xref: /linux/kernel/sys.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/highuid.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/unistd.h>
40 
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
43 #endif
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
46 #endif
47 #ifndef SET_FPEMU_CTL
48 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
49 #endif
50 #ifndef GET_FPEMU_CTL
51 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
52 #endif
53 #ifndef SET_FPEXC_CTL
54 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_FPEXC_CTL
57 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef GET_ENDIAN
60 # define GET_ENDIAN(a,b)	(-EINVAL)
61 #endif
62 #ifndef SET_ENDIAN
63 # define SET_ENDIAN(a,b)	(-EINVAL)
64 #endif
65 
66 /*
67  * this is where the system-wide overflow UID and GID are defined, for
68  * architectures that now have 32-bit UID/GID but didn't in the past
69  */
70 
71 int overflowuid = DEFAULT_OVERFLOWUID;
72 int overflowgid = DEFAULT_OVERFLOWGID;
73 
74 #ifdef CONFIG_UID16
75 EXPORT_SYMBOL(overflowuid);
76 EXPORT_SYMBOL(overflowgid);
77 #endif
78 
79 /*
80  * the same as above, but for filesystems which can only store a 16-bit
81  * UID and GID. as such, this is needed on all architectures
82  */
83 
84 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
85 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
86 
87 EXPORT_SYMBOL(fs_overflowuid);
88 EXPORT_SYMBOL(fs_overflowgid);
89 
90 /*
91  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
92  */
93 
94 int C_A_D = 1;
95 int cad_pid = 1;
96 
97 /*
98  *	Notifier list for kernel code which wants to be called
99  *	at shutdown. This is used to stop any idling DMA operations
100  *	and the like.
101  */
102 
103 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
104 
105 /*
106  *	Notifier chain core routines.  The exported routines below
107  *	are layered on top of these, with appropriate locking added.
108  */
109 
110 static int notifier_chain_register(struct notifier_block **nl,
111 		struct notifier_block *n)
112 {
113 	while ((*nl) != NULL) {
114 		if (n->priority > (*nl)->priority)
115 			break;
116 		nl = &((*nl)->next);
117 	}
118 	n->next = *nl;
119 	rcu_assign_pointer(*nl, n);
120 	return 0;
121 }
122 
123 static int notifier_chain_unregister(struct notifier_block **nl,
124 		struct notifier_block *n)
125 {
126 	while ((*nl) != NULL) {
127 		if ((*nl) == n) {
128 			rcu_assign_pointer(*nl, n->next);
129 			return 0;
130 		}
131 		nl = &((*nl)->next);
132 	}
133 	return -ENOENT;
134 }
135 
136 static int __kprobes notifier_call_chain(struct notifier_block **nl,
137 		unsigned long val, void *v)
138 {
139 	int ret = NOTIFY_DONE;
140 	struct notifier_block *nb, *next_nb;
141 
142 	nb = rcu_dereference(*nl);
143 	while (nb) {
144 		next_nb = rcu_dereference(nb->next);
145 		ret = nb->notifier_call(nb, val, v);
146 		if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
147 			break;
148 		nb = next_nb;
149 	}
150 	return ret;
151 }
152 
153 /*
154  *	Atomic notifier chain routines.  Registration and unregistration
155  *	use a mutex, and call_chain is synchronized by RCU (no locks).
156  */
157 
158 /**
159  *	atomic_notifier_chain_register - Add notifier to an atomic notifier chain
160  *	@nh: Pointer to head of the atomic notifier chain
161  *	@n: New entry in notifier chain
162  *
163  *	Adds a notifier to an atomic notifier chain.
164  *
165  *	Currently always returns zero.
166  */
167 
168 int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
169 		struct notifier_block *n)
170 {
171 	unsigned long flags;
172 	int ret;
173 
174 	spin_lock_irqsave(&nh->lock, flags);
175 	ret = notifier_chain_register(&nh->head, n);
176 	spin_unlock_irqrestore(&nh->lock, flags);
177 	return ret;
178 }
179 
180 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
181 
182 /**
183  *	atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
184  *	@nh: Pointer to head of the atomic notifier chain
185  *	@n: Entry to remove from notifier chain
186  *
187  *	Removes a notifier from an atomic notifier chain.
188  *
189  *	Returns zero on success or %-ENOENT on failure.
190  */
191 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
192 		struct notifier_block *n)
193 {
194 	unsigned long flags;
195 	int ret;
196 
197 	spin_lock_irqsave(&nh->lock, flags);
198 	ret = notifier_chain_unregister(&nh->head, n);
199 	spin_unlock_irqrestore(&nh->lock, flags);
200 	synchronize_rcu();
201 	return ret;
202 }
203 
204 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
205 
206 /**
207  *	atomic_notifier_call_chain - Call functions in an atomic notifier chain
208  *	@nh: Pointer to head of the atomic notifier chain
209  *	@val: Value passed unmodified to notifier function
210  *	@v: Pointer passed unmodified to notifier function
211  *
212  *	Calls each function in a notifier chain in turn.  The functions
213  *	run in an atomic context, so they must not block.
214  *	This routine uses RCU to synchronize with changes to the chain.
215  *
216  *	If the return value of the notifier can be and'ed
217  *	with %NOTIFY_STOP_MASK then atomic_notifier_call_chain
218  *	will return immediately, with the return value of
219  *	the notifier function which halted execution.
220  *	Otherwise the return value is the return value
221  *	of the last notifier function called.
222  */
223 
224 int atomic_notifier_call_chain(struct atomic_notifier_head *nh,
225 		unsigned long val, void *v)
226 {
227 	int ret;
228 
229 	rcu_read_lock();
230 	ret = notifier_call_chain(&nh->head, val, v);
231 	rcu_read_unlock();
232 	return ret;
233 }
234 
235 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
236 
237 /*
238  *	Blocking notifier chain routines.  All access to the chain is
239  *	synchronized by an rwsem.
240  */
241 
242 /**
243  *	blocking_notifier_chain_register - Add notifier to a blocking notifier chain
244  *	@nh: Pointer to head of the blocking notifier chain
245  *	@n: New entry in notifier chain
246  *
247  *	Adds a notifier to a blocking notifier chain.
248  *	Must be called in process context.
249  *
250  *	Currently always returns zero.
251  */
252 
253 int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
254 		struct notifier_block *n)
255 {
256 	int ret;
257 
258 	/*
259 	 * This code gets used during boot-up, when task switching is
260 	 * not yet working and interrupts must remain disabled.  At
261 	 * such times we must not call down_write().
262 	 */
263 	if (unlikely(system_state == SYSTEM_BOOTING))
264 		return notifier_chain_register(&nh->head, n);
265 
266 	down_write(&nh->rwsem);
267 	ret = notifier_chain_register(&nh->head, n);
268 	up_write(&nh->rwsem);
269 	return ret;
270 }
271 
272 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
273 
274 /**
275  *	blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
276  *	@nh: Pointer to head of the blocking notifier chain
277  *	@n: Entry to remove from notifier chain
278  *
279  *	Removes a notifier from a blocking notifier chain.
280  *	Must be called from process context.
281  *
282  *	Returns zero on success or %-ENOENT on failure.
283  */
284 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
285 		struct notifier_block *n)
286 {
287 	int ret;
288 
289 	/*
290 	 * This code gets used during boot-up, when task switching is
291 	 * not yet working and interrupts must remain disabled.  At
292 	 * such times we must not call down_write().
293 	 */
294 	if (unlikely(system_state == SYSTEM_BOOTING))
295 		return notifier_chain_unregister(&nh->head, n);
296 
297 	down_write(&nh->rwsem);
298 	ret = notifier_chain_unregister(&nh->head, n);
299 	up_write(&nh->rwsem);
300 	return ret;
301 }
302 
303 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
304 
305 /**
306  *	blocking_notifier_call_chain - Call functions in a blocking notifier chain
307  *	@nh: Pointer to head of the blocking notifier chain
308  *	@val: Value passed unmodified to notifier function
309  *	@v: Pointer passed unmodified to notifier function
310  *
311  *	Calls each function in a notifier chain in turn.  The functions
312  *	run in a process context, so they are allowed to block.
313  *
314  *	If the return value of the notifier can be and'ed
315  *	with %NOTIFY_STOP_MASK then blocking_notifier_call_chain
316  *	will return immediately, with the return value of
317  *	the notifier function which halted execution.
318  *	Otherwise the return value is the return value
319  *	of the last notifier function called.
320  */
321 
322 int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
323 		unsigned long val, void *v)
324 {
325 	int ret;
326 
327 	down_read(&nh->rwsem);
328 	ret = notifier_call_chain(&nh->head, val, v);
329 	up_read(&nh->rwsem);
330 	return ret;
331 }
332 
333 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
334 
335 /*
336  *	Raw notifier chain routines.  There is no protection;
337  *	the caller must provide it.  Use at your own risk!
338  */
339 
340 /**
341  *	raw_notifier_chain_register - Add notifier to a raw notifier chain
342  *	@nh: Pointer to head of the raw notifier chain
343  *	@n: New entry in notifier chain
344  *
345  *	Adds a notifier to a raw notifier chain.
346  *	All locking must be provided by the caller.
347  *
348  *	Currently always returns zero.
349  */
350 
351 int raw_notifier_chain_register(struct raw_notifier_head *nh,
352 		struct notifier_block *n)
353 {
354 	return notifier_chain_register(&nh->head, n);
355 }
356 
357 EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
358 
359 /**
360  *	raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
361  *	@nh: Pointer to head of the raw notifier chain
362  *	@n: Entry to remove from notifier chain
363  *
364  *	Removes a notifier from a raw notifier chain.
365  *	All locking must be provided by the caller.
366  *
367  *	Returns zero on success or %-ENOENT on failure.
368  */
369 int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
370 		struct notifier_block *n)
371 {
372 	return notifier_chain_unregister(&nh->head, n);
373 }
374 
375 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
376 
377 /**
378  *	raw_notifier_call_chain - Call functions in a raw notifier chain
379  *	@nh: Pointer to head of the raw notifier chain
380  *	@val: Value passed unmodified to notifier function
381  *	@v: Pointer passed unmodified to notifier function
382  *
383  *	Calls each function in a notifier chain in turn.  The functions
384  *	run in an undefined context.
385  *	All locking must be provided by the caller.
386  *
387  *	If the return value of the notifier can be and'ed
388  *	with %NOTIFY_STOP_MASK then raw_notifier_call_chain
389  *	will return immediately, with the return value of
390  *	the notifier function which halted execution.
391  *	Otherwise the return value is the return value
392  *	of the last notifier function called.
393  */
394 
395 int raw_notifier_call_chain(struct raw_notifier_head *nh,
396 		unsigned long val, void *v)
397 {
398 	return notifier_call_chain(&nh->head, val, v);
399 }
400 
401 EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
402 
403 /**
404  *	register_reboot_notifier - Register function to be called at reboot time
405  *	@nb: Info about notifier function to be called
406  *
407  *	Registers a function with the list of functions
408  *	to be called at reboot time.
409  *
410  *	Currently always returns zero, as blocking_notifier_chain_register
411  *	always returns zero.
412  */
413 
414 int register_reboot_notifier(struct notifier_block * nb)
415 {
416 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
417 }
418 
419 EXPORT_SYMBOL(register_reboot_notifier);
420 
421 /**
422  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
423  *	@nb: Hook to be unregistered
424  *
425  *	Unregisters a previously registered reboot
426  *	notifier function.
427  *
428  *	Returns zero on success, or %-ENOENT on failure.
429  */
430 
431 int unregister_reboot_notifier(struct notifier_block * nb)
432 {
433 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
434 }
435 
436 EXPORT_SYMBOL(unregister_reboot_notifier);
437 
438 static int set_one_prio(struct task_struct *p, int niceval, int error)
439 {
440 	int no_nice;
441 
442 	if (p->uid != current->euid &&
443 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
444 		error = -EPERM;
445 		goto out;
446 	}
447 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
448 		error = -EACCES;
449 		goto out;
450 	}
451 	no_nice = security_task_setnice(p, niceval);
452 	if (no_nice) {
453 		error = no_nice;
454 		goto out;
455 	}
456 	if (error == -ESRCH)
457 		error = 0;
458 	set_user_nice(p, niceval);
459 out:
460 	return error;
461 }
462 
463 asmlinkage long sys_setpriority(int which, int who, int niceval)
464 {
465 	struct task_struct *g, *p;
466 	struct user_struct *user;
467 	int error = -EINVAL;
468 
469 	if (which > 2 || which < 0)
470 		goto out;
471 
472 	/* normalize: avoid signed division (rounding problems) */
473 	error = -ESRCH;
474 	if (niceval < -20)
475 		niceval = -20;
476 	if (niceval > 19)
477 		niceval = 19;
478 
479 	read_lock(&tasklist_lock);
480 	switch (which) {
481 		case PRIO_PROCESS:
482 			if (!who)
483 				who = current->pid;
484 			p = find_task_by_pid(who);
485 			if (p)
486 				error = set_one_prio(p, niceval, error);
487 			break;
488 		case PRIO_PGRP:
489 			if (!who)
490 				who = process_group(current);
491 			do_each_task_pid(who, PIDTYPE_PGID, p) {
492 				error = set_one_prio(p, niceval, error);
493 			} while_each_task_pid(who, PIDTYPE_PGID, p);
494 			break;
495 		case PRIO_USER:
496 			user = current->user;
497 			if (!who)
498 				who = current->uid;
499 			else
500 				if ((who != current->uid) && !(user = find_user(who)))
501 					goto out_unlock;	/* No processes for this user */
502 
503 			do_each_thread(g, p)
504 				if (p->uid == who)
505 					error = set_one_prio(p, niceval, error);
506 			while_each_thread(g, p);
507 			if (who != current->uid)
508 				free_uid(user);		/* For find_user() */
509 			break;
510 	}
511 out_unlock:
512 	read_unlock(&tasklist_lock);
513 out:
514 	return error;
515 }
516 
517 /*
518  * Ugh. To avoid negative return values, "getpriority()" will
519  * not return the normal nice-value, but a negated value that
520  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
521  * to stay compatible.
522  */
523 asmlinkage long sys_getpriority(int which, int who)
524 {
525 	struct task_struct *g, *p;
526 	struct user_struct *user;
527 	long niceval, retval = -ESRCH;
528 
529 	if (which > 2 || which < 0)
530 		return -EINVAL;
531 
532 	read_lock(&tasklist_lock);
533 	switch (which) {
534 		case PRIO_PROCESS:
535 			if (!who)
536 				who = current->pid;
537 			p = find_task_by_pid(who);
538 			if (p) {
539 				niceval = 20 - task_nice(p);
540 				if (niceval > retval)
541 					retval = niceval;
542 			}
543 			break;
544 		case PRIO_PGRP:
545 			if (!who)
546 				who = process_group(current);
547 			do_each_task_pid(who, PIDTYPE_PGID, p) {
548 				niceval = 20 - task_nice(p);
549 				if (niceval > retval)
550 					retval = niceval;
551 			} while_each_task_pid(who, PIDTYPE_PGID, p);
552 			break;
553 		case PRIO_USER:
554 			user = current->user;
555 			if (!who)
556 				who = current->uid;
557 			else
558 				if ((who != current->uid) && !(user = find_user(who)))
559 					goto out_unlock;	/* No processes for this user */
560 
561 			do_each_thread(g, p)
562 				if (p->uid == who) {
563 					niceval = 20 - task_nice(p);
564 					if (niceval > retval)
565 						retval = niceval;
566 				}
567 			while_each_thread(g, p);
568 			if (who != current->uid)
569 				free_uid(user);		/* for find_user() */
570 			break;
571 	}
572 out_unlock:
573 	read_unlock(&tasklist_lock);
574 
575 	return retval;
576 }
577 
578 /**
579  *	emergency_restart - reboot the system
580  *
581  *	Without shutting down any hardware or taking any locks
582  *	reboot the system.  This is called when we know we are in
583  *	trouble so this is our best effort to reboot.  This is
584  *	safe to call in interrupt context.
585  */
586 void emergency_restart(void)
587 {
588 	machine_emergency_restart();
589 }
590 EXPORT_SYMBOL_GPL(emergency_restart);
591 
592 static void kernel_restart_prepare(char *cmd)
593 {
594 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
595 	system_state = SYSTEM_RESTART;
596 	device_shutdown();
597 }
598 
599 /**
600  *	kernel_restart - reboot the system
601  *	@cmd: pointer to buffer containing command to execute for restart
602  *		or %NULL
603  *
604  *	Shutdown everything and perform a clean reboot.
605  *	This is not safe to call in interrupt context.
606  */
607 void kernel_restart(char *cmd)
608 {
609 	kernel_restart_prepare(cmd);
610 	if (!cmd) {
611 		printk(KERN_EMERG "Restarting system.\n");
612 	} else {
613 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
614 	}
615 	printk(".\n");
616 	machine_restart(cmd);
617 }
618 EXPORT_SYMBOL_GPL(kernel_restart);
619 
620 /**
621  *	kernel_kexec - reboot the system
622  *
623  *	Move into place and start executing a preloaded standalone
624  *	executable.  If nothing was preloaded return an error.
625  */
626 static void kernel_kexec(void)
627 {
628 #ifdef CONFIG_KEXEC
629 	struct kimage *image;
630 	image = xchg(&kexec_image, NULL);
631 	if (!image) {
632 		return;
633 	}
634 	kernel_restart_prepare(NULL);
635 	printk(KERN_EMERG "Starting new kernel\n");
636 	machine_shutdown();
637 	machine_kexec(image);
638 #endif
639 }
640 
641 void kernel_shutdown_prepare(enum system_states state)
642 {
643 	blocking_notifier_call_chain(&reboot_notifier_list,
644 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
645 	system_state = state;
646 	device_shutdown();
647 }
648 /**
649  *	kernel_halt - halt the system
650  *
651  *	Shutdown everything and perform a clean system halt.
652  */
653 void kernel_halt(void)
654 {
655 	kernel_shutdown_prepare(SYSTEM_HALT);
656 	printk(KERN_EMERG "System halted.\n");
657 	machine_halt();
658 }
659 
660 EXPORT_SYMBOL_GPL(kernel_halt);
661 
662 /**
663  *	kernel_power_off - power_off the system
664  *
665  *	Shutdown everything and perform a clean system power_off.
666  */
667 void kernel_power_off(void)
668 {
669 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
670 	printk(KERN_EMERG "Power down.\n");
671 	machine_power_off();
672 }
673 EXPORT_SYMBOL_GPL(kernel_power_off);
674 /*
675  * Reboot system call: for obvious reasons only root may call it,
676  * and even root needs to set up some magic numbers in the registers
677  * so that some mistake won't make this reboot the whole machine.
678  * You can also set the meaning of the ctrl-alt-del-key here.
679  *
680  * reboot doesn't sync: do that yourself before calling this.
681  */
682 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
683 {
684 	char buffer[256];
685 
686 	/* We only trust the superuser with rebooting the system. */
687 	if (!capable(CAP_SYS_BOOT))
688 		return -EPERM;
689 
690 	/* For safety, we require "magic" arguments. */
691 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
692 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
693 	                magic2 != LINUX_REBOOT_MAGIC2A &&
694 			magic2 != LINUX_REBOOT_MAGIC2B &&
695 	                magic2 != LINUX_REBOOT_MAGIC2C))
696 		return -EINVAL;
697 
698 	/* Instead of trying to make the power_off code look like
699 	 * halt when pm_power_off is not set do it the easy way.
700 	 */
701 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
702 		cmd = LINUX_REBOOT_CMD_HALT;
703 
704 	lock_kernel();
705 	switch (cmd) {
706 	case LINUX_REBOOT_CMD_RESTART:
707 		kernel_restart(NULL);
708 		break;
709 
710 	case LINUX_REBOOT_CMD_CAD_ON:
711 		C_A_D = 1;
712 		break;
713 
714 	case LINUX_REBOOT_CMD_CAD_OFF:
715 		C_A_D = 0;
716 		break;
717 
718 	case LINUX_REBOOT_CMD_HALT:
719 		kernel_halt();
720 		unlock_kernel();
721 		do_exit(0);
722 		break;
723 
724 	case LINUX_REBOOT_CMD_POWER_OFF:
725 		kernel_power_off();
726 		unlock_kernel();
727 		do_exit(0);
728 		break;
729 
730 	case LINUX_REBOOT_CMD_RESTART2:
731 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
732 			unlock_kernel();
733 			return -EFAULT;
734 		}
735 		buffer[sizeof(buffer) - 1] = '\0';
736 
737 		kernel_restart(buffer);
738 		break;
739 
740 	case LINUX_REBOOT_CMD_KEXEC:
741 		kernel_kexec();
742 		unlock_kernel();
743 		return -EINVAL;
744 
745 #ifdef CONFIG_SOFTWARE_SUSPEND
746 	case LINUX_REBOOT_CMD_SW_SUSPEND:
747 		{
748 			int ret = software_suspend();
749 			unlock_kernel();
750 			return ret;
751 		}
752 #endif
753 
754 	default:
755 		unlock_kernel();
756 		return -EINVAL;
757 	}
758 	unlock_kernel();
759 	return 0;
760 }
761 
762 static void deferred_cad(void *dummy)
763 {
764 	kernel_restart(NULL);
765 }
766 
767 /*
768  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
769  * As it's called within an interrupt, it may NOT sync: the only choice
770  * is whether to reboot at once, or just ignore the ctrl-alt-del.
771  */
772 void ctrl_alt_del(void)
773 {
774 	static DECLARE_WORK(cad_work, deferred_cad, NULL);
775 
776 	if (C_A_D)
777 		schedule_work(&cad_work);
778 	else
779 		kill_proc(cad_pid, SIGINT, 1);
780 }
781 
782 
783 /*
784  * Unprivileged users may change the real gid to the effective gid
785  * or vice versa.  (BSD-style)
786  *
787  * If you set the real gid at all, or set the effective gid to a value not
788  * equal to the real gid, then the saved gid is set to the new effective gid.
789  *
790  * This makes it possible for a setgid program to completely drop its
791  * privileges, which is often a useful assertion to make when you are doing
792  * a security audit over a program.
793  *
794  * The general idea is that a program which uses just setregid() will be
795  * 100% compatible with BSD.  A program which uses just setgid() will be
796  * 100% compatible with POSIX with saved IDs.
797  *
798  * SMP: There are not races, the GIDs are checked only by filesystem
799  *      operations (as far as semantic preservation is concerned).
800  */
801 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
802 {
803 	int old_rgid = current->gid;
804 	int old_egid = current->egid;
805 	int new_rgid = old_rgid;
806 	int new_egid = old_egid;
807 	int retval;
808 
809 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
810 	if (retval)
811 		return retval;
812 
813 	if (rgid != (gid_t) -1) {
814 		if ((old_rgid == rgid) ||
815 		    (current->egid==rgid) ||
816 		    capable(CAP_SETGID))
817 			new_rgid = rgid;
818 		else
819 			return -EPERM;
820 	}
821 	if (egid != (gid_t) -1) {
822 		if ((old_rgid == egid) ||
823 		    (current->egid == egid) ||
824 		    (current->sgid == egid) ||
825 		    capable(CAP_SETGID))
826 			new_egid = egid;
827 		else {
828 			return -EPERM;
829 		}
830 	}
831 	if (new_egid != old_egid)
832 	{
833 		current->mm->dumpable = suid_dumpable;
834 		smp_wmb();
835 	}
836 	if (rgid != (gid_t) -1 ||
837 	    (egid != (gid_t) -1 && egid != old_rgid))
838 		current->sgid = new_egid;
839 	current->fsgid = new_egid;
840 	current->egid = new_egid;
841 	current->gid = new_rgid;
842 	key_fsgid_changed(current);
843 	proc_id_connector(current, PROC_EVENT_GID);
844 	return 0;
845 }
846 
847 /*
848  * setgid() is implemented like SysV w/ SAVED_IDS
849  *
850  * SMP: Same implicit races as above.
851  */
852 asmlinkage long sys_setgid(gid_t gid)
853 {
854 	int old_egid = current->egid;
855 	int retval;
856 
857 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
858 	if (retval)
859 		return retval;
860 
861 	if (capable(CAP_SETGID))
862 	{
863 		if(old_egid != gid)
864 		{
865 			current->mm->dumpable = suid_dumpable;
866 			smp_wmb();
867 		}
868 		current->gid = current->egid = current->sgid = current->fsgid = gid;
869 	}
870 	else if ((gid == current->gid) || (gid == current->sgid))
871 	{
872 		if(old_egid != gid)
873 		{
874 			current->mm->dumpable = suid_dumpable;
875 			smp_wmb();
876 		}
877 		current->egid = current->fsgid = gid;
878 	}
879 	else
880 		return -EPERM;
881 
882 	key_fsgid_changed(current);
883 	proc_id_connector(current, PROC_EVENT_GID);
884 	return 0;
885 }
886 
887 static int set_user(uid_t new_ruid, int dumpclear)
888 {
889 	struct user_struct *new_user;
890 
891 	new_user = alloc_uid(new_ruid);
892 	if (!new_user)
893 		return -EAGAIN;
894 
895 	if (atomic_read(&new_user->processes) >=
896 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
897 			new_user != &root_user) {
898 		free_uid(new_user);
899 		return -EAGAIN;
900 	}
901 
902 	switch_uid(new_user);
903 
904 	if(dumpclear)
905 	{
906 		current->mm->dumpable = suid_dumpable;
907 		smp_wmb();
908 	}
909 	current->uid = new_ruid;
910 	return 0;
911 }
912 
913 /*
914  * Unprivileged users may change the real uid to the effective uid
915  * or vice versa.  (BSD-style)
916  *
917  * If you set the real uid at all, or set the effective uid to a value not
918  * equal to the real uid, then the saved uid is set to the new effective uid.
919  *
920  * This makes it possible for a setuid program to completely drop its
921  * privileges, which is often a useful assertion to make when you are doing
922  * a security audit over a program.
923  *
924  * The general idea is that a program which uses just setreuid() will be
925  * 100% compatible with BSD.  A program which uses just setuid() will be
926  * 100% compatible with POSIX with saved IDs.
927  */
928 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
929 {
930 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
931 	int retval;
932 
933 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
934 	if (retval)
935 		return retval;
936 
937 	new_ruid = old_ruid = current->uid;
938 	new_euid = old_euid = current->euid;
939 	old_suid = current->suid;
940 
941 	if (ruid != (uid_t) -1) {
942 		new_ruid = ruid;
943 		if ((old_ruid != ruid) &&
944 		    (current->euid != ruid) &&
945 		    !capable(CAP_SETUID))
946 			return -EPERM;
947 	}
948 
949 	if (euid != (uid_t) -1) {
950 		new_euid = euid;
951 		if ((old_ruid != euid) &&
952 		    (current->euid != euid) &&
953 		    (current->suid != euid) &&
954 		    !capable(CAP_SETUID))
955 			return -EPERM;
956 	}
957 
958 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
959 		return -EAGAIN;
960 
961 	if (new_euid != old_euid)
962 	{
963 		current->mm->dumpable = suid_dumpable;
964 		smp_wmb();
965 	}
966 	current->fsuid = current->euid = new_euid;
967 	if (ruid != (uid_t) -1 ||
968 	    (euid != (uid_t) -1 && euid != old_ruid))
969 		current->suid = current->euid;
970 	current->fsuid = current->euid;
971 
972 	key_fsuid_changed(current);
973 	proc_id_connector(current, PROC_EVENT_UID);
974 
975 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
976 }
977 
978 
979 
980 /*
981  * setuid() is implemented like SysV with SAVED_IDS
982  *
983  * Note that SAVED_ID's is deficient in that a setuid root program
984  * like sendmail, for example, cannot set its uid to be a normal
985  * user and then switch back, because if you're root, setuid() sets
986  * the saved uid too.  If you don't like this, blame the bright people
987  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
988  * will allow a root program to temporarily drop privileges and be able to
989  * regain them by swapping the real and effective uid.
990  */
991 asmlinkage long sys_setuid(uid_t uid)
992 {
993 	int old_euid = current->euid;
994 	int old_ruid, old_suid, new_ruid, new_suid;
995 	int retval;
996 
997 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
998 	if (retval)
999 		return retval;
1000 
1001 	old_ruid = new_ruid = current->uid;
1002 	old_suid = current->suid;
1003 	new_suid = old_suid;
1004 
1005 	if (capable(CAP_SETUID)) {
1006 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
1007 			return -EAGAIN;
1008 		new_suid = uid;
1009 	} else if ((uid != current->uid) && (uid != new_suid))
1010 		return -EPERM;
1011 
1012 	if (old_euid != uid)
1013 	{
1014 		current->mm->dumpable = suid_dumpable;
1015 		smp_wmb();
1016 	}
1017 	current->fsuid = current->euid = uid;
1018 	current->suid = new_suid;
1019 
1020 	key_fsuid_changed(current);
1021 	proc_id_connector(current, PROC_EVENT_UID);
1022 
1023 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
1024 }
1025 
1026 
1027 /*
1028  * This function implements a generic ability to update ruid, euid,
1029  * and suid.  This allows you to implement the 4.4 compatible seteuid().
1030  */
1031 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1032 {
1033 	int old_ruid = current->uid;
1034 	int old_euid = current->euid;
1035 	int old_suid = current->suid;
1036 	int retval;
1037 
1038 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
1039 	if (retval)
1040 		return retval;
1041 
1042 	if (!capable(CAP_SETUID)) {
1043 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
1044 		    (ruid != current->euid) && (ruid != current->suid))
1045 			return -EPERM;
1046 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
1047 		    (euid != current->euid) && (euid != current->suid))
1048 			return -EPERM;
1049 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
1050 		    (suid != current->euid) && (suid != current->suid))
1051 			return -EPERM;
1052 	}
1053 	if (ruid != (uid_t) -1) {
1054 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
1055 			return -EAGAIN;
1056 	}
1057 	if (euid != (uid_t) -1) {
1058 		if (euid != current->euid)
1059 		{
1060 			current->mm->dumpable = suid_dumpable;
1061 			smp_wmb();
1062 		}
1063 		current->euid = euid;
1064 	}
1065 	current->fsuid = current->euid;
1066 	if (suid != (uid_t) -1)
1067 		current->suid = suid;
1068 
1069 	key_fsuid_changed(current);
1070 	proc_id_connector(current, PROC_EVENT_UID);
1071 
1072 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
1073 }
1074 
1075 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
1076 {
1077 	int retval;
1078 
1079 	if (!(retval = put_user(current->uid, ruid)) &&
1080 	    !(retval = put_user(current->euid, euid)))
1081 		retval = put_user(current->suid, suid);
1082 
1083 	return retval;
1084 }
1085 
1086 /*
1087  * Same as above, but for rgid, egid, sgid.
1088  */
1089 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1090 {
1091 	int retval;
1092 
1093 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
1094 	if (retval)
1095 		return retval;
1096 
1097 	if (!capable(CAP_SETGID)) {
1098 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
1099 		    (rgid != current->egid) && (rgid != current->sgid))
1100 			return -EPERM;
1101 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
1102 		    (egid != current->egid) && (egid != current->sgid))
1103 			return -EPERM;
1104 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
1105 		    (sgid != current->egid) && (sgid != current->sgid))
1106 			return -EPERM;
1107 	}
1108 	if (egid != (gid_t) -1) {
1109 		if (egid != current->egid)
1110 		{
1111 			current->mm->dumpable = suid_dumpable;
1112 			smp_wmb();
1113 		}
1114 		current->egid = egid;
1115 	}
1116 	current->fsgid = current->egid;
1117 	if (rgid != (gid_t) -1)
1118 		current->gid = rgid;
1119 	if (sgid != (gid_t) -1)
1120 		current->sgid = sgid;
1121 
1122 	key_fsgid_changed(current);
1123 	proc_id_connector(current, PROC_EVENT_GID);
1124 	return 0;
1125 }
1126 
1127 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
1128 {
1129 	int retval;
1130 
1131 	if (!(retval = put_user(current->gid, rgid)) &&
1132 	    !(retval = put_user(current->egid, egid)))
1133 		retval = put_user(current->sgid, sgid);
1134 
1135 	return retval;
1136 }
1137 
1138 
1139 /*
1140  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1141  * is used for "access()" and for the NFS daemon (letting nfsd stay at
1142  * whatever uid it wants to). It normally shadows "euid", except when
1143  * explicitly set by setfsuid() or for access..
1144  */
1145 asmlinkage long sys_setfsuid(uid_t uid)
1146 {
1147 	int old_fsuid;
1148 
1149 	old_fsuid = current->fsuid;
1150 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
1151 		return old_fsuid;
1152 
1153 	if (uid == current->uid || uid == current->euid ||
1154 	    uid == current->suid || uid == current->fsuid ||
1155 	    capable(CAP_SETUID))
1156 	{
1157 		if (uid != old_fsuid)
1158 		{
1159 			current->mm->dumpable = suid_dumpable;
1160 			smp_wmb();
1161 		}
1162 		current->fsuid = uid;
1163 	}
1164 
1165 	key_fsuid_changed(current);
1166 	proc_id_connector(current, PROC_EVENT_UID);
1167 
1168 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
1169 
1170 	return old_fsuid;
1171 }
1172 
1173 /*
1174  * Samma p� svenska..
1175  */
1176 asmlinkage long sys_setfsgid(gid_t gid)
1177 {
1178 	int old_fsgid;
1179 
1180 	old_fsgid = current->fsgid;
1181 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
1182 		return old_fsgid;
1183 
1184 	if (gid == current->gid || gid == current->egid ||
1185 	    gid == current->sgid || gid == current->fsgid ||
1186 	    capable(CAP_SETGID))
1187 	{
1188 		if (gid != old_fsgid)
1189 		{
1190 			current->mm->dumpable = suid_dumpable;
1191 			smp_wmb();
1192 		}
1193 		current->fsgid = gid;
1194 		key_fsgid_changed(current);
1195 		proc_id_connector(current, PROC_EVENT_GID);
1196 	}
1197 	return old_fsgid;
1198 }
1199 
1200 asmlinkage long sys_times(struct tms __user * tbuf)
1201 {
1202 	/*
1203 	 *	In the SMP world we might just be unlucky and have one of
1204 	 *	the times increment as we use it. Since the value is an
1205 	 *	atomically safe type this is just fine. Conceptually its
1206 	 *	as if the syscall took an instant longer to occur.
1207 	 */
1208 	if (tbuf) {
1209 		struct tms tmp;
1210 		struct task_struct *tsk = current;
1211 		struct task_struct *t;
1212 		cputime_t utime, stime, cutime, cstime;
1213 
1214 		spin_lock_irq(&tsk->sighand->siglock);
1215 		utime = tsk->signal->utime;
1216 		stime = tsk->signal->stime;
1217 		t = tsk;
1218 		do {
1219 			utime = cputime_add(utime, t->utime);
1220 			stime = cputime_add(stime, t->stime);
1221 			t = next_thread(t);
1222 		} while (t != tsk);
1223 
1224 		cutime = tsk->signal->cutime;
1225 		cstime = tsk->signal->cstime;
1226 		spin_unlock_irq(&tsk->sighand->siglock);
1227 
1228 		tmp.tms_utime = cputime_to_clock_t(utime);
1229 		tmp.tms_stime = cputime_to_clock_t(stime);
1230 		tmp.tms_cutime = cputime_to_clock_t(cutime);
1231 		tmp.tms_cstime = cputime_to_clock_t(cstime);
1232 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1233 			return -EFAULT;
1234 	}
1235 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1236 }
1237 
1238 /*
1239  * This needs some heavy checking ...
1240  * I just haven't the stomach for it. I also don't fully
1241  * understand sessions/pgrp etc. Let somebody who does explain it.
1242  *
1243  * OK, I think I have the protection semantics right.... this is really
1244  * only important on a multi-user system anyway, to make sure one user
1245  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1246  *
1247  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1248  * LBT 04.03.94
1249  */
1250 
1251 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1252 {
1253 	struct task_struct *p;
1254 	struct task_struct *group_leader = current->group_leader;
1255 	int err = -EINVAL;
1256 
1257 	if (!pid)
1258 		pid = group_leader->pid;
1259 	if (!pgid)
1260 		pgid = pid;
1261 	if (pgid < 0)
1262 		return -EINVAL;
1263 
1264 	/* From this point forward we keep holding onto the tasklist lock
1265 	 * so that our parent does not change from under us. -DaveM
1266 	 */
1267 	write_lock_irq(&tasklist_lock);
1268 
1269 	err = -ESRCH;
1270 	p = find_task_by_pid(pid);
1271 	if (!p)
1272 		goto out;
1273 
1274 	err = -EINVAL;
1275 	if (!thread_group_leader(p))
1276 		goto out;
1277 
1278 	if (p->real_parent == group_leader) {
1279 		err = -EPERM;
1280 		if (p->signal->session != group_leader->signal->session)
1281 			goto out;
1282 		err = -EACCES;
1283 		if (p->did_exec)
1284 			goto out;
1285 	} else {
1286 		err = -ESRCH;
1287 		if (p != group_leader)
1288 			goto out;
1289 	}
1290 
1291 	err = -EPERM;
1292 	if (p->signal->leader)
1293 		goto out;
1294 
1295 	if (pgid != pid) {
1296 		struct task_struct *p;
1297 
1298 		do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1299 			if (p->signal->session == group_leader->signal->session)
1300 				goto ok_pgid;
1301 		} while_each_task_pid(pgid, PIDTYPE_PGID, p);
1302 		goto out;
1303 	}
1304 
1305 ok_pgid:
1306 	err = security_task_setpgid(p, pgid);
1307 	if (err)
1308 		goto out;
1309 
1310 	if (process_group(p) != pgid) {
1311 		detach_pid(p, PIDTYPE_PGID);
1312 		p->signal->pgrp = pgid;
1313 		attach_pid(p, PIDTYPE_PGID, pgid);
1314 	}
1315 
1316 	err = 0;
1317 out:
1318 	/* All paths lead to here, thus we are safe. -DaveM */
1319 	write_unlock_irq(&tasklist_lock);
1320 	return err;
1321 }
1322 
1323 asmlinkage long sys_getpgid(pid_t pid)
1324 {
1325 	if (!pid) {
1326 		return process_group(current);
1327 	} else {
1328 		int retval;
1329 		struct task_struct *p;
1330 
1331 		read_lock(&tasklist_lock);
1332 		p = find_task_by_pid(pid);
1333 
1334 		retval = -ESRCH;
1335 		if (p) {
1336 			retval = security_task_getpgid(p);
1337 			if (!retval)
1338 				retval = process_group(p);
1339 		}
1340 		read_unlock(&tasklist_lock);
1341 		return retval;
1342 	}
1343 }
1344 
1345 #ifdef __ARCH_WANT_SYS_GETPGRP
1346 
1347 asmlinkage long sys_getpgrp(void)
1348 {
1349 	/* SMP - assuming writes are word atomic this is fine */
1350 	return process_group(current);
1351 }
1352 
1353 #endif
1354 
1355 asmlinkage long sys_getsid(pid_t pid)
1356 {
1357 	if (!pid) {
1358 		return current->signal->session;
1359 	} else {
1360 		int retval;
1361 		struct task_struct *p;
1362 
1363 		read_lock(&tasklist_lock);
1364 		p = find_task_by_pid(pid);
1365 
1366 		retval = -ESRCH;
1367 		if(p) {
1368 			retval = security_task_getsid(p);
1369 			if (!retval)
1370 				retval = p->signal->session;
1371 		}
1372 		read_unlock(&tasklist_lock);
1373 		return retval;
1374 	}
1375 }
1376 
1377 asmlinkage long sys_setsid(void)
1378 {
1379 	struct task_struct *group_leader = current->group_leader;
1380 	pid_t session;
1381 	int err = -EPERM;
1382 
1383 	mutex_lock(&tty_mutex);
1384 	write_lock_irq(&tasklist_lock);
1385 
1386 	/* Fail if I am already a session leader */
1387 	if (group_leader->signal->leader)
1388 		goto out;
1389 
1390 	session = group_leader->pid;
1391 	/* Fail if a process group id already exists that equals the
1392 	 * proposed session id.
1393 	 *
1394 	 * Don't check if session id == 1 because kernel threads use this
1395 	 * session id and so the check will always fail and make it so
1396 	 * init cannot successfully call setsid.
1397 	 */
1398 	if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
1399 		goto out;
1400 
1401 	group_leader->signal->leader = 1;
1402 	__set_special_pids(session, session);
1403 	group_leader->signal->tty = NULL;
1404 	group_leader->signal->tty_old_pgrp = 0;
1405 	err = process_group(group_leader);
1406 out:
1407 	write_unlock_irq(&tasklist_lock);
1408 	mutex_unlock(&tty_mutex);
1409 	return err;
1410 }
1411 
1412 /*
1413  * Supplementary group IDs
1414  */
1415 
1416 /* init to 2 - one for init_task, one to ensure it is never freed */
1417 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1418 
1419 struct group_info *groups_alloc(int gidsetsize)
1420 {
1421 	struct group_info *group_info;
1422 	int nblocks;
1423 	int i;
1424 
1425 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1426 	/* Make sure we always allocate at least one indirect block pointer */
1427 	nblocks = nblocks ? : 1;
1428 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1429 	if (!group_info)
1430 		return NULL;
1431 	group_info->ngroups = gidsetsize;
1432 	group_info->nblocks = nblocks;
1433 	atomic_set(&group_info->usage, 1);
1434 
1435 	if (gidsetsize <= NGROUPS_SMALL) {
1436 		group_info->blocks[0] = group_info->small_block;
1437 	} else {
1438 		for (i = 0; i < nblocks; i++) {
1439 			gid_t *b;
1440 			b = (void *)__get_free_page(GFP_USER);
1441 			if (!b)
1442 				goto out_undo_partial_alloc;
1443 			group_info->blocks[i] = b;
1444 		}
1445 	}
1446 	return group_info;
1447 
1448 out_undo_partial_alloc:
1449 	while (--i >= 0) {
1450 		free_page((unsigned long)group_info->blocks[i]);
1451 	}
1452 	kfree(group_info);
1453 	return NULL;
1454 }
1455 
1456 EXPORT_SYMBOL(groups_alloc);
1457 
1458 void groups_free(struct group_info *group_info)
1459 {
1460 	if (group_info->blocks[0] != group_info->small_block) {
1461 		int i;
1462 		for (i = 0; i < group_info->nblocks; i++)
1463 			free_page((unsigned long)group_info->blocks[i]);
1464 	}
1465 	kfree(group_info);
1466 }
1467 
1468 EXPORT_SYMBOL(groups_free);
1469 
1470 /* export the group_info to a user-space array */
1471 static int groups_to_user(gid_t __user *grouplist,
1472     struct group_info *group_info)
1473 {
1474 	int i;
1475 	int count = group_info->ngroups;
1476 
1477 	for (i = 0; i < group_info->nblocks; i++) {
1478 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1479 		int off = i * NGROUPS_PER_BLOCK;
1480 		int len = cp_count * sizeof(*grouplist);
1481 
1482 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1483 			return -EFAULT;
1484 
1485 		count -= cp_count;
1486 	}
1487 	return 0;
1488 }
1489 
1490 /* fill a group_info from a user-space array - it must be allocated already */
1491 static int groups_from_user(struct group_info *group_info,
1492     gid_t __user *grouplist)
1493  {
1494 	int i;
1495 	int count = group_info->ngroups;
1496 
1497 	for (i = 0; i < group_info->nblocks; i++) {
1498 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1499 		int off = i * NGROUPS_PER_BLOCK;
1500 		int len = cp_count * sizeof(*grouplist);
1501 
1502 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1503 			return -EFAULT;
1504 
1505 		count -= cp_count;
1506 	}
1507 	return 0;
1508 }
1509 
1510 /* a simple Shell sort */
1511 static void groups_sort(struct group_info *group_info)
1512 {
1513 	int base, max, stride;
1514 	int gidsetsize = group_info->ngroups;
1515 
1516 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1517 		; /* nothing */
1518 	stride /= 3;
1519 
1520 	while (stride) {
1521 		max = gidsetsize - stride;
1522 		for (base = 0; base < max; base++) {
1523 			int left = base;
1524 			int right = left + stride;
1525 			gid_t tmp = GROUP_AT(group_info, right);
1526 
1527 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1528 				GROUP_AT(group_info, right) =
1529 				    GROUP_AT(group_info, left);
1530 				right = left;
1531 				left -= stride;
1532 			}
1533 			GROUP_AT(group_info, right) = tmp;
1534 		}
1535 		stride /= 3;
1536 	}
1537 }
1538 
1539 /* a simple bsearch */
1540 int groups_search(struct group_info *group_info, gid_t grp)
1541 {
1542 	unsigned int left, right;
1543 
1544 	if (!group_info)
1545 		return 0;
1546 
1547 	left = 0;
1548 	right = group_info->ngroups;
1549 	while (left < right) {
1550 		unsigned int mid = (left+right)/2;
1551 		int cmp = grp - GROUP_AT(group_info, mid);
1552 		if (cmp > 0)
1553 			left = mid + 1;
1554 		else if (cmp < 0)
1555 			right = mid;
1556 		else
1557 			return 1;
1558 	}
1559 	return 0;
1560 }
1561 
1562 /* validate and set current->group_info */
1563 int set_current_groups(struct group_info *group_info)
1564 {
1565 	int retval;
1566 	struct group_info *old_info;
1567 
1568 	retval = security_task_setgroups(group_info);
1569 	if (retval)
1570 		return retval;
1571 
1572 	groups_sort(group_info);
1573 	get_group_info(group_info);
1574 
1575 	task_lock(current);
1576 	old_info = current->group_info;
1577 	current->group_info = group_info;
1578 	task_unlock(current);
1579 
1580 	put_group_info(old_info);
1581 
1582 	return 0;
1583 }
1584 
1585 EXPORT_SYMBOL(set_current_groups);
1586 
1587 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1588 {
1589 	int i = 0;
1590 
1591 	/*
1592 	 *	SMP: Nobody else can change our grouplist. Thus we are
1593 	 *	safe.
1594 	 */
1595 
1596 	if (gidsetsize < 0)
1597 		return -EINVAL;
1598 
1599 	/* no need to grab task_lock here; it cannot change */
1600 	i = current->group_info->ngroups;
1601 	if (gidsetsize) {
1602 		if (i > gidsetsize) {
1603 			i = -EINVAL;
1604 			goto out;
1605 		}
1606 		if (groups_to_user(grouplist, current->group_info)) {
1607 			i = -EFAULT;
1608 			goto out;
1609 		}
1610 	}
1611 out:
1612 	return i;
1613 }
1614 
1615 /*
1616  *	SMP: Our groups are copy-on-write. We can set them safely
1617  *	without another task interfering.
1618  */
1619 
1620 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1621 {
1622 	struct group_info *group_info;
1623 	int retval;
1624 
1625 	if (!capable(CAP_SETGID))
1626 		return -EPERM;
1627 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1628 		return -EINVAL;
1629 
1630 	group_info = groups_alloc(gidsetsize);
1631 	if (!group_info)
1632 		return -ENOMEM;
1633 	retval = groups_from_user(group_info, grouplist);
1634 	if (retval) {
1635 		put_group_info(group_info);
1636 		return retval;
1637 	}
1638 
1639 	retval = set_current_groups(group_info);
1640 	put_group_info(group_info);
1641 
1642 	return retval;
1643 }
1644 
1645 /*
1646  * Check whether we're fsgid/egid or in the supplemental group..
1647  */
1648 int in_group_p(gid_t grp)
1649 {
1650 	int retval = 1;
1651 	if (grp != current->fsgid) {
1652 		retval = groups_search(current->group_info, grp);
1653 	}
1654 	return retval;
1655 }
1656 
1657 EXPORT_SYMBOL(in_group_p);
1658 
1659 int in_egroup_p(gid_t grp)
1660 {
1661 	int retval = 1;
1662 	if (grp != current->egid) {
1663 		retval = groups_search(current->group_info, grp);
1664 	}
1665 	return retval;
1666 }
1667 
1668 EXPORT_SYMBOL(in_egroup_p);
1669 
1670 DECLARE_RWSEM(uts_sem);
1671 
1672 EXPORT_SYMBOL(uts_sem);
1673 
1674 asmlinkage long sys_newuname(struct new_utsname __user * name)
1675 {
1676 	int errno = 0;
1677 
1678 	down_read(&uts_sem);
1679 	if (copy_to_user(name,&system_utsname,sizeof *name))
1680 		errno = -EFAULT;
1681 	up_read(&uts_sem);
1682 	return errno;
1683 }
1684 
1685 asmlinkage long sys_sethostname(char __user *name, int len)
1686 {
1687 	int errno;
1688 	char tmp[__NEW_UTS_LEN];
1689 
1690 	if (!capable(CAP_SYS_ADMIN))
1691 		return -EPERM;
1692 	if (len < 0 || len > __NEW_UTS_LEN)
1693 		return -EINVAL;
1694 	down_write(&uts_sem);
1695 	errno = -EFAULT;
1696 	if (!copy_from_user(tmp, name, len)) {
1697 		memcpy(system_utsname.nodename, tmp, len);
1698 		system_utsname.nodename[len] = 0;
1699 		errno = 0;
1700 	}
1701 	up_write(&uts_sem);
1702 	return errno;
1703 }
1704 
1705 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1706 
1707 asmlinkage long sys_gethostname(char __user *name, int len)
1708 {
1709 	int i, errno;
1710 
1711 	if (len < 0)
1712 		return -EINVAL;
1713 	down_read(&uts_sem);
1714 	i = 1 + strlen(system_utsname.nodename);
1715 	if (i > len)
1716 		i = len;
1717 	errno = 0;
1718 	if (copy_to_user(name, system_utsname.nodename, i))
1719 		errno = -EFAULT;
1720 	up_read(&uts_sem);
1721 	return errno;
1722 }
1723 
1724 #endif
1725 
1726 /*
1727  * Only setdomainname; getdomainname can be implemented by calling
1728  * uname()
1729  */
1730 asmlinkage long sys_setdomainname(char __user *name, int len)
1731 {
1732 	int errno;
1733 	char tmp[__NEW_UTS_LEN];
1734 
1735 	if (!capable(CAP_SYS_ADMIN))
1736 		return -EPERM;
1737 	if (len < 0 || len > __NEW_UTS_LEN)
1738 		return -EINVAL;
1739 
1740 	down_write(&uts_sem);
1741 	errno = -EFAULT;
1742 	if (!copy_from_user(tmp, name, len)) {
1743 		memcpy(system_utsname.domainname, tmp, len);
1744 		system_utsname.domainname[len] = 0;
1745 		errno = 0;
1746 	}
1747 	up_write(&uts_sem);
1748 	return errno;
1749 }
1750 
1751 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1752 {
1753 	if (resource >= RLIM_NLIMITS)
1754 		return -EINVAL;
1755 	else {
1756 		struct rlimit value;
1757 		task_lock(current->group_leader);
1758 		value = current->signal->rlim[resource];
1759 		task_unlock(current->group_leader);
1760 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1761 	}
1762 }
1763 
1764 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1765 
1766 /*
1767  *	Back compatibility for getrlimit. Needed for some apps.
1768  */
1769 
1770 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1771 {
1772 	struct rlimit x;
1773 	if (resource >= RLIM_NLIMITS)
1774 		return -EINVAL;
1775 
1776 	task_lock(current->group_leader);
1777 	x = current->signal->rlim[resource];
1778 	task_unlock(current->group_leader);
1779 	if(x.rlim_cur > 0x7FFFFFFF)
1780 		x.rlim_cur = 0x7FFFFFFF;
1781 	if(x.rlim_max > 0x7FFFFFFF)
1782 		x.rlim_max = 0x7FFFFFFF;
1783 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1784 }
1785 
1786 #endif
1787 
1788 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1789 {
1790 	struct rlimit new_rlim, *old_rlim;
1791 	unsigned long it_prof_secs;
1792 	int retval;
1793 
1794 	if (resource >= RLIM_NLIMITS)
1795 		return -EINVAL;
1796 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1797 		return -EFAULT;
1798 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1799 		return -EINVAL;
1800 	old_rlim = current->signal->rlim + resource;
1801 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1802 	    !capable(CAP_SYS_RESOURCE))
1803 		return -EPERM;
1804 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1805 		return -EPERM;
1806 
1807 	retval = security_task_setrlimit(resource, &new_rlim);
1808 	if (retval)
1809 		return retval;
1810 
1811 	task_lock(current->group_leader);
1812 	*old_rlim = new_rlim;
1813 	task_unlock(current->group_leader);
1814 
1815 	if (resource != RLIMIT_CPU)
1816 		goto out;
1817 
1818 	/*
1819 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1820 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1821 	 * very long-standing error, and fixing it now risks breakage of
1822 	 * applications, so we live with it
1823 	 */
1824 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1825 		goto out;
1826 
1827 	it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1828 	if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1829 		unsigned long rlim_cur = new_rlim.rlim_cur;
1830 		cputime_t cputime;
1831 
1832 		if (rlim_cur == 0) {
1833 			/*
1834 			 * The caller is asking for an immediate RLIMIT_CPU
1835 			 * expiry.  But we use the zero value to mean "it was
1836 			 * never set".  So let's cheat and make it one second
1837 			 * instead
1838 			 */
1839 			rlim_cur = 1;
1840 		}
1841 		cputime = secs_to_cputime(rlim_cur);
1842 		read_lock(&tasklist_lock);
1843 		spin_lock_irq(&current->sighand->siglock);
1844 		set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1845 		spin_unlock_irq(&current->sighand->siglock);
1846 		read_unlock(&tasklist_lock);
1847 	}
1848 out:
1849 	return 0;
1850 }
1851 
1852 /*
1853  * It would make sense to put struct rusage in the task_struct,
1854  * except that would make the task_struct be *really big*.  After
1855  * task_struct gets moved into malloc'ed memory, it would
1856  * make sense to do this.  It will make moving the rest of the information
1857  * a lot simpler!  (Which we're not doing right now because we're not
1858  * measuring them yet).
1859  *
1860  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1861  * races with threads incrementing their own counters.  But since word
1862  * reads are atomic, we either get new values or old values and we don't
1863  * care which for the sums.  We always take the siglock to protect reading
1864  * the c* fields from p->signal from races with exit.c updating those
1865  * fields when reaping, so a sample either gets all the additions of a
1866  * given child after it's reaped, or none so this sample is before reaping.
1867  *
1868  * Locking:
1869  * We need to take the siglock for CHILDEREN, SELF and BOTH
1870  * for  the cases current multithreaded, non-current single threaded
1871  * non-current multithreaded.  Thread traversal is now safe with
1872  * the siglock held.
1873  * Strictly speaking, we donot need to take the siglock if we are current and
1874  * single threaded,  as no one else can take our signal_struct away, no one
1875  * else can  reap the  children to update signal->c* counters, and no one else
1876  * can race with the signal-> fields. If we do not take any lock, the
1877  * signal-> fields could be read out of order while another thread was just
1878  * exiting. So we should  place a read memory barrier when we avoid the lock.
1879  * On the writer side,  write memory barrier is implied in  __exit_signal
1880  * as __exit_signal releases  the siglock spinlock after updating the signal->
1881  * fields. But we don't do this yet to keep things simple.
1882  *
1883  */
1884 
1885 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1886 {
1887 	struct task_struct *t;
1888 	unsigned long flags;
1889 	cputime_t utime, stime;
1890 
1891 	memset((char *) r, 0, sizeof *r);
1892 	utime = stime = cputime_zero;
1893 
1894 	rcu_read_lock();
1895 	if (!lock_task_sighand(p, &flags)) {
1896 		rcu_read_unlock();
1897 		return;
1898 	}
1899 
1900 	switch (who) {
1901 		case RUSAGE_BOTH:
1902 		case RUSAGE_CHILDREN:
1903 			utime = p->signal->cutime;
1904 			stime = p->signal->cstime;
1905 			r->ru_nvcsw = p->signal->cnvcsw;
1906 			r->ru_nivcsw = p->signal->cnivcsw;
1907 			r->ru_minflt = p->signal->cmin_flt;
1908 			r->ru_majflt = p->signal->cmaj_flt;
1909 
1910 			if (who == RUSAGE_CHILDREN)
1911 				break;
1912 
1913 		case RUSAGE_SELF:
1914 			utime = cputime_add(utime, p->signal->utime);
1915 			stime = cputime_add(stime, p->signal->stime);
1916 			r->ru_nvcsw += p->signal->nvcsw;
1917 			r->ru_nivcsw += p->signal->nivcsw;
1918 			r->ru_minflt += p->signal->min_flt;
1919 			r->ru_majflt += p->signal->maj_flt;
1920 			t = p;
1921 			do {
1922 				utime = cputime_add(utime, t->utime);
1923 				stime = cputime_add(stime, t->stime);
1924 				r->ru_nvcsw += t->nvcsw;
1925 				r->ru_nivcsw += t->nivcsw;
1926 				r->ru_minflt += t->min_flt;
1927 				r->ru_majflt += t->maj_flt;
1928 				t = next_thread(t);
1929 			} while (t != p);
1930 			break;
1931 
1932 		default:
1933 			BUG();
1934 	}
1935 
1936 	unlock_task_sighand(p, &flags);
1937 	rcu_read_unlock();
1938 
1939 	cputime_to_timeval(utime, &r->ru_utime);
1940 	cputime_to_timeval(stime, &r->ru_stime);
1941 }
1942 
1943 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1944 {
1945 	struct rusage r;
1946 	k_getrusage(p, who, &r);
1947 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1948 }
1949 
1950 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1951 {
1952 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1953 		return -EINVAL;
1954 	return getrusage(current, who, ru);
1955 }
1956 
1957 asmlinkage long sys_umask(int mask)
1958 {
1959 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1960 	return mask;
1961 }
1962 
1963 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1964 			  unsigned long arg4, unsigned long arg5)
1965 {
1966 	long error;
1967 
1968 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1969 	if (error)
1970 		return error;
1971 
1972 	switch (option) {
1973 		case PR_SET_PDEATHSIG:
1974 			if (!valid_signal(arg2)) {
1975 				error = -EINVAL;
1976 				break;
1977 			}
1978 			current->pdeath_signal = arg2;
1979 			break;
1980 		case PR_GET_PDEATHSIG:
1981 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1982 			break;
1983 		case PR_GET_DUMPABLE:
1984 			error = current->mm->dumpable;
1985 			break;
1986 		case PR_SET_DUMPABLE:
1987 			if (arg2 < 0 || arg2 > 2) {
1988 				error = -EINVAL;
1989 				break;
1990 			}
1991 			current->mm->dumpable = arg2;
1992 			break;
1993 
1994 		case PR_SET_UNALIGN:
1995 			error = SET_UNALIGN_CTL(current, arg2);
1996 			break;
1997 		case PR_GET_UNALIGN:
1998 			error = GET_UNALIGN_CTL(current, arg2);
1999 			break;
2000 		case PR_SET_FPEMU:
2001 			error = SET_FPEMU_CTL(current, arg2);
2002 			break;
2003 		case PR_GET_FPEMU:
2004 			error = GET_FPEMU_CTL(current, arg2);
2005 			break;
2006 		case PR_SET_FPEXC:
2007 			error = SET_FPEXC_CTL(current, arg2);
2008 			break;
2009 		case PR_GET_FPEXC:
2010 			error = GET_FPEXC_CTL(current, arg2);
2011 			break;
2012 		case PR_GET_TIMING:
2013 			error = PR_TIMING_STATISTICAL;
2014 			break;
2015 		case PR_SET_TIMING:
2016 			if (arg2 == PR_TIMING_STATISTICAL)
2017 				error = 0;
2018 			else
2019 				error = -EINVAL;
2020 			break;
2021 
2022 		case PR_GET_KEEPCAPS:
2023 			if (current->keep_capabilities)
2024 				error = 1;
2025 			break;
2026 		case PR_SET_KEEPCAPS:
2027 			if (arg2 != 0 && arg2 != 1) {
2028 				error = -EINVAL;
2029 				break;
2030 			}
2031 			current->keep_capabilities = arg2;
2032 			break;
2033 		case PR_SET_NAME: {
2034 			struct task_struct *me = current;
2035 			unsigned char ncomm[sizeof(me->comm)];
2036 
2037 			ncomm[sizeof(me->comm)-1] = 0;
2038 			if (strncpy_from_user(ncomm, (char __user *)arg2,
2039 						sizeof(me->comm)-1) < 0)
2040 				return -EFAULT;
2041 			set_task_comm(me, ncomm);
2042 			return 0;
2043 		}
2044 		case PR_GET_NAME: {
2045 			struct task_struct *me = current;
2046 			unsigned char tcomm[sizeof(me->comm)];
2047 
2048 			get_task_comm(tcomm, me);
2049 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
2050 				return -EFAULT;
2051 			return 0;
2052 		}
2053 		case PR_GET_ENDIAN:
2054 			error = GET_ENDIAN(current, arg2);
2055 			break;
2056 		case PR_SET_ENDIAN:
2057 			error = SET_ENDIAN(current, arg2);
2058 			break;
2059 
2060 		default:
2061 			error = -EINVAL;
2062 			break;
2063 	}
2064 	return error;
2065 }
2066