xref: /linux/kernel/sys.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/ksm.h>
19 #include <linux/perf_event.h>
20 #include <linux/resource.h>
21 #include <linux/kernel.h>
22 #include <linux/workqueue.h>
23 #include <linux/capability.h>
24 #include <linux/device.h>
25 #include <linux/key.h>
26 #include <linux/times.h>
27 #include <linux/posix-timers.h>
28 #include <linux/security.h>
29 #include <linux/random.h>
30 #include <linux/suspend.h>
31 #include <linux/tty.h>
32 #include <linux/signal.h>
33 #include <linux/cn_proc.h>
34 #include <linux/getcpu.h>
35 #include <linux/task_io_accounting_ops.h>
36 #include <linux/seccomp.h>
37 #include <linux/cpu.h>
38 #include <linux/personality.h>
39 #include <linux/ptrace.h>
40 #include <linux/fs_struct.h>
41 #include <linux/file.h>
42 #include <linux/mount.h>
43 #include <linux/gfp.h>
44 #include <linux/syscore_ops.h>
45 #include <linux/version.h>
46 #include <linux/ctype.h>
47 #include <linux/syscall_user_dispatch.h>
48 
49 #include <linux/compat.h>
50 #include <linux/syscalls.h>
51 #include <linux/kprobes.h>
52 #include <linux/user_namespace.h>
53 #include <linux/time_namespace.h>
54 #include <linux/binfmts.h>
55 
56 #include <linux/sched.h>
57 #include <linux/sched/autogroup.h>
58 #include <linux/sched/loadavg.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/mm.h>
61 #include <linux/sched/coredump.h>
62 #include <linux/sched/task.h>
63 #include <linux/sched/cputime.h>
64 #include <linux/rcupdate.h>
65 #include <linux/uidgid.h>
66 #include <linux/cred.h>
67 
68 #include <linux/nospec.h>
69 
70 #include <linux/kmsg_dump.h>
71 /* Move somewhere else to avoid recompiling? */
72 #include <generated/utsrelease.h>
73 
74 #include <linux/uaccess.h>
75 #include <asm/io.h>
76 #include <asm/unistd.h>
77 
78 #include "uid16.h"
79 
80 #ifndef SET_UNALIGN_CTL
81 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
82 #endif
83 #ifndef GET_UNALIGN_CTL
84 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef SET_FPEMU_CTL
87 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef GET_FPEMU_CTL
90 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef SET_FPEXC_CTL
93 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
94 #endif
95 #ifndef GET_FPEXC_CTL
96 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
97 #endif
98 #ifndef GET_ENDIAN
99 # define GET_ENDIAN(a, b)	(-EINVAL)
100 #endif
101 #ifndef SET_ENDIAN
102 # define SET_ENDIAN(a, b)	(-EINVAL)
103 #endif
104 #ifndef GET_TSC_CTL
105 # define GET_TSC_CTL(a)		(-EINVAL)
106 #endif
107 #ifndef SET_TSC_CTL
108 # define SET_TSC_CTL(a)		(-EINVAL)
109 #endif
110 #ifndef GET_FP_MODE
111 # define GET_FP_MODE(a)		(-EINVAL)
112 #endif
113 #ifndef SET_FP_MODE
114 # define SET_FP_MODE(a,b)	(-EINVAL)
115 #endif
116 #ifndef SVE_SET_VL
117 # define SVE_SET_VL(a)		(-EINVAL)
118 #endif
119 #ifndef SVE_GET_VL
120 # define SVE_GET_VL()		(-EINVAL)
121 #endif
122 #ifndef SME_SET_VL
123 # define SME_SET_VL(a)		(-EINVAL)
124 #endif
125 #ifndef SME_GET_VL
126 # define SME_GET_VL()		(-EINVAL)
127 #endif
128 #ifndef PAC_RESET_KEYS
129 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
130 #endif
131 #ifndef PAC_SET_ENABLED_KEYS
132 # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
133 #endif
134 #ifndef PAC_GET_ENABLED_KEYS
135 # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
136 #endif
137 #ifndef SET_TAGGED_ADDR_CTRL
138 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
139 #endif
140 #ifndef GET_TAGGED_ADDR_CTRL
141 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
142 #endif
143 #ifndef RISCV_V_SET_CONTROL
144 # define RISCV_V_SET_CONTROL(a)		(-EINVAL)
145 #endif
146 #ifndef RISCV_V_GET_CONTROL
147 # define RISCV_V_GET_CONTROL()		(-EINVAL)
148 #endif
149 #ifndef RISCV_SET_ICACHE_FLUSH_CTX
150 # define RISCV_SET_ICACHE_FLUSH_CTX(a, b)	(-EINVAL)
151 #endif
152 #ifndef PPC_GET_DEXCR_ASPECT
153 # define PPC_GET_DEXCR_ASPECT(a, b)	(-EINVAL)
154 #endif
155 #ifndef PPC_SET_DEXCR_ASPECT
156 # define PPC_SET_DEXCR_ASPECT(a, b, c)	(-EINVAL)
157 #endif
158 
159 /*
160  * this is where the system-wide overflow UID and GID are defined, for
161  * architectures that now have 32-bit UID/GID but didn't in the past
162  */
163 
164 int overflowuid = DEFAULT_OVERFLOWUID;
165 int overflowgid = DEFAULT_OVERFLOWGID;
166 
167 EXPORT_SYMBOL(overflowuid);
168 EXPORT_SYMBOL(overflowgid);
169 
170 /*
171  * the same as above, but for filesystems which can only store a 16-bit
172  * UID and GID. as such, this is needed on all architectures
173  */
174 
175 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
176 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
177 
178 EXPORT_SYMBOL(fs_overflowuid);
179 EXPORT_SYMBOL(fs_overflowgid);
180 
181 /*
182  * Returns true if current's euid is same as p's uid or euid,
183  * or has CAP_SYS_NICE to p's user_ns.
184  *
185  * Called with rcu_read_lock, creds are safe
186  */
187 static bool set_one_prio_perm(struct task_struct *p)
188 {
189 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
190 
191 	if (uid_eq(pcred->uid,  cred->euid) ||
192 	    uid_eq(pcred->euid, cred->euid))
193 		return true;
194 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
195 		return true;
196 	return false;
197 }
198 
199 /*
200  * set the priority of a task
201  * - the caller must hold the RCU read lock
202  */
203 static int set_one_prio(struct task_struct *p, int niceval, int error)
204 {
205 	int no_nice;
206 
207 	if (!set_one_prio_perm(p)) {
208 		error = -EPERM;
209 		goto out;
210 	}
211 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
212 		error = -EACCES;
213 		goto out;
214 	}
215 	no_nice = security_task_setnice(p, niceval);
216 	if (no_nice) {
217 		error = no_nice;
218 		goto out;
219 	}
220 	if (error == -ESRCH)
221 		error = 0;
222 	set_user_nice(p, niceval);
223 out:
224 	return error;
225 }
226 
227 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
228 {
229 	struct task_struct *g, *p;
230 	struct user_struct *user;
231 	const struct cred *cred = current_cred();
232 	int error = -EINVAL;
233 	struct pid *pgrp;
234 	kuid_t uid;
235 
236 	if (which > PRIO_USER || which < PRIO_PROCESS)
237 		goto out;
238 
239 	/* normalize: avoid signed division (rounding problems) */
240 	error = -ESRCH;
241 	if (niceval < MIN_NICE)
242 		niceval = MIN_NICE;
243 	if (niceval > MAX_NICE)
244 		niceval = MAX_NICE;
245 
246 	rcu_read_lock();
247 	switch (which) {
248 	case PRIO_PROCESS:
249 		if (who)
250 			p = find_task_by_vpid(who);
251 		else
252 			p = current;
253 		if (p)
254 			error = set_one_prio(p, niceval, error);
255 		break;
256 	case PRIO_PGRP:
257 		if (who)
258 			pgrp = find_vpid(who);
259 		else
260 			pgrp = task_pgrp(current);
261 		read_lock(&tasklist_lock);
262 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
263 			error = set_one_prio(p, niceval, error);
264 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
265 		read_unlock(&tasklist_lock);
266 		break;
267 	case PRIO_USER:
268 		uid = make_kuid(cred->user_ns, who);
269 		user = cred->user;
270 		if (!who)
271 			uid = cred->uid;
272 		else if (!uid_eq(uid, cred->uid)) {
273 			user = find_user(uid);
274 			if (!user)
275 				goto out_unlock;	/* No processes for this user */
276 		}
277 		for_each_process_thread(g, p) {
278 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
279 				error = set_one_prio(p, niceval, error);
280 		}
281 		if (!uid_eq(uid, cred->uid))
282 			free_uid(user);		/* For find_user() */
283 		break;
284 	}
285 out_unlock:
286 	rcu_read_unlock();
287 out:
288 	return error;
289 }
290 
291 /*
292  * Ugh. To avoid negative return values, "getpriority()" will
293  * not return the normal nice-value, but a negated value that
294  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
295  * to stay compatible.
296  */
297 SYSCALL_DEFINE2(getpriority, int, which, int, who)
298 {
299 	struct task_struct *g, *p;
300 	struct user_struct *user;
301 	const struct cred *cred = current_cred();
302 	long niceval, retval = -ESRCH;
303 	struct pid *pgrp;
304 	kuid_t uid;
305 
306 	if (which > PRIO_USER || which < PRIO_PROCESS)
307 		return -EINVAL;
308 
309 	rcu_read_lock();
310 	switch (which) {
311 	case PRIO_PROCESS:
312 		if (who)
313 			p = find_task_by_vpid(who);
314 		else
315 			p = current;
316 		if (p) {
317 			niceval = nice_to_rlimit(task_nice(p));
318 			if (niceval > retval)
319 				retval = niceval;
320 		}
321 		break;
322 	case PRIO_PGRP:
323 		if (who)
324 			pgrp = find_vpid(who);
325 		else
326 			pgrp = task_pgrp(current);
327 		read_lock(&tasklist_lock);
328 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
329 			niceval = nice_to_rlimit(task_nice(p));
330 			if (niceval > retval)
331 				retval = niceval;
332 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
333 		read_unlock(&tasklist_lock);
334 		break;
335 	case PRIO_USER:
336 		uid = make_kuid(cred->user_ns, who);
337 		user = cred->user;
338 		if (!who)
339 			uid = cred->uid;
340 		else if (!uid_eq(uid, cred->uid)) {
341 			user = find_user(uid);
342 			if (!user)
343 				goto out_unlock;	/* No processes for this user */
344 		}
345 		for_each_process_thread(g, p) {
346 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
347 				niceval = nice_to_rlimit(task_nice(p));
348 				if (niceval > retval)
349 					retval = niceval;
350 			}
351 		}
352 		if (!uid_eq(uid, cred->uid))
353 			free_uid(user);		/* for find_user() */
354 		break;
355 	}
356 out_unlock:
357 	rcu_read_unlock();
358 
359 	return retval;
360 }
361 
362 /*
363  * Unprivileged users may change the real gid to the effective gid
364  * or vice versa.  (BSD-style)
365  *
366  * If you set the real gid at all, or set the effective gid to a value not
367  * equal to the real gid, then the saved gid is set to the new effective gid.
368  *
369  * This makes it possible for a setgid program to completely drop its
370  * privileges, which is often a useful assertion to make when you are doing
371  * a security audit over a program.
372  *
373  * The general idea is that a program which uses just setregid() will be
374  * 100% compatible with BSD.  A program which uses just setgid() will be
375  * 100% compatible with POSIX with saved IDs.
376  *
377  * SMP: There are not races, the GIDs are checked only by filesystem
378  *      operations (as far as semantic preservation is concerned).
379  */
380 #ifdef CONFIG_MULTIUSER
381 long __sys_setregid(gid_t rgid, gid_t egid)
382 {
383 	struct user_namespace *ns = current_user_ns();
384 	const struct cred *old;
385 	struct cred *new;
386 	int retval;
387 	kgid_t krgid, kegid;
388 
389 	krgid = make_kgid(ns, rgid);
390 	kegid = make_kgid(ns, egid);
391 
392 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
393 		return -EINVAL;
394 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
395 		return -EINVAL;
396 
397 	new = prepare_creds();
398 	if (!new)
399 		return -ENOMEM;
400 	old = current_cred();
401 
402 	retval = -EPERM;
403 	if (rgid != (gid_t) -1) {
404 		if (gid_eq(old->gid, krgid) ||
405 		    gid_eq(old->egid, krgid) ||
406 		    ns_capable_setid(old->user_ns, CAP_SETGID))
407 			new->gid = krgid;
408 		else
409 			goto error;
410 	}
411 	if (egid != (gid_t) -1) {
412 		if (gid_eq(old->gid, kegid) ||
413 		    gid_eq(old->egid, kegid) ||
414 		    gid_eq(old->sgid, kegid) ||
415 		    ns_capable_setid(old->user_ns, CAP_SETGID))
416 			new->egid = kegid;
417 		else
418 			goto error;
419 	}
420 
421 	if (rgid != (gid_t) -1 ||
422 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
423 		new->sgid = new->egid;
424 	new->fsgid = new->egid;
425 
426 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
427 	if (retval < 0)
428 		goto error;
429 
430 	return commit_creds(new);
431 
432 error:
433 	abort_creds(new);
434 	return retval;
435 }
436 
437 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
438 {
439 	return __sys_setregid(rgid, egid);
440 }
441 
442 /*
443  * setgid() is implemented like SysV w/ SAVED_IDS
444  *
445  * SMP: Same implicit races as above.
446  */
447 long __sys_setgid(gid_t gid)
448 {
449 	struct user_namespace *ns = current_user_ns();
450 	const struct cred *old;
451 	struct cred *new;
452 	int retval;
453 	kgid_t kgid;
454 
455 	kgid = make_kgid(ns, gid);
456 	if (!gid_valid(kgid))
457 		return -EINVAL;
458 
459 	new = prepare_creds();
460 	if (!new)
461 		return -ENOMEM;
462 	old = current_cred();
463 
464 	retval = -EPERM;
465 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
466 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
467 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
468 		new->egid = new->fsgid = kgid;
469 	else
470 		goto error;
471 
472 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
473 	if (retval < 0)
474 		goto error;
475 
476 	return commit_creds(new);
477 
478 error:
479 	abort_creds(new);
480 	return retval;
481 }
482 
483 SYSCALL_DEFINE1(setgid, gid_t, gid)
484 {
485 	return __sys_setgid(gid);
486 }
487 
488 /*
489  * change the user struct in a credentials set to match the new UID
490  */
491 static int set_user(struct cred *new)
492 {
493 	struct user_struct *new_user;
494 
495 	new_user = alloc_uid(new->uid);
496 	if (!new_user)
497 		return -EAGAIN;
498 
499 	free_uid(new->user);
500 	new->user = new_user;
501 	return 0;
502 }
503 
504 static void flag_nproc_exceeded(struct cred *new)
505 {
506 	if (new->ucounts == current_ucounts())
507 		return;
508 
509 	/*
510 	 * We don't fail in case of NPROC limit excess here because too many
511 	 * poorly written programs don't check set*uid() return code, assuming
512 	 * it never fails if called by root.  We may still enforce NPROC limit
513 	 * for programs doing set*uid()+execve() by harmlessly deferring the
514 	 * failure to the execve() stage.
515 	 */
516 	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
517 			new->user != INIT_USER)
518 		current->flags |= PF_NPROC_EXCEEDED;
519 	else
520 		current->flags &= ~PF_NPROC_EXCEEDED;
521 }
522 
523 /*
524  * Unprivileged users may change the real uid to the effective uid
525  * or vice versa.  (BSD-style)
526  *
527  * If you set the real uid at all, or set the effective uid to a value not
528  * equal to the real uid, then the saved uid is set to the new effective uid.
529  *
530  * This makes it possible for a setuid program to completely drop its
531  * privileges, which is often a useful assertion to make when you are doing
532  * a security audit over a program.
533  *
534  * The general idea is that a program which uses just setreuid() will be
535  * 100% compatible with BSD.  A program which uses just setuid() will be
536  * 100% compatible with POSIX with saved IDs.
537  */
538 long __sys_setreuid(uid_t ruid, uid_t euid)
539 {
540 	struct user_namespace *ns = current_user_ns();
541 	const struct cred *old;
542 	struct cred *new;
543 	int retval;
544 	kuid_t kruid, keuid;
545 
546 	kruid = make_kuid(ns, ruid);
547 	keuid = make_kuid(ns, euid);
548 
549 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
550 		return -EINVAL;
551 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
552 		return -EINVAL;
553 
554 	new = prepare_creds();
555 	if (!new)
556 		return -ENOMEM;
557 	old = current_cred();
558 
559 	retval = -EPERM;
560 	if (ruid != (uid_t) -1) {
561 		new->uid = kruid;
562 		if (!uid_eq(old->uid, kruid) &&
563 		    !uid_eq(old->euid, kruid) &&
564 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
565 			goto error;
566 	}
567 
568 	if (euid != (uid_t) -1) {
569 		new->euid = keuid;
570 		if (!uid_eq(old->uid, keuid) &&
571 		    !uid_eq(old->euid, keuid) &&
572 		    !uid_eq(old->suid, keuid) &&
573 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
574 			goto error;
575 	}
576 
577 	if (!uid_eq(new->uid, old->uid)) {
578 		retval = set_user(new);
579 		if (retval < 0)
580 			goto error;
581 	}
582 	if (ruid != (uid_t) -1 ||
583 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
584 		new->suid = new->euid;
585 	new->fsuid = new->euid;
586 
587 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
588 	if (retval < 0)
589 		goto error;
590 
591 	retval = set_cred_ucounts(new);
592 	if (retval < 0)
593 		goto error;
594 
595 	flag_nproc_exceeded(new);
596 	return commit_creds(new);
597 
598 error:
599 	abort_creds(new);
600 	return retval;
601 }
602 
603 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
604 {
605 	return __sys_setreuid(ruid, euid);
606 }
607 
608 /*
609  * setuid() is implemented like SysV with SAVED_IDS
610  *
611  * Note that SAVED_ID's is deficient in that a setuid root program
612  * like sendmail, for example, cannot set its uid to be a normal
613  * user and then switch back, because if you're root, setuid() sets
614  * the saved uid too.  If you don't like this, blame the bright people
615  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
616  * will allow a root program to temporarily drop privileges and be able to
617  * regain them by swapping the real and effective uid.
618  */
619 long __sys_setuid(uid_t uid)
620 {
621 	struct user_namespace *ns = current_user_ns();
622 	const struct cred *old;
623 	struct cred *new;
624 	int retval;
625 	kuid_t kuid;
626 
627 	kuid = make_kuid(ns, uid);
628 	if (!uid_valid(kuid))
629 		return -EINVAL;
630 
631 	new = prepare_creds();
632 	if (!new)
633 		return -ENOMEM;
634 	old = current_cred();
635 
636 	retval = -EPERM;
637 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
638 		new->suid = new->uid = kuid;
639 		if (!uid_eq(kuid, old->uid)) {
640 			retval = set_user(new);
641 			if (retval < 0)
642 				goto error;
643 		}
644 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
645 		goto error;
646 	}
647 
648 	new->fsuid = new->euid = kuid;
649 
650 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
651 	if (retval < 0)
652 		goto error;
653 
654 	retval = set_cred_ucounts(new);
655 	if (retval < 0)
656 		goto error;
657 
658 	flag_nproc_exceeded(new);
659 	return commit_creds(new);
660 
661 error:
662 	abort_creds(new);
663 	return retval;
664 }
665 
666 SYSCALL_DEFINE1(setuid, uid_t, uid)
667 {
668 	return __sys_setuid(uid);
669 }
670 
671 
672 /*
673  * This function implements a generic ability to update ruid, euid,
674  * and suid.  This allows you to implement the 4.4 compatible seteuid().
675  */
676 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
677 {
678 	struct user_namespace *ns = current_user_ns();
679 	const struct cred *old;
680 	struct cred *new;
681 	int retval;
682 	kuid_t kruid, keuid, ksuid;
683 	bool ruid_new, euid_new, suid_new;
684 
685 	kruid = make_kuid(ns, ruid);
686 	keuid = make_kuid(ns, euid);
687 	ksuid = make_kuid(ns, suid);
688 
689 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
690 		return -EINVAL;
691 
692 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
693 		return -EINVAL;
694 
695 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
696 		return -EINVAL;
697 
698 	old = current_cred();
699 
700 	/* check for no-op */
701 	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
702 	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
703 				    uid_eq(keuid, old->fsuid))) &&
704 	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
705 		return 0;
706 
707 	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
708 		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
709 	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
710 		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
711 	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
712 		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
713 	if ((ruid_new || euid_new || suid_new) &&
714 	    !ns_capable_setid(old->user_ns, CAP_SETUID))
715 		return -EPERM;
716 
717 	new = prepare_creds();
718 	if (!new)
719 		return -ENOMEM;
720 
721 	if (ruid != (uid_t) -1) {
722 		new->uid = kruid;
723 		if (!uid_eq(kruid, old->uid)) {
724 			retval = set_user(new);
725 			if (retval < 0)
726 				goto error;
727 		}
728 	}
729 	if (euid != (uid_t) -1)
730 		new->euid = keuid;
731 	if (suid != (uid_t) -1)
732 		new->suid = ksuid;
733 	new->fsuid = new->euid;
734 
735 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
736 	if (retval < 0)
737 		goto error;
738 
739 	retval = set_cred_ucounts(new);
740 	if (retval < 0)
741 		goto error;
742 
743 	flag_nproc_exceeded(new);
744 	return commit_creds(new);
745 
746 error:
747 	abort_creds(new);
748 	return retval;
749 }
750 
751 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
752 {
753 	return __sys_setresuid(ruid, euid, suid);
754 }
755 
756 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
757 {
758 	const struct cred *cred = current_cred();
759 	int retval;
760 	uid_t ruid, euid, suid;
761 
762 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
763 	euid = from_kuid_munged(cred->user_ns, cred->euid);
764 	suid = from_kuid_munged(cred->user_ns, cred->suid);
765 
766 	retval = put_user(ruid, ruidp);
767 	if (!retval) {
768 		retval = put_user(euid, euidp);
769 		if (!retval)
770 			return put_user(suid, suidp);
771 	}
772 	return retval;
773 }
774 
775 /*
776  * Same as above, but for rgid, egid, sgid.
777  */
778 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
779 {
780 	struct user_namespace *ns = current_user_ns();
781 	const struct cred *old;
782 	struct cred *new;
783 	int retval;
784 	kgid_t krgid, kegid, ksgid;
785 	bool rgid_new, egid_new, sgid_new;
786 
787 	krgid = make_kgid(ns, rgid);
788 	kegid = make_kgid(ns, egid);
789 	ksgid = make_kgid(ns, sgid);
790 
791 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
792 		return -EINVAL;
793 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
794 		return -EINVAL;
795 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
796 		return -EINVAL;
797 
798 	old = current_cred();
799 
800 	/* check for no-op */
801 	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
802 	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
803 				    gid_eq(kegid, old->fsgid))) &&
804 	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
805 		return 0;
806 
807 	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
808 		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
809 	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
810 		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
811 	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
812 		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
813 	if ((rgid_new || egid_new || sgid_new) &&
814 	    !ns_capable_setid(old->user_ns, CAP_SETGID))
815 		return -EPERM;
816 
817 	new = prepare_creds();
818 	if (!new)
819 		return -ENOMEM;
820 
821 	if (rgid != (gid_t) -1)
822 		new->gid = krgid;
823 	if (egid != (gid_t) -1)
824 		new->egid = kegid;
825 	if (sgid != (gid_t) -1)
826 		new->sgid = ksgid;
827 	new->fsgid = new->egid;
828 
829 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
830 	if (retval < 0)
831 		goto error;
832 
833 	return commit_creds(new);
834 
835 error:
836 	abort_creds(new);
837 	return retval;
838 }
839 
840 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
841 {
842 	return __sys_setresgid(rgid, egid, sgid);
843 }
844 
845 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
846 {
847 	const struct cred *cred = current_cred();
848 	int retval;
849 	gid_t rgid, egid, sgid;
850 
851 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
852 	egid = from_kgid_munged(cred->user_ns, cred->egid);
853 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
854 
855 	retval = put_user(rgid, rgidp);
856 	if (!retval) {
857 		retval = put_user(egid, egidp);
858 		if (!retval)
859 			retval = put_user(sgid, sgidp);
860 	}
861 
862 	return retval;
863 }
864 
865 
866 /*
867  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
868  * is used for "access()" and for the NFS daemon (letting nfsd stay at
869  * whatever uid it wants to). It normally shadows "euid", except when
870  * explicitly set by setfsuid() or for access..
871  */
872 long __sys_setfsuid(uid_t uid)
873 {
874 	const struct cred *old;
875 	struct cred *new;
876 	uid_t old_fsuid;
877 	kuid_t kuid;
878 
879 	old = current_cred();
880 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
881 
882 	kuid = make_kuid(old->user_ns, uid);
883 	if (!uid_valid(kuid))
884 		return old_fsuid;
885 
886 	new = prepare_creds();
887 	if (!new)
888 		return old_fsuid;
889 
890 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
891 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
892 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
893 		if (!uid_eq(kuid, old->fsuid)) {
894 			new->fsuid = kuid;
895 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
896 				goto change_okay;
897 		}
898 	}
899 
900 	abort_creds(new);
901 	return old_fsuid;
902 
903 change_okay:
904 	commit_creds(new);
905 	return old_fsuid;
906 }
907 
908 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
909 {
910 	return __sys_setfsuid(uid);
911 }
912 
913 /*
914  * Samma på svenska..
915  */
916 long __sys_setfsgid(gid_t gid)
917 {
918 	const struct cred *old;
919 	struct cred *new;
920 	gid_t old_fsgid;
921 	kgid_t kgid;
922 
923 	old = current_cred();
924 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
925 
926 	kgid = make_kgid(old->user_ns, gid);
927 	if (!gid_valid(kgid))
928 		return old_fsgid;
929 
930 	new = prepare_creds();
931 	if (!new)
932 		return old_fsgid;
933 
934 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
935 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
936 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
937 		if (!gid_eq(kgid, old->fsgid)) {
938 			new->fsgid = kgid;
939 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
940 				goto change_okay;
941 		}
942 	}
943 
944 	abort_creds(new);
945 	return old_fsgid;
946 
947 change_okay:
948 	commit_creds(new);
949 	return old_fsgid;
950 }
951 
952 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
953 {
954 	return __sys_setfsgid(gid);
955 }
956 #endif /* CONFIG_MULTIUSER */
957 
958 /**
959  * sys_getpid - return the thread group id of the current process
960  *
961  * Note, despite the name, this returns the tgid not the pid.  The tgid and
962  * the pid are identical unless CLONE_THREAD was specified on clone() in
963  * which case the tgid is the same in all threads of the same group.
964  *
965  * This is SMP safe as current->tgid does not change.
966  */
967 SYSCALL_DEFINE0(getpid)
968 {
969 	return task_tgid_vnr(current);
970 }
971 
972 /* Thread ID - the internal kernel "pid" */
973 SYSCALL_DEFINE0(gettid)
974 {
975 	return task_pid_vnr(current);
976 }
977 
978 /*
979  * Accessing ->real_parent is not SMP-safe, it could
980  * change from under us. However, we can use a stale
981  * value of ->real_parent under rcu_read_lock(), see
982  * release_task()->call_rcu(delayed_put_task_struct).
983  */
984 SYSCALL_DEFINE0(getppid)
985 {
986 	int pid;
987 
988 	rcu_read_lock();
989 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
990 	rcu_read_unlock();
991 
992 	return pid;
993 }
994 
995 SYSCALL_DEFINE0(getuid)
996 {
997 	/* Only we change this so SMP safe */
998 	return from_kuid_munged(current_user_ns(), current_uid());
999 }
1000 
1001 SYSCALL_DEFINE0(geteuid)
1002 {
1003 	/* Only we change this so SMP safe */
1004 	return from_kuid_munged(current_user_ns(), current_euid());
1005 }
1006 
1007 SYSCALL_DEFINE0(getgid)
1008 {
1009 	/* Only we change this so SMP safe */
1010 	return from_kgid_munged(current_user_ns(), current_gid());
1011 }
1012 
1013 SYSCALL_DEFINE0(getegid)
1014 {
1015 	/* Only we change this so SMP safe */
1016 	return from_kgid_munged(current_user_ns(), current_egid());
1017 }
1018 
1019 static void do_sys_times(struct tms *tms)
1020 {
1021 	u64 tgutime, tgstime, cutime, cstime;
1022 
1023 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1024 	cutime = current->signal->cutime;
1025 	cstime = current->signal->cstime;
1026 	tms->tms_utime = nsec_to_clock_t(tgutime);
1027 	tms->tms_stime = nsec_to_clock_t(tgstime);
1028 	tms->tms_cutime = nsec_to_clock_t(cutime);
1029 	tms->tms_cstime = nsec_to_clock_t(cstime);
1030 }
1031 
1032 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1033 {
1034 	if (tbuf) {
1035 		struct tms tmp;
1036 
1037 		do_sys_times(&tmp);
1038 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1039 			return -EFAULT;
1040 	}
1041 	force_successful_syscall_return();
1042 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1043 }
1044 
1045 #ifdef CONFIG_COMPAT
1046 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1047 {
1048 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1049 }
1050 
1051 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1052 {
1053 	if (tbuf) {
1054 		struct tms tms;
1055 		struct compat_tms tmp;
1056 
1057 		do_sys_times(&tms);
1058 		/* Convert our struct tms to the compat version. */
1059 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1060 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1061 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1062 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1063 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1064 			return -EFAULT;
1065 	}
1066 	force_successful_syscall_return();
1067 	return compat_jiffies_to_clock_t(jiffies);
1068 }
1069 #endif
1070 
1071 /*
1072  * This needs some heavy checking ...
1073  * I just haven't the stomach for it. I also don't fully
1074  * understand sessions/pgrp etc. Let somebody who does explain it.
1075  *
1076  * OK, I think I have the protection semantics right.... this is really
1077  * only important on a multi-user system anyway, to make sure one user
1078  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1079  *
1080  * !PF_FORKNOEXEC check to conform completely to POSIX.
1081  */
1082 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1083 {
1084 	struct task_struct *p;
1085 	struct task_struct *group_leader = current->group_leader;
1086 	struct pid *pgrp;
1087 	int err;
1088 
1089 	if (!pid)
1090 		pid = task_pid_vnr(group_leader);
1091 	if (!pgid)
1092 		pgid = pid;
1093 	if (pgid < 0)
1094 		return -EINVAL;
1095 	rcu_read_lock();
1096 
1097 	/* From this point forward we keep holding onto the tasklist lock
1098 	 * so that our parent does not change from under us. -DaveM
1099 	 */
1100 	write_lock_irq(&tasklist_lock);
1101 
1102 	err = -ESRCH;
1103 	p = find_task_by_vpid(pid);
1104 	if (!p)
1105 		goto out;
1106 
1107 	err = -EINVAL;
1108 	if (!thread_group_leader(p))
1109 		goto out;
1110 
1111 	if (same_thread_group(p->real_parent, group_leader)) {
1112 		err = -EPERM;
1113 		if (task_session(p) != task_session(group_leader))
1114 			goto out;
1115 		err = -EACCES;
1116 		if (!(p->flags & PF_FORKNOEXEC))
1117 			goto out;
1118 	} else {
1119 		err = -ESRCH;
1120 		if (p != group_leader)
1121 			goto out;
1122 	}
1123 
1124 	err = -EPERM;
1125 	if (p->signal->leader)
1126 		goto out;
1127 
1128 	pgrp = task_pid(p);
1129 	if (pgid != pid) {
1130 		struct task_struct *g;
1131 
1132 		pgrp = find_vpid(pgid);
1133 		g = pid_task(pgrp, PIDTYPE_PGID);
1134 		if (!g || task_session(g) != task_session(group_leader))
1135 			goto out;
1136 	}
1137 
1138 	err = security_task_setpgid(p, pgid);
1139 	if (err)
1140 		goto out;
1141 
1142 	if (task_pgrp(p) != pgrp)
1143 		change_pid(p, PIDTYPE_PGID, pgrp);
1144 
1145 	err = 0;
1146 out:
1147 	/* All paths lead to here, thus we are safe. -DaveM */
1148 	write_unlock_irq(&tasklist_lock);
1149 	rcu_read_unlock();
1150 	return err;
1151 }
1152 
1153 static int do_getpgid(pid_t pid)
1154 {
1155 	struct task_struct *p;
1156 	struct pid *grp;
1157 	int retval;
1158 
1159 	rcu_read_lock();
1160 	if (!pid)
1161 		grp = task_pgrp(current);
1162 	else {
1163 		retval = -ESRCH;
1164 		p = find_task_by_vpid(pid);
1165 		if (!p)
1166 			goto out;
1167 		grp = task_pgrp(p);
1168 		if (!grp)
1169 			goto out;
1170 
1171 		retval = security_task_getpgid(p);
1172 		if (retval)
1173 			goto out;
1174 	}
1175 	retval = pid_vnr(grp);
1176 out:
1177 	rcu_read_unlock();
1178 	return retval;
1179 }
1180 
1181 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1182 {
1183 	return do_getpgid(pid);
1184 }
1185 
1186 #ifdef __ARCH_WANT_SYS_GETPGRP
1187 
1188 SYSCALL_DEFINE0(getpgrp)
1189 {
1190 	return do_getpgid(0);
1191 }
1192 
1193 #endif
1194 
1195 SYSCALL_DEFINE1(getsid, pid_t, pid)
1196 {
1197 	struct task_struct *p;
1198 	struct pid *sid;
1199 	int retval;
1200 
1201 	rcu_read_lock();
1202 	if (!pid)
1203 		sid = task_session(current);
1204 	else {
1205 		retval = -ESRCH;
1206 		p = find_task_by_vpid(pid);
1207 		if (!p)
1208 			goto out;
1209 		sid = task_session(p);
1210 		if (!sid)
1211 			goto out;
1212 
1213 		retval = security_task_getsid(p);
1214 		if (retval)
1215 			goto out;
1216 	}
1217 	retval = pid_vnr(sid);
1218 out:
1219 	rcu_read_unlock();
1220 	return retval;
1221 }
1222 
1223 static void set_special_pids(struct pid *pid)
1224 {
1225 	struct task_struct *curr = current->group_leader;
1226 
1227 	if (task_session(curr) != pid)
1228 		change_pid(curr, PIDTYPE_SID, pid);
1229 
1230 	if (task_pgrp(curr) != pid)
1231 		change_pid(curr, PIDTYPE_PGID, pid);
1232 }
1233 
1234 int ksys_setsid(void)
1235 {
1236 	struct task_struct *group_leader = current->group_leader;
1237 	struct pid *sid = task_pid(group_leader);
1238 	pid_t session = pid_vnr(sid);
1239 	int err = -EPERM;
1240 
1241 	write_lock_irq(&tasklist_lock);
1242 	/* Fail if I am already a session leader */
1243 	if (group_leader->signal->leader)
1244 		goto out;
1245 
1246 	/* Fail if a process group id already exists that equals the
1247 	 * proposed session id.
1248 	 */
1249 	if (pid_task(sid, PIDTYPE_PGID))
1250 		goto out;
1251 
1252 	group_leader->signal->leader = 1;
1253 	set_special_pids(sid);
1254 
1255 	proc_clear_tty(group_leader);
1256 
1257 	err = session;
1258 out:
1259 	write_unlock_irq(&tasklist_lock);
1260 	if (err > 0) {
1261 		proc_sid_connector(group_leader);
1262 		sched_autogroup_create_attach(group_leader);
1263 	}
1264 	return err;
1265 }
1266 
1267 SYSCALL_DEFINE0(setsid)
1268 {
1269 	return ksys_setsid();
1270 }
1271 
1272 DECLARE_RWSEM(uts_sem);
1273 
1274 #ifdef COMPAT_UTS_MACHINE
1275 #define override_architecture(name) \
1276 	(personality(current->personality) == PER_LINUX32 && \
1277 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1278 		      sizeof(COMPAT_UTS_MACHINE)))
1279 #else
1280 #define override_architecture(name)	0
1281 #endif
1282 
1283 /*
1284  * Work around broken programs that cannot handle "Linux 3.0".
1285  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1286  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1287  * 2.6.60.
1288  */
1289 static int override_release(char __user *release, size_t len)
1290 {
1291 	int ret = 0;
1292 
1293 	if (current->personality & UNAME26) {
1294 		const char *rest = UTS_RELEASE;
1295 		char buf[65] = { 0 };
1296 		int ndots = 0;
1297 		unsigned v;
1298 		size_t copy;
1299 
1300 		while (*rest) {
1301 			if (*rest == '.' && ++ndots >= 3)
1302 				break;
1303 			if (!isdigit(*rest) && *rest != '.')
1304 				break;
1305 			rest++;
1306 		}
1307 		v = LINUX_VERSION_PATCHLEVEL + 60;
1308 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1309 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1310 		ret = copy_to_user(release, buf, copy + 1);
1311 	}
1312 	return ret;
1313 }
1314 
1315 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1316 {
1317 	struct new_utsname tmp;
1318 
1319 	down_read(&uts_sem);
1320 	memcpy(&tmp, utsname(), sizeof(tmp));
1321 	up_read(&uts_sem);
1322 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1323 		return -EFAULT;
1324 
1325 	if (override_release(name->release, sizeof(name->release)))
1326 		return -EFAULT;
1327 	if (override_architecture(name))
1328 		return -EFAULT;
1329 	return 0;
1330 }
1331 
1332 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1333 /*
1334  * Old cruft
1335  */
1336 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1337 {
1338 	struct old_utsname tmp;
1339 
1340 	if (!name)
1341 		return -EFAULT;
1342 
1343 	down_read(&uts_sem);
1344 	memcpy(&tmp, utsname(), sizeof(tmp));
1345 	up_read(&uts_sem);
1346 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1347 		return -EFAULT;
1348 
1349 	if (override_release(name->release, sizeof(name->release)))
1350 		return -EFAULT;
1351 	if (override_architecture(name))
1352 		return -EFAULT;
1353 	return 0;
1354 }
1355 
1356 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1357 {
1358 	struct oldold_utsname tmp;
1359 
1360 	if (!name)
1361 		return -EFAULT;
1362 
1363 	memset(&tmp, 0, sizeof(tmp));
1364 
1365 	down_read(&uts_sem);
1366 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1367 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1368 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1369 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1370 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1371 	up_read(&uts_sem);
1372 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1373 		return -EFAULT;
1374 
1375 	if (override_architecture(name))
1376 		return -EFAULT;
1377 	if (override_release(name->release, sizeof(name->release)))
1378 		return -EFAULT;
1379 	return 0;
1380 }
1381 #endif
1382 
1383 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1384 {
1385 	int errno;
1386 	char tmp[__NEW_UTS_LEN];
1387 
1388 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1389 		return -EPERM;
1390 
1391 	if (len < 0 || len > __NEW_UTS_LEN)
1392 		return -EINVAL;
1393 	errno = -EFAULT;
1394 	if (!copy_from_user(tmp, name, len)) {
1395 		struct new_utsname *u;
1396 
1397 		add_device_randomness(tmp, len);
1398 		down_write(&uts_sem);
1399 		u = utsname();
1400 		memcpy(u->nodename, tmp, len);
1401 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1402 		errno = 0;
1403 		uts_proc_notify(UTS_PROC_HOSTNAME);
1404 		up_write(&uts_sem);
1405 	}
1406 	return errno;
1407 }
1408 
1409 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1410 
1411 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1412 {
1413 	int i;
1414 	struct new_utsname *u;
1415 	char tmp[__NEW_UTS_LEN + 1];
1416 
1417 	if (len < 0)
1418 		return -EINVAL;
1419 	down_read(&uts_sem);
1420 	u = utsname();
1421 	i = 1 + strlen(u->nodename);
1422 	if (i > len)
1423 		i = len;
1424 	memcpy(tmp, u->nodename, i);
1425 	up_read(&uts_sem);
1426 	if (copy_to_user(name, tmp, i))
1427 		return -EFAULT;
1428 	return 0;
1429 }
1430 
1431 #endif
1432 
1433 /*
1434  * Only setdomainname; getdomainname can be implemented by calling
1435  * uname()
1436  */
1437 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1438 {
1439 	int errno;
1440 	char tmp[__NEW_UTS_LEN];
1441 
1442 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1443 		return -EPERM;
1444 	if (len < 0 || len > __NEW_UTS_LEN)
1445 		return -EINVAL;
1446 
1447 	errno = -EFAULT;
1448 	if (!copy_from_user(tmp, name, len)) {
1449 		struct new_utsname *u;
1450 
1451 		add_device_randomness(tmp, len);
1452 		down_write(&uts_sem);
1453 		u = utsname();
1454 		memcpy(u->domainname, tmp, len);
1455 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1456 		errno = 0;
1457 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1458 		up_write(&uts_sem);
1459 	}
1460 	return errno;
1461 }
1462 
1463 /* make sure you are allowed to change @tsk limits before calling this */
1464 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1465 		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1466 {
1467 	struct rlimit *rlim;
1468 	int retval = 0;
1469 
1470 	if (resource >= RLIM_NLIMITS)
1471 		return -EINVAL;
1472 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1473 
1474 	if (new_rlim) {
1475 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1476 			return -EINVAL;
1477 		if (resource == RLIMIT_NOFILE &&
1478 				new_rlim->rlim_max > sysctl_nr_open)
1479 			return -EPERM;
1480 	}
1481 
1482 	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1483 	rlim = tsk->signal->rlim + resource;
1484 	task_lock(tsk->group_leader);
1485 	if (new_rlim) {
1486 		/*
1487 		 * Keep the capable check against init_user_ns until cgroups can
1488 		 * contain all limits.
1489 		 */
1490 		if (new_rlim->rlim_max > rlim->rlim_max &&
1491 				!capable(CAP_SYS_RESOURCE))
1492 			retval = -EPERM;
1493 		if (!retval)
1494 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1495 	}
1496 	if (!retval) {
1497 		if (old_rlim)
1498 			*old_rlim = *rlim;
1499 		if (new_rlim)
1500 			*rlim = *new_rlim;
1501 	}
1502 	task_unlock(tsk->group_leader);
1503 
1504 	/*
1505 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1506 	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1507 	 * ignores the rlimit.
1508 	 */
1509 	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1510 	    new_rlim->rlim_cur != RLIM_INFINITY &&
1511 	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1512 		/*
1513 		 * update_rlimit_cpu can fail if the task is exiting, but there
1514 		 * may be other tasks in the thread group that are not exiting,
1515 		 * and they need their cpu timers adjusted.
1516 		 *
1517 		 * The group_leader is the last task to be released, so if we
1518 		 * cannot update_rlimit_cpu on it, then the entire process is
1519 		 * exiting and we do not need to update at all.
1520 		 */
1521 		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1522 	}
1523 
1524 	return retval;
1525 }
1526 
1527 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1528 {
1529 	struct rlimit value;
1530 	int ret;
1531 
1532 	ret = do_prlimit(current, resource, NULL, &value);
1533 	if (!ret)
1534 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1535 
1536 	return ret;
1537 }
1538 
1539 #ifdef CONFIG_COMPAT
1540 
1541 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1542 		       struct compat_rlimit __user *, rlim)
1543 {
1544 	struct rlimit r;
1545 	struct compat_rlimit r32;
1546 
1547 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1548 		return -EFAULT;
1549 
1550 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1551 		r.rlim_cur = RLIM_INFINITY;
1552 	else
1553 		r.rlim_cur = r32.rlim_cur;
1554 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1555 		r.rlim_max = RLIM_INFINITY;
1556 	else
1557 		r.rlim_max = r32.rlim_max;
1558 	return do_prlimit(current, resource, &r, NULL);
1559 }
1560 
1561 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1562 		       struct compat_rlimit __user *, rlim)
1563 {
1564 	struct rlimit r;
1565 	int ret;
1566 
1567 	ret = do_prlimit(current, resource, NULL, &r);
1568 	if (!ret) {
1569 		struct compat_rlimit r32;
1570 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1571 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1572 		else
1573 			r32.rlim_cur = r.rlim_cur;
1574 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1575 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1576 		else
1577 			r32.rlim_max = r.rlim_max;
1578 
1579 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1580 			return -EFAULT;
1581 	}
1582 	return ret;
1583 }
1584 
1585 #endif
1586 
1587 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1588 
1589 /*
1590  *	Back compatibility for getrlimit. Needed for some apps.
1591  */
1592 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1593 		struct rlimit __user *, rlim)
1594 {
1595 	struct rlimit x;
1596 	if (resource >= RLIM_NLIMITS)
1597 		return -EINVAL;
1598 
1599 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1600 	task_lock(current->group_leader);
1601 	x = current->signal->rlim[resource];
1602 	task_unlock(current->group_leader);
1603 	if (x.rlim_cur > 0x7FFFFFFF)
1604 		x.rlim_cur = 0x7FFFFFFF;
1605 	if (x.rlim_max > 0x7FFFFFFF)
1606 		x.rlim_max = 0x7FFFFFFF;
1607 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1608 }
1609 
1610 #ifdef CONFIG_COMPAT
1611 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1612 		       struct compat_rlimit __user *, rlim)
1613 {
1614 	struct rlimit r;
1615 
1616 	if (resource >= RLIM_NLIMITS)
1617 		return -EINVAL;
1618 
1619 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1620 	task_lock(current->group_leader);
1621 	r = current->signal->rlim[resource];
1622 	task_unlock(current->group_leader);
1623 	if (r.rlim_cur > 0x7FFFFFFF)
1624 		r.rlim_cur = 0x7FFFFFFF;
1625 	if (r.rlim_max > 0x7FFFFFFF)
1626 		r.rlim_max = 0x7FFFFFFF;
1627 
1628 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1629 	    put_user(r.rlim_max, &rlim->rlim_max))
1630 		return -EFAULT;
1631 	return 0;
1632 }
1633 #endif
1634 
1635 #endif
1636 
1637 static inline bool rlim64_is_infinity(__u64 rlim64)
1638 {
1639 #if BITS_PER_LONG < 64
1640 	return rlim64 >= ULONG_MAX;
1641 #else
1642 	return rlim64 == RLIM64_INFINITY;
1643 #endif
1644 }
1645 
1646 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1647 {
1648 	if (rlim->rlim_cur == RLIM_INFINITY)
1649 		rlim64->rlim_cur = RLIM64_INFINITY;
1650 	else
1651 		rlim64->rlim_cur = rlim->rlim_cur;
1652 	if (rlim->rlim_max == RLIM_INFINITY)
1653 		rlim64->rlim_max = RLIM64_INFINITY;
1654 	else
1655 		rlim64->rlim_max = rlim->rlim_max;
1656 }
1657 
1658 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1659 {
1660 	if (rlim64_is_infinity(rlim64->rlim_cur))
1661 		rlim->rlim_cur = RLIM_INFINITY;
1662 	else
1663 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1664 	if (rlim64_is_infinity(rlim64->rlim_max))
1665 		rlim->rlim_max = RLIM_INFINITY;
1666 	else
1667 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1668 }
1669 
1670 /* rcu lock must be held */
1671 static int check_prlimit_permission(struct task_struct *task,
1672 				    unsigned int flags)
1673 {
1674 	const struct cred *cred = current_cred(), *tcred;
1675 	bool id_match;
1676 
1677 	if (current == task)
1678 		return 0;
1679 
1680 	tcred = __task_cred(task);
1681 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1682 		    uid_eq(cred->uid, tcred->suid) &&
1683 		    uid_eq(cred->uid, tcred->uid)  &&
1684 		    gid_eq(cred->gid, tcred->egid) &&
1685 		    gid_eq(cred->gid, tcred->sgid) &&
1686 		    gid_eq(cred->gid, tcred->gid));
1687 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1688 		return -EPERM;
1689 
1690 	return security_task_prlimit(cred, tcred, flags);
1691 }
1692 
1693 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1694 		const struct rlimit64 __user *, new_rlim,
1695 		struct rlimit64 __user *, old_rlim)
1696 {
1697 	struct rlimit64 old64, new64;
1698 	struct rlimit old, new;
1699 	struct task_struct *tsk;
1700 	unsigned int checkflags = 0;
1701 	int ret;
1702 
1703 	if (old_rlim)
1704 		checkflags |= LSM_PRLIMIT_READ;
1705 
1706 	if (new_rlim) {
1707 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1708 			return -EFAULT;
1709 		rlim64_to_rlim(&new64, &new);
1710 		checkflags |= LSM_PRLIMIT_WRITE;
1711 	}
1712 
1713 	rcu_read_lock();
1714 	tsk = pid ? find_task_by_vpid(pid) : current;
1715 	if (!tsk) {
1716 		rcu_read_unlock();
1717 		return -ESRCH;
1718 	}
1719 	ret = check_prlimit_permission(tsk, checkflags);
1720 	if (ret) {
1721 		rcu_read_unlock();
1722 		return ret;
1723 	}
1724 	get_task_struct(tsk);
1725 	rcu_read_unlock();
1726 
1727 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1728 			old_rlim ? &old : NULL);
1729 
1730 	if (!ret && old_rlim) {
1731 		rlim_to_rlim64(&old, &old64);
1732 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1733 			ret = -EFAULT;
1734 	}
1735 
1736 	put_task_struct(tsk);
1737 	return ret;
1738 }
1739 
1740 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1741 {
1742 	struct rlimit new_rlim;
1743 
1744 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1745 		return -EFAULT;
1746 	return do_prlimit(current, resource, &new_rlim, NULL);
1747 }
1748 
1749 /*
1750  * It would make sense to put struct rusage in the task_struct,
1751  * except that would make the task_struct be *really big*.  After
1752  * task_struct gets moved into malloc'ed memory, it would
1753  * make sense to do this.  It will make moving the rest of the information
1754  * a lot simpler!  (Which we're not doing right now because we're not
1755  * measuring them yet).
1756  *
1757  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1758  * races with threads incrementing their own counters.  But since word
1759  * reads are atomic, we either get new values or old values and we don't
1760  * care which for the sums.  We always take the siglock to protect reading
1761  * the c* fields from p->signal from races with exit.c updating those
1762  * fields when reaping, so a sample either gets all the additions of a
1763  * given child after it's reaped, or none so this sample is before reaping.
1764  *
1765  * Locking:
1766  * We need to take the siglock for CHILDEREN, SELF and BOTH
1767  * for  the cases current multithreaded, non-current single threaded
1768  * non-current multithreaded.  Thread traversal is now safe with
1769  * the siglock held.
1770  * Strictly speaking, we donot need to take the siglock if we are current and
1771  * single threaded,  as no one else can take our signal_struct away, no one
1772  * else can  reap the  children to update signal->c* counters, and no one else
1773  * can race with the signal-> fields. If we do not take any lock, the
1774  * signal-> fields could be read out of order while another thread was just
1775  * exiting. So we should  place a read memory barrier when we avoid the lock.
1776  * On the writer side,  write memory barrier is implied in  __exit_signal
1777  * as __exit_signal releases  the siglock spinlock after updating the signal->
1778  * fields. But we don't do this yet to keep things simple.
1779  *
1780  */
1781 
1782 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1783 {
1784 	r->ru_nvcsw += t->nvcsw;
1785 	r->ru_nivcsw += t->nivcsw;
1786 	r->ru_minflt += t->min_flt;
1787 	r->ru_majflt += t->maj_flt;
1788 	r->ru_inblock += task_io_get_inblock(t);
1789 	r->ru_oublock += task_io_get_oublock(t);
1790 }
1791 
1792 void getrusage(struct task_struct *p, int who, struct rusage *r)
1793 {
1794 	struct task_struct *t;
1795 	unsigned long flags;
1796 	u64 tgutime, tgstime, utime, stime;
1797 	unsigned long maxrss;
1798 	struct mm_struct *mm;
1799 	struct signal_struct *sig = p->signal;
1800 	unsigned int seq = 0;
1801 
1802 retry:
1803 	memset(r, 0, sizeof(*r));
1804 	utime = stime = 0;
1805 	maxrss = 0;
1806 
1807 	if (who == RUSAGE_THREAD) {
1808 		task_cputime_adjusted(current, &utime, &stime);
1809 		accumulate_thread_rusage(p, r);
1810 		maxrss = sig->maxrss;
1811 		goto out_thread;
1812 	}
1813 
1814 	flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1815 
1816 	switch (who) {
1817 	case RUSAGE_BOTH:
1818 	case RUSAGE_CHILDREN:
1819 		utime = sig->cutime;
1820 		stime = sig->cstime;
1821 		r->ru_nvcsw = sig->cnvcsw;
1822 		r->ru_nivcsw = sig->cnivcsw;
1823 		r->ru_minflt = sig->cmin_flt;
1824 		r->ru_majflt = sig->cmaj_flt;
1825 		r->ru_inblock = sig->cinblock;
1826 		r->ru_oublock = sig->coublock;
1827 		maxrss = sig->cmaxrss;
1828 
1829 		if (who == RUSAGE_CHILDREN)
1830 			break;
1831 		fallthrough;
1832 
1833 	case RUSAGE_SELF:
1834 		r->ru_nvcsw += sig->nvcsw;
1835 		r->ru_nivcsw += sig->nivcsw;
1836 		r->ru_minflt += sig->min_flt;
1837 		r->ru_majflt += sig->maj_flt;
1838 		r->ru_inblock += sig->inblock;
1839 		r->ru_oublock += sig->oublock;
1840 		if (maxrss < sig->maxrss)
1841 			maxrss = sig->maxrss;
1842 
1843 		rcu_read_lock();
1844 		__for_each_thread(sig, t)
1845 			accumulate_thread_rusage(t, r);
1846 		rcu_read_unlock();
1847 
1848 		break;
1849 
1850 	default:
1851 		BUG();
1852 	}
1853 
1854 	if (need_seqretry(&sig->stats_lock, seq)) {
1855 		seq = 1;
1856 		goto retry;
1857 	}
1858 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1859 
1860 	if (who == RUSAGE_CHILDREN)
1861 		goto out_children;
1862 
1863 	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1864 	utime += tgutime;
1865 	stime += tgstime;
1866 
1867 out_thread:
1868 	mm = get_task_mm(p);
1869 	if (mm) {
1870 		setmax_mm_hiwater_rss(&maxrss, mm);
1871 		mmput(mm);
1872 	}
1873 
1874 out_children:
1875 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1876 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1877 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1878 }
1879 
1880 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1881 {
1882 	struct rusage r;
1883 
1884 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1885 	    who != RUSAGE_THREAD)
1886 		return -EINVAL;
1887 
1888 	getrusage(current, who, &r);
1889 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1890 }
1891 
1892 #ifdef CONFIG_COMPAT
1893 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1894 {
1895 	struct rusage r;
1896 
1897 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1898 	    who != RUSAGE_THREAD)
1899 		return -EINVAL;
1900 
1901 	getrusage(current, who, &r);
1902 	return put_compat_rusage(&r, ru);
1903 }
1904 #endif
1905 
1906 SYSCALL_DEFINE1(umask, int, mask)
1907 {
1908 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1909 	return mask;
1910 }
1911 
1912 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1913 {
1914 	struct fd exe;
1915 	struct inode *inode;
1916 	int err;
1917 
1918 	exe = fdget(fd);
1919 	if (!fd_file(exe))
1920 		return -EBADF;
1921 
1922 	inode = file_inode(fd_file(exe));
1923 
1924 	/*
1925 	 * Because the original mm->exe_file points to executable file, make
1926 	 * sure that this one is executable as well, to avoid breaking an
1927 	 * overall picture.
1928 	 */
1929 	err = -EACCES;
1930 	if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path))
1931 		goto exit;
1932 
1933 	err = file_permission(fd_file(exe), MAY_EXEC);
1934 	if (err)
1935 		goto exit;
1936 
1937 	err = replace_mm_exe_file(mm, fd_file(exe));
1938 exit:
1939 	fdput(exe);
1940 	return err;
1941 }
1942 
1943 /*
1944  * Check arithmetic relations of passed addresses.
1945  *
1946  * WARNING: we don't require any capability here so be very careful
1947  * in what is allowed for modification from userspace.
1948  */
1949 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1950 {
1951 	unsigned long mmap_max_addr = TASK_SIZE;
1952 	int error = -EINVAL, i;
1953 
1954 	static const unsigned char offsets[] = {
1955 		offsetof(struct prctl_mm_map, start_code),
1956 		offsetof(struct prctl_mm_map, end_code),
1957 		offsetof(struct prctl_mm_map, start_data),
1958 		offsetof(struct prctl_mm_map, end_data),
1959 		offsetof(struct prctl_mm_map, start_brk),
1960 		offsetof(struct prctl_mm_map, brk),
1961 		offsetof(struct prctl_mm_map, start_stack),
1962 		offsetof(struct prctl_mm_map, arg_start),
1963 		offsetof(struct prctl_mm_map, arg_end),
1964 		offsetof(struct prctl_mm_map, env_start),
1965 		offsetof(struct prctl_mm_map, env_end),
1966 	};
1967 
1968 	/*
1969 	 * Make sure the members are not somewhere outside
1970 	 * of allowed address space.
1971 	 */
1972 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1973 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1974 
1975 		if ((unsigned long)val >= mmap_max_addr ||
1976 		    (unsigned long)val < mmap_min_addr)
1977 			goto out;
1978 	}
1979 
1980 	/*
1981 	 * Make sure the pairs are ordered.
1982 	 */
1983 #define __prctl_check_order(__m1, __op, __m2)				\
1984 	((unsigned long)prctl_map->__m1 __op				\
1985 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1986 	error  = __prctl_check_order(start_code, <, end_code);
1987 	error |= __prctl_check_order(start_data,<=, end_data);
1988 	error |= __prctl_check_order(start_brk, <=, brk);
1989 	error |= __prctl_check_order(arg_start, <=, arg_end);
1990 	error |= __prctl_check_order(env_start, <=, env_end);
1991 	if (error)
1992 		goto out;
1993 #undef __prctl_check_order
1994 
1995 	error = -EINVAL;
1996 
1997 	/*
1998 	 * Neither we should allow to override limits if they set.
1999 	 */
2000 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
2001 			      prctl_map->start_brk, prctl_map->end_data,
2002 			      prctl_map->start_data))
2003 			goto out;
2004 
2005 	error = 0;
2006 out:
2007 	return error;
2008 }
2009 
2010 #ifdef CONFIG_CHECKPOINT_RESTORE
2011 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2012 {
2013 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2014 	unsigned long user_auxv[AT_VECTOR_SIZE];
2015 	struct mm_struct *mm = current->mm;
2016 	int error;
2017 
2018 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2019 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2020 
2021 	if (opt == PR_SET_MM_MAP_SIZE)
2022 		return put_user((unsigned int)sizeof(prctl_map),
2023 				(unsigned int __user *)addr);
2024 
2025 	if (data_size != sizeof(prctl_map))
2026 		return -EINVAL;
2027 
2028 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2029 		return -EFAULT;
2030 
2031 	error = validate_prctl_map_addr(&prctl_map);
2032 	if (error)
2033 		return error;
2034 
2035 	if (prctl_map.auxv_size) {
2036 		/*
2037 		 * Someone is trying to cheat the auxv vector.
2038 		 */
2039 		if (!prctl_map.auxv ||
2040 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2041 			return -EINVAL;
2042 
2043 		memset(user_auxv, 0, sizeof(user_auxv));
2044 		if (copy_from_user(user_auxv,
2045 				   (const void __user *)prctl_map.auxv,
2046 				   prctl_map.auxv_size))
2047 			return -EFAULT;
2048 
2049 		/* Last entry must be AT_NULL as specification requires */
2050 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2051 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2052 	}
2053 
2054 	if (prctl_map.exe_fd != (u32)-1) {
2055 		/*
2056 		 * Check if the current user is checkpoint/restore capable.
2057 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2058 		 * or CAP_CHECKPOINT_RESTORE.
2059 		 * Note that a user with access to ptrace can masquerade an
2060 		 * arbitrary program as any executable, even setuid ones.
2061 		 * This may have implications in the tomoyo subsystem.
2062 		 */
2063 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2064 			return -EPERM;
2065 
2066 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2067 		if (error)
2068 			return error;
2069 	}
2070 
2071 	/*
2072 	 * arg_lock protects concurrent updates but we still need mmap_lock for
2073 	 * read to exclude races with sys_brk.
2074 	 */
2075 	mmap_read_lock(mm);
2076 
2077 	/*
2078 	 * We don't validate if these members are pointing to
2079 	 * real present VMAs because application may have correspond
2080 	 * VMAs already unmapped and kernel uses these members for statistics
2081 	 * output in procfs mostly, except
2082 	 *
2083 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2084 	 *    for VMAs when updating these members so anything wrong written
2085 	 *    here cause kernel to swear at userspace program but won't lead
2086 	 *    to any problem in kernel itself
2087 	 */
2088 
2089 	spin_lock(&mm->arg_lock);
2090 	mm->start_code	= prctl_map.start_code;
2091 	mm->end_code	= prctl_map.end_code;
2092 	mm->start_data	= prctl_map.start_data;
2093 	mm->end_data	= prctl_map.end_data;
2094 	mm->start_brk	= prctl_map.start_brk;
2095 	mm->brk		= prctl_map.brk;
2096 	mm->start_stack	= prctl_map.start_stack;
2097 	mm->arg_start	= prctl_map.arg_start;
2098 	mm->arg_end	= prctl_map.arg_end;
2099 	mm->env_start	= prctl_map.env_start;
2100 	mm->env_end	= prctl_map.env_end;
2101 	spin_unlock(&mm->arg_lock);
2102 
2103 	/*
2104 	 * Note this update of @saved_auxv is lockless thus
2105 	 * if someone reads this member in procfs while we're
2106 	 * updating -- it may get partly updated results. It's
2107 	 * known and acceptable trade off: we leave it as is to
2108 	 * not introduce additional locks here making the kernel
2109 	 * more complex.
2110 	 */
2111 	if (prctl_map.auxv_size)
2112 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2113 
2114 	mmap_read_unlock(mm);
2115 	return 0;
2116 }
2117 #endif /* CONFIG_CHECKPOINT_RESTORE */
2118 
2119 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2120 			  unsigned long len)
2121 {
2122 	/*
2123 	 * This doesn't move the auxiliary vector itself since it's pinned to
2124 	 * mm_struct, but it permits filling the vector with new values.  It's
2125 	 * up to the caller to provide sane values here, otherwise userspace
2126 	 * tools which use this vector might be unhappy.
2127 	 */
2128 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2129 
2130 	if (len > sizeof(user_auxv))
2131 		return -EINVAL;
2132 
2133 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2134 		return -EFAULT;
2135 
2136 	/* Make sure the last entry is always AT_NULL */
2137 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2138 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2139 
2140 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2141 
2142 	task_lock(current);
2143 	memcpy(mm->saved_auxv, user_auxv, len);
2144 	task_unlock(current);
2145 
2146 	return 0;
2147 }
2148 
2149 static int prctl_set_mm(int opt, unsigned long addr,
2150 			unsigned long arg4, unsigned long arg5)
2151 {
2152 	struct mm_struct *mm = current->mm;
2153 	struct prctl_mm_map prctl_map = {
2154 		.auxv = NULL,
2155 		.auxv_size = 0,
2156 		.exe_fd = -1,
2157 	};
2158 	struct vm_area_struct *vma;
2159 	int error;
2160 
2161 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2162 			      opt != PR_SET_MM_MAP &&
2163 			      opt != PR_SET_MM_MAP_SIZE)))
2164 		return -EINVAL;
2165 
2166 #ifdef CONFIG_CHECKPOINT_RESTORE
2167 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2168 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2169 #endif
2170 
2171 	if (!capable(CAP_SYS_RESOURCE))
2172 		return -EPERM;
2173 
2174 	if (opt == PR_SET_MM_EXE_FILE)
2175 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2176 
2177 	if (opt == PR_SET_MM_AUXV)
2178 		return prctl_set_auxv(mm, addr, arg4);
2179 
2180 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2181 		return -EINVAL;
2182 
2183 	error = -EINVAL;
2184 
2185 	/*
2186 	 * arg_lock protects concurrent updates of arg boundaries, we need
2187 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2188 	 * validation.
2189 	 */
2190 	mmap_read_lock(mm);
2191 	vma = find_vma(mm, addr);
2192 
2193 	spin_lock(&mm->arg_lock);
2194 	prctl_map.start_code	= mm->start_code;
2195 	prctl_map.end_code	= mm->end_code;
2196 	prctl_map.start_data	= mm->start_data;
2197 	prctl_map.end_data	= mm->end_data;
2198 	prctl_map.start_brk	= mm->start_brk;
2199 	prctl_map.brk		= mm->brk;
2200 	prctl_map.start_stack	= mm->start_stack;
2201 	prctl_map.arg_start	= mm->arg_start;
2202 	prctl_map.arg_end	= mm->arg_end;
2203 	prctl_map.env_start	= mm->env_start;
2204 	prctl_map.env_end	= mm->env_end;
2205 
2206 	switch (opt) {
2207 	case PR_SET_MM_START_CODE:
2208 		prctl_map.start_code = addr;
2209 		break;
2210 	case PR_SET_MM_END_CODE:
2211 		prctl_map.end_code = addr;
2212 		break;
2213 	case PR_SET_MM_START_DATA:
2214 		prctl_map.start_data = addr;
2215 		break;
2216 	case PR_SET_MM_END_DATA:
2217 		prctl_map.end_data = addr;
2218 		break;
2219 	case PR_SET_MM_START_STACK:
2220 		prctl_map.start_stack = addr;
2221 		break;
2222 	case PR_SET_MM_START_BRK:
2223 		prctl_map.start_brk = addr;
2224 		break;
2225 	case PR_SET_MM_BRK:
2226 		prctl_map.brk = addr;
2227 		break;
2228 	case PR_SET_MM_ARG_START:
2229 		prctl_map.arg_start = addr;
2230 		break;
2231 	case PR_SET_MM_ARG_END:
2232 		prctl_map.arg_end = addr;
2233 		break;
2234 	case PR_SET_MM_ENV_START:
2235 		prctl_map.env_start = addr;
2236 		break;
2237 	case PR_SET_MM_ENV_END:
2238 		prctl_map.env_end = addr;
2239 		break;
2240 	default:
2241 		goto out;
2242 	}
2243 
2244 	error = validate_prctl_map_addr(&prctl_map);
2245 	if (error)
2246 		goto out;
2247 
2248 	switch (opt) {
2249 	/*
2250 	 * If command line arguments and environment
2251 	 * are placed somewhere else on stack, we can
2252 	 * set them up here, ARG_START/END to setup
2253 	 * command line arguments and ENV_START/END
2254 	 * for environment.
2255 	 */
2256 	case PR_SET_MM_START_STACK:
2257 	case PR_SET_MM_ARG_START:
2258 	case PR_SET_MM_ARG_END:
2259 	case PR_SET_MM_ENV_START:
2260 	case PR_SET_MM_ENV_END:
2261 		if (!vma) {
2262 			error = -EFAULT;
2263 			goto out;
2264 		}
2265 	}
2266 
2267 	mm->start_code	= prctl_map.start_code;
2268 	mm->end_code	= prctl_map.end_code;
2269 	mm->start_data	= prctl_map.start_data;
2270 	mm->end_data	= prctl_map.end_data;
2271 	mm->start_brk	= prctl_map.start_brk;
2272 	mm->brk		= prctl_map.brk;
2273 	mm->start_stack	= prctl_map.start_stack;
2274 	mm->arg_start	= prctl_map.arg_start;
2275 	mm->arg_end	= prctl_map.arg_end;
2276 	mm->env_start	= prctl_map.env_start;
2277 	mm->env_end	= prctl_map.env_end;
2278 
2279 	error = 0;
2280 out:
2281 	spin_unlock(&mm->arg_lock);
2282 	mmap_read_unlock(mm);
2283 	return error;
2284 }
2285 
2286 #ifdef CONFIG_CHECKPOINT_RESTORE
2287 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2288 {
2289 	return put_user(me->clear_child_tid, tid_addr);
2290 }
2291 #else
2292 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2293 {
2294 	return -EINVAL;
2295 }
2296 #endif
2297 
2298 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2299 {
2300 	/*
2301 	 * If task has has_child_subreaper - all its descendants
2302 	 * already have these flag too and new descendants will
2303 	 * inherit it on fork, skip them.
2304 	 *
2305 	 * If we've found child_reaper - skip descendants in
2306 	 * it's subtree as they will never get out pidns.
2307 	 */
2308 	if (p->signal->has_child_subreaper ||
2309 	    is_child_reaper(task_pid(p)))
2310 		return 0;
2311 
2312 	p->signal->has_child_subreaper = 1;
2313 	return 1;
2314 }
2315 
2316 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2317 {
2318 	return -EINVAL;
2319 }
2320 
2321 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2322 				    unsigned long ctrl)
2323 {
2324 	return -EINVAL;
2325 }
2326 
2327 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2328 
2329 #ifdef CONFIG_ANON_VMA_NAME
2330 
2331 #define ANON_VMA_NAME_MAX_LEN		80
2332 #define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2333 
2334 static inline bool is_valid_name_char(char ch)
2335 {
2336 	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2337 	return ch > 0x1f && ch < 0x7f &&
2338 		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2339 }
2340 
2341 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2342 			 unsigned long size, unsigned long arg)
2343 {
2344 	struct mm_struct *mm = current->mm;
2345 	const char __user *uname;
2346 	struct anon_vma_name *anon_name = NULL;
2347 	int error;
2348 
2349 	switch (opt) {
2350 	case PR_SET_VMA_ANON_NAME:
2351 		uname = (const char __user *)arg;
2352 		if (uname) {
2353 			char *name, *pch;
2354 
2355 			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2356 			if (IS_ERR(name))
2357 				return PTR_ERR(name);
2358 
2359 			for (pch = name; *pch != '\0'; pch++) {
2360 				if (!is_valid_name_char(*pch)) {
2361 					kfree(name);
2362 					return -EINVAL;
2363 				}
2364 			}
2365 			/* anon_vma has its own copy */
2366 			anon_name = anon_vma_name_alloc(name);
2367 			kfree(name);
2368 			if (!anon_name)
2369 				return -ENOMEM;
2370 
2371 		}
2372 
2373 		mmap_write_lock(mm);
2374 		error = madvise_set_anon_name(mm, addr, size, anon_name);
2375 		mmap_write_unlock(mm);
2376 		anon_vma_name_put(anon_name);
2377 		break;
2378 	default:
2379 		error = -EINVAL;
2380 	}
2381 
2382 	return error;
2383 }
2384 
2385 #else /* CONFIG_ANON_VMA_NAME */
2386 static int prctl_set_vma(unsigned long opt, unsigned long start,
2387 			 unsigned long size, unsigned long arg)
2388 {
2389 	return -EINVAL;
2390 }
2391 #endif /* CONFIG_ANON_VMA_NAME */
2392 
2393 static inline unsigned long get_current_mdwe(void)
2394 {
2395 	unsigned long ret = 0;
2396 
2397 	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2398 		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2399 	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2400 		ret |= PR_MDWE_NO_INHERIT;
2401 
2402 	return ret;
2403 }
2404 
2405 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2406 				 unsigned long arg4, unsigned long arg5)
2407 {
2408 	unsigned long current_bits;
2409 
2410 	if (arg3 || arg4 || arg5)
2411 		return -EINVAL;
2412 
2413 	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2414 		return -EINVAL;
2415 
2416 	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2417 	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2418 		return -EINVAL;
2419 
2420 	/*
2421 	 * EOPNOTSUPP might be more appropriate here in principle, but
2422 	 * existing userspace depends on EINVAL specifically.
2423 	 */
2424 	if (!arch_memory_deny_write_exec_supported())
2425 		return -EINVAL;
2426 
2427 	current_bits = get_current_mdwe();
2428 	if (current_bits && current_bits != bits)
2429 		return -EPERM; /* Cannot unset the flags */
2430 
2431 	if (bits & PR_MDWE_NO_INHERIT)
2432 		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2433 	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2434 		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2435 
2436 	return 0;
2437 }
2438 
2439 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2440 				 unsigned long arg4, unsigned long arg5)
2441 {
2442 	if (arg2 || arg3 || arg4 || arg5)
2443 		return -EINVAL;
2444 	return get_current_mdwe();
2445 }
2446 
2447 static int prctl_get_auxv(void __user *addr, unsigned long len)
2448 {
2449 	struct mm_struct *mm = current->mm;
2450 	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2451 
2452 	if (size && copy_to_user(addr, mm->saved_auxv, size))
2453 		return -EFAULT;
2454 	return sizeof(mm->saved_auxv);
2455 }
2456 
2457 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2458 		unsigned long, arg4, unsigned long, arg5)
2459 {
2460 	struct task_struct *me = current;
2461 	unsigned char comm[sizeof(me->comm)];
2462 	long error;
2463 
2464 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2465 	if (error != -ENOSYS)
2466 		return error;
2467 
2468 	error = 0;
2469 	switch (option) {
2470 	case PR_SET_PDEATHSIG:
2471 		if (!valid_signal(arg2)) {
2472 			error = -EINVAL;
2473 			break;
2474 		}
2475 		me->pdeath_signal = arg2;
2476 		break;
2477 	case PR_GET_PDEATHSIG:
2478 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2479 		break;
2480 	case PR_GET_DUMPABLE:
2481 		error = get_dumpable(me->mm);
2482 		break;
2483 	case PR_SET_DUMPABLE:
2484 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2485 			error = -EINVAL;
2486 			break;
2487 		}
2488 		set_dumpable(me->mm, arg2);
2489 		break;
2490 
2491 	case PR_SET_UNALIGN:
2492 		error = SET_UNALIGN_CTL(me, arg2);
2493 		break;
2494 	case PR_GET_UNALIGN:
2495 		error = GET_UNALIGN_CTL(me, arg2);
2496 		break;
2497 	case PR_SET_FPEMU:
2498 		error = SET_FPEMU_CTL(me, arg2);
2499 		break;
2500 	case PR_GET_FPEMU:
2501 		error = GET_FPEMU_CTL(me, arg2);
2502 		break;
2503 	case PR_SET_FPEXC:
2504 		error = SET_FPEXC_CTL(me, arg2);
2505 		break;
2506 	case PR_GET_FPEXC:
2507 		error = GET_FPEXC_CTL(me, arg2);
2508 		break;
2509 	case PR_GET_TIMING:
2510 		error = PR_TIMING_STATISTICAL;
2511 		break;
2512 	case PR_SET_TIMING:
2513 		if (arg2 != PR_TIMING_STATISTICAL)
2514 			error = -EINVAL;
2515 		break;
2516 	case PR_SET_NAME:
2517 		comm[sizeof(me->comm) - 1] = 0;
2518 		if (strncpy_from_user(comm, (char __user *)arg2,
2519 				      sizeof(me->comm) - 1) < 0)
2520 			return -EFAULT;
2521 		set_task_comm(me, comm);
2522 		proc_comm_connector(me);
2523 		break;
2524 	case PR_GET_NAME:
2525 		get_task_comm(comm, me);
2526 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2527 			return -EFAULT;
2528 		break;
2529 	case PR_GET_ENDIAN:
2530 		error = GET_ENDIAN(me, arg2);
2531 		break;
2532 	case PR_SET_ENDIAN:
2533 		error = SET_ENDIAN(me, arg2);
2534 		break;
2535 	case PR_GET_SECCOMP:
2536 		error = prctl_get_seccomp();
2537 		break;
2538 	case PR_SET_SECCOMP:
2539 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2540 		break;
2541 	case PR_GET_TSC:
2542 		error = GET_TSC_CTL(arg2);
2543 		break;
2544 	case PR_SET_TSC:
2545 		error = SET_TSC_CTL(arg2);
2546 		break;
2547 	case PR_TASK_PERF_EVENTS_DISABLE:
2548 		error = perf_event_task_disable();
2549 		break;
2550 	case PR_TASK_PERF_EVENTS_ENABLE:
2551 		error = perf_event_task_enable();
2552 		break;
2553 	case PR_GET_TIMERSLACK:
2554 		if (current->timer_slack_ns > ULONG_MAX)
2555 			error = ULONG_MAX;
2556 		else
2557 			error = current->timer_slack_ns;
2558 		break;
2559 	case PR_SET_TIMERSLACK:
2560 		if (rt_or_dl_task_policy(current))
2561 			break;
2562 		if (arg2 <= 0)
2563 			current->timer_slack_ns =
2564 					current->default_timer_slack_ns;
2565 		else
2566 			current->timer_slack_ns = arg2;
2567 		break;
2568 	case PR_MCE_KILL:
2569 		if (arg4 | arg5)
2570 			return -EINVAL;
2571 		switch (arg2) {
2572 		case PR_MCE_KILL_CLEAR:
2573 			if (arg3 != 0)
2574 				return -EINVAL;
2575 			current->flags &= ~PF_MCE_PROCESS;
2576 			break;
2577 		case PR_MCE_KILL_SET:
2578 			current->flags |= PF_MCE_PROCESS;
2579 			if (arg3 == PR_MCE_KILL_EARLY)
2580 				current->flags |= PF_MCE_EARLY;
2581 			else if (arg3 == PR_MCE_KILL_LATE)
2582 				current->flags &= ~PF_MCE_EARLY;
2583 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2584 				current->flags &=
2585 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2586 			else
2587 				return -EINVAL;
2588 			break;
2589 		default:
2590 			return -EINVAL;
2591 		}
2592 		break;
2593 	case PR_MCE_KILL_GET:
2594 		if (arg2 | arg3 | arg4 | arg5)
2595 			return -EINVAL;
2596 		if (current->flags & PF_MCE_PROCESS)
2597 			error = (current->flags & PF_MCE_EARLY) ?
2598 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2599 		else
2600 			error = PR_MCE_KILL_DEFAULT;
2601 		break;
2602 	case PR_SET_MM:
2603 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2604 		break;
2605 	case PR_GET_TID_ADDRESS:
2606 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2607 		break;
2608 	case PR_SET_CHILD_SUBREAPER:
2609 		me->signal->is_child_subreaper = !!arg2;
2610 		if (!arg2)
2611 			break;
2612 
2613 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2614 		break;
2615 	case PR_GET_CHILD_SUBREAPER:
2616 		error = put_user(me->signal->is_child_subreaper,
2617 				 (int __user *)arg2);
2618 		break;
2619 	case PR_SET_NO_NEW_PRIVS:
2620 		if (arg2 != 1 || arg3 || arg4 || arg5)
2621 			return -EINVAL;
2622 
2623 		task_set_no_new_privs(current);
2624 		break;
2625 	case PR_GET_NO_NEW_PRIVS:
2626 		if (arg2 || arg3 || arg4 || arg5)
2627 			return -EINVAL;
2628 		return task_no_new_privs(current) ? 1 : 0;
2629 	case PR_GET_THP_DISABLE:
2630 		if (arg2 || arg3 || arg4 || arg5)
2631 			return -EINVAL;
2632 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2633 		break;
2634 	case PR_SET_THP_DISABLE:
2635 		if (arg3 || arg4 || arg5)
2636 			return -EINVAL;
2637 		if (mmap_write_lock_killable(me->mm))
2638 			return -EINTR;
2639 		if (arg2)
2640 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2641 		else
2642 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2643 		mmap_write_unlock(me->mm);
2644 		break;
2645 	case PR_MPX_ENABLE_MANAGEMENT:
2646 	case PR_MPX_DISABLE_MANAGEMENT:
2647 		/* No longer implemented: */
2648 		return -EINVAL;
2649 	case PR_SET_FP_MODE:
2650 		error = SET_FP_MODE(me, arg2);
2651 		break;
2652 	case PR_GET_FP_MODE:
2653 		error = GET_FP_MODE(me);
2654 		break;
2655 	case PR_SVE_SET_VL:
2656 		error = SVE_SET_VL(arg2);
2657 		break;
2658 	case PR_SVE_GET_VL:
2659 		error = SVE_GET_VL();
2660 		break;
2661 	case PR_SME_SET_VL:
2662 		error = SME_SET_VL(arg2);
2663 		break;
2664 	case PR_SME_GET_VL:
2665 		error = SME_GET_VL();
2666 		break;
2667 	case PR_GET_SPECULATION_CTRL:
2668 		if (arg3 || arg4 || arg5)
2669 			return -EINVAL;
2670 		error = arch_prctl_spec_ctrl_get(me, arg2);
2671 		break;
2672 	case PR_SET_SPECULATION_CTRL:
2673 		if (arg4 || arg5)
2674 			return -EINVAL;
2675 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2676 		break;
2677 	case PR_PAC_RESET_KEYS:
2678 		if (arg3 || arg4 || arg5)
2679 			return -EINVAL;
2680 		error = PAC_RESET_KEYS(me, arg2);
2681 		break;
2682 	case PR_PAC_SET_ENABLED_KEYS:
2683 		if (arg4 || arg5)
2684 			return -EINVAL;
2685 		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2686 		break;
2687 	case PR_PAC_GET_ENABLED_KEYS:
2688 		if (arg2 || arg3 || arg4 || arg5)
2689 			return -EINVAL;
2690 		error = PAC_GET_ENABLED_KEYS(me);
2691 		break;
2692 	case PR_SET_TAGGED_ADDR_CTRL:
2693 		if (arg3 || arg4 || arg5)
2694 			return -EINVAL;
2695 		error = SET_TAGGED_ADDR_CTRL(arg2);
2696 		break;
2697 	case PR_GET_TAGGED_ADDR_CTRL:
2698 		if (arg2 || arg3 || arg4 || arg5)
2699 			return -EINVAL;
2700 		error = GET_TAGGED_ADDR_CTRL();
2701 		break;
2702 	case PR_SET_IO_FLUSHER:
2703 		if (!capable(CAP_SYS_RESOURCE))
2704 			return -EPERM;
2705 
2706 		if (arg3 || arg4 || arg5)
2707 			return -EINVAL;
2708 
2709 		if (arg2 == 1)
2710 			current->flags |= PR_IO_FLUSHER;
2711 		else if (!arg2)
2712 			current->flags &= ~PR_IO_FLUSHER;
2713 		else
2714 			return -EINVAL;
2715 		break;
2716 	case PR_GET_IO_FLUSHER:
2717 		if (!capable(CAP_SYS_RESOURCE))
2718 			return -EPERM;
2719 
2720 		if (arg2 || arg3 || arg4 || arg5)
2721 			return -EINVAL;
2722 
2723 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2724 		break;
2725 	case PR_SET_SYSCALL_USER_DISPATCH:
2726 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2727 						  (char __user *) arg5);
2728 		break;
2729 #ifdef CONFIG_SCHED_CORE
2730 	case PR_SCHED_CORE:
2731 		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2732 		break;
2733 #endif
2734 	case PR_SET_MDWE:
2735 		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2736 		break;
2737 	case PR_GET_MDWE:
2738 		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2739 		break;
2740 	case PR_PPC_GET_DEXCR:
2741 		if (arg3 || arg4 || arg5)
2742 			return -EINVAL;
2743 		error = PPC_GET_DEXCR_ASPECT(me, arg2);
2744 		break;
2745 	case PR_PPC_SET_DEXCR:
2746 		if (arg4 || arg5)
2747 			return -EINVAL;
2748 		error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2749 		break;
2750 	case PR_SET_VMA:
2751 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2752 		break;
2753 	case PR_GET_AUXV:
2754 		if (arg4 || arg5)
2755 			return -EINVAL;
2756 		error = prctl_get_auxv((void __user *)arg2, arg3);
2757 		break;
2758 #ifdef CONFIG_KSM
2759 	case PR_SET_MEMORY_MERGE:
2760 		if (arg3 || arg4 || arg5)
2761 			return -EINVAL;
2762 		if (mmap_write_lock_killable(me->mm))
2763 			return -EINTR;
2764 
2765 		if (arg2)
2766 			error = ksm_enable_merge_any(me->mm);
2767 		else
2768 			error = ksm_disable_merge_any(me->mm);
2769 		mmap_write_unlock(me->mm);
2770 		break;
2771 	case PR_GET_MEMORY_MERGE:
2772 		if (arg2 || arg3 || arg4 || arg5)
2773 			return -EINVAL;
2774 
2775 		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2776 		break;
2777 #endif
2778 	case PR_RISCV_V_SET_CONTROL:
2779 		error = RISCV_V_SET_CONTROL(arg2);
2780 		break;
2781 	case PR_RISCV_V_GET_CONTROL:
2782 		error = RISCV_V_GET_CONTROL();
2783 		break;
2784 	case PR_RISCV_SET_ICACHE_FLUSH_CTX:
2785 		error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
2786 		break;
2787 	default:
2788 		error = -EINVAL;
2789 		break;
2790 	}
2791 	return error;
2792 }
2793 
2794 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2795 		struct getcpu_cache __user *, unused)
2796 {
2797 	int err = 0;
2798 	int cpu = raw_smp_processor_id();
2799 
2800 	if (cpup)
2801 		err |= put_user(cpu, cpup);
2802 	if (nodep)
2803 		err |= put_user(cpu_to_node(cpu), nodep);
2804 	return err ? -EFAULT : 0;
2805 }
2806 
2807 /**
2808  * do_sysinfo - fill in sysinfo struct
2809  * @info: pointer to buffer to fill
2810  */
2811 static int do_sysinfo(struct sysinfo *info)
2812 {
2813 	unsigned long mem_total, sav_total;
2814 	unsigned int mem_unit, bitcount;
2815 	struct timespec64 tp;
2816 
2817 	memset(info, 0, sizeof(struct sysinfo));
2818 
2819 	ktime_get_boottime_ts64(&tp);
2820 	timens_add_boottime(&tp);
2821 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2822 
2823 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2824 
2825 	info->procs = nr_threads;
2826 
2827 	si_meminfo(info);
2828 	si_swapinfo(info);
2829 
2830 	/*
2831 	 * If the sum of all the available memory (i.e. ram + swap)
2832 	 * is less than can be stored in a 32 bit unsigned long then
2833 	 * we can be binary compatible with 2.2.x kernels.  If not,
2834 	 * well, in that case 2.2.x was broken anyways...
2835 	 *
2836 	 *  -Erik Andersen <andersee@debian.org>
2837 	 */
2838 
2839 	mem_total = info->totalram + info->totalswap;
2840 	if (mem_total < info->totalram || mem_total < info->totalswap)
2841 		goto out;
2842 	bitcount = 0;
2843 	mem_unit = info->mem_unit;
2844 	while (mem_unit > 1) {
2845 		bitcount++;
2846 		mem_unit >>= 1;
2847 		sav_total = mem_total;
2848 		mem_total <<= 1;
2849 		if (mem_total < sav_total)
2850 			goto out;
2851 	}
2852 
2853 	/*
2854 	 * If mem_total did not overflow, multiply all memory values by
2855 	 * info->mem_unit and set it to 1.  This leaves things compatible
2856 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2857 	 * kernels...
2858 	 */
2859 
2860 	info->mem_unit = 1;
2861 	info->totalram <<= bitcount;
2862 	info->freeram <<= bitcount;
2863 	info->sharedram <<= bitcount;
2864 	info->bufferram <<= bitcount;
2865 	info->totalswap <<= bitcount;
2866 	info->freeswap <<= bitcount;
2867 	info->totalhigh <<= bitcount;
2868 	info->freehigh <<= bitcount;
2869 
2870 out:
2871 	return 0;
2872 }
2873 
2874 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2875 {
2876 	struct sysinfo val;
2877 
2878 	do_sysinfo(&val);
2879 
2880 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2881 		return -EFAULT;
2882 
2883 	return 0;
2884 }
2885 
2886 #ifdef CONFIG_COMPAT
2887 struct compat_sysinfo {
2888 	s32 uptime;
2889 	u32 loads[3];
2890 	u32 totalram;
2891 	u32 freeram;
2892 	u32 sharedram;
2893 	u32 bufferram;
2894 	u32 totalswap;
2895 	u32 freeswap;
2896 	u16 procs;
2897 	u16 pad;
2898 	u32 totalhigh;
2899 	u32 freehigh;
2900 	u32 mem_unit;
2901 	char _f[20-2*sizeof(u32)-sizeof(int)];
2902 };
2903 
2904 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2905 {
2906 	struct sysinfo s;
2907 	struct compat_sysinfo s_32;
2908 
2909 	do_sysinfo(&s);
2910 
2911 	/* Check to see if any memory value is too large for 32-bit and scale
2912 	 *  down if needed
2913 	 */
2914 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2915 		int bitcount = 0;
2916 
2917 		while (s.mem_unit < PAGE_SIZE) {
2918 			s.mem_unit <<= 1;
2919 			bitcount++;
2920 		}
2921 
2922 		s.totalram >>= bitcount;
2923 		s.freeram >>= bitcount;
2924 		s.sharedram >>= bitcount;
2925 		s.bufferram >>= bitcount;
2926 		s.totalswap >>= bitcount;
2927 		s.freeswap >>= bitcount;
2928 		s.totalhigh >>= bitcount;
2929 		s.freehigh >>= bitcount;
2930 	}
2931 
2932 	memset(&s_32, 0, sizeof(s_32));
2933 	s_32.uptime = s.uptime;
2934 	s_32.loads[0] = s.loads[0];
2935 	s_32.loads[1] = s.loads[1];
2936 	s_32.loads[2] = s.loads[2];
2937 	s_32.totalram = s.totalram;
2938 	s_32.freeram = s.freeram;
2939 	s_32.sharedram = s.sharedram;
2940 	s_32.bufferram = s.bufferram;
2941 	s_32.totalswap = s.totalswap;
2942 	s_32.freeswap = s.freeswap;
2943 	s_32.procs = s.procs;
2944 	s_32.totalhigh = s.totalhigh;
2945 	s_32.freehigh = s.freehigh;
2946 	s_32.mem_unit = s.mem_unit;
2947 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2948 		return -EFAULT;
2949 	return 0;
2950 }
2951 #endif /* CONFIG_COMPAT */
2952