xref: /linux/kernel/sys.c (revision 4bedea94545165364618d403d03b61d797acba0b)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/workqueue.h>
20 #include <linux/device.h>
21 #include <linux/key.h>
22 #include <linux/times.h>
23 #include <linux/posix-timers.h>
24 #include <linux/security.h>
25 #include <linux/dcookies.h>
26 #include <linux/suspend.h>
27 #include <linux/tty.h>
28 #include <linux/signal.h>
29 
30 #include <linux/compat.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/unistd.h>
36 
37 #ifndef SET_UNALIGN_CTL
38 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
39 #endif
40 #ifndef GET_UNALIGN_CTL
41 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
42 #endif
43 #ifndef SET_FPEMU_CTL
44 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
45 #endif
46 #ifndef GET_FPEMU_CTL
47 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
48 #endif
49 #ifndef SET_FPEXC_CTL
50 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
51 #endif
52 #ifndef GET_FPEXC_CTL
53 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
54 #endif
55 
56 /*
57  * this is where the system-wide overflow UID and GID are defined, for
58  * architectures that now have 32-bit UID/GID but didn't in the past
59  */
60 
61 int overflowuid = DEFAULT_OVERFLOWUID;
62 int overflowgid = DEFAULT_OVERFLOWGID;
63 
64 #ifdef CONFIG_UID16
65 EXPORT_SYMBOL(overflowuid);
66 EXPORT_SYMBOL(overflowgid);
67 #endif
68 
69 /*
70  * the same as above, but for filesystems which can only store a 16-bit
71  * UID and GID. as such, this is needed on all architectures
72  */
73 
74 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
75 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
76 
77 EXPORT_SYMBOL(fs_overflowuid);
78 EXPORT_SYMBOL(fs_overflowgid);
79 
80 /*
81  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
82  */
83 
84 int C_A_D = 1;
85 int cad_pid = 1;
86 
87 /*
88  *	Notifier list for kernel code which wants to be called
89  *	at shutdown. This is used to stop any idling DMA operations
90  *	and the like.
91  */
92 
93 static struct notifier_block *reboot_notifier_list;
94 static DEFINE_RWLOCK(notifier_lock);
95 
96 /**
97  *	notifier_chain_register	- Add notifier to a notifier chain
98  *	@list: Pointer to root list pointer
99  *	@n: New entry in notifier chain
100  *
101  *	Adds a notifier to a notifier chain.
102  *
103  *	Currently always returns zero.
104  */
105 
106 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
107 {
108 	write_lock(&notifier_lock);
109 	while(*list)
110 	{
111 		if(n->priority > (*list)->priority)
112 			break;
113 		list= &((*list)->next);
114 	}
115 	n->next = *list;
116 	*list=n;
117 	write_unlock(&notifier_lock);
118 	return 0;
119 }
120 
121 EXPORT_SYMBOL(notifier_chain_register);
122 
123 /**
124  *	notifier_chain_unregister - Remove notifier from a notifier chain
125  *	@nl: Pointer to root list pointer
126  *	@n: New entry in notifier chain
127  *
128  *	Removes a notifier from a notifier chain.
129  *
130  *	Returns zero on success, or %-ENOENT on failure.
131  */
132 
133 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
134 {
135 	write_lock(&notifier_lock);
136 	while((*nl)!=NULL)
137 	{
138 		if((*nl)==n)
139 		{
140 			*nl=n->next;
141 			write_unlock(&notifier_lock);
142 			return 0;
143 		}
144 		nl=&((*nl)->next);
145 	}
146 	write_unlock(&notifier_lock);
147 	return -ENOENT;
148 }
149 
150 EXPORT_SYMBOL(notifier_chain_unregister);
151 
152 /**
153  *	notifier_call_chain - Call functions in a notifier chain
154  *	@n: Pointer to root pointer of notifier chain
155  *	@val: Value passed unmodified to notifier function
156  *	@v: Pointer passed unmodified to notifier function
157  *
158  *	Calls each function in a notifier chain in turn.
159  *
160  *	If the return value of the notifier can be and'd
161  *	with %NOTIFY_STOP_MASK, then notifier_call_chain
162  *	will return immediately, with the return value of
163  *	the notifier function which halted execution.
164  *	Otherwise, the return value is the return value
165  *	of the last notifier function called.
166  */
167 
168 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
169 {
170 	int ret=NOTIFY_DONE;
171 	struct notifier_block *nb = *n;
172 
173 	while(nb)
174 	{
175 		ret=nb->notifier_call(nb,val,v);
176 		if(ret&NOTIFY_STOP_MASK)
177 		{
178 			return ret;
179 		}
180 		nb=nb->next;
181 	}
182 	return ret;
183 }
184 
185 EXPORT_SYMBOL(notifier_call_chain);
186 
187 /**
188  *	register_reboot_notifier - Register function to be called at reboot time
189  *	@nb: Info about notifier function to be called
190  *
191  *	Registers a function with the list of functions
192  *	to be called at reboot time.
193  *
194  *	Currently always returns zero, as notifier_chain_register
195  *	always returns zero.
196  */
197 
198 int register_reboot_notifier(struct notifier_block * nb)
199 {
200 	return notifier_chain_register(&reboot_notifier_list, nb);
201 }
202 
203 EXPORT_SYMBOL(register_reboot_notifier);
204 
205 /**
206  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
207  *	@nb: Hook to be unregistered
208  *
209  *	Unregisters a previously registered reboot
210  *	notifier function.
211  *
212  *	Returns zero on success, or %-ENOENT on failure.
213  */
214 
215 int unregister_reboot_notifier(struct notifier_block * nb)
216 {
217 	return notifier_chain_unregister(&reboot_notifier_list, nb);
218 }
219 
220 EXPORT_SYMBOL(unregister_reboot_notifier);
221 
222 static int set_one_prio(struct task_struct *p, int niceval, int error)
223 {
224 	int no_nice;
225 
226 	if (p->uid != current->euid &&
227 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
228 		error = -EPERM;
229 		goto out;
230 	}
231 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
232 		error = -EACCES;
233 		goto out;
234 	}
235 	no_nice = security_task_setnice(p, niceval);
236 	if (no_nice) {
237 		error = no_nice;
238 		goto out;
239 	}
240 	if (error == -ESRCH)
241 		error = 0;
242 	set_user_nice(p, niceval);
243 out:
244 	return error;
245 }
246 
247 asmlinkage long sys_setpriority(int which, int who, int niceval)
248 {
249 	struct task_struct *g, *p;
250 	struct user_struct *user;
251 	int error = -EINVAL;
252 
253 	if (which > 2 || which < 0)
254 		goto out;
255 
256 	/* normalize: avoid signed division (rounding problems) */
257 	error = -ESRCH;
258 	if (niceval < -20)
259 		niceval = -20;
260 	if (niceval > 19)
261 		niceval = 19;
262 
263 	read_lock(&tasklist_lock);
264 	switch (which) {
265 		case PRIO_PROCESS:
266 			if (!who)
267 				who = current->pid;
268 			p = find_task_by_pid(who);
269 			if (p)
270 				error = set_one_prio(p, niceval, error);
271 			break;
272 		case PRIO_PGRP:
273 			if (!who)
274 				who = process_group(current);
275 			do_each_task_pid(who, PIDTYPE_PGID, p) {
276 				error = set_one_prio(p, niceval, error);
277 			} while_each_task_pid(who, PIDTYPE_PGID, p);
278 			break;
279 		case PRIO_USER:
280 			user = current->user;
281 			if (!who)
282 				who = current->uid;
283 			else
284 				if ((who != current->uid) && !(user = find_user(who)))
285 					goto out_unlock;	/* No processes for this user */
286 
287 			do_each_thread(g, p)
288 				if (p->uid == who)
289 					error = set_one_prio(p, niceval, error);
290 			while_each_thread(g, p);
291 			if (who != current->uid)
292 				free_uid(user);		/* For find_user() */
293 			break;
294 	}
295 out_unlock:
296 	read_unlock(&tasklist_lock);
297 out:
298 	return error;
299 }
300 
301 /*
302  * Ugh. To avoid negative return values, "getpriority()" will
303  * not return the normal nice-value, but a negated value that
304  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
305  * to stay compatible.
306  */
307 asmlinkage long sys_getpriority(int which, int who)
308 {
309 	struct task_struct *g, *p;
310 	struct user_struct *user;
311 	long niceval, retval = -ESRCH;
312 
313 	if (which > 2 || which < 0)
314 		return -EINVAL;
315 
316 	read_lock(&tasklist_lock);
317 	switch (which) {
318 		case PRIO_PROCESS:
319 			if (!who)
320 				who = current->pid;
321 			p = find_task_by_pid(who);
322 			if (p) {
323 				niceval = 20 - task_nice(p);
324 				if (niceval > retval)
325 					retval = niceval;
326 			}
327 			break;
328 		case PRIO_PGRP:
329 			if (!who)
330 				who = process_group(current);
331 			do_each_task_pid(who, PIDTYPE_PGID, p) {
332 				niceval = 20 - task_nice(p);
333 				if (niceval > retval)
334 					retval = niceval;
335 			} while_each_task_pid(who, PIDTYPE_PGID, p);
336 			break;
337 		case PRIO_USER:
338 			user = current->user;
339 			if (!who)
340 				who = current->uid;
341 			else
342 				if ((who != current->uid) && !(user = find_user(who)))
343 					goto out_unlock;	/* No processes for this user */
344 
345 			do_each_thread(g, p)
346 				if (p->uid == who) {
347 					niceval = 20 - task_nice(p);
348 					if (niceval > retval)
349 						retval = niceval;
350 				}
351 			while_each_thread(g, p);
352 			if (who != current->uid)
353 				free_uid(user);		/* for find_user() */
354 			break;
355 	}
356 out_unlock:
357 	read_unlock(&tasklist_lock);
358 
359 	return retval;
360 }
361 
362 
363 /*
364  * Reboot system call: for obvious reasons only root may call it,
365  * and even root needs to set up some magic numbers in the registers
366  * so that some mistake won't make this reboot the whole machine.
367  * You can also set the meaning of the ctrl-alt-del-key here.
368  *
369  * reboot doesn't sync: do that yourself before calling this.
370  */
371 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
372 {
373 	char buffer[256];
374 
375 	/* We only trust the superuser with rebooting the system. */
376 	if (!capable(CAP_SYS_BOOT))
377 		return -EPERM;
378 
379 	/* For safety, we require "magic" arguments. */
380 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
381 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
382 	                magic2 != LINUX_REBOOT_MAGIC2A &&
383 			magic2 != LINUX_REBOOT_MAGIC2B &&
384 	                magic2 != LINUX_REBOOT_MAGIC2C))
385 		return -EINVAL;
386 
387 	lock_kernel();
388 	switch (cmd) {
389 	case LINUX_REBOOT_CMD_RESTART:
390 		notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
391 		system_state = SYSTEM_RESTART;
392 		device_shutdown();
393 		printk(KERN_EMERG "Restarting system.\n");
394 		machine_restart(NULL);
395 		break;
396 
397 	case LINUX_REBOOT_CMD_CAD_ON:
398 		C_A_D = 1;
399 		break;
400 
401 	case LINUX_REBOOT_CMD_CAD_OFF:
402 		C_A_D = 0;
403 		break;
404 
405 	case LINUX_REBOOT_CMD_HALT:
406 		notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
407 		system_state = SYSTEM_HALT;
408 		device_shutdown();
409 		printk(KERN_EMERG "System halted.\n");
410 		machine_halt();
411 		unlock_kernel();
412 		do_exit(0);
413 		break;
414 
415 	case LINUX_REBOOT_CMD_POWER_OFF:
416 		notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
417 		system_state = SYSTEM_POWER_OFF;
418 		device_shutdown();
419 		printk(KERN_EMERG "Power down.\n");
420 		machine_power_off();
421 		unlock_kernel();
422 		do_exit(0);
423 		break;
424 
425 	case LINUX_REBOOT_CMD_RESTART2:
426 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
427 			unlock_kernel();
428 			return -EFAULT;
429 		}
430 		buffer[sizeof(buffer) - 1] = '\0';
431 
432 		notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
433 		system_state = SYSTEM_RESTART;
434 		device_shutdown();
435 		printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
436 		machine_restart(buffer);
437 		break;
438 
439 #ifdef CONFIG_SOFTWARE_SUSPEND
440 	case LINUX_REBOOT_CMD_SW_SUSPEND:
441 		{
442 			int ret = software_suspend();
443 			unlock_kernel();
444 			return ret;
445 		}
446 #endif
447 
448 	default:
449 		unlock_kernel();
450 		return -EINVAL;
451 	}
452 	unlock_kernel();
453 	return 0;
454 }
455 
456 static void deferred_cad(void *dummy)
457 {
458 	notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
459 	machine_restart(NULL);
460 }
461 
462 /*
463  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
464  * As it's called within an interrupt, it may NOT sync: the only choice
465  * is whether to reboot at once, or just ignore the ctrl-alt-del.
466  */
467 void ctrl_alt_del(void)
468 {
469 	static DECLARE_WORK(cad_work, deferred_cad, NULL);
470 
471 	if (C_A_D)
472 		schedule_work(&cad_work);
473 	else
474 		kill_proc(cad_pid, SIGINT, 1);
475 }
476 
477 
478 /*
479  * Unprivileged users may change the real gid to the effective gid
480  * or vice versa.  (BSD-style)
481  *
482  * If you set the real gid at all, or set the effective gid to a value not
483  * equal to the real gid, then the saved gid is set to the new effective gid.
484  *
485  * This makes it possible for a setgid program to completely drop its
486  * privileges, which is often a useful assertion to make when you are doing
487  * a security audit over a program.
488  *
489  * The general idea is that a program which uses just setregid() will be
490  * 100% compatible with BSD.  A program which uses just setgid() will be
491  * 100% compatible with POSIX with saved IDs.
492  *
493  * SMP: There are not races, the GIDs are checked only by filesystem
494  *      operations (as far as semantic preservation is concerned).
495  */
496 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
497 {
498 	int old_rgid = current->gid;
499 	int old_egid = current->egid;
500 	int new_rgid = old_rgid;
501 	int new_egid = old_egid;
502 	int retval;
503 
504 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
505 	if (retval)
506 		return retval;
507 
508 	if (rgid != (gid_t) -1) {
509 		if ((old_rgid == rgid) ||
510 		    (current->egid==rgid) ||
511 		    capable(CAP_SETGID))
512 			new_rgid = rgid;
513 		else
514 			return -EPERM;
515 	}
516 	if (egid != (gid_t) -1) {
517 		if ((old_rgid == egid) ||
518 		    (current->egid == egid) ||
519 		    (current->sgid == egid) ||
520 		    capable(CAP_SETGID))
521 			new_egid = egid;
522 		else {
523 			return -EPERM;
524 		}
525 	}
526 	if (new_egid != old_egid)
527 	{
528 		current->mm->dumpable = suid_dumpable;
529 		smp_wmb();
530 	}
531 	if (rgid != (gid_t) -1 ||
532 	    (egid != (gid_t) -1 && egid != old_rgid))
533 		current->sgid = new_egid;
534 	current->fsgid = new_egid;
535 	current->egid = new_egid;
536 	current->gid = new_rgid;
537 	key_fsgid_changed(current);
538 	return 0;
539 }
540 
541 /*
542  * setgid() is implemented like SysV w/ SAVED_IDS
543  *
544  * SMP: Same implicit races as above.
545  */
546 asmlinkage long sys_setgid(gid_t gid)
547 {
548 	int old_egid = current->egid;
549 	int retval;
550 
551 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
552 	if (retval)
553 		return retval;
554 
555 	if (capable(CAP_SETGID))
556 	{
557 		if(old_egid != gid)
558 		{
559 			current->mm->dumpable = suid_dumpable;
560 			smp_wmb();
561 		}
562 		current->gid = current->egid = current->sgid = current->fsgid = gid;
563 	}
564 	else if ((gid == current->gid) || (gid == current->sgid))
565 	{
566 		if(old_egid != gid)
567 		{
568 			current->mm->dumpable = suid_dumpable;
569 			smp_wmb();
570 		}
571 		current->egid = current->fsgid = gid;
572 	}
573 	else
574 		return -EPERM;
575 
576 	key_fsgid_changed(current);
577 	return 0;
578 }
579 
580 static int set_user(uid_t new_ruid, int dumpclear)
581 {
582 	struct user_struct *new_user;
583 
584 	new_user = alloc_uid(new_ruid);
585 	if (!new_user)
586 		return -EAGAIN;
587 
588 	if (atomic_read(&new_user->processes) >=
589 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
590 			new_user != &root_user) {
591 		free_uid(new_user);
592 		return -EAGAIN;
593 	}
594 
595 	switch_uid(new_user);
596 
597 	if(dumpclear)
598 	{
599 		current->mm->dumpable = suid_dumpable;
600 		smp_wmb();
601 	}
602 	current->uid = new_ruid;
603 	return 0;
604 }
605 
606 /*
607  * Unprivileged users may change the real uid to the effective uid
608  * or vice versa.  (BSD-style)
609  *
610  * If you set the real uid at all, or set the effective uid to a value not
611  * equal to the real uid, then the saved uid is set to the new effective uid.
612  *
613  * This makes it possible for a setuid program to completely drop its
614  * privileges, which is often a useful assertion to make when you are doing
615  * a security audit over a program.
616  *
617  * The general idea is that a program which uses just setreuid() will be
618  * 100% compatible with BSD.  A program which uses just setuid() will be
619  * 100% compatible with POSIX with saved IDs.
620  */
621 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
622 {
623 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
624 	int retval;
625 
626 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
627 	if (retval)
628 		return retval;
629 
630 	new_ruid = old_ruid = current->uid;
631 	new_euid = old_euid = current->euid;
632 	old_suid = current->suid;
633 
634 	if (ruid != (uid_t) -1) {
635 		new_ruid = ruid;
636 		if ((old_ruid != ruid) &&
637 		    (current->euid != ruid) &&
638 		    !capable(CAP_SETUID))
639 			return -EPERM;
640 	}
641 
642 	if (euid != (uid_t) -1) {
643 		new_euid = euid;
644 		if ((old_ruid != euid) &&
645 		    (current->euid != euid) &&
646 		    (current->suid != euid) &&
647 		    !capable(CAP_SETUID))
648 			return -EPERM;
649 	}
650 
651 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
652 		return -EAGAIN;
653 
654 	if (new_euid != old_euid)
655 	{
656 		current->mm->dumpable = suid_dumpable;
657 		smp_wmb();
658 	}
659 	current->fsuid = current->euid = new_euid;
660 	if (ruid != (uid_t) -1 ||
661 	    (euid != (uid_t) -1 && euid != old_ruid))
662 		current->suid = current->euid;
663 	current->fsuid = current->euid;
664 
665 	key_fsuid_changed(current);
666 
667 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
668 }
669 
670 
671 
672 /*
673  * setuid() is implemented like SysV with SAVED_IDS
674  *
675  * Note that SAVED_ID's is deficient in that a setuid root program
676  * like sendmail, for example, cannot set its uid to be a normal
677  * user and then switch back, because if you're root, setuid() sets
678  * the saved uid too.  If you don't like this, blame the bright people
679  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
680  * will allow a root program to temporarily drop privileges and be able to
681  * regain them by swapping the real and effective uid.
682  */
683 asmlinkage long sys_setuid(uid_t uid)
684 {
685 	int old_euid = current->euid;
686 	int old_ruid, old_suid, new_ruid, new_suid;
687 	int retval;
688 
689 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
690 	if (retval)
691 		return retval;
692 
693 	old_ruid = new_ruid = current->uid;
694 	old_suid = current->suid;
695 	new_suid = old_suid;
696 
697 	if (capable(CAP_SETUID)) {
698 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
699 			return -EAGAIN;
700 		new_suid = uid;
701 	} else if ((uid != current->uid) && (uid != new_suid))
702 		return -EPERM;
703 
704 	if (old_euid != uid)
705 	{
706 		current->mm->dumpable = suid_dumpable;
707 		smp_wmb();
708 	}
709 	current->fsuid = current->euid = uid;
710 	current->suid = new_suid;
711 
712 	key_fsuid_changed(current);
713 
714 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
715 }
716 
717 
718 /*
719  * This function implements a generic ability to update ruid, euid,
720  * and suid.  This allows you to implement the 4.4 compatible seteuid().
721  */
722 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
723 {
724 	int old_ruid = current->uid;
725 	int old_euid = current->euid;
726 	int old_suid = current->suid;
727 	int retval;
728 
729 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
730 	if (retval)
731 		return retval;
732 
733 	if (!capable(CAP_SETUID)) {
734 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
735 		    (ruid != current->euid) && (ruid != current->suid))
736 			return -EPERM;
737 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
738 		    (euid != current->euid) && (euid != current->suid))
739 			return -EPERM;
740 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
741 		    (suid != current->euid) && (suid != current->suid))
742 			return -EPERM;
743 	}
744 	if (ruid != (uid_t) -1) {
745 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
746 			return -EAGAIN;
747 	}
748 	if (euid != (uid_t) -1) {
749 		if (euid != current->euid)
750 		{
751 			current->mm->dumpable = suid_dumpable;
752 			smp_wmb();
753 		}
754 		current->euid = euid;
755 	}
756 	current->fsuid = current->euid;
757 	if (suid != (uid_t) -1)
758 		current->suid = suid;
759 
760 	key_fsuid_changed(current);
761 
762 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
763 }
764 
765 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
766 {
767 	int retval;
768 
769 	if (!(retval = put_user(current->uid, ruid)) &&
770 	    !(retval = put_user(current->euid, euid)))
771 		retval = put_user(current->suid, suid);
772 
773 	return retval;
774 }
775 
776 /*
777  * Same as above, but for rgid, egid, sgid.
778  */
779 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
780 {
781 	int retval;
782 
783 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
784 	if (retval)
785 		return retval;
786 
787 	if (!capable(CAP_SETGID)) {
788 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
789 		    (rgid != current->egid) && (rgid != current->sgid))
790 			return -EPERM;
791 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
792 		    (egid != current->egid) && (egid != current->sgid))
793 			return -EPERM;
794 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
795 		    (sgid != current->egid) && (sgid != current->sgid))
796 			return -EPERM;
797 	}
798 	if (egid != (gid_t) -1) {
799 		if (egid != current->egid)
800 		{
801 			current->mm->dumpable = suid_dumpable;
802 			smp_wmb();
803 		}
804 		current->egid = egid;
805 	}
806 	current->fsgid = current->egid;
807 	if (rgid != (gid_t) -1)
808 		current->gid = rgid;
809 	if (sgid != (gid_t) -1)
810 		current->sgid = sgid;
811 
812 	key_fsgid_changed(current);
813 	return 0;
814 }
815 
816 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
817 {
818 	int retval;
819 
820 	if (!(retval = put_user(current->gid, rgid)) &&
821 	    !(retval = put_user(current->egid, egid)))
822 		retval = put_user(current->sgid, sgid);
823 
824 	return retval;
825 }
826 
827 
828 /*
829  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
830  * is used for "access()" and for the NFS daemon (letting nfsd stay at
831  * whatever uid it wants to). It normally shadows "euid", except when
832  * explicitly set by setfsuid() or for access..
833  */
834 asmlinkage long sys_setfsuid(uid_t uid)
835 {
836 	int old_fsuid;
837 
838 	old_fsuid = current->fsuid;
839 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
840 		return old_fsuid;
841 
842 	if (uid == current->uid || uid == current->euid ||
843 	    uid == current->suid || uid == current->fsuid ||
844 	    capable(CAP_SETUID))
845 	{
846 		if (uid != old_fsuid)
847 		{
848 			current->mm->dumpable = suid_dumpable;
849 			smp_wmb();
850 		}
851 		current->fsuid = uid;
852 	}
853 
854 	key_fsuid_changed(current);
855 
856 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
857 
858 	return old_fsuid;
859 }
860 
861 /*
862  * Samma p� svenska..
863  */
864 asmlinkage long sys_setfsgid(gid_t gid)
865 {
866 	int old_fsgid;
867 
868 	old_fsgid = current->fsgid;
869 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
870 		return old_fsgid;
871 
872 	if (gid == current->gid || gid == current->egid ||
873 	    gid == current->sgid || gid == current->fsgid ||
874 	    capable(CAP_SETGID))
875 	{
876 		if (gid != old_fsgid)
877 		{
878 			current->mm->dumpable = suid_dumpable;
879 			smp_wmb();
880 		}
881 		current->fsgid = gid;
882 		key_fsgid_changed(current);
883 	}
884 	return old_fsgid;
885 }
886 
887 asmlinkage long sys_times(struct tms __user * tbuf)
888 {
889 	/*
890 	 *	In the SMP world we might just be unlucky and have one of
891 	 *	the times increment as we use it. Since the value is an
892 	 *	atomically safe type this is just fine. Conceptually its
893 	 *	as if the syscall took an instant longer to occur.
894 	 */
895 	if (tbuf) {
896 		struct tms tmp;
897 		cputime_t utime, stime, cutime, cstime;
898 
899 #ifdef CONFIG_SMP
900 		if (thread_group_empty(current)) {
901 			/*
902 			 * Single thread case without the use of any locks.
903 			 *
904 			 * We may race with release_task if two threads are
905 			 * executing. However, release task first adds up the
906 			 * counters (__exit_signal) before  removing the task
907 			 * from the process tasklist (__unhash_process).
908 			 * __exit_signal also acquires and releases the
909 			 * siglock which results in the proper memory ordering
910 			 * so that the list modifications are always visible
911 			 * after the counters have been updated.
912 			 *
913 			 * If the counters have been updated by the second thread
914 			 * but the thread has not yet been removed from the list
915 			 * then the other branch will be executing which will
916 			 * block on tasklist_lock until the exit handling of the
917 			 * other task is finished.
918 			 *
919 			 * This also implies that the sighand->siglock cannot
920 			 * be held by another processor. So we can also
921 			 * skip acquiring that lock.
922 			 */
923 			utime = cputime_add(current->signal->utime, current->utime);
924 			stime = cputime_add(current->signal->utime, current->stime);
925 			cutime = current->signal->cutime;
926 			cstime = current->signal->cstime;
927 		} else
928 #endif
929 		{
930 
931 			/* Process with multiple threads */
932 			struct task_struct *tsk = current;
933 			struct task_struct *t;
934 
935 			read_lock(&tasklist_lock);
936 			utime = tsk->signal->utime;
937 			stime = tsk->signal->stime;
938 			t = tsk;
939 			do {
940 				utime = cputime_add(utime, t->utime);
941 				stime = cputime_add(stime, t->stime);
942 				t = next_thread(t);
943 			} while (t != tsk);
944 
945 			/*
946 			 * While we have tasklist_lock read-locked, no dying thread
947 			 * can be updating current->signal->[us]time.  Instead,
948 			 * we got their counts included in the live thread loop.
949 			 * However, another thread can come in right now and
950 			 * do a wait call that updates current->signal->c[us]time.
951 			 * To make sure we always see that pair updated atomically,
952 			 * we take the siglock around fetching them.
953 			 */
954 			spin_lock_irq(&tsk->sighand->siglock);
955 			cutime = tsk->signal->cutime;
956 			cstime = tsk->signal->cstime;
957 			spin_unlock_irq(&tsk->sighand->siglock);
958 			read_unlock(&tasklist_lock);
959 		}
960 		tmp.tms_utime = cputime_to_clock_t(utime);
961 		tmp.tms_stime = cputime_to_clock_t(stime);
962 		tmp.tms_cutime = cputime_to_clock_t(cutime);
963 		tmp.tms_cstime = cputime_to_clock_t(cstime);
964 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
965 			return -EFAULT;
966 	}
967 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
968 }
969 
970 /*
971  * This needs some heavy checking ...
972  * I just haven't the stomach for it. I also don't fully
973  * understand sessions/pgrp etc. Let somebody who does explain it.
974  *
975  * OK, I think I have the protection semantics right.... this is really
976  * only important on a multi-user system anyway, to make sure one user
977  * can't send a signal to a process owned by another.  -TYT, 12/12/91
978  *
979  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
980  * LBT 04.03.94
981  */
982 
983 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
984 {
985 	struct task_struct *p;
986 	int err = -EINVAL;
987 
988 	if (!pid)
989 		pid = current->pid;
990 	if (!pgid)
991 		pgid = pid;
992 	if (pgid < 0)
993 		return -EINVAL;
994 
995 	/* From this point forward we keep holding onto the tasklist lock
996 	 * so that our parent does not change from under us. -DaveM
997 	 */
998 	write_lock_irq(&tasklist_lock);
999 
1000 	err = -ESRCH;
1001 	p = find_task_by_pid(pid);
1002 	if (!p)
1003 		goto out;
1004 
1005 	err = -EINVAL;
1006 	if (!thread_group_leader(p))
1007 		goto out;
1008 
1009 	if (p->parent == current || p->real_parent == current) {
1010 		err = -EPERM;
1011 		if (p->signal->session != current->signal->session)
1012 			goto out;
1013 		err = -EACCES;
1014 		if (p->did_exec)
1015 			goto out;
1016 	} else {
1017 		err = -ESRCH;
1018 		if (p != current)
1019 			goto out;
1020 	}
1021 
1022 	err = -EPERM;
1023 	if (p->signal->leader)
1024 		goto out;
1025 
1026 	if (pgid != pid) {
1027 		struct task_struct *p;
1028 
1029 		do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1030 			if (p->signal->session == current->signal->session)
1031 				goto ok_pgid;
1032 		} while_each_task_pid(pgid, PIDTYPE_PGID, p);
1033 		goto out;
1034 	}
1035 
1036 ok_pgid:
1037 	err = security_task_setpgid(p, pgid);
1038 	if (err)
1039 		goto out;
1040 
1041 	if (process_group(p) != pgid) {
1042 		detach_pid(p, PIDTYPE_PGID);
1043 		p->signal->pgrp = pgid;
1044 		attach_pid(p, PIDTYPE_PGID, pgid);
1045 	}
1046 
1047 	err = 0;
1048 out:
1049 	/* All paths lead to here, thus we are safe. -DaveM */
1050 	write_unlock_irq(&tasklist_lock);
1051 	return err;
1052 }
1053 
1054 asmlinkage long sys_getpgid(pid_t pid)
1055 {
1056 	if (!pid) {
1057 		return process_group(current);
1058 	} else {
1059 		int retval;
1060 		struct task_struct *p;
1061 
1062 		read_lock(&tasklist_lock);
1063 		p = find_task_by_pid(pid);
1064 
1065 		retval = -ESRCH;
1066 		if (p) {
1067 			retval = security_task_getpgid(p);
1068 			if (!retval)
1069 				retval = process_group(p);
1070 		}
1071 		read_unlock(&tasklist_lock);
1072 		return retval;
1073 	}
1074 }
1075 
1076 #ifdef __ARCH_WANT_SYS_GETPGRP
1077 
1078 asmlinkage long sys_getpgrp(void)
1079 {
1080 	/* SMP - assuming writes are word atomic this is fine */
1081 	return process_group(current);
1082 }
1083 
1084 #endif
1085 
1086 asmlinkage long sys_getsid(pid_t pid)
1087 {
1088 	if (!pid) {
1089 		return current->signal->session;
1090 	} else {
1091 		int retval;
1092 		struct task_struct *p;
1093 
1094 		read_lock(&tasklist_lock);
1095 		p = find_task_by_pid(pid);
1096 
1097 		retval = -ESRCH;
1098 		if(p) {
1099 			retval = security_task_getsid(p);
1100 			if (!retval)
1101 				retval = p->signal->session;
1102 		}
1103 		read_unlock(&tasklist_lock);
1104 		return retval;
1105 	}
1106 }
1107 
1108 asmlinkage long sys_setsid(void)
1109 {
1110 	struct pid *pid;
1111 	int err = -EPERM;
1112 
1113 	if (!thread_group_leader(current))
1114 		return -EINVAL;
1115 
1116 	down(&tty_sem);
1117 	write_lock_irq(&tasklist_lock);
1118 
1119 	pid = find_pid(PIDTYPE_PGID, current->pid);
1120 	if (pid)
1121 		goto out;
1122 
1123 	current->signal->leader = 1;
1124 	__set_special_pids(current->pid, current->pid);
1125 	current->signal->tty = NULL;
1126 	current->signal->tty_old_pgrp = 0;
1127 	err = process_group(current);
1128 out:
1129 	write_unlock_irq(&tasklist_lock);
1130 	up(&tty_sem);
1131 	return err;
1132 }
1133 
1134 /*
1135  * Supplementary group IDs
1136  */
1137 
1138 /* init to 2 - one for init_task, one to ensure it is never freed */
1139 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1140 
1141 struct group_info *groups_alloc(int gidsetsize)
1142 {
1143 	struct group_info *group_info;
1144 	int nblocks;
1145 	int i;
1146 
1147 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1148 	/* Make sure we always allocate at least one indirect block pointer */
1149 	nblocks = nblocks ? : 1;
1150 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1151 	if (!group_info)
1152 		return NULL;
1153 	group_info->ngroups = gidsetsize;
1154 	group_info->nblocks = nblocks;
1155 	atomic_set(&group_info->usage, 1);
1156 
1157 	if (gidsetsize <= NGROUPS_SMALL) {
1158 		group_info->blocks[0] = group_info->small_block;
1159 	} else {
1160 		for (i = 0; i < nblocks; i++) {
1161 			gid_t *b;
1162 			b = (void *)__get_free_page(GFP_USER);
1163 			if (!b)
1164 				goto out_undo_partial_alloc;
1165 			group_info->blocks[i] = b;
1166 		}
1167 	}
1168 	return group_info;
1169 
1170 out_undo_partial_alloc:
1171 	while (--i >= 0) {
1172 		free_page((unsigned long)group_info->blocks[i]);
1173 	}
1174 	kfree(group_info);
1175 	return NULL;
1176 }
1177 
1178 EXPORT_SYMBOL(groups_alloc);
1179 
1180 void groups_free(struct group_info *group_info)
1181 {
1182 	if (group_info->blocks[0] != group_info->small_block) {
1183 		int i;
1184 		for (i = 0; i < group_info->nblocks; i++)
1185 			free_page((unsigned long)group_info->blocks[i]);
1186 	}
1187 	kfree(group_info);
1188 }
1189 
1190 EXPORT_SYMBOL(groups_free);
1191 
1192 /* export the group_info to a user-space array */
1193 static int groups_to_user(gid_t __user *grouplist,
1194     struct group_info *group_info)
1195 {
1196 	int i;
1197 	int count = group_info->ngroups;
1198 
1199 	for (i = 0; i < group_info->nblocks; i++) {
1200 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1201 		int off = i * NGROUPS_PER_BLOCK;
1202 		int len = cp_count * sizeof(*grouplist);
1203 
1204 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1205 			return -EFAULT;
1206 
1207 		count -= cp_count;
1208 	}
1209 	return 0;
1210 }
1211 
1212 /* fill a group_info from a user-space array - it must be allocated already */
1213 static int groups_from_user(struct group_info *group_info,
1214     gid_t __user *grouplist)
1215  {
1216 	int i;
1217 	int count = group_info->ngroups;
1218 
1219 	for (i = 0; i < group_info->nblocks; i++) {
1220 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1221 		int off = i * NGROUPS_PER_BLOCK;
1222 		int len = cp_count * sizeof(*grouplist);
1223 
1224 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1225 			return -EFAULT;
1226 
1227 		count -= cp_count;
1228 	}
1229 	return 0;
1230 }
1231 
1232 /* a simple Shell sort */
1233 static void groups_sort(struct group_info *group_info)
1234 {
1235 	int base, max, stride;
1236 	int gidsetsize = group_info->ngroups;
1237 
1238 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1239 		; /* nothing */
1240 	stride /= 3;
1241 
1242 	while (stride) {
1243 		max = gidsetsize - stride;
1244 		for (base = 0; base < max; base++) {
1245 			int left = base;
1246 			int right = left + stride;
1247 			gid_t tmp = GROUP_AT(group_info, right);
1248 
1249 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1250 				GROUP_AT(group_info, right) =
1251 				    GROUP_AT(group_info, left);
1252 				right = left;
1253 				left -= stride;
1254 			}
1255 			GROUP_AT(group_info, right) = tmp;
1256 		}
1257 		stride /= 3;
1258 	}
1259 }
1260 
1261 /* a simple bsearch */
1262 int groups_search(struct group_info *group_info, gid_t grp)
1263 {
1264 	int left, right;
1265 
1266 	if (!group_info)
1267 		return 0;
1268 
1269 	left = 0;
1270 	right = group_info->ngroups;
1271 	while (left < right) {
1272 		int mid = (left+right)/2;
1273 		int cmp = grp - GROUP_AT(group_info, mid);
1274 		if (cmp > 0)
1275 			left = mid + 1;
1276 		else if (cmp < 0)
1277 			right = mid;
1278 		else
1279 			return 1;
1280 	}
1281 	return 0;
1282 }
1283 
1284 /* validate and set current->group_info */
1285 int set_current_groups(struct group_info *group_info)
1286 {
1287 	int retval;
1288 	struct group_info *old_info;
1289 
1290 	retval = security_task_setgroups(group_info);
1291 	if (retval)
1292 		return retval;
1293 
1294 	groups_sort(group_info);
1295 	get_group_info(group_info);
1296 
1297 	task_lock(current);
1298 	old_info = current->group_info;
1299 	current->group_info = group_info;
1300 	task_unlock(current);
1301 
1302 	put_group_info(old_info);
1303 
1304 	return 0;
1305 }
1306 
1307 EXPORT_SYMBOL(set_current_groups);
1308 
1309 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1310 {
1311 	int i = 0;
1312 
1313 	/*
1314 	 *	SMP: Nobody else can change our grouplist. Thus we are
1315 	 *	safe.
1316 	 */
1317 
1318 	if (gidsetsize < 0)
1319 		return -EINVAL;
1320 
1321 	/* no need to grab task_lock here; it cannot change */
1322 	get_group_info(current->group_info);
1323 	i = current->group_info->ngroups;
1324 	if (gidsetsize) {
1325 		if (i > gidsetsize) {
1326 			i = -EINVAL;
1327 			goto out;
1328 		}
1329 		if (groups_to_user(grouplist, current->group_info)) {
1330 			i = -EFAULT;
1331 			goto out;
1332 		}
1333 	}
1334 out:
1335 	put_group_info(current->group_info);
1336 	return i;
1337 }
1338 
1339 /*
1340  *	SMP: Our groups are copy-on-write. We can set them safely
1341  *	without another task interfering.
1342  */
1343 
1344 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1345 {
1346 	struct group_info *group_info;
1347 	int retval;
1348 
1349 	if (!capable(CAP_SETGID))
1350 		return -EPERM;
1351 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1352 		return -EINVAL;
1353 
1354 	group_info = groups_alloc(gidsetsize);
1355 	if (!group_info)
1356 		return -ENOMEM;
1357 	retval = groups_from_user(group_info, grouplist);
1358 	if (retval) {
1359 		put_group_info(group_info);
1360 		return retval;
1361 	}
1362 
1363 	retval = set_current_groups(group_info);
1364 	put_group_info(group_info);
1365 
1366 	return retval;
1367 }
1368 
1369 /*
1370  * Check whether we're fsgid/egid or in the supplemental group..
1371  */
1372 int in_group_p(gid_t grp)
1373 {
1374 	int retval = 1;
1375 	if (grp != current->fsgid) {
1376 		get_group_info(current->group_info);
1377 		retval = groups_search(current->group_info, grp);
1378 		put_group_info(current->group_info);
1379 	}
1380 	return retval;
1381 }
1382 
1383 EXPORT_SYMBOL(in_group_p);
1384 
1385 int in_egroup_p(gid_t grp)
1386 {
1387 	int retval = 1;
1388 	if (grp != current->egid) {
1389 		get_group_info(current->group_info);
1390 		retval = groups_search(current->group_info, grp);
1391 		put_group_info(current->group_info);
1392 	}
1393 	return retval;
1394 }
1395 
1396 EXPORT_SYMBOL(in_egroup_p);
1397 
1398 DECLARE_RWSEM(uts_sem);
1399 
1400 EXPORT_SYMBOL(uts_sem);
1401 
1402 asmlinkage long sys_newuname(struct new_utsname __user * name)
1403 {
1404 	int errno = 0;
1405 
1406 	down_read(&uts_sem);
1407 	if (copy_to_user(name,&system_utsname,sizeof *name))
1408 		errno = -EFAULT;
1409 	up_read(&uts_sem);
1410 	return errno;
1411 }
1412 
1413 asmlinkage long sys_sethostname(char __user *name, int len)
1414 {
1415 	int errno;
1416 	char tmp[__NEW_UTS_LEN];
1417 
1418 	if (!capable(CAP_SYS_ADMIN))
1419 		return -EPERM;
1420 	if (len < 0 || len > __NEW_UTS_LEN)
1421 		return -EINVAL;
1422 	down_write(&uts_sem);
1423 	errno = -EFAULT;
1424 	if (!copy_from_user(tmp, name, len)) {
1425 		memcpy(system_utsname.nodename, tmp, len);
1426 		system_utsname.nodename[len] = 0;
1427 		errno = 0;
1428 	}
1429 	up_write(&uts_sem);
1430 	return errno;
1431 }
1432 
1433 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1434 
1435 asmlinkage long sys_gethostname(char __user *name, int len)
1436 {
1437 	int i, errno;
1438 
1439 	if (len < 0)
1440 		return -EINVAL;
1441 	down_read(&uts_sem);
1442 	i = 1 + strlen(system_utsname.nodename);
1443 	if (i > len)
1444 		i = len;
1445 	errno = 0;
1446 	if (copy_to_user(name, system_utsname.nodename, i))
1447 		errno = -EFAULT;
1448 	up_read(&uts_sem);
1449 	return errno;
1450 }
1451 
1452 #endif
1453 
1454 /*
1455  * Only setdomainname; getdomainname can be implemented by calling
1456  * uname()
1457  */
1458 asmlinkage long sys_setdomainname(char __user *name, int len)
1459 {
1460 	int errno;
1461 	char tmp[__NEW_UTS_LEN];
1462 
1463 	if (!capable(CAP_SYS_ADMIN))
1464 		return -EPERM;
1465 	if (len < 0 || len > __NEW_UTS_LEN)
1466 		return -EINVAL;
1467 
1468 	down_write(&uts_sem);
1469 	errno = -EFAULT;
1470 	if (!copy_from_user(tmp, name, len)) {
1471 		memcpy(system_utsname.domainname, tmp, len);
1472 		system_utsname.domainname[len] = 0;
1473 		errno = 0;
1474 	}
1475 	up_write(&uts_sem);
1476 	return errno;
1477 }
1478 
1479 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1480 {
1481 	if (resource >= RLIM_NLIMITS)
1482 		return -EINVAL;
1483 	else {
1484 		struct rlimit value;
1485 		task_lock(current->group_leader);
1486 		value = current->signal->rlim[resource];
1487 		task_unlock(current->group_leader);
1488 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1489 	}
1490 }
1491 
1492 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1493 
1494 /*
1495  *	Back compatibility for getrlimit. Needed for some apps.
1496  */
1497 
1498 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1499 {
1500 	struct rlimit x;
1501 	if (resource >= RLIM_NLIMITS)
1502 		return -EINVAL;
1503 
1504 	task_lock(current->group_leader);
1505 	x = current->signal->rlim[resource];
1506 	task_unlock(current->group_leader);
1507 	if(x.rlim_cur > 0x7FFFFFFF)
1508 		x.rlim_cur = 0x7FFFFFFF;
1509 	if(x.rlim_max > 0x7FFFFFFF)
1510 		x.rlim_max = 0x7FFFFFFF;
1511 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1512 }
1513 
1514 #endif
1515 
1516 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1517 {
1518 	struct rlimit new_rlim, *old_rlim;
1519 	int retval;
1520 
1521 	if (resource >= RLIM_NLIMITS)
1522 		return -EINVAL;
1523 	if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1524 		return -EFAULT;
1525        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1526                return -EINVAL;
1527 	old_rlim = current->signal->rlim + resource;
1528 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1529 	    !capable(CAP_SYS_RESOURCE))
1530 		return -EPERM;
1531 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1532 			return -EPERM;
1533 
1534 	retval = security_task_setrlimit(resource, &new_rlim);
1535 	if (retval)
1536 		return retval;
1537 
1538 	task_lock(current->group_leader);
1539 	*old_rlim = new_rlim;
1540 	task_unlock(current->group_leader);
1541 
1542 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1543 	    (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1544 	     new_rlim.rlim_cur <= cputime_to_secs(
1545 		     current->signal->it_prof_expires))) {
1546 		cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1547 		read_lock(&tasklist_lock);
1548 		spin_lock_irq(&current->sighand->siglock);
1549 		set_process_cpu_timer(current, CPUCLOCK_PROF,
1550 				      &cputime, NULL);
1551 		spin_unlock_irq(&current->sighand->siglock);
1552 		read_unlock(&tasklist_lock);
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 /*
1559  * It would make sense to put struct rusage in the task_struct,
1560  * except that would make the task_struct be *really big*.  After
1561  * task_struct gets moved into malloc'ed memory, it would
1562  * make sense to do this.  It will make moving the rest of the information
1563  * a lot simpler!  (Which we're not doing right now because we're not
1564  * measuring them yet).
1565  *
1566  * This expects to be called with tasklist_lock read-locked or better,
1567  * and the siglock not locked.  It may momentarily take the siglock.
1568  *
1569  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1570  * races with threads incrementing their own counters.  But since word
1571  * reads are atomic, we either get new values or old values and we don't
1572  * care which for the sums.  We always take the siglock to protect reading
1573  * the c* fields from p->signal from races with exit.c updating those
1574  * fields when reaping, so a sample either gets all the additions of a
1575  * given child after it's reaped, or none so this sample is before reaping.
1576  */
1577 
1578 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1579 {
1580 	struct task_struct *t;
1581 	unsigned long flags;
1582 	cputime_t utime, stime;
1583 
1584 	memset((char *) r, 0, sizeof *r);
1585 
1586 	if (unlikely(!p->signal))
1587 		return;
1588 
1589 	switch (who) {
1590 		case RUSAGE_CHILDREN:
1591 			spin_lock_irqsave(&p->sighand->siglock, flags);
1592 			utime = p->signal->cutime;
1593 			stime = p->signal->cstime;
1594 			r->ru_nvcsw = p->signal->cnvcsw;
1595 			r->ru_nivcsw = p->signal->cnivcsw;
1596 			r->ru_minflt = p->signal->cmin_flt;
1597 			r->ru_majflt = p->signal->cmaj_flt;
1598 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1599 			cputime_to_timeval(utime, &r->ru_utime);
1600 			cputime_to_timeval(stime, &r->ru_stime);
1601 			break;
1602 		case RUSAGE_SELF:
1603 			spin_lock_irqsave(&p->sighand->siglock, flags);
1604 			utime = stime = cputime_zero;
1605 			goto sum_group;
1606 		case RUSAGE_BOTH:
1607 			spin_lock_irqsave(&p->sighand->siglock, flags);
1608 			utime = p->signal->cutime;
1609 			stime = p->signal->cstime;
1610 			r->ru_nvcsw = p->signal->cnvcsw;
1611 			r->ru_nivcsw = p->signal->cnivcsw;
1612 			r->ru_minflt = p->signal->cmin_flt;
1613 			r->ru_majflt = p->signal->cmaj_flt;
1614 		sum_group:
1615 			utime = cputime_add(utime, p->signal->utime);
1616 			stime = cputime_add(stime, p->signal->stime);
1617 			r->ru_nvcsw += p->signal->nvcsw;
1618 			r->ru_nivcsw += p->signal->nivcsw;
1619 			r->ru_minflt += p->signal->min_flt;
1620 			r->ru_majflt += p->signal->maj_flt;
1621 			t = p;
1622 			do {
1623 				utime = cputime_add(utime, t->utime);
1624 				stime = cputime_add(stime, t->stime);
1625 				r->ru_nvcsw += t->nvcsw;
1626 				r->ru_nivcsw += t->nivcsw;
1627 				r->ru_minflt += t->min_flt;
1628 				r->ru_majflt += t->maj_flt;
1629 				t = next_thread(t);
1630 			} while (t != p);
1631 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1632 			cputime_to_timeval(utime, &r->ru_utime);
1633 			cputime_to_timeval(stime, &r->ru_stime);
1634 			break;
1635 		default:
1636 			BUG();
1637 	}
1638 }
1639 
1640 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1641 {
1642 	struct rusage r;
1643 	read_lock(&tasklist_lock);
1644 	k_getrusage(p, who, &r);
1645 	read_unlock(&tasklist_lock);
1646 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1647 }
1648 
1649 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1650 {
1651 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1652 		return -EINVAL;
1653 	return getrusage(current, who, ru);
1654 }
1655 
1656 asmlinkage long sys_umask(int mask)
1657 {
1658 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1659 	return mask;
1660 }
1661 
1662 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1663 			  unsigned long arg4, unsigned long arg5)
1664 {
1665 	long error;
1666 	int sig;
1667 
1668 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1669 	if (error)
1670 		return error;
1671 
1672 	switch (option) {
1673 		case PR_SET_PDEATHSIG:
1674 			sig = arg2;
1675 			if (!valid_signal(sig)) {
1676 				error = -EINVAL;
1677 				break;
1678 			}
1679 			current->pdeath_signal = sig;
1680 			break;
1681 		case PR_GET_PDEATHSIG:
1682 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1683 			break;
1684 		case PR_GET_DUMPABLE:
1685 			if (current->mm->dumpable)
1686 				error = 1;
1687 			break;
1688 		case PR_SET_DUMPABLE:
1689 			if (arg2 < 0 || arg2 > 2) {
1690 				error = -EINVAL;
1691 				break;
1692 			}
1693 			current->mm->dumpable = arg2;
1694 			break;
1695 
1696 		case PR_SET_UNALIGN:
1697 			error = SET_UNALIGN_CTL(current, arg2);
1698 			break;
1699 		case PR_GET_UNALIGN:
1700 			error = GET_UNALIGN_CTL(current, arg2);
1701 			break;
1702 		case PR_SET_FPEMU:
1703 			error = SET_FPEMU_CTL(current, arg2);
1704 			break;
1705 		case PR_GET_FPEMU:
1706 			error = GET_FPEMU_CTL(current, arg2);
1707 			break;
1708 		case PR_SET_FPEXC:
1709 			error = SET_FPEXC_CTL(current, arg2);
1710 			break;
1711 		case PR_GET_FPEXC:
1712 			error = GET_FPEXC_CTL(current, arg2);
1713 			break;
1714 		case PR_GET_TIMING:
1715 			error = PR_TIMING_STATISTICAL;
1716 			break;
1717 		case PR_SET_TIMING:
1718 			if (arg2 == PR_TIMING_STATISTICAL)
1719 				error = 0;
1720 			else
1721 				error = -EINVAL;
1722 			break;
1723 
1724 		case PR_GET_KEEPCAPS:
1725 			if (current->keep_capabilities)
1726 				error = 1;
1727 			break;
1728 		case PR_SET_KEEPCAPS:
1729 			if (arg2 != 0 && arg2 != 1) {
1730 				error = -EINVAL;
1731 				break;
1732 			}
1733 			current->keep_capabilities = arg2;
1734 			break;
1735 		case PR_SET_NAME: {
1736 			struct task_struct *me = current;
1737 			unsigned char ncomm[sizeof(me->comm)];
1738 
1739 			ncomm[sizeof(me->comm)-1] = 0;
1740 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1741 						sizeof(me->comm)-1) < 0)
1742 				return -EFAULT;
1743 			set_task_comm(me, ncomm);
1744 			return 0;
1745 		}
1746 		case PR_GET_NAME: {
1747 			struct task_struct *me = current;
1748 			unsigned char tcomm[sizeof(me->comm)];
1749 
1750 			get_task_comm(tcomm, me);
1751 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1752 				return -EFAULT;
1753 			return 0;
1754 		}
1755 		default:
1756 			error = -EINVAL;
1757 			break;
1758 	}
1759 	return error;
1760 }
1761