This may be called from any context to trigger a system shutdown.
2221  * If the orderly shutdown fails, it will force an immediate shutdown.
2222  */
2223 int orderly_poweroff(bool force)
2224 {
2225 	int ret = __orderly_poweroff();
2226 
2227 	if (ret && force) {
2228 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2229 		       "forcing the issue\n");
2230 
2231 		/*
2232 		 * I guess this should try to kick off some daemon to sync and
2233 		 * poweroff asap.  Or not even bother syncing if we're doing an
2234 		 * emergency shutdown?
2235 		 */
2236 		emergency_sync();
2237 		kernel_power_off();
2238 	}
2239 
2240 	return ret;
2241 }
2242 EXPORT_SYMBOL_GPL(orderly_poweroff);
2243