xref: /linux/kernel/sys.c (revision 50069a5851323ba5def0e414a21e234345016870)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/version.h>
42 #include <linux/ctype.h>
43 
44 #include <linux/compat.h>
45 #include <linux/syscalls.h>
46 #include <linux/kprobes.h>
47 #include <linux/user_namespace.h>
48 
49 #include <linux/kmsg_dump.h>
50 /* Move somewhere else to avoid recompiling? */
51 #include <generated/utsrelease.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/unistd.h>
56 
57 #ifndef SET_UNALIGN_CTL
58 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
59 #endif
60 #ifndef GET_UNALIGN_CTL
61 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
62 #endif
63 #ifndef SET_FPEMU_CTL
64 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
65 #endif
66 #ifndef GET_FPEMU_CTL
67 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
68 #endif
69 #ifndef SET_FPEXC_CTL
70 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
71 #endif
72 #ifndef GET_FPEXC_CTL
73 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
74 #endif
75 #ifndef GET_ENDIAN
76 # define GET_ENDIAN(a,b)	(-EINVAL)
77 #endif
78 #ifndef SET_ENDIAN
79 # define SET_ENDIAN(a,b)	(-EINVAL)
80 #endif
81 #ifndef GET_TSC_CTL
82 # define GET_TSC_CTL(a)		(-EINVAL)
83 #endif
84 #ifndef SET_TSC_CTL
85 # define SET_TSC_CTL(a)		(-EINVAL)
86 #endif
87 
88 /*
89  * this is where the system-wide overflow UID and GID are defined, for
90  * architectures that now have 32-bit UID/GID but didn't in the past
91  */
92 
93 int overflowuid = DEFAULT_OVERFLOWUID;
94 int overflowgid = DEFAULT_OVERFLOWGID;
95 
96 EXPORT_SYMBOL(overflowuid);
97 EXPORT_SYMBOL(overflowgid);
98 
99 /*
100  * the same as above, but for filesystems which can only store a 16-bit
101  * UID and GID. as such, this is needed on all architectures
102  */
103 
104 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
105 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
106 
107 EXPORT_SYMBOL(fs_overflowuid);
108 EXPORT_SYMBOL(fs_overflowgid);
109 
110 /*
111  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
112  */
113 
114 int C_A_D = 1;
115 struct pid *cad_pid;
116 EXPORT_SYMBOL(cad_pid);
117 
118 /*
119  * If set, this is used for preparing the system to power off.
120  */
121 
122 void (*pm_power_off_prepare)(void);
123 
124 /*
125  * Returns true if current's euid is same as p's uid or euid,
126  * or has CAP_SYS_NICE to p's user_ns.
127  *
128  * Called with rcu_read_lock, creds are safe
129  */
130 static bool set_one_prio_perm(struct task_struct *p)
131 {
132 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
133 
134 	if (uid_eq(pcred->uid,  cred->euid) ||
135 	    uid_eq(pcred->euid, cred->euid))
136 		return true;
137 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
138 		return true;
139 	return false;
140 }
141 
142 /*
143  * set the priority of a task
144  * - the caller must hold the RCU read lock
145  */
146 static int set_one_prio(struct task_struct *p, int niceval, int error)
147 {
148 	int no_nice;
149 
150 	if (!set_one_prio_perm(p)) {
151 		error = -EPERM;
152 		goto out;
153 	}
154 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
155 		error = -EACCES;
156 		goto out;
157 	}
158 	no_nice = security_task_setnice(p, niceval);
159 	if (no_nice) {
160 		error = no_nice;
161 		goto out;
162 	}
163 	if (error == -ESRCH)
164 		error = 0;
165 	set_user_nice(p, niceval);
166 out:
167 	return error;
168 }
169 
170 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
171 {
172 	struct task_struct *g, *p;
173 	struct user_struct *user;
174 	const struct cred *cred = current_cred();
175 	int error = -EINVAL;
176 	struct pid *pgrp;
177 	kuid_t uid;
178 
179 	if (which > PRIO_USER || which < PRIO_PROCESS)
180 		goto out;
181 
182 	/* normalize: avoid signed division (rounding problems) */
183 	error = -ESRCH;
184 	if (niceval < -20)
185 		niceval = -20;
186 	if (niceval > 19)
187 		niceval = 19;
188 
189 	rcu_read_lock();
190 	read_lock(&tasklist_lock);
191 	switch (which) {
192 		case PRIO_PROCESS:
193 			if (who)
194 				p = find_task_by_vpid(who);
195 			else
196 				p = current;
197 			if (p)
198 				error = set_one_prio(p, niceval, error);
199 			break;
200 		case PRIO_PGRP:
201 			if (who)
202 				pgrp = find_vpid(who);
203 			else
204 				pgrp = task_pgrp(current);
205 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
206 				error = set_one_prio(p, niceval, error);
207 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
208 			break;
209 		case PRIO_USER:
210 			uid = make_kuid(cred->user_ns, who);
211 			user = cred->user;
212 			if (!who)
213 				uid = cred->uid;
214 			else if (!uid_eq(uid, cred->uid) &&
215 				 !(user = find_user(uid)))
216 				goto out_unlock;	/* No processes for this user */
217 
218 			do_each_thread(g, p) {
219 				if (uid_eq(task_uid(p), uid))
220 					error = set_one_prio(p, niceval, error);
221 			} while_each_thread(g, p);
222 			if (!uid_eq(uid, cred->uid))
223 				free_uid(user);		/* For find_user() */
224 			break;
225 	}
226 out_unlock:
227 	read_unlock(&tasklist_lock);
228 	rcu_read_unlock();
229 out:
230 	return error;
231 }
232 
233 /*
234  * Ugh. To avoid negative return values, "getpriority()" will
235  * not return the normal nice-value, but a negated value that
236  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
237  * to stay compatible.
238  */
239 SYSCALL_DEFINE2(getpriority, int, which, int, who)
240 {
241 	struct task_struct *g, *p;
242 	struct user_struct *user;
243 	const struct cred *cred = current_cred();
244 	long niceval, retval = -ESRCH;
245 	struct pid *pgrp;
246 	kuid_t uid;
247 
248 	if (which > PRIO_USER || which < PRIO_PROCESS)
249 		return -EINVAL;
250 
251 	rcu_read_lock();
252 	read_lock(&tasklist_lock);
253 	switch (which) {
254 		case PRIO_PROCESS:
255 			if (who)
256 				p = find_task_by_vpid(who);
257 			else
258 				p = current;
259 			if (p) {
260 				niceval = 20 - task_nice(p);
261 				if (niceval > retval)
262 					retval = niceval;
263 			}
264 			break;
265 		case PRIO_PGRP:
266 			if (who)
267 				pgrp = find_vpid(who);
268 			else
269 				pgrp = task_pgrp(current);
270 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
271 				niceval = 20 - task_nice(p);
272 				if (niceval > retval)
273 					retval = niceval;
274 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
275 			break;
276 		case PRIO_USER:
277 			uid = make_kuid(cred->user_ns, who);
278 			user = cred->user;
279 			if (!who)
280 				uid = cred->uid;
281 			else if (!uid_eq(uid, cred->uid) &&
282 				 !(user = find_user(uid)))
283 				goto out_unlock;	/* No processes for this user */
284 
285 			do_each_thread(g, p) {
286 				if (uid_eq(task_uid(p), uid)) {
287 					niceval = 20 - task_nice(p);
288 					if (niceval > retval)
289 						retval = niceval;
290 				}
291 			} while_each_thread(g, p);
292 			if (!uid_eq(uid, cred->uid))
293 				free_uid(user);		/* for find_user() */
294 			break;
295 	}
296 out_unlock:
297 	read_unlock(&tasklist_lock);
298 	rcu_read_unlock();
299 
300 	return retval;
301 }
302 
303 /**
304  *	emergency_restart - reboot the system
305  *
306  *	Without shutting down any hardware or taking any locks
307  *	reboot the system.  This is called when we know we are in
308  *	trouble so this is our best effort to reboot.  This is
309  *	safe to call in interrupt context.
310  */
311 void emergency_restart(void)
312 {
313 	kmsg_dump(KMSG_DUMP_EMERG);
314 	machine_emergency_restart();
315 }
316 EXPORT_SYMBOL_GPL(emergency_restart);
317 
318 void kernel_restart_prepare(char *cmd)
319 {
320 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
321 	system_state = SYSTEM_RESTART;
322 	usermodehelper_disable();
323 	device_shutdown();
324 	syscore_shutdown();
325 }
326 
327 /**
328  *	register_reboot_notifier - Register function to be called at reboot time
329  *	@nb: Info about notifier function to be called
330  *
331  *	Registers a function with the list of functions
332  *	to be called at reboot time.
333  *
334  *	Currently always returns zero, as blocking_notifier_chain_register()
335  *	always returns zero.
336  */
337 int register_reboot_notifier(struct notifier_block *nb)
338 {
339 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
340 }
341 EXPORT_SYMBOL(register_reboot_notifier);
342 
343 /**
344  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
345  *	@nb: Hook to be unregistered
346  *
347  *	Unregisters a previously registered reboot
348  *	notifier function.
349  *
350  *	Returns zero on success, or %-ENOENT on failure.
351  */
352 int unregister_reboot_notifier(struct notifier_block *nb)
353 {
354 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
355 }
356 EXPORT_SYMBOL(unregister_reboot_notifier);
357 
358 /**
359  *	kernel_restart - reboot the system
360  *	@cmd: pointer to buffer containing command to execute for restart
361  *		or %NULL
362  *
363  *	Shutdown everything and perform a clean reboot.
364  *	This is not safe to call in interrupt context.
365  */
366 void kernel_restart(char *cmd)
367 {
368 	kernel_restart_prepare(cmd);
369 	if (!cmd)
370 		printk(KERN_EMERG "Restarting system.\n");
371 	else
372 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
373 	kmsg_dump(KMSG_DUMP_RESTART);
374 	machine_restart(cmd);
375 }
376 EXPORT_SYMBOL_GPL(kernel_restart);
377 
378 static void kernel_shutdown_prepare(enum system_states state)
379 {
380 	blocking_notifier_call_chain(&reboot_notifier_list,
381 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
382 	system_state = state;
383 	usermodehelper_disable();
384 	device_shutdown();
385 }
386 /**
387  *	kernel_halt - halt the system
388  *
389  *	Shutdown everything and perform a clean system halt.
390  */
391 void kernel_halt(void)
392 {
393 	kernel_shutdown_prepare(SYSTEM_HALT);
394 	syscore_shutdown();
395 	printk(KERN_EMERG "System halted.\n");
396 	kmsg_dump(KMSG_DUMP_HALT);
397 	machine_halt();
398 }
399 
400 EXPORT_SYMBOL_GPL(kernel_halt);
401 
402 /**
403  *	kernel_power_off - power_off the system
404  *
405  *	Shutdown everything and perform a clean system power_off.
406  */
407 void kernel_power_off(void)
408 {
409 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
410 	if (pm_power_off_prepare)
411 		pm_power_off_prepare();
412 	disable_nonboot_cpus();
413 	syscore_shutdown();
414 	printk(KERN_EMERG "Power down.\n");
415 	kmsg_dump(KMSG_DUMP_POWEROFF);
416 	machine_power_off();
417 }
418 EXPORT_SYMBOL_GPL(kernel_power_off);
419 
420 static DEFINE_MUTEX(reboot_mutex);
421 
422 /*
423  * Reboot system call: for obvious reasons only root may call it,
424  * and even root needs to set up some magic numbers in the registers
425  * so that some mistake won't make this reboot the whole machine.
426  * You can also set the meaning of the ctrl-alt-del-key here.
427  *
428  * reboot doesn't sync: do that yourself before calling this.
429  */
430 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
431 		void __user *, arg)
432 {
433 	char buffer[256];
434 	int ret = 0;
435 
436 	/* We only trust the superuser with rebooting the system. */
437 	if (!capable(CAP_SYS_BOOT))
438 		return -EPERM;
439 
440 	/* For safety, we require "magic" arguments. */
441 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
442 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
443 	                magic2 != LINUX_REBOOT_MAGIC2A &&
444 			magic2 != LINUX_REBOOT_MAGIC2B &&
445 	                magic2 != LINUX_REBOOT_MAGIC2C))
446 		return -EINVAL;
447 
448 	/*
449 	 * If pid namespaces are enabled and the current task is in a child
450 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
451 	 * call do_exit().
452 	 */
453 	ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
454 	if (ret)
455 		return ret;
456 
457 	/* Instead of trying to make the power_off code look like
458 	 * halt when pm_power_off is not set do it the easy way.
459 	 */
460 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
461 		cmd = LINUX_REBOOT_CMD_HALT;
462 
463 	mutex_lock(&reboot_mutex);
464 	switch (cmd) {
465 	case LINUX_REBOOT_CMD_RESTART:
466 		kernel_restart(NULL);
467 		break;
468 
469 	case LINUX_REBOOT_CMD_CAD_ON:
470 		C_A_D = 1;
471 		break;
472 
473 	case LINUX_REBOOT_CMD_CAD_OFF:
474 		C_A_D = 0;
475 		break;
476 
477 	case LINUX_REBOOT_CMD_HALT:
478 		kernel_halt();
479 		do_exit(0);
480 		panic("cannot halt");
481 
482 	case LINUX_REBOOT_CMD_POWER_OFF:
483 		kernel_power_off();
484 		do_exit(0);
485 		break;
486 
487 	case LINUX_REBOOT_CMD_RESTART2:
488 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
489 			ret = -EFAULT;
490 			break;
491 		}
492 		buffer[sizeof(buffer) - 1] = '\0';
493 
494 		kernel_restart(buffer);
495 		break;
496 
497 #ifdef CONFIG_KEXEC
498 	case LINUX_REBOOT_CMD_KEXEC:
499 		ret = kernel_kexec();
500 		break;
501 #endif
502 
503 #ifdef CONFIG_HIBERNATION
504 	case LINUX_REBOOT_CMD_SW_SUSPEND:
505 		ret = hibernate();
506 		break;
507 #endif
508 
509 	default:
510 		ret = -EINVAL;
511 		break;
512 	}
513 	mutex_unlock(&reboot_mutex);
514 	return ret;
515 }
516 
517 static void deferred_cad(struct work_struct *dummy)
518 {
519 	kernel_restart(NULL);
520 }
521 
522 /*
523  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
524  * As it's called within an interrupt, it may NOT sync: the only choice
525  * is whether to reboot at once, or just ignore the ctrl-alt-del.
526  */
527 void ctrl_alt_del(void)
528 {
529 	static DECLARE_WORK(cad_work, deferred_cad);
530 
531 	if (C_A_D)
532 		schedule_work(&cad_work);
533 	else
534 		kill_cad_pid(SIGINT, 1);
535 }
536 
537 /*
538  * Unprivileged users may change the real gid to the effective gid
539  * or vice versa.  (BSD-style)
540  *
541  * If you set the real gid at all, or set the effective gid to a value not
542  * equal to the real gid, then the saved gid is set to the new effective gid.
543  *
544  * This makes it possible for a setgid program to completely drop its
545  * privileges, which is often a useful assertion to make when you are doing
546  * a security audit over a program.
547  *
548  * The general idea is that a program which uses just setregid() will be
549  * 100% compatible with BSD.  A program which uses just setgid() will be
550  * 100% compatible with POSIX with saved IDs.
551  *
552  * SMP: There are not races, the GIDs are checked only by filesystem
553  *      operations (as far as semantic preservation is concerned).
554  */
555 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
556 {
557 	struct user_namespace *ns = current_user_ns();
558 	const struct cred *old;
559 	struct cred *new;
560 	int retval;
561 	kgid_t krgid, kegid;
562 
563 	krgid = make_kgid(ns, rgid);
564 	kegid = make_kgid(ns, egid);
565 
566 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
567 		return -EINVAL;
568 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
569 		return -EINVAL;
570 
571 	new = prepare_creds();
572 	if (!new)
573 		return -ENOMEM;
574 	old = current_cred();
575 
576 	retval = -EPERM;
577 	if (rgid != (gid_t) -1) {
578 		if (gid_eq(old->gid, krgid) ||
579 		    gid_eq(old->egid, krgid) ||
580 		    nsown_capable(CAP_SETGID))
581 			new->gid = krgid;
582 		else
583 			goto error;
584 	}
585 	if (egid != (gid_t) -1) {
586 		if (gid_eq(old->gid, kegid) ||
587 		    gid_eq(old->egid, kegid) ||
588 		    gid_eq(old->sgid, kegid) ||
589 		    nsown_capable(CAP_SETGID))
590 			new->egid = kegid;
591 		else
592 			goto error;
593 	}
594 
595 	if (rgid != (gid_t) -1 ||
596 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
597 		new->sgid = new->egid;
598 	new->fsgid = new->egid;
599 
600 	return commit_creds(new);
601 
602 error:
603 	abort_creds(new);
604 	return retval;
605 }
606 
607 /*
608  * setgid() is implemented like SysV w/ SAVED_IDS
609  *
610  * SMP: Same implicit races as above.
611  */
612 SYSCALL_DEFINE1(setgid, gid_t, gid)
613 {
614 	struct user_namespace *ns = current_user_ns();
615 	const struct cred *old;
616 	struct cred *new;
617 	int retval;
618 	kgid_t kgid;
619 
620 	kgid = make_kgid(ns, gid);
621 	if (!gid_valid(kgid))
622 		return -EINVAL;
623 
624 	new = prepare_creds();
625 	if (!new)
626 		return -ENOMEM;
627 	old = current_cred();
628 
629 	retval = -EPERM;
630 	if (nsown_capable(CAP_SETGID))
631 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
632 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
633 		new->egid = new->fsgid = kgid;
634 	else
635 		goto error;
636 
637 	return commit_creds(new);
638 
639 error:
640 	abort_creds(new);
641 	return retval;
642 }
643 
644 /*
645  * change the user struct in a credentials set to match the new UID
646  */
647 static int set_user(struct cred *new)
648 {
649 	struct user_struct *new_user;
650 
651 	new_user = alloc_uid(new->uid);
652 	if (!new_user)
653 		return -EAGAIN;
654 
655 	/*
656 	 * We don't fail in case of NPROC limit excess here because too many
657 	 * poorly written programs don't check set*uid() return code, assuming
658 	 * it never fails if called by root.  We may still enforce NPROC limit
659 	 * for programs doing set*uid()+execve() by harmlessly deferring the
660 	 * failure to the execve() stage.
661 	 */
662 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
663 			new_user != INIT_USER)
664 		current->flags |= PF_NPROC_EXCEEDED;
665 	else
666 		current->flags &= ~PF_NPROC_EXCEEDED;
667 
668 	free_uid(new->user);
669 	new->user = new_user;
670 	return 0;
671 }
672 
673 /*
674  * Unprivileged users may change the real uid to the effective uid
675  * or vice versa.  (BSD-style)
676  *
677  * If you set the real uid at all, or set the effective uid to a value not
678  * equal to the real uid, then the saved uid is set to the new effective uid.
679  *
680  * This makes it possible for a setuid program to completely drop its
681  * privileges, which is often a useful assertion to make when you are doing
682  * a security audit over a program.
683  *
684  * The general idea is that a program which uses just setreuid() will be
685  * 100% compatible with BSD.  A program which uses just setuid() will be
686  * 100% compatible with POSIX with saved IDs.
687  */
688 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
689 {
690 	struct user_namespace *ns = current_user_ns();
691 	const struct cred *old;
692 	struct cred *new;
693 	int retval;
694 	kuid_t kruid, keuid;
695 
696 	kruid = make_kuid(ns, ruid);
697 	keuid = make_kuid(ns, euid);
698 
699 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
700 		return -EINVAL;
701 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
702 		return -EINVAL;
703 
704 	new = prepare_creds();
705 	if (!new)
706 		return -ENOMEM;
707 	old = current_cred();
708 
709 	retval = -EPERM;
710 	if (ruid != (uid_t) -1) {
711 		new->uid = kruid;
712 		if (!uid_eq(old->uid, kruid) &&
713 		    !uid_eq(old->euid, kruid) &&
714 		    !nsown_capable(CAP_SETUID))
715 			goto error;
716 	}
717 
718 	if (euid != (uid_t) -1) {
719 		new->euid = keuid;
720 		if (!uid_eq(old->uid, keuid) &&
721 		    !uid_eq(old->euid, keuid) &&
722 		    !uid_eq(old->suid, keuid) &&
723 		    !nsown_capable(CAP_SETUID))
724 			goto error;
725 	}
726 
727 	if (!uid_eq(new->uid, old->uid)) {
728 		retval = set_user(new);
729 		if (retval < 0)
730 			goto error;
731 	}
732 	if (ruid != (uid_t) -1 ||
733 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
734 		new->suid = new->euid;
735 	new->fsuid = new->euid;
736 
737 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
738 	if (retval < 0)
739 		goto error;
740 
741 	return commit_creds(new);
742 
743 error:
744 	abort_creds(new);
745 	return retval;
746 }
747 
748 /*
749  * setuid() is implemented like SysV with SAVED_IDS
750  *
751  * Note that SAVED_ID's is deficient in that a setuid root program
752  * like sendmail, for example, cannot set its uid to be a normal
753  * user and then switch back, because if you're root, setuid() sets
754  * the saved uid too.  If you don't like this, blame the bright people
755  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
756  * will allow a root program to temporarily drop privileges and be able to
757  * regain them by swapping the real and effective uid.
758  */
759 SYSCALL_DEFINE1(setuid, uid_t, uid)
760 {
761 	struct user_namespace *ns = current_user_ns();
762 	const struct cred *old;
763 	struct cred *new;
764 	int retval;
765 	kuid_t kuid;
766 
767 	kuid = make_kuid(ns, uid);
768 	if (!uid_valid(kuid))
769 		return -EINVAL;
770 
771 	new = prepare_creds();
772 	if (!new)
773 		return -ENOMEM;
774 	old = current_cred();
775 
776 	retval = -EPERM;
777 	if (nsown_capable(CAP_SETUID)) {
778 		new->suid = new->uid = kuid;
779 		if (!uid_eq(kuid, old->uid)) {
780 			retval = set_user(new);
781 			if (retval < 0)
782 				goto error;
783 		}
784 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
785 		goto error;
786 	}
787 
788 	new->fsuid = new->euid = kuid;
789 
790 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
791 	if (retval < 0)
792 		goto error;
793 
794 	return commit_creds(new);
795 
796 error:
797 	abort_creds(new);
798 	return retval;
799 }
800 
801 
802 /*
803  * This function implements a generic ability to update ruid, euid,
804  * and suid.  This allows you to implement the 4.4 compatible seteuid().
805  */
806 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
807 {
808 	struct user_namespace *ns = current_user_ns();
809 	const struct cred *old;
810 	struct cred *new;
811 	int retval;
812 	kuid_t kruid, keuid, ksuid;
813 
814 	kruid = make_kuid(ns, ruid);
815 	keuid = make_kuid(ns, euid);
816 	ksuid = make_kuid(ns, suid);
817 
818 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
819 		return -EINVAL;
820 
821 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
822 		return -EINVAL;
823 
824 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
825 		return -EINVAL;
826 
827 	new = prepare_creds();
828 	if (!new)
829 		return -ENOMEM;
830 
831 	old = current_cred();
832 
833 	retval = -EPERM;
834 	if (!nsown_capable(CAP_SETUID)) {
835 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
836 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
837 			goto error;
838 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
839 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
840 			goto error;
841 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
842 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
843 			goto error;
844 	}
845 
846 	if (ruid != (uid_t) -1) {
847 		new->uid = kruid;
848 		if (!uid_eq(kruid, old->uid)) {
849 			retval = set_user(new);
850 			if (retval < 0)
851 				goto error;
852 		}
853 	}
854 	if (euid != (uid_t) -1)
855 		new->euid = keuid;
856 	if (suid != (uid_t) -1)
857 		new->suid = ksuid;
858 	new->fsuid = new->euid;
859 
860 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
861 	if (retval < 0)
862 		goto error;
863 
864 	return commit_creds(new);
865 
866 error:
867 	abort_creds(new);
868 	return retval;
869 }
870 
871 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
872 {
873 	const struct cred *cred = current_cred();
874 	int retval;
875 	uid_t ruid, euid, suid;
876 
877 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
878 	euid = from_kuid_munged(cred->user_ns, cred->euid);
879 	suid = from_kuid_munged(cred->user_ns, cred->suid);
880 
881 	if (!(retval   = put_user(ruid, ruidp)) &&
882 	    !(retval   = put_user(euid, euidp)))
883 		retval = put_user(suid, suidp);
884 
885 	return retval;
886 }
887 
888 /*
889  * Same as above, but for rgid, egid, sgid.
890  */
891 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
892 {
893 	struct user_namespace *ns = current_user_ns();
894 	const struct cred *old;
895 	struct cred *new;
896 	int retval;
897 	kgid_t krgid, kegid, ksgid;
898 
899 	krgid = make_kgid(ns, rgid);
900 	kegid = make_kgid(ns, egid);
901 	ksgid = make_kgid(ns, sgid);
902 
903 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
904 		return -EINVAL;
905 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
906 		return -EINVAL;
907 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
908 		return -EINVAL;
909 
910 	new = prepare_creds();
911 	if (!new)
912 		return -ENOMEM;
913 	old = current_cred();
914 
915 	retval = -EPERM;
916 	if (!nsown_capable(CAP_SETGID)) {
917 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
918 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
919 			goto error;
920 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
921 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
922 			goto error;
923 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
924 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
925 			goto error;
926 	}
927 
928 	if (rgid != (gid_t) -1)
929 		new->gid = krgid;
930 	if (egid != (gid_t) -1)
931 		new->egid = kegid;
932 	if (sgid != (gid_t) -1)
933 		new->sgid = ksgid;
934 	new->fsgid = new->egid;
935 
936 	return commit_creds(new);
937 
938 error:
939 	abort_creds(new);
940 	return retval;
941 }
942 
943 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
944 {
945 	const struct cred *cred = current_cred();
946 	int retval;
947 	gid_t rgid, egid, sgid;
948 
949 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
950 	egid = from_kgid_munged(cred->user_ns, cred->egid);
951 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
952 
953 	if (!(retval   = put_user(rgid, rgidp)) &&
954 	    !(retval   = put_user(egid, egidp)))
955 		retval = put_user(sgid, sgidp);
956 
957 	return retval;
958 }
959 
960 
961 /*
962  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
963  * is used for "access()" and for the NFS daemon (letting nfsd stay at
964  * whatever uid it wants to). It normally shadows "euid", except when
965  * explicitly set by setfsuid() or for access..
966  */
967 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
968 {
969 	const struct cred *old;
970 	struct cred *new;
971 	uid_t old_fsuid;
972 	kuid_t kuid;
973 
974 	old = current_cred();
975 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
976 
977 	kuid = make_kuid(old->user_ns, uid);
978 	if (!uid_valid(kuid))
979 		return old_fsuid;
980 
981 	new = prepare_creds();
982 	if (!new)
983 		return old_fsuid;
984 
985 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
986 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
987 	    nsown_capable(CAP_SETUID)) {
988 		if (!uid_eq(kuid, old->fsuid)) {
989 			new->fsuid = kuid;
990 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
991 				goto change_okay;
992 		}
993 	}
994 
995 	abort_creds(new);
996 	return old_fsuid;
997 
998 change_okay:
999 	commit_creds(new);
1000 	return old_fsuid;
1001 }
1002 
1003 /*
1004  * Samma på svenska..
1005  */
1006 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1007 {
1008 	const struct cred *old;
1009 	struct cred *new;
1010 	gid_t old_fsgid;
1011 	kgid_t kgid;
1012 
1013 	old = current_cred();
1014 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1015 
1016 	kgid = make_kgid(old->user_ns, gid);
1017 	if (!gid_valid(kgid))
1018 		return old_fsgid;
1019 
1020 	new = prepare_creds();
1021 	if (!new)
1022 		return old_fsgid;
1023 
1024 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
1025 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1026 	    nsown_capable(CAP_SETGID)) {
1027 		if (!gid_eq(kgid, old->fsgid)) {
1028 			new->fsgid = kgid;
1029 			goto change_okay;
1030 		}
1031 	}
1032 
1033 	abort_creds(new);
1034 	return old_fsgid;
1035 
1036 change_okay:
1037 	commit_creds(new);
1038 	return old_fsgid;
1039 }
1040 
1041 void do_sys_times(struct tms *tms)
1042 {
1043 	cputime_t tgutime, tgstime, cutime, cstime;
1044 
1045 	spin_lock_irq(&current->sighand->siglock);
1046 	thread_group_times(current, &tgutime, &tgstime);
1047 	cutime = current->signal->cutime;
1048 	cstime = current->signal->cstime;
1049 	spin_unlock_irq(&current->sighand->siglock);
1050 	tms->tms_utime = cputime_to_clock_t(tgutime);
1051 	tms->tms_stime = cputime_to_clock_t(tgstime);
1052 	tms->tms_cutime = cputime_to_clock_t(cutime);
1053 	tms->tms_cstime = cputime_to_clock_t(cstime);
1054 }
1055 
1056 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1057 {
1058 	if (tbuf) {
1059 		struct tms tmp;
1060 
1061 		do_sys_times(&tmp);
1062 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1063 			return -EFAULT;
1064 	}
1065 	force_successful_syscall_return();
1066 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1067 }
1068 
1069 /*
1070  * This needs some heavy checking ...
1071  * I just haven't the stomach for it. I also don't fully
1072  * understand sessions/pgrp etc. Let somebody who does explain it.
1073  *
1074  * OK, I think I have the protection semantics right.... this is really
1075  * only important on a multi-user system anyway, to make sure one user
1076  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1077  *
1078  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1079  * LBT 04.03.94
1080  */
1081 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1082 {
1083 	struct task_struct *p;
1084 	struct task_struct *group_leader = current->group_leader;
1085 	struct pid *pgrp;
1086 	int err;
1087 
1088 	if (!pid)
1089 		pid = task_pid_vnr(group_leader);
1090 	if (!pgid)
1091 		pgid = pid;
1092 	if (pgid < 0)
1093 		return -EINVAL;
1094 	rcu_read_lock();
1095 
1096 	/* From this point forward we keep holding onto the tasklist lock
1097 	 * so that our parent does not change from under us. -DaveM
1098 	 */
1099 	write_lock_irq(&tasklist_lock);
1100 
1101 	err = -ESRCH;
1102 	p = find_task_by_vpid(pid);
1103 	if (!p)
1104 		goto out;
1105 
1106 	err = -EINVAL;
1107 	if (!thread_group_leader(p))
1108 		goto out;
1109 
1110 	if (same_thread_group(p->real_parent, group_leader)) {
1111 		err = -EPERM;
1112 		if (task_session(p) != task_session(group_leader))
1113 			goto out;
1114 		err = -EACCES;
1115 		if (p->did_exec)
1116 			goto out;
1117 	} else {
1118 		err = -ESRCH;
1119 		if (p != group_leader)
1120 			goto out;
1121 	}
1122 
1123 	err = -EPERM;
1124 	if (p->signal->leader)
1125 		goto out;
1126 
1127 	pgrp = task_pid(p);
1128 	if (pgid != pid) {
1129 		struct task_struct *g;
1130 
1131 		pgrp = find_vpid(pgid);
1132 		g = pid_task(pgrp, PIDTYPE_PGID);
1133 		if (!g || task_session(g) != task_session(group_leader))
1134 			goto out;
1135 	}
1136 
1137 	err = security_task_setpgid(p, pgid);
1138 	if (err)
1139 		goto out;
1140 
1141 	if (task_pgrp(p) != pgrp)
1142 		change_pid(p, PIDTYPE_PGID, pgrp);
1143 
1144 	err = 0;
1145 out:
1146 	/* All paths lead to here, thus we are safe. -DaveM */
1147 	write_unlock_irq(&tasklist_lock);
1148 	rcu_read_unlock();
1149 	return err;
1150 }
1151 
1152 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1153 {
1154 	struct task_struct *p;
1155 	struct pid *grp;
1156 	int retval;
1157 
1158 	rcu_read_lock();
1159 	if (!pid)
1160 		grp = task_pgrp(current);
1161 	else {
1162 		retval = -ESRCH;
1163 		p = find_task_by_vpid(pid);
1164 		if (!p)
1165 			goto out;
1166 		grp = task_pgrp(p);
1167 		if (!grp)
1168 			goto out;
1169 
1170 		retval = security_task_getpgid(p);
1171 		if (retval)
1172 			goto out;
1173 	}
1174 	retval = pid_vnr(grp);
1175 out:
1176 	rcu_read_unlock();
1177 	return retval;
1178 }
1179 
1180 #ifdef __ARCH_WANT_SYS_GETPGRP
1181 
1182 SYSCALL_DEFINE0(getpgrp)
1183 {
1184 	return sys_getpgid(0);
1185 }
1186 
1187 #endif
1188 
1189 SYSCALL_DEFINE1(getsid, pid_t, pid)
1190 {
1191 	struct task_struct *p;
1192 	struct pid *sid;
1193 	int retval;
1194 
1195 	rcu_read_lock();
1196 	if (!pid)
1197 		sid = task_session(current);
1198 	else {
1199 		retval = -ESRCH;
1200 		p = find_task_by_vpid(pid);
1201 		if (!p)
1202 			goto out;
1203 		sid = task_session(p);
1204 		if (!sid)
1205 			goto out;
1206 
1207 		retval = security_task_getsid(p);
1208 		if (retval)
1209 			goto out;
1210 	}
1211 	retval = pid_vnr(sid);
1212 out:
1213 	rcu_read_unlock();
1214 	return retval;
1215 }
1216 
1217 SYSCALL_DEFINE0(setsid)
1218 {
1219 	struct task_struct *group_leader = current->group_leader;
1220 	struct pid *sid = task_pid(group_leader);
1221 	pid_t session = pid_vnr(sid);
1222 	int err = -EPERM;
1223 
1224 	write_lock_irq(&tasklist_lock);
1225 	/* Fail if I am already a session leader */
1226 	if (group_leader->signal->leader)
1227 		goto out;
1228 
1229 	/* Fail if a process group id already exists that equals the
1230 	 * proposed session id.
1231 	 */
1232 	if (pid_task(sid, PIDTYPE_PGID))
1233 		goto out;
1234 
1235 	group_leader->signal->leader = 1;
1236 	__set_special_pids(sid);
1237 
1238 	proc_clear_tty(group_leader);
1239 
1240 	err = session;
1241 out:
1242 	write_unlock_irq(&tasklist_lock);
1243 	if (err > 0) {
1244 		proc_sid_connector(group_leader);
1245 		sched_autogroup_create_attach(group_leader);
1246 	}
1247 	return err;
1248 }
1249 
1250 DECLARE_RWSEM(uts_sem);
1251 
1252 #ifdef COMPAT_UTS_MACHINE
1253 #define override_architecture(name) \
1254 	(personality(current->personality) == PER_LINUX32 && \
1255 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1256 		      sizeof(COMPAT_UTS_MACHINE)))
1257 #else
1258 #define override_architecture(name)	0
1259 #endif
1260 
1261 /*
1262  * Work around broken programs that cannot handle "Linux 3.0".
1263  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1264  */
1265 static int override_release(char __user *release, int len)
1266 {
1267 	int ret = 0;
1268 	char buf[65];
1269 
1270 	if (current->personality & UNAME26) {
1271 		char *rest = UTS_RELEASE;
1272 		int ndots = 0;
1273 		unsigned v;
1274 
1275 		while (*rest) {
1276 			if (*rest == '.' && ++ndots >= 3)
1277 				break;
1278 			if (!isdigit(*rest) && *rest != '.')
1279 				break;
1280 			rest++;
1281 		}
1282 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1283 		snprintf(buf, len, "2.6.%u%s", v, rest);
1284 		ret = copy_to_user(release, buf, len);
1285 	}
1286 	return ret;
1287 }
1288 
1289 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1290 {
1291 	int errno = 0;
1292 
1293 	down_read(&uts_sem);
1294 	if (copy_to_user(name, utsname(), sizeof *name))
1295 		errno = -EFAULT;
1296 	up_read(&uts_sem);
1297 
1298 	if (!errno && override_release(name->release, sizeof(name->release)))
1299 		errno = -EFAULT;
1300 	if (!errno && override_architecture(name))
1301 		errno = -EFAULT;
1302 	return errno;
1303 }
1304 
1305 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1306 /*
1307  * Old cruft
1308  */
1309 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1310 {
1311 	int error = 0;
1312 
1313 	if (!name)
1314 		return -EFAULT;
1315 
1316 	down_read(&uts_sem);
1317 	if (copy_to_user(name, utsname(), sizeof(*name)))
1318 		error = -EFAULT;
1319 	up_read(&uts_sem);
1320 
1321 	if (!error && override_release(name->release, sizeof(name->release)))
1322 		error = -EFAULT;
1323 	if (!error && override_architecture(name))
1324 		error = -EFAULT;
1325 	return error;
1326 }
1327 
1328 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1329 {
1330 	int error;
1331 
1332 	if (!name)
1333 		return -EFAULT;
1334 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1335 		return -EFAULT;
1336 
1337 	down_read(&uts_sem);
1338 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1339 			       __OLD_UTS_LEN);
1340 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1341 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1342 				__OLD_UTS_LEN);
1343 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1344 	error |= __copy_to_user(&name->release, &utsname()->release,
1345 				__OLD_UTS_LEN);
1346 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1347 	error |= __copy_to_user(&name->version, &utsname()->version,
1348 				__OLD_UTS_LEN);
1349 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1350 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1351 				__OLD_UTS_LEN);
1352 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1353 	up_read(&uts_sem);
1354 
1355 	if (!error && override_architecture(name))
1356 		error = -EFAULT;
1357 	if (!error && override_release(name->release, sizeof(name->release)))
1358 		error = -EFAULT;
1359 	return error ? -EFAULT : 0;
1360 }
1361 #endif
1362 
1363 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1364 {
1365 	int errno;
1366 	char tmp[__NEW_UTS_LEN];
1367 
1368 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1369 		return -EPERM;
1370 
1371 	if (len < 0 || len > __NEW_UTS_LEN)
1372 		return -EINVAL;
1373 	down_write(&uts_sem);
1374 	errno = -EFAULT;
1375 	if (!copy_from_user(tmp, name, len)) {
1376 		struct new_utsname *u = utsname();
1377 
1378 		memcpy(u->nodename, tmp, len);
1379 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1380 		errno = 0;
1381 		uts_proc_notify(UTS_PROC_HOSTNAME);
1382 	}
1383 	up_write(&uts_sem);
1384 	return errno;
1385 }
1386 
1387 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1388 
1389 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1390 {
1391 	int i, errno;
1392 	struct new_utsname *u;
1393 
1394 	if (len < 0)
1395 		return -EINVAL;
1396 	down_read(&uts_sem);
1397 	u = utsname();
1398 	i = 1 + strlen(u->nodename);
1399 	if (i > len)
1400 		i = len;
1401 	errno = 0;
1402 	if (copy_to_user(name, u->nodename, i))
1403 		errno = -EFAULT;
1404 	up_read(&uts_sem);
1405 	return errno;
1406 }
1407 
1408 #endif
1409 
1410 /*
1411  * Only setdomainname; getdomainname can be implemented by calling
1412  * uname()
1413  */
1414 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1415 {
1416 	int errno;
1417 	char tmp[__NEW_UTS_LEN];
1418 
1419 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1420 		return -EPERM;
1421 	if (len < 0 || len > __NEW_UTS_LEN)
1422 		return -EINVAL;
1423 
1424 	down_write(&uts_sem);
1425 	errno = -EFAULT;
1426 	if (!copy_from_user(tmp, name, len)) {
1427 		struct new_utsname *u = utsname();
1428 
1429 		memcpy(u->domainname, tmp, len);
1430 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1431 		errno = 0;
1432 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1433 	}
1434 	up_write(&uts_sem);
1435 	return errno;
1436 }
1437 
1438 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1439 {
1440 	struct rlimit value;
1441 	int ret;
1442 
1443 	ret = do_prlimit(current, resource, NULL, &value);
1444 	if (!ret)
1445 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1446 
1447 	return ret;
1448 }
1449 
1450 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1451 
1452 /*
1453  *	Back compatibility for getrlimit. Needed for some apps.
1454  */
1455 
1456 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1457 		struct rlimit __user *, rlim)
1458 {
1459 	struct rlimit x;
1460 	if (resource >= RLIM_NLIMITS)
1461 		return -EINVAL;
1462 
1463 	task_lock(current->group_leader);
1464 	x = current->signal->rlim[resource];
1465 	task_unlock(current->group_leader);
1466 	if (x.rlim_cur > 0x7FFFFFFF)
1467 		x.rlim_cur = 0x7FFFFFFF;
1468 	if (x.rlim_max > 0x7FFFFFFF)
1469 		x.rlim_max = 0x7FFFFFFF;
1470 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1471 }
1472 
1473 #endif
1474 
1475 static inline bool rlim64_is_infinity(__u64 rlim64)
1476 {
1477 #if BITS_PER_LONG < 64
1478 	return rlim64 >= ULONG_MAX;
1479 #else
1480 	return rlim64 == RLIM64_INFINITY;
1481 #endif
1482 }
1483 
1484 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1485 {
1486 	if (rlim->rlim_cur == RLIM_INFINITY)
1487 		rlim64->rlim_cur = RLIM64_INFINITY;
1488 	else
1489 		rlim64->rlim_cur = rlim->rlim_cur;
1490 	if (rlim->rlim_max == RLIM_INFINITY)
1491 		rlim64->rlim_max = RLIM64_INFINITY;
1492 	else
1493 		rlim64->rlim_max = rlim->rlim_max;
1494 }
1495 
1496 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1497 {
1498 	if (rlim64_is_infinity(rlim64->rlim_cur))
1499 		rlim->rlim_cur = RLIM_INFINITY;
1500 	else
1501 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1502 	if (rlim64_is_infinity(rlim64->rlim_max))
1503 		rlim->rlim_max = RLIM_INFINITY;
1504 	else
1505 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1506 }
1507 
1508 /* make sure you are allowed to change @tsk limits before calling this */
1509 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1510 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1511 {
1512 	struct rlimit *rlim;
1513 	int retval = 0;
1514 
1515 	if (resource >= RLIM_NLIMITS)
1516 		return -EINVAL;
1517 	if (new_rlim) {
1518 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1519 			return -EINVAL;
1520 		if (resource == RLIMIT_NOFILE &&
1521 				new_rlim->rlim_max > sysctl_nr_open)
1522 			return -EPERM;
1523 	}
1524 
1525 	/* protect tsk->signal and tsk->sighand from disappearing */
1526 	read_lock(&tasklist_lock);
1527 	if (!tsk->sighand) {
1528 		retval = -ESRCH;
1529 		goto out;
1530 	}
1531 
1532 	rlim = tsk->signal->rlim + resource;
1533 	task_lock(tsk->group_leader);
1534 	if (new_rlim) {
1535 		/* Keep the capable check against init_user_ns until
1536 		   cgroups can contain all limits */
1537 		if (new_rlim->rlim_max > rlim->rlim_max &&
1538 				!capable(CAP_SYS_RESOURCE))
1539 			retval = -EPERM;
1540 		if (!retval)
1541 			retval = security_task_setrlimit(tsk->group_leader,
1542 					resource, new_rlim);
1543 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1544 			/*
1545 			 * The caller is asking for an immediate RLIMIT_CPU
1546 			 * expiry.  But we use the zero value to mean "it was
1547 			 * never set".  So let's cheat and make it one second
1548 			 * instead
1549 			 */
1550 			new_rlim->rlim_cur = 1;
1551 		}
1552 	}
1553 	if (!retval) {
1554 		if (old_rlim)
1555 			*old_rlim = *rlim;
1556 		if (new_rlim)
1557 			*rlim = *new_rlim;
1558 	}
1559 	task_unlock(tsk->group_leader);
1560 
1561 	/*
1562 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1563 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1564 	 * very long-standing error, and fixing it now risks breakage of
1565 	 * applications, so we live with it
1566 	 */
1567 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1568 			 new_rlim->rlim_cur != RLIM_INFINITY)
1569 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1570 out:
1571 	read_unlock(&tasklist_lock);
1572 	return retval;
1573 }
1574 
1575 /* rcu lock must be held */
1576 static int check_prlimit_permission(struct task_struct *task)
1577 {
1578 	const struct cred *cred = current_cred(), *tcred;
1579 
1580 	if (current == task)
1581 		return 0;
1582 
1583 	tcred = __task_cred(task);
1584 	if (uid_eq(cred->uid, tcred->euid) &&
1585 	    uid_eq(cred->uid, tcred->suid) &&
1586 	    uid_eq(cred->uid, tcred->uid)  &&
1587 	    gid_eq(cred->gid, tcred->egid) &&
1588 	    gid_eq(cred->gid, tcred->sgid) &&
1589 	    gid_eq(cred->gid, tcred->gid))
1590 		return 0;
1591 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1592 		return 0;
1593 
1594 	return -EPERM;
1595 }
1596 
1597 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1598 		const struct rlimit64 __user *, new_rlim,
1599 		struct rlimit64 __user *, old_rlim)
1600 {
1601 	struct rlimit64 old64, new64;
1602 	struct rlimit old, new;
1603 	struct task_struct *tsk;
1604 	int ret;
1605 
1606 	if (new_rlim) {
1607 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1608 			return -EFAULT;
1609 		rlim64_to_rlim(&new64, &new);
1610 	}
1611 
1612 	rcu_read_lock();
1613 	tsk = pid ? find_task_by_vpid(pid) : current;
1614 	if (!tsk) {
1615 		rcu_read_unlock();
1616 		return -ESRCH;
1617 	}
1618 	ret = check_prlimit_permission(tsk);
1619 	if (ret) {
1620 		rcu_read_unlock();
1621 		return ret;
1622 	}
1623 	get_task_struct(tsk);
1624 	rcu_read_unlock();
1625 
1626 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1627 			old_rlim ? &old : NULL);
1628 
1629 	if (!ret && old_rlim) {
1630 		rlim_to_rlim64(&old, &old64);
1631 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1632 			ret = -EFAULT;
1633 	}
1634 
1635 	put_task_struct(tsk);
1636 	return ret;
1637 }
1638 
1639 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1640 {
1641 	struct rlimit new_rlim;
1642 
1643 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1644 		return -EFAULT;
1645 	return do_prlimit(current, resource, &new_rlim, NULL);
1646 }
1647 
1648 /*
1649  * It would make sense to put struct rusage in the task_struct,
1650  * except that would make the task_struct be *really big*.  After
1651  * task_struct gets moved into malloc'ed memory, it would
1652  * make sense to do this.  It will make moving the rest of the information
1653  * a lot simpler!  (Which we're not doing right now because we're not
1654  * measuring them yet).
1655  *
1656  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1657  * races with threads incrementing their own counters.  But since word
1658  * reads are atomic, we either get new values or old values and we don't
1659  * care which for the sums.  We always take the siglock to protect reading
1660  * the c* fields from p->signal from races with exit.c updating those
1661  * fields when reaping, so a sample either gets all the additions of a
1662  * given child after it's reaped, or none so this sample is before reaping.
1663  *
1664  * Locking:
1665  * We need to take the siglock for CHILDEREN, SELF and BOTH
1666  * for  the cases current multithreaded, non-current single threaded
1667  * non-current multithreaded.  Thread traversal is now safe with
1668  * the siglock held.
1669  * Strictly speaking, we donot need to take the siglock if we are current and
1670  * single threaded,  as no one else can take our signal_struct away, no one
1671  * else can  reap the  children to update signal->c* counters, and no one else
1672  * can race with the signal-> fields. If we do not take any lock, the
1673  * signal-> fields could be read out of order while another thread was just
1674  * exiting. So we should  place a read memory barrier when we avoid the lock.
1675  * On the writer side,  write memory barrier is implied in  __exit_signal
1676  * as __exit_signal releases  the siglock spinlock after updating the signal->
1677  * fields. But we don't do this yet to keep things simple.
1678  *
1679  */
1680 
1681 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1682 {
1683 	r->ru_nvcsw += t->nvcsw;
1684 	r->ru_nivcsw += t->nivcsw;
1685 	r->ru_minflt += t->min_flt;
1686 	r->ru_majflt += t->maj_flt;
1687 	r->ru_inblock += task_io_get_inblock(t);
1688 	r->ru_oublock += task_io_get_oublock(t);
1689 }
1690 
1691 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1692 {
1693 	struct task_struct *t;
1694 	unsigned long flags;
1695 	cputime_t tgutime, tgstime, utime, stime;
1696 	unsigned long maxrss = 0;
1697 
1698 	memset((char *) r, 0, sizeof *r);
1699 	utime = stime = 0;
1700 
1701 	if (who == RUSAGE_THREAD) {
1702 		task_times(current, &utime, &stime);
1703 		accumulate_thread_rusage(p, r);
1704 		maxrss = p->signal->maxrss;
1705 		goto out;
1706 	}
1707 
1708 	if (!lock_task_sighand(p, &flags))
1709 		return;
1710 
1711 	switch (who) {
1712 		case RUSAGE_BOTH:
1713 		case RUSAGE_CHILDREN:
1714 			utime = p->signal->cutime;
1715 			stime = p->signal->cstime;
1716 			r->ru_nvcsw = p->signal->cnvcsw;
1717 			r->ru_nivcsw = p->signal->cnivcsw;
1718 			r->ru_minflt = p->signal->cmin_flt;
1719 			r->ru_majflt = p->signal->cmaj_flt;
1720 			r->ru_inblock = p->signal->cinblock;
1721 			r->ru_oublock = p->signal->coublock;
1722 			maxrss = p->signal->cmaxrss;
1723 
1724 			if (who == RUSAGE_CHILDREN)
1725 				break;
1726 
1727 		case RUSAGE_SELF:
1728 			thread_group_times(p, &tgutime, &tgstime);
1729 			utime += tgutime;
1730 			stime += tgstime;
1731 			r->ru_nvcsw += p->signal->nvcsw;
1732 			r->ru_nivcsw += p->signal->nivcsw;
1733 			r->ru_minflt += p->signal->min_flt;
1734 			r->ru_majflt += p->signal->maj_flt;
1735 			r->ru_inblock += p->signal->inblock;
1736 			r->ru_oublock += p->signal->oublock;
1737 			if (maxrss < p->signal->maxrss)
1738 				maxrss = p->signal->maxrss;
1739 			t = p;
1740 			do {
1741 				accumulate_thread_rusage(t, r);
1742 				t = next_thread(t);
1743 			} while (t != p);
1744 			break;
1745 
1746 		default:
1747 			BUG();
1748 	}
1749 	unlock_task_sighand(p, &flags);
1750 
1751 out:
1752 	cputime_to_timeval(utime, &r->ru_utime);
1753 	cputime_to_timeval(stime, &r->ru_stime);
1754 
1755 	if (who != RUSAGE_CHILDREN) {
1756 		struct mm_struct *mm = get_task_mm(p);
1757 		if (mm) {
1758 			setmax_mm_hiwater_rss(&maxrss, mm);
1759 			mmput(mm);
1760 		}
1761 	}
1762 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1763 }
1764 
1765 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1766 {
1767 	struct rusage r;
1768 	k_getrusage(p, who, &r);
1769 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1770 }
1771 
1772 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1773 {
1774 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1775 	    who != RUSAGE_THREAD)
1776 		return -EINVAL;
1777 	return getrusage(current, who, ru);
1778 }
1779 
1780 SYSCALL_DEFINE1(umask, int, mask)
1781 {
1782 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1783 	return mask;
1784 }
1785 
1786 #ifdef CONFIG_CHECKPOINT_RESTORE
1787 static int prctl_set_mm(int opt, unsigned long addr,
1788 			unsigned long arg4, unsigned long arg5)
1789 {
1790 	unsigned long rlim = rlimit(RLIMIT_DATA);
1791 	unsigned long vm_req_flags;
1792 	unsigned long vm_bad_flags;
1793 	struct vm_area_struct *vma;
1794 	int error = 0;
1795 	struct mm_struct *mm = current->mm;
1796 
1797 	if (arg4 | arg5)
1798 		return -EINVAL;
1799 
1800 	if (!capable(CAP_SYS_RESOURCE))
1801 		return -EPERM;
1802 
1803 	if (addr >= TASK_SIZE)
1804 		return -EINVAL;
1805 
1806 	down_read(&mm->mmap_sem);
1807 	vma = find_vma(mm, addr);
1808 
1809 	if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) {
1810 		/* It must be existing VMA */
1811 		if (!vma || vma->vm_start > addr)
1812 			goto out;
1813 	}
1814 
1815 	error = -EINVAL;
1816 	switch (opt) {
1817 	case PR_SET_MM_START_CODE:
1818 	case PR_SET_MM_END_CODE:
1819 		vm_req_flags = VM_READ | VM_EXEC;
1820 		vm_bad_flags = VM_WRITE | VM_MAYSHARE;
1821 
1822 		if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1823 		    (vma->vm_flags & vm_bad_flags))
1824 			goto out;
1825 
1826 		if (opt == PR_SET_MM_START_CODE)
1827 			mm->start_code = addr;
1828 		else
1829 			mm->end_code = addr;
1830 		break;
1831 
1832 	case PR_SET_MM_START_DATA:
1833 	case PR_SET_MM_END_DATA:
1834 		vm_req_flags = VM_READ | VM_WRITE;
1835 		vm_bad_flags = VM_EXEC | VM_MAYSHARE;
1836 
1837 		if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1838 		    (vma->vm_flags & vm_bad_flags))
1839 			goto out;
1840 
1841 		if (opt == PR_SET_MM_START_DATA)
1842 			mm->start_data = addr;
1843 		else
1844 			mm->end_data = addr;
1845 		break;
1846 
1847 	case PR_SET_MM_START_STACK:
1848 
1849 #ifdef CONFIG_STACK_GROWSUP
1850 		vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP;
1851 #else
1852 		vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN;
1853 #endif
1854 		if ((vma->vm_flags & vm_req_flags) != vm_req_flags)
1855 			goto out;
1856 
1857 		mm->start_stack = addr;
1858 		break;
1859 
1860 	case PR_SET_MM_START_BRK:
1861 		if (addr <= mm->end_data)
1862 			goto out;
1863 
1864 		if (rlim < RLIM_INFINITY &&
1865 		    (mm->brk - addr) +
1866 		    (mm->end_data - mm->start_data) > rlim)
1867 			goto out;
1868 
1869 		mm->start_brk = addr;
1870 		break;
1871 
1872 	case PR_SET_MM_BRK:
1873 		if (addr <= mm->end_data)
1874 			goto out;
1875 
1876 		if (rlim < RLIM_INFINITY &&
1877 		    (addr - mm->start_brk) +
1878 		    (mm->end_data - mm->start_data) > rlim)
1879 			goto out;
1880 
1881 		mm->brk = addr;
1882 		break;
1883 
1884 	default:
1885 		error = -EINVAL;
1886 		goto out;
1887 	}
1888 
1889 	error = 0;
1890 
1891 out:
1892 	up_read(&mm->mmap_sem);
1893 
1894 	return error;
1895 }
1896 #else /* CONFIG_CHECKPOINT_RESTORE */
1897 static int prctl_set_mm(int opt, unsigned long addr,
1898 			unsigned long arg4, unsigned long arg5)
1899 {
1900 	return -EINVAL;
1901 }
1902 #endif
1903 
1904 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1905 		unsigned long, arg4, unsigned long, arg5)
1906 {
1907 	struct task_struct *me = current;
1908 	unsigned char comm[sizeof(me->comm)];
1909 	long error;
1910 
1911 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1912 	if (error != -ENOSYS)
1913 		return error;
1914 
1915 	error = 0;
1916 	switch (option) {
1917 		case PR_SET_PDEATHSIG:
1918 			if (!valid_signal(arg2)) {
1919 				error = -EINVAL;
1920 				break;
1921 			}
1922 			me->pdeath_signal = arg2;
1923 			error = 0;
1924 			break;
1925 		case PR_GET_PDEATHSIG:
1926 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1927 			break;
1928 		case PR_GET_DUMPABLE:
1929 			error = get_dumpable(me->mm);
1930 			break;
1931 		case PR_SET_DUMPABLE:
1932 			if (arg2 < 0 || arg2 > 1) {
1933 				error = -EINVAL;
1934 				break;
1935 			}
1936 			set_dumpable(me->mm, arg2);
1937 			error = 0;
1938 			break;
1939 
1940 		case PR_SET_UNALIGN:
1941 			error = SET_UNALIGN_CTL(me, arg2);
1942 			break;
1943 		case PR_GET_UNALIGN:
1944 			error = GET_UNALIGN_CTL(me, arg2);
1945 			break;
1946 		case PR_SET_FPEMU:
1947 			error = SET_FPEMU_CTL(me, arg2);
1948 			break;
1949 		case PR_GET_FPEMU:
1950 			error = GET_FPEMU_CTL(me, arg2);
1951 			break;
1952 		case PR_SET_FPEXC:
1953 			error = SET_FPEXC_CTL(me, arg2);
1954 			break;
1955 		case PR_GET_FPEXC:
1956 			error = GET_FPEXC_CTL(me, arg2);
1957 			break;
1958 		case PR_GET_TIMING:
1959 			error = PR_TIMING_STATISTICAL;
1960 			break;
1961 		case PR_SET_TIMING:
1962 			if (arg2 != PR_TIMING_STATISTICAL)
1963 				error = -EINVAL;
1964 			else
1965 				error = 0;
1966 			break;
1967 
1968 		case PR_SET_NAME:
1969 			comm[sizeof(me->comm)-1] = 0;
1970 			if (strncpy_from_user(comm, (char __user *)arg2,
1971 					      sizeof(me->comm) - 1) < 0)
1972 				return -EFAULT;
1973 			set_task_comm(me, comm);
1974 			proc_comm_connector(me);
1975 			return 0;
1976 		case PR_GET_NAME:
1977 			get_task_comm(comm, me);
1978 			if (copy_to_user((char __user *)arg2, comm,
1979 					 sizeof(comm)))
1980 				return -EFAULT;
1981 			return 0;
1982 		case PR_GET_ENDIAN:
1983 			error = GET_ENDIAN(me, arg2);
1984 			break;
1985 		case PR_SET_ENDIAN:
1986 			error = SET_ENDIAN(me, arg2);
1987 			break;
1988 
1989 		case PR_GET_SECCOMP:
1990 			error = prctl_get_seccomp();
1991 			break;
1992 		case PR_SET_SECCOMP:
1993 			error = prctl_set_seccomp(arg2, (char __user *)arg3);
1994 			break;
1995 		case PR_GET_TSC:
1996 			error = GET_TSC_CTL(arg2);
1997 			break;
1998 		case PR_SET_TSC:
1999 			error = SET_TSC_CTL(arg2);
2000 			break;
2001 		case PR_TASK_PERF_EVENTS_DISABLE:
2002 			error = perf_event_task_disable();
2003 			break;
2004 		case PR_TASK_PERF_EVENTS_ENABLE:
2005 			error = perf_event_task_enable();
2006 			break;
2007 		case PR_GET_TIMERSLACK:
2008 			error = current->timer_slack_ns;
2009 			break;
2010 		case PR_SET_TIMERSLACK:
2011 			if (arg2 <= 0)
2012 				current->timer_slack_ns =
2013 					current->default_timer_slack_ns;
2014 			else
2015 				current->timer_slack_ns = arg2;
2016 			error = 0;
2017 			break;
2018 		case PR_MCE_KILL:
2019 			if (arg4 | arg5)
2020 				return -EINVAL;
2021 			switch (arg2) {
2022 			case PR_MCE_KILL_CLEAR:
2023 				if (arg3 != 0)
2024 					return -EINVAL;
2025 				current->flags &= ~PF_MCE_PROCESS;
2026 				break;
2027 			case PR_MCE_KILL_SET:
2028 				current->flags |= PF_MCE_PROCESS;
2029 				if (arg3 == PR_MCE_KILL_EARLY)
2030 					current->flags |= PF_MCE_EARLY;
2031 				else if (arg3 == PR_MCE_KILL_LATE)
2032 					current->flags &= ~PF_MCE_EARLY;
2033 				else if (arg3 == PR_MCE_KILL_DEFAULT)
2034 					current->flags &=
2035 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2036 				else
2037 					return -EINVAL;
2038 				break;
2039 			default:
2040 				return -EINVAL;
2041 			}
2042 			error = 0;
2043 			break;
2044 		case PR_MCE_KILL_GET:
2045 			if (arg2 | arg3 | arg4 | arg5)
2046 				return -EINVAL;
2047 			if (current->flags & PF_MCE_PROCESS)
2048 				error = (current->flags & PF_MCE_EARLY) ?
2049 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2050 			else
2051 				error = PR_MCE_KILL_DEFAULT;
2052 			break;
2053 		case PR_SET_MM:
2054 			error = prctl_set_mm(arg2, arg3, arg4, arg5);
2055 			break;
2056 		case PR_SET_CHILD_SUBREAPER:
2057 			me->signal->is_child_subreaper = !!arg2;
2058 			error = 0;
2059 			break;
2060 		case PR_GET_CHILD_SUBREAPER:
2061 			error = put_user(me->signal->is_child_subreaper,
2062 					 (int __user *) arg2);
2063 			break;
2064 		case PR_SET_NO_NEW_PRIVS:
2065 			if (arg2 != 1 || arg3 || arg4 || arg5)
2066 				return -EINVAL;
2067 
2068 			current->no_new_privs = 1;
2069 			break;
2070 		case PR_GET_NO_NEW_PRIVS:
2071 			if (arg2 || arg3 || arg4 || arg5)
2072 				return -EINVAL;
2073 			return current->no_new_privs ? 1 : 0;
2074 		default:
2075 			error = -EINVAL;
2076 			break;
2077 	}
2078 	return error;
2079 }
2080 
2081 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2082 		struct getcpu_cache __user *, unused)
2083 {
2084 	int err = 0;
2085 	int cpu = raw_smp_processor_id();
2086 	if (cpup)
2087 		err |= put_user(cpu, cpup);
2088 	if (nodep)
2089 		err |= put_user(cpu_to_node(cpu), nodep);
2090 	return err ? -EFAULT : 0;
2091 }
2092 
2093 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2094 
2095 static void argv_cleanup(struct subprocess_info *info)
2096 {
2097 	argv_free(info->argv);
2098 }
2099 
2100 /**
2101  * orderly_poweroff - Trigger an orderly system poweroff
2102  * @force: force poweroff if command execution fails
2103  *
2104  * This may be called from any context to trigger a system shutdown.
2105  * If the orderly shutdown fails, it will force an immediate shutdown.
2106  */
2107 int orderly_poweroff(bool force)
2108 {
2109 	int argc;
2110 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2111 	static char *envp[] = {
2112 		"HOME=/",
2113 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2114 		NULL
2115 	};
2116 	int ret = -ENOMEM;
2117 
2118 	if (argv == NULL) {
2119 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2120 		       __func__, poweroff_cmd);
2121 		goto out;
2122 	}
2123 
2124 	ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_NO_WAIT,
2125 				      NULL, argv_cleanup, NULL);
2126 out:
2127 	if (likely(!ret))
2128 		return 0;
2129 
2130 	if (ret == -ENOMEM)
2131 		argv_free(argv);
2132 
2133 	if (force) {
2134 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2135 		       "forcing the issue\n");
2136 
2137 		/* I guess this should try to kick off some daemon to
2138 		   sync and poweroff asap.  Or not even bother syncing
2139 		   if we're doing an emergency shutdown? */
2140 		emergency_sync();
2141 		kernel_power_off();
2142 	}
2143 
2144 	return ret;
2145 }
2146 EXPORT_SYMBOL_GPL(orderly_poweroff);
2147