xref: /linux/kernel/sys.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 
39 #include <linux/compat.h>
40 #include <linux/syscalls.h>
41 #include <linux/kprobes.h>
42 #include <linux/user_namespace.h>
43 
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46 #include <asm/unistd.h>
47 
48 #ifndef SET_UNALIGN_CTL
49 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
50 #endif
51 #ifndef GET_UNALIGN_CTL
52 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
53 #endif
54 #ifndef SET_FPEMU_CTL
55 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
56 #endif
57 #ifndef GET_FPEMU_CTL
58 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
59 #endif
60 #ifndef SET_FPEXC_CTL
61 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
62 #endif
63 #ifndef GET_FPEXC_CTL
64 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
65 #endif
66 #ifndef GET_ENDIAN
67 # define GET_ENDIAN(a,b)	(-EINVAL)
68 #endif
69 #ifndef SET_ENDIAN
70 # define SET_ENDIAN(a,b)	(-EINVAL)
71 #endif
72 #ifndef GET_TSC_CTL
73 # define GET_TSC_CTL(a)		(-EINVAL)
74 #endif
75 #ifndef SET_TSC_CTL
76 # define SET_TSC_CTL(a)		(-EINVAL)
77 #endif
78 
79 /*
80  * this is where the system-wide overflow UID and GID are defined, for
81  * architectures that now have 32-bit UID/GID but didn't in the past
82  */
83 
84 int overflowuid = DEFAULT_OVERFLOWUID;
85 int overflowgid = DEFAULT_OVERFLOWGID;
86 
87 #ifdef CONFIG_UID16
88 EXPORT_SYMBOL(overflowuid);
89 EXPORT_SYMBOL(overflowgid);
90 #endif
91 
92 /*
93  * the same as above, but for filesystems which can only store a 16-bit
94  * UID and GID. as such, this is needed on all architectures
95  */
96 
97 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
98 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
99 
100 EXPORT_SYMBOL(fs_overflowuid);
101 EXPORT_SYMBOL(fs_overflowgid);
102 
103 /*
104  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
105  */
106 
107 int C_A_D = 1;
108 struct pid *cad_pid;
109 EXPORT_SYMBOL(cad_pid);
110 
111 /*
112  * If set, this is used for preparing the system to power off.
113  */
114 
115 void (*pm_power_off_prepare)(void);
116 
117 /*
118  * set the priority of a task
119  * - the caller must hold the RCU read lock
120  */
121 static int set_one_prio(struct task_struct *p, int niceval, int error)
122 {
123 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
124 	int no_nice;
125 
126 	if (pcred->uid  != cred->euid &&
127 	    pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
128 		error = -EPERM;
129 		goto out;
130 	}
131 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
132 		error = -EACCES;
133 		goto out;
134 	}
135 	no_nice = security_task_setnice(p, niceval);
136 	if (no_nice) {
137 		error = no_nice;
138 		goto out;
139 	}
140 	if (error == -ESRCH)
141 		error = 0;
142 	set_user_nice(p, niceval);
143 out:
144 	return error;
145 }
146 
147 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
148 {
149 	struct task_struct *g, *p;
150 	struct user_struct *user;
151 	const struct cred *cred = current_cred();
152 	int error = -EINVAL;
153 	struct pid *pgrp;
154 
155 	if (which > PRIO_USER || which < PRIO_PROCESS)
156 		goto out;
157 
158 	/* normalize: avoid signed division (rounding problems) */
159 	error = -ESRCH;
160 	if (niceval < -20)
161 		niceval = -20;
162 	if (niceval > 19)
163 		niceval = 19;
164 
165 	rcu_read_lock();
166 	read_lock(&tasklist_lock);
167 	switch (which) {
168 		case PRIO_PROCESS:
169 			if (who)
170 				p = find_task_by_vpid(who);
171 			else
172 				p = current;
173 			if (p)
174 				error = set_one_prio(p, niceval, error);
175 			break;
176 		case PRIO_PGRP:
177 			if (who)
178 				pgrp = find_vpid(who);
179 			else
180 				pgrp = task_pgrp(current);
181 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
182 				error = set_one_prio(p, niceval, error);
183 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
184 			break;
185 		case PRIO_USER:
186 			user = (struct user_struct *) cred->user;
187 			if (!who)
188 				who = cred->uid;
189 			else if ((who != cred->uid) &&
190 				 !(user = find_user(who)))
191 				goto out_unlock;	/* No processes for this user */
192 
193 			do_each_thread(g, p) {
194 				if (__task_cred(p)->uid == who)
195 					error = set_one_prio(p, niceval, error);
196 			} while_each_thread(g, p);
197 			if (who != cred->uid)
198 				free_uid(user);		/* For find_user() */
199 			break;
200 	}
201 out_unlock:
202 	read_unlock(&tasklist_lock);
203 	rcu_read_unlock();
204 out:
205 	return error;
206 }
207 
208 /*
209  * Ugh. To avoid negative return values, "getpriority()" will
210  * not return the normal nice-value, but a negated value that
211  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
212  * to stay compatible.
213  */
214 SYSCALL_DEFINE2(getpriority, int, which, int, who)
215 {
216 	struct task_struct *g, *p;
217 	struct user_struct *user;
218 	const struct cred *cred = current_cred();
219 	long niceval, retval = -ESRCH;
220 	struct pid *pgrp;
221 
222 	if (which > PRIO_USER || which < PRIO_PROCESS)
223 		return -EINVAL;
224 
225 	rcu_read_lock();
226 	read_lock(&tasklist_lock);
227 	switch (which) {
228 		case PRIO_PROCESS:
229 			if (who)
230 				p = find_task_by_vpid(who);
231 			else
232 				p = current;
233 			if (p) {
234 				niceval = 20 - task_nice(p);
235 				if (niceval > retval)
236 					retval = niceval;
237 			}
238 			break;
239 		case PRIO_PGRP:
240 			if (who)
241 				pgrp = find_vpid(who);
242 			else
243 				pgrp = task_pgrp(current);
244 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
245 				niceval = 20 - task_nice(p);
246 				if (niceval > retval)
247 					retval = niceval;
248 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
249 			break;
250 		case PRIO_USER:
251 			user = (struct user_struct *) cred->user;
252 			if (!who)
253 				who = cred->uid;
254 			else if ((who != cred->uid) &&
255 				 !(user = find_user(who)))
256 				goto out_unlock;	/* No processes for this user */
257 
258 			do_each_thread(g, p) {
259 				if (__task_cred(p)->uid == who) {
260 					niceval = 20 - task_nice(p);
261 					if (niceval > retval)
262 						retval = niceval;
263 				}
264 			} while_each_thread(g, p);
265 			if (who != cred->uid)
266 				free_uid(user);		/* for find_user() */
267 			break;
268 	}
269 out_unlock:
270 	read_unlock(&tasklist_lock);
271 	rcu_read_unlock();
272 
273 	return retval;
274 }
275 
276 /**
277  *	emergency_restart - reboot the system
278  *
279  *	Without shutting down any hardware or taking any locks
280  *	reboot the system.  This is called when we know we are in
281  *	trouble so this is our best effort to reboot.  This is
282  *	safe to call in interrupt context.
283  */
284 void emergency_restart(void)
285 {
286 	machine_emergency_restart();
287 }
288 EXPORT_SYMBOL_GPL(emergency_restart);
289 
290 void kernel_restart_prepare(char *cmd)
291 {
292 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
293 	system_state = SYSTEM_RESTART;
294 	device_shutdown();
295 	sysdev_shutdown();
296 }
297 
298 /**
299  *	kernel_restart - reboot the system
300  *	@cmd: pointer to buffer containing command to execute for restart
301  *		or %NULL
302  *
303  *	Shutdown everything and perform a clean reboot.
304  *	This is not safe to call in interrupt context.
305  */
306 void kernel_restart(char *cmd)
307 {
308 	kernel_restart_prepare(cmd);
309 	if (!cmd)
310 		printk(KERN_EMERG "Restarting system.\n");
311 	else
312 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
313 	machine_restart(cmd);
314 }
315 EXPORT_SYMBOL_GPL(kernel_restart);
316 
317 static void kernel_shutdown_prepare(enum system_states state)
318 {
319 	blocking_notifier_call_chain(&reboot_notifier_list,
320 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
321 	system_state = state;
322 	device_shutdown();
323 }
324 /**
325  *	kernel_halt - halt the system
326  *
327  *	Shutdown everything and perform a clean system halt.
328  */
329 void kernel_halt(void)
330 {
331 	kernel_shutdown_prepare(SYSTEM_HALT);
332 	sysdev_shutdown();
333 	printk(KERN_EMERG "System halted.\n");
334 	machine_halt();
335 }
336 
337 EXPORT_SYMBOL_GPL(kernel_halt);
338 
339 /**
340  *	kernel_power_off - power_off the system
341  *
342  *	Shutdown everything and perform a clean system power_off.
343  */
344 void kernel_power_off(void)
345 {
346 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
347 	if (pm_power_off_prepare)
348 		pm_power_off_prepare();
349 	disable_nonboot_cpus();
350 	sysdev_shutdown();
351 	printk(KERN_EMERG "Power down.\n");
352 	machine_power_off();
353 }
354 EXPORT_SYMBOL_GPL(kernel_power_off);
355 
356 static DEFINE_MUTEX(reboot_mutex);
357 
358 /*
359  * Reboot system call: for obvious reasons only root may call it,
360  * and even root needs to set up some magic numbers in the registers
361  * so that some mistake won't make this reboot the whole machine.
362  * You can also set the meaning of the ctrl-alt-del-key here.
363  *
364  * reboot doesn't sync: do that yourself before calling this.
365  */
366 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
367 		void __user *, arg)
368 {
369 	char buffer[256];
370 	int ret = 0;
371 
372 	/* We only trust the superuser with rebooting the system. */
373 	if (!capable(CAP_SYS_BOOT))
374 		return -EPERM;
375 
376 	/* For safety, we require "magic" arguments. */
377 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
378 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
379 	                magic2 != LINUX_REBOOT_MAGIC2A &&
380 			magic2 != LINUX_REBOOT_MAGIC2B &&
381 	                magic2 != LINUX_REBOOT_MAGIC2C))
382 		return -EINVAL;
383 
384 	/* Instead of trying to make the power_off code look like
385 	 * halt when pm_power_off is not set do it the easy way.
386 	 */
387 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
388 		cmd = LINUX_REBOOT_CMD_HALT;
389 
390 	mutex_lock(&reboot_mutex);
391 	switch (cmd) {
392 	case LINUX_REBOOT_CMD_RESTART:
393 		kernel_restart(NULL);
394 		break;
395 
396 	case LINUX_REBOOT_CMD_CAD_ON:
397 		C_A_D = 1;
398 		break;
399 
400 	case LINUX_REBOOT_CMD_CAD_OFF:
401 		C_A_D = 0;
402 		break;
403 
404 	case LINUX_REBOOT_CMD_HALT:
405 		kernel_halt();
406 		do_exit(0);
407 		panic("cannot halt");
408 
409 	case LINUX_REBOOT_CMD_POWER_OFF:
410 		kernel_power_off();
411 		do_exit(0);
412 		break;
413 
414 	case LINUX_REBOOT_CMD_RESTART2:
415 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
416 			ret = -EFAULT;
417 			break;
418 		}
419 		buffer[sizeof(buffer) - 1] = '\0';
420 
421 		kernel_restart(buffer);
422 		break;
423 
424 #ifdef CONFIG_KEXEC
425 	case LINUX_REBOOT_CMD_KEXEC:
426 		ret = kernel_kexec();
427 		break;
428 #endif
429 
430 #ifdef CONFIG_HIBERNATION
431 	case LINUX_REBOOT_CMD_SW_SUSPEND:
432 		ret = hibernate();
433 		break;
434 #endif
435 
436 	default:
437 		ret = -EINVAL;
438 		break;
439 	}
440 	mutex_unlock(&reboot_mutex);
441 	return ret;
442 }
443 
444 static void deferred_cad(struct work_struct *dummy)
445 {
446 	kernel_restart(NULL);
447 }
448 
449 /*
450  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451  * As it's called within an interrupt, it may NOT sync: the only choice
452  * is whether to reboot at once, or just ignore the ctrl-alt-del.
453  */
454 void ctrl_alt_del(void)
455 {
456 	static DECLARE_WORK(cad_work, deferred_cad);
457 
458 	if (C_A_D)
459 		schedule_work(&cad_work);
460 	else
461 		kill_cad_pid(SIGINT, 1);
462 }
463 
464 /*
465  * Unprivileged users may change the real gid to the effective gid
466  * or vice versa.  (BSD-style)
467  *
468  * If you set the real gid at all, or set the effective gid to a value not
469  * equal to the real gid, then the saved gid is set to the new effective gid.
470  *
471  * This makes it possible for a setgid program to completely drop its
472  * privileges, which is often a useful assertion to make when you are doing
473  * a security audit over a program.
474  *
475  * The general idea is that a program which uses just setregid() will be
476  * 100% compatible with BSD.  A program which uses just setgid() will be
477  * 100% compatible with POSIX with saved IDs.
478  *
479  * SMP: There are not races, the GIDs are checked only by filesystem
480  *      operations (as far as semantic preservation is concerned).
481  */
482 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
483 {
484 	const struct cred *old;
485 	struct cred *new;
486 	int retval;
487 
488 	new = prepare_creds();
489 	if (!new)
490 		return -ENOMEM;
491 	old = current_cred();
492 
493 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
494 	if (retval)
495 		goto error;
496 
497 	retval = -EPERM;
498 	if (rgid != (gid_t) -1) {
499 		if (old->gid == rgid ||
500 		    old->egid == rgid ||
501 		    capable(CAP_SETGID))
502 			new->gid = rgid;
503 		else
504 			goto error;
505 	}
506 	if (egid != (gid_t) -1) {
507 		if (old->gid == egid ||
508 		    old->egid == egid ||
509 		    old->sgid == egid ||
510 		    capable(CAP_SETGID))
511 			new->egid = egid;
512 		else
513 			goto error;
514 	}
515 
516 	if (rgid != (gid_t) -1 ||
517 	    (egid != (gid_t) -1 && egid != old->gid))
518 		new->sgid = new->egid;
519 	new->fsgid = new->egid;
520 
521 	return commit_creds(new);
522 
523 error:
524 	abort_creds(new);
525 	return retval;
526 }
527 
528 /*
529  * setgid() is implemented like SysV w/ SAVED_IDS
530  *
531  * SMP: Same implicit races as above.
532  */
533 SYSCALL_DEFINE1(setgid, gid_t, gid)
534 {
535 	const struct cred *old;
536 	struct cred *new;
537 	int retval;
538 
539 	new = prepare_creds();
540 	if (!new)
541 		return -ENOMEM;
542 	old = current_cred();
543 
544 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
545 	if (retval)
546 		goto error;
547 
548 	retval = -EPERM;
549 	if (capable(CAP_SETGID))
550 		new->gid = new->egid = new->sgid = new->fsgid = gid;
551 	else if (gid == old->gid || gid == old->sgid)
552 		new->egid = new->fsgid = gid;
553 	else
554 		goto error;
555 
556 	return commit_creds(new);
557 
558 error:
559 	abort_creds(new);
560 	return retval;
561 }
562 
563 /*
564  * change the user struct in a credentials set to match the new UID
565  */
566 static int set_user(struct cred *new)
567 {
568 	struct user_struct *new_user;
569 
570 	new_user = alloc_uid(current_user_ns(), new->uid);
571 	if (!new_user)
572 		return -EAGAIN;
573 
574 	if (atomic_read(&new_user->processes) >=
575 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
576 			new_user != INIT_USER) {
577 		free_uid(new_user);
578 		return -EAGAIN;
579 	}
580 
581 	free_uid(new->user);
582 	new->user = new_user;
583 	return 0;
584 }
585 
586 /*
587  * Unprivileged users may change the real uid to the effective uid
588  * or vice versa.  (BSD-style)
589  *
590  * If you set the real uid at all, or set the effective uid to a value not
591  * equal to the real uid, then the saved uid is set to the new effective uid.
592  *
593  * This makes it possible for a setuid program to completely drop its
594  * privileges, which is often a useful assertion to make when you are doing
595  * a security audit over a program.
596  *
597  * The general idea is that a program which uses just setreuid() will be
598  * 100% compatible with BSD.  A program which uses just setuid() will be
599  * 100% compatible with POSIX with saved IDs.
600  */
601 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
602 {
603 	const struct cred *old;
604 	struct cred *new;
605 	int retval;
606 
607 	new = prepare_creds();
608 	if (!new)
609 		return -ENOMEM;
610 	old = current_cred();
611 
612 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
613 	if (retval)
614 		goto error;
615 
616 	retval = -EPERM;
617 	if (ruid != (uid_t) -1) {
618 		new->uid = ruid;
619 		if (old->uid != ruid &&
620 		    old->euid != ruid &&
621 		    !capable(CAP_SETUID))
622 			goto error;
623 	}
624 
625 	if (euid != (uid_t) -1) {
626 		new->euid = euid;
627 		if (old->uid != euid &&
628 		    old->euid != euid &&
629 		    old->suid != euid &&
630 		    !capable(CAP_SETUID))
631 			goto error;
632 	}
633 
634 	if (new->uid != old->uid) {
635 		retval = set_user(new);
636 		if (retval < 0)
637 			goto error;
638 	}
639 	if (ruid != (uid_t) -1 ||
640 	    (euid != (uid_t) -1 && euid != old->uid))
641 		new->suid = new->euid;
642 	new->fsuid = new->euid;
643 
644 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
645 	if (retval < 0)
646 		goto error;
647 
648 	return commit_creds(new);
649 
650 error:
651 	abort_creds(new);
652 	return retval;
653 }
654 
655 /*
656  * setuid() is implemented like SysV with SAVED_IDS
657  *
658  * Note that SAVED_ID's is deficient in that a setuid root program
659  * like sendmail, for example, cannot set its uid to be a normal
660  * user and then switch back, because if you're root, setuid() sets
661  * the saved uid too.  If you don't like this, blame the bright people
662  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
663  * will allow a root program to temporarily drop privileges and be able to
664  * regain them by swapping the real and effective uid.
665  */
666 SYSCALL_DEFINE1(setuid, uid_t, uid)
667 {
668 	const struct cred *old;
669 	struct cred *new;
670 	int retval;
671 
672 	new = prepare_creds();
673 	if (!new)
674 		return -ENOMEM;
675 	old = current_cred();
676 
677 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
678 	if (retval)
679 		goto error;
680 
681 	retval = -EPERM;
682 	if (capable(CAP_SETUID)) {
683 		new->suid = new->uid = uid;
684 		if (uid != old->uid) {
685 			retval = set_user(new);
686 			if (retval < 0)
687 				goto error;
688 		}
689 	} else if (uid != old->uid && uid != new->suid) {
690 		goto error;
691 	}
692 
693 	new->fsuid = new->euid = uid;
694 
695 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
696 	if (retval < 0)
697 		goto error;
698 
699 	return commit_creds(new);
700 
701 error:
702 	abort_creds(new);
703 	return retval;
704 }
705 
706 
707 /*
708  * This function implements a generic ability to update ruid, euid,
709  * and suid.  This allows you to implement the 4.4 compatible seteuid().
710  */
711 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
712 {
713 	const struct cred *old;
714 	struct cred *new;
715 	int retval;
716 
717 	new = prepare_creds();
718 	if (!new)
719 		return -ENOMEM;
720 
721 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
722 	if (retval)
723 		goto error;
724 	old = current_cred();
725 
726 	retval = -EPERM;
727 	if (!capable(CAP_SETUID)) {
728 		if (ruid != (uid_t) -1 && ruid != old->uid &&
729 		    ruid != old->euid  && ruid != old->suid)
730 			goto error;
731 		if (euid != (uid_t) -1 && euid != old->uid &&
732 		    euid != old->euid  && euid != old->suid)
733 			goto error;
734 		if (suid != (uid_t) -1 && suid != old->uid &&
735 		    suid != old->euid  && suid != old->suid)
736 			goto error;
737 	}
738 
739 	if (ruid != (uid_t) -1) {
740 		new->uid = ruid;
741 		if (ruid != old->uid) {
742 			retval = set_user(new);
743 			if (retval < 0)
744 				goto error;
745 		}
746 	}
747 	if (euid != (uid_t) -1)
748 		new->euid = euid;
749 	if (suid != (uid_t) -1)
750 		new->suid = suid;
751 	new->fsuid = new->euid;
752 
753 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
754 	if (retval < 0)
755 		goto error;
756 
757 	return commit_creds(new);
758 
759 error:
760 	abort_creds(new);
761 	return retval;
762 }
763 
764 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
765 {
766 	const struct cred *cred = current_cred();
767 	int retval;
768 
769 	if (!(retval   = put_user(cred->uid,  ruid)) &&
770 	    !(retval   = put_user(cred->euid, euid)))
771 		retval = put_user(cred->suid, suid);
772 
773 	return retval;
774 }
775 
776 /*
777  * Same as above, but for rgid, egid, sgid.
778  */
779 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
780 {
781 	const struct cred *old;
782 	struct cred *new;
783 	int retval;
784 
785 	new = prepare_creds();
786 	if (!new)
787 		return -ENOMEM;
788 	old = current_cred();
789 
790 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
791 	if (retval)
792 		goto error;
793 
794 	retval = -EPERM;
795 	if (!capable(CAP_SETGID)) {
796 		if (rgid != (gid_t) -1 && rgid != old->gid &&
797 		    rgid != old->egid  && rgid != old->sgid)
798 			goto error;
799 		if (egid != (gid_t) -1 && egid != old->gid &&
800 		    egid != old->egid  && egid != old->sgid)
801 			goto error;
802 		if (sgid != (gid_t) -1 && sgid != old->gid &&
803 		    sgid != old->egid  && sgid != old->sgid)
804 			goto error;
805 	}
806 
807 	if (rgid != (gid_t) -1)
808 		new->gid = rgid;
809 	if (egid != (gid_t) -1)
810 		new->egid = egid;
811 	if (sgid != (gid_t) -1)
812 		new->sgid = sgid;
813 	new->fsgid = new->egid;
814 
815 	return commit_creds(new);
816 
817 error:
818 	abort_creds(new);
819 	return retval;
820 }
821 
822 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
823 {
824 	const struct cred *cred = current_cred();
825 	int retval;
826 
827 	if (!(retval   = put_user(cred->gid,  rgid)) &&
828 	    !(retval   = put_user(cred->egid, egid)))
829 		retval = put_user(cred->sgid, sgid);
830 
831 	return retval;
832 }
833 
834 
835 /*
836  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
837  * is used for "access()" and for the NFS daemon (letting nfsd stay at
838  * whatever uid it wants to). It normally shadows "euid", except when
839  * explicitly set by setfsuid() or for access..
840  */
841 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
842 {
843 	const struct cred *old;
844 	struct cred *new;
845 	uid_t old_fsuid;
846 
847 	new = prepare_creds();
848 	if (!new)
849 		return current_fsuid();
850 	old = current_cred();
851 	old_fsuid = old->fsuid;
852 
853 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
854 		goto error;
855 
856 	if (uid == old->uid  || uid == old->euid  ||
857 	    uid == old->suid || uid == old->fsuid ||
858 	    capable(CAP_SETUID)) {
859 		if (uid != old_fsuid) {
860 			new->fsuid = uid;
861 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
862 				goto change_okay;
863 		}
864 	}
865 
866 error:
867 	abort_creds(new);
868 	return old_fsuid;
869 
870 change_okay:
871 	commit_creds(new);
872 	return old_fsuid;
873 }
874 
875 /*
876  * Samma på svenska..
877  */
878 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
879 {
880 	const struct cred *old;
881 	struct cred *new;
882 	gid_t old_fsgid;
883 
884 	new = prepare_creds();
885 	if (!new)
886 		return current_fsgid();
887 	old = current_cred();
888 	old_fsgid = old->fsgid;
889 
890 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
891 		goto error;
892 
893 	if (gid == old->gid  || gid == old->egid  ||
894 	    gid == old->sgid || gid == old->fsgid ||
895 	    capable(CAP_SETGID)) {
896 		if (gid != old_fsgid) {
897 			new->fsgid = gid;
898 			goto change_okay;
899 		}
900 	}
901 
902 error:
903 	abort_creds(new);
904 	return old_fsgid;
905 
906 change_okay:
907 	commit_creds(new);
908 	return old_fsgid;
909 }
910 
911 void do_sys_times(struct tms *tms)
912 {
913 	cputime_t tgutime, tgstime, cutime, cstime;
914 
915 	spin_lock_irq(&current->sighand->siglock);
916 	thread_group_times(current, &tgutime, &tgstime);
917 	cutime = current->signal->cutime;
918 	cstime = current->signal->cstime;
919 	spin_unlock_irq(&current->sighand->siglock);
920 	tms->tms_utime = cputime_to_clock_t(tgutime);
921 	tms->tms_stime = cputime_to_clock_t(tgstime);
922 	tms->tms_cutime = cputime_to_clock_t(cutime);
923 	tms->tms_cstime = cputime_to_clock_t(cstime);
924 }
925 
926 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
927 {
928 	if (tbuf) {
929 		struct tms tmp;
930 
931 		do_sys_times(&tmp);
932 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
933 			return -EFAULT;
934 	}
935 	force_successful_syscall_return();
936 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
937 }
938 
939 /*
940  * This needs some heavy checking ...
941  * I just haven't the stomach for it. I also don't fully
942  * understand sessions/pgrp etc. Let somebody who does explain it.
943  *
944  * OK, I think I have the protection semantics right.... this is really
945  * only important on a multi-user system anyway, to make sure one user
946  * can't send a signal to a process owned by another.  -TYT, 12/12/91
947  *
948  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
949  * LBT 04.03.94
950  */
951 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
952 {
953 	struct task_struct *p;
954 	struct task_struct *group_leader = current->group_leader;
955 	struct pid *pgrp;
956 	int err;
957 
958 	if (!pid)
959 		pid = task_pid_vnr(group_leader);
960 	if (!pgid)
961 		pgid = pid;
962 	if (pgid < 0)
963 		return -EINVAL;
964 
965 	/* From this point forward we keep holding onto the tasklist lock
966 	 * so that our parent does not change from under us. -DaveM
967 	 */
968 	write_lock_irq(&tasklist_lock);
969 
970 	err = -ESRCH;
971 	p = find_task_by_vpid(pid);
972 	if (!p)
973 		goto out;
974 
975 	err = -EINVAL;
976 	if (!thread_group_leader(p))
977 		goto out;
978 
979 	if (same_thread_group(p->real_parent, group_leader)) {
980 		err = -EPERM;
981 		if (task_session(p) != task_session(group_leader))
982 			goto out;
983 		err = -EACCES;
984 		if (p->did_exec)
985 			goto out;
986 	} else {
987 		err = -ESRCH;
988 		if (p != group_leader)
989 			goto out;
990 	}
991 
992 	err = -EPERM;
993 	if (p->signal->leader)
994 		goto out;
995 
996 	pgrp = task_pid(p);
997 	if (pgid != pid) {
998 		struct task_struct *g;
999 
1000 		pgrp = find_vpid(pgid);
1001 		g = pid_task(pgrp, PIDTYPE_PGID);
1002 		if (!g || task_session(g) != task_session(group_leader))
1003 			goto out;
1004 	}
1005 
1006 	err = security_task_setpgid(p, pgid);
1007 	if (err)
1008 		goto out;
1009 
1010 	if (task_pgrp(p) != pgrp)
1011 		change_pid(p, PIDTYPE_PGID, pgrp);
1012 
1013 	err = 0;
1014 out:
1015 	/* All paths lead to here, thus we are safe. -DaveM */
1016 	write_unlock_irq(&tasklist_lock);
1017 	return err;
1018 }
1019 
1020 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1021 {
1022 	struct task_struct *p;
1023 	struct pid *grp;
1024 	int retval;
1025 
1026 	rcu_read_lock();
1027 	if (!pid)
1028 		grp = task_pgrp(current);
1029 	else {
1030 		retval = -ESRCH;
1031 		p = find_task_by_vpid(pid);
1032 		if (!p)
1033 			goto out;
1034 		grp = task_pgrp(p);
1035 		if (!grp)
1036 			goto out;
1037 
1038 		retval = security_task_getpgid(p);
1039 		if (retval)
1040 			goto out;
1041 	}
1042 	retval = pid_vnr(grp);
1043 out:
1044 	rcu_read_unlock();
1045 	return retval;
1046 }
1047 
1048 #ifdef __ARCH_WANT_SYS_GETPGRP
1049 
1050 SYSCALL_DEFINE0(getpgrp)
1051 {
1052 	return sys_getpgid(0);
1053 }
1054 
1055 #endif
1056 
1057 SYSCALL_DEFINE1(getsid, pid_t, pid)
1058 {
1059 	struct task_struct *p;
1060 	struct pid *sid;
1061 	int retval;
1062 
1063 	rcu_read_lock();
1064 	if (!pid)
1065 		sid = task_session(current);
1066 	else {
1067 		retval = -ESRCH;
1068 		p = find_task_by_vpid(pid);
1069 		if (!p)
1070 			goto out;
1071 		sid = task_session(p);
1072 		if (!sid)
1073 			goto out;
1074 
1075 		retval = security_task_getsid(p);
1076 		if (retval)
1077 			goto out;
1078 	}
1079 	retval = pid_vnr(sid);
1080 out:
1081 	rcu_read_unlock();
1082 	return retval;
1083 }
1084 
1085 SYSCALL_DEFINE0(setsid)
1086 {
1087 	struct task_struct *group_leader = current->group_leader;
1088 	struct pid *sid = task_pid(group_leader);
1089 	pid_t session = pid_vnr(sid);
1090 	int err = -EPERM;
1091 
1092 	write_lock_irq(&tasklist_lock);
1093 	/* Fail if I am already a session leader */
1094 	if (group_leader->signal->leader)
1095 		goto out;
1096 
1097 	/* Fail if a process group id already exists that equals the
1098 	 * proposed session id.
1099 	 */
1100 	if (pid_task(sid, PIDTYPE_PGID))
1101 		goto out;
1102 
1103 	group_leader->signal->leader = 1;
1104 	__set_special_pids(sid);
1105 
1106 	proc_clear_tty(group_leader);
1107 
1108 	err = session;
1109 out:
1110 	write_unlock_irq(&tasklist_lock);
1111 	if (err > 0)
1112 		proc_sid_connector(group_leader);
1113 	return err;
1114 }
1115 
1116 DECLARE_RWSEM(uts_sem);
1117 
1118 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1119 {
1120 	int errno = 0;
1121 
1122 	down_read(&uts_sem);
1123 	if (copy_to_user(name, utsname(), sizeof *name))
1124 		errno = -EFAULT;
1125 	up_read(&uts_sem);
1126 	return errno;
1127 }
1128 
1129 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1130 {
1131 	int errno;
1132 	char tmp[__NEW_UTS_LEN];
1133 
1134 	if (!capable(CAP_SYS_ADMIN))
1135 		return -EPERM;
1136 	if (len < 0 || len > __NEW_UTS_LEN)
1137 		return -EINVAL;
1138 	down_write(&uts_sem);
1139 	errno = -EFAULT;
1140 	if (!copy_from_user(tmp, name, len)) {
1141 		struct new_utsname *u = utsname();
1142 
1143 		memcpy(u->nodename, tmp, len);
1144 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1145 		errno = 0;
1146 	}
1147 	up_write(&uts_sem);
1148 	return errno;
1149 }
1150 
1151 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1152 
1153 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1154 {
1155 	int i, errno;
1156 	struct new_utsname *u;
1157 
1158 	if (len < 0)
1159 		return -EINVAL;
1160 	down_read(&uts_sem);
1161 	u = utsname();
1162 	i = 1 + strlen(u->nodename);
1163 	if (i > len)
1164 		i = len;
1165 	errno = 0;
1166 	if (copy_to_user(name, u->nodename, i))
1167 		errno = -EFAULT;
1168 	up_read(&uts_sem);
1169 	return errno;
1170 }
1171 
1172 #endif
1173 
1174 /*
1175  * Only setdomainname; getdomainname can be implemented by calling
1176  * uname()
1177  */
1178 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1179 {
1180 	int errno;
1181 	char tmp[__NEW_UTS_LEN];
1182 
1183 	if (!capable(CAP_SYS_ADMIN))
1184 		return -EPERM;
1185 	if (len < 0 || len > __NEW_UTS_LEN)
1186 		return -EINVAL;
1187 
1188 	down_write(&uts_sem);
1189 	errno = -EFAULT;
1190 	if (!copy_from_user(tmp, name, len)) {
1191 		struct new_utsname *u = utsname();
1192 
1193 		memcpy(u->domainname, tmp, len);
1194 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1195 		errno = 0;
1196 	}
1197 	up_write(&uts_sem);
1198 	return errno;
1199 }
1200 
1201 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1202 {
1203 	if (resource >= RLIM_NLIMITS)
1204 		return -EINVAL;
1205 	else {
1206 		struct rlimit value;
1207 		task_lock(current->group_leader);
1208 		value = current->signal->rlim[resource];
1209 		task_unlock(current->group_leader);
1210 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1211 	}
1212 }
1213 
1214 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1215 
1216 /*
1217  *	Back compatibility for getrlimit. Needed for some apps.
1218  */
1219 
1220 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1221 		struct rlimit __user *, rlim)
1222 {
1223 	struct rlimit x;
1224 	if (resource >= RLIM_NLIMITS)
1225 		return -EINVAL;
1226 
1227 	task_lock(current->group_leader);
1228 	x = current->signal->rlim[resource];
1229 	task_unlock(current->group_leader);
1230 	if (x.rlim_cur > 0x7FFFFFFF)
1231 		x.rlim_cur = 0x7FFFFFFF;
1232 	if (x.rlim_max > 0x7FFFFFFF)
1233 		x.rlim_max = 0x7FFFFFFF;
1234 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1235 }
1236 
1237 #endif
1238 
1239 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1240 {
1241 	struct rlimit new_rlim, *old_rlim;
1242 	int retval;
1243 
1244 	if (resource >= RLIM_NLIMITS)
1245 		return -EINVAL;
1246 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1247 		return -EFAULT;
1248 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1249 		return -EINVAL;
1250 	old_rlim = current->signal->rlim + resource;
1251 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1252 	    !capable(CAP_SYS_RESOURCE))
1253 		return -EPERM;
1254 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1255 		return -EPERM;
1256 
1257 	retval = security_task_setrlimit(resource, &new_rlim);
1258 	if (retval)
1259 		return retval;
1260 
1261 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1262 		/*
1263 		 * The caller is asking for an immediate RLIMIT_CPU
1264 		 * expiry.  But we use the zero value to mean "it was
1265 		 * never set".  So let's cheat and make it one second
1266 		 * instead
1267 		 */
1268 		new_rlim.rlim_cur = 1;
1269 	}
1270 
1271 	task_lock(current->group_leader);
1272 	*old_rlim = new_rlim;
1273 	task_unlock(current->group_leader);
1274 
1275 	if (resource != RLIMIT_CPU)
1276 		goto out;
1277 
1278 	/*
1279 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1280 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1281 	 * very long-standing error, and fixing it now risks breakage of
1282 	 * applications, so we live with it
1283 	 */
1284 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1285 		goto out;
1286 
1287 	update_rlimit_cpu(new_rlim.rlim_cur);
1288 out:
1289 	return 0;
1290 }
1291 
1292 /*
1293  * It would make sense to put struct rusage in the task_struct,
1294  * except that would make the task_struct be *really big*.  After
1295  * task_struct gets moved into malloc'ed memory, it would
1296  * make sense to do this.  It will make moving the rest of the information
1297  * a lot simpler!  (Which we're not doing right now because we're not
1298  * measuring them yet).
1299  *
1300  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1301  * races with threads incrementing their own counters.  But since word
1302  * reads are atomic, we either get new values or old values and we don't
1303  * care which for the sums.  We always take the siglock to protect reading
1304  * the c* fields from p->signal from races with exit.c updating those
1305  * fields when reaping, so a sample either gets all the additions of a
1306  * given child after it's reaped, or none so this sample is before reaping.
1307  *
1308  * Locking:
1309  * We need to take the siglock for CHILDEREN, SELF and BOTH
1310  * for  the cases current multithreaded, non-current single threaded
1311  * non-current multithreaded.  Thread traversal is now safe with
1312  * the siglock held.
1313  * Strictly speaking, we donot need to take the siglock if we are current and
1314  * single threaded,  as no one else can take our signal_struct away, no one
1315  * else can  reap the  children to update signal->c* counters, and no one else
1316  * can race with the signal-> fields. If we do not take any lock, the
1317  * signal-> fields could be read out of order while another thread was just
1318  * exiting. So we should  place a read memory barrier when we avoid the lock.
1319  * On the writer side,  write memory barrier is implied in  __exit_signal
1320  * as __exit_signal releases  the siglock spinlock after updating the signal->
1321  * fields. But we don't do this yet to keep things simple.
1322  *
1323  */
1324 
1325 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1326 {
1327 	r->ru_nvcsw += t->nvcsw;
1328 	r->ru_nivcsw += t->nivcsw;
1329 	r->ru_minflt += t->min_flt;
1330 	r->ru_majflt += t->maj_flt;
1331 	r->ru_inblock += task_io_get_inblock(t);
1332 	r->ru_oublock += task_io_get_oublock(t);
1333 }
1334 
1335 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1336 {
1337 	struct task_struct *t;
1338 	unsigned long flags;
1339 	cputime_t tgutime, tgstime, utime, stime;
1340 	unsigned long maxrss = 0;
1341 
1342 	memset((char *) r, 0, sizeof *r);
1343 	utime = stime = cputime_zero;
1344 
1345 	if (who == RUSAGE_THREAD) {
1346 		task_times(current, &utime, &stime);
1347 		accumulate_thread_rusage(p, r);
1348 		maxrss = p->signal->maxrss;
1349 		goto out;
1350 	}
1351 
1352 	if (!lock_task_sighand(p, &flags))
1353 		return;
1354 
1355 	switch (who) {
1356 		case RUSAGE_BOTH:
1357 		case RUSAGE_CHILDREN:
1358 			utime = p->signal->cutime;
1359 			stime = p->signal->cstime;
1360 			r->ru_nvcsw = p->signal->cnvcsw;
1361 			r->ru_nivcsw = p->signal->cnivcsw;
1362 			r->ru_minflt = p->signal->cmin_flt;
1363 			r->ru_majflt = p->signal->cmaj_flt;
1364 			r->ru_inblock = p->signal->cinblock;
1365 			r->ru_oublock = p->signal->coublock;
1366 			maxrss = p->signal->cmaxrss;
1367 
1368 			if (who == RUSAGE_CHILDREN)
1369 				break;
1370 
1371 		case RUSAGE_SELF:
1372 			thread_group_times(p, &tgutime, &tgstime);
1373 			utime = cputime_add(utime, tgutime);
1374 			stime = cputime_add(stime, tgstime);
1375 			r->ru_nvcsw += p->signal->nvcsw;
1376 			r->ru_nivcsw += p->signal->nivcsw;
1377 			r->ru_minflt += p->signal->min_flt;
1378 			r->ru_majflt += p->signal->maj_flt;
1379 			r->ru_inblock += p->signal->inblock;
1380 			r->ru_oublock += p->signal->oublock;
1381 			if (maxrss < p->signal->maxrss)
1382 				maxrss = p->signal->maxrss;
1383 			t = p;
1384 			do {
1385 				accumulate_thread_rusage(t, r);
1386 				t = next_thread(t);
1387 			} while (t != p);
1388 			break;
1389 
1390 		default:
1391 			BUG();
1392 	}
1393 	unlock_task_sighand(p, &flags);
1394 
1395 out:
1396 	cputime_to_timeval(utime, &r->ru_utime);
1397 	cputime_to_timeval(stime, &r->ru_stime);
1398 
1399 	if (who != RUSAGE_CHILDREN) {
1400 		struct mm_struct *mm = get_task_mm(p);
1401 		if (mm) {
1402 			setmax_mm_hiwater_rss(&maxrss, mm);
1403 			mmput(mm);
1404 		}
1405 	}
1406 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1407 }
1408 
1409 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1410 {
1411 	struct rusage r;
1412 	k_getrusage(p, who, &r);
1413 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1414 }
1415 
1416 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1417 {
1418 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1419 	    who != RUSAGE_THREAD)
1420 		return -EINVAL;
1421 	return getrusage(current, who, ru);
1422 }
1423 
1424 SYSCALL_DEFINE1(umask, int, mask)
1425 {
1426 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1427 	return mask;
1428 }
1429 
1430 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1431 		unsigned long, arg4, unsigned long, arg5)
1432 {
1433 	struct task_struct *me = current;
1434 	unsigned char comm[sizeof(me->comm)];
1435 	long error;
1436 
1437 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1438 	if (error != -ENOSYS)
1439 		return error;
1440 
1441 	error = 0;
1442 	switch (option) {
1443 		case PR_SET_PDEATHSIG:
1444 			if (!valid_signal(arg2)) {
1445 				error = -EINVAL;
1446 				break;
1447 			}
1448 			me->pdeath_signal = arg2;
1449 			error = 0;
1450 			break;
1451 		case PR_GET_PDEATHSIG:
1452 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1453 			break;
1454 		case PR_GET_DUMPABLE:
1455 			error = get_dumpable(me->mm);
1456 			break;
1457 		case PR_SET_DUMPABLE:
1458 			if (arg2 < 0 || arg2 > 1) {
1459 				error = -EINVAL;
1460 				break;
1461 			}
1462 			set_dumpable(me->mm, arg2);
1463 			error = 0;
1464 			break;
1465 
1466 		case PR_SET_UNALIGN:
1467 			error = SET_UNALIGN_CTL(me, arg2);
1468 			break;
1469 		case PR_GET_UNALIGN:
1470 			error = GET_UNALIGN_CTL(me, arg2);
1471 			break;
1472 		case PR_SET_FPEMU:
1473 			error = SET_FPEMU_CTL(me, arg2);
1474 			break;
1475 		case PR_GET_FPEMU:
1476 			error = GET_FPEMU_CTL(me, arg2);
1477 			break;
1478 		case PR_SET_FPEXC:
1479 			error = SET_FPEXC_CTL(me, arg2);
1480 			break;
1481 		case PR_GET_FPEXC:
1482 			error = GET_FPEXC_CTL(me, arg2);
1483 			break;
1484 		case PR_GET_TIMING:
1485 			error = PR_TIMING_STATISTICAL;
1486 			break;
1487 		case PR_SET_TIMING:
1488 			if (arg2 != PR_TIMING_STATISTICAL)
1489 				error = -EINVAL;
1490 			else
1491 				error = 0;
1492 			break;
1493 
1494 		case PR_SET_NAME:
1495 			comm[sizeof(me->comm)-1] = 0;
1496 			if (strncpy_from_user(comm, (char __user *)arg2,
1497 					      sizeof(me->comm) - 1) < 0)
1498 				return -EFAULT;
1499 			set_task_comm(me, comm);
1500 			return 0;
1501 		case PR_GET_NAME:
1502 			get_task_comm(comm, me);
1503 			if (copy_to_user((char __user *)arg2, comm,
1504 					 sizeof(comm)))
1505 				return -EFAULT;
1506 			return 0;
1507 		case PR_GET_ENDIAN:
1508 			error = GET_ENDIAN(me, arg2);
1509 			break;
1510 		case PR_SET_ENDIAN:
1511 			error = SET_ENDIAN(me, arg2);
1512 			break;
1513 
1514 		case PR_GET_SECCOMP:
1515 			error = prctl_get_seccomp();
1516 			break;
1517 		case PR_SET_SECCOMP:
1518 			error = prctl_set_seccomp(arg2);
1519 			break;
1520 		case PR_GET_TSC:
1521 			error = GET_TSC_CTL(arg2);
1522 			break;
1523 		case PR_SET_TSC:
1524 			error = SET_TSC_CTL(arg2);
1525 			break;
1526 		case PR_TASK_PERF_EVENTS_DISABLE:
1527 			error = perf_event_task_disable();
1528 			break;
1529 		case PR_TASK_PERF_EVENTS_ENABLE:
1530 			error = perf_event_task_enable();
1531 			break;
1532 		case PR_GET_TIMERSLACK:
1533 			error = current->timer_slack_ns;
1534 			break;
1535 		case PR_SET_TIMERSLACK:
1536 			if (arg2 <= 0)
1537 				current->timer_slack_ns =
1538 					current->default_timer_slack_ns;
1539 			else
1540 				current->timer_slack_ns = arg2;
1541 			error = 0;
1542 			break;
1543 		case PR_MCE_KILL:
1544 			if (arg4 | arg5)
1545 				return -EINVAL;
1546 			switch (arg2) {
1547 			case PR_MCE_KILL_CLEAR:
1548 				if (arg3 != 0)
1549 					return -EINVAL;
1550 				current->flags &= ~PF_MCE_PROCESS;
1551 				break;
1552 			case PR_MCE_KILL_SET:
1553 				current->flags |= PF_MCE_PROCESS;
1554 				if (arg3 == PR_MCE_KILL_EARLY)
1555 					current->flags |= PF_MCE_EARLY;
1556 				else if (arg3 == PR_MCE_KILL_LATE)
1557 					current->flags &= ~PF_MCE_EARLY;
1558 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1559 					current->flags &=
1560 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1561 				else
1562 					return -EINVAL;
1563 				break;
1564 			default:
1565 				return -EINVAL;
1566 			}
1567 			error = 0;
1568 			break;
1569 		case PR_MCE_KILL_GET:
1570 			if (arg2 | arg3 | arg4 | arg5)
1571 				return -EINVAL;
1572 			if (current->flags & PF_MCE_PROCESS)
1573 				error = (current->flags & PF_MCE_EARLY) ?
1574 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1575 			else
1576 				error = PR_MCE_KILL_DEFAULT;
1577 			break;
1578 		default:
1579 			error = -EINVAL;
1580 			break;
1581 	}
1582 	return error;
1583 }
1584 
1585 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1586 		struct getcpu_cache __user *, unused)
1587 {
1588 	int err = 0;
1589 	int cpu = raw_smp_processor_id();
1590 	if (cpup)
1591 		err |= put_user(cpu, cpup);
1592 	if (nodep)
1593 		err |= put_user(cpu_to_node(cpu), nodep);
1594 	return err ? -EFAULT : 0;
1595 }
1596 
1597 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1598 
1599 static void argv_cleanup(char **argv, char **envp)
1600 {
1601 	argv_free(argv);
1602 }
1603 
1604 /**
1605  * orderly_poweroff - Trigger an orderly system poweroff
1606  * @force: force poweroff if command execution fails
1607  *
1608  * This may be called from any context to trigger a system shutdown.
1609  * If the orderly shutdown fails, it will force an immediate shutdown.
1610  */
1611 int orderly_poweroff(bool force)
1612 {
1613 	int argc;
1614 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1615 	static char *envp[] = {
1616 		"HOME=/",
1617 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1618 		NULL
1619 	};
1620 	int ret = -ENOMEM;
1621 	struct subprocess_info *info;
1622 
1623 	if (argv == NULL) {
1624 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1625 		       __func__, poweroff_cmd);
1626 		goto out;
1627 	}
1628 
1629 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1630 	if (info == NULL) {
1631 		argv_free(argv);
1632 		goto out;
1633 	}
1634 
1635 	call_usermodehelper_setcleanup(info, argv_cleanup);
1636 
1637 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1638 
1639   out:
1640 	if (ret && force) {
1641 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1642 		       "forcing the issue\n");
1643 
1644 		/* I guess this should try to kick off some daemon to
1645 		   sync and poweroff asap.  Or not even bother syncing
1646 		   if we're doing an emergency shutdown? */
1647 		emergency_sync();
1648 		kernel_power_off();
1649 	}
1650 
1651 	return ret;
1652 }
1653 EXPORT_SYMBOL_GPL(orderly_poweroff);
1654