xref: /linux/kernel/sys.c (revision 36ca1195ad7f760a6af3814cb002bd3a3d4b4db1)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/workqueue.h>
20 #include <linux/device.h>
21 #include <linux/key.h>
22 #include <linux/times.h>
23 #include <linux/posix-timers.h>
24 #include <linux/security.h>
25 #include <linux/dcookies.h>
26 #include <linux/suspend.h>
27 #include <linux/tty.h>
28 #include <linux/signal.h>
29 
30 #include <linux/compat.h>
31 #include <linux/syscalls.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/unistd.h>
36 
37 #ifndef SET_UNALIGN_CTL
38 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
39 #endif
40 #ifndef GET_UNALIGN_CTL
41 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
42 #endif
43 #ifndef SET_FPEMU_CTL
44 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
45 #endif
46 #ifndef GET_FPEMU_CTL
47 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
48 #endif
49 #ifndef SET_FPEXC_CTL
50 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
51 #endif
52 #ifndef GET_FPEXC_CTL
53 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
54 #endif
55 
56 /*
57  * this is where the system-wide overflow UID and GID are defined, for
58  * architectures that now have 32-bit UID/GID but didn't in the past
59  */
60 
61 int overflowuid = DEFAULT_OVERFLOWUID;
62 int overflowgid = DEFAULT_OVERFLOWGID;
63 
64 #ifdef CONFIG_UID16
65 EXPORT_SYMBOL(overflowuid);
66 EXPORT_SYMBOL(overflowgid);
67 #endif
68 
69 /*
70  * the same as above, but for filesystems which can only store a 16-bit
71  * UID and GID. as such, this is needed on all architectures
72  */
73 
74 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
75 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
76 
77 EXPORT_SYMBOL(fs_overflowuid);
78 EXPORT_SYMBOL(fs_overflowgid);
79 
80 /*
81  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
82  */
83 
84 int C_A_D = 1;
85 int cad_pid = 1;
86 
87 /*
88  *	Notifier list for kernel code which wants to be called
89  *	at shutdown. This is used to stop any idling DMA operations
90  *	and the like.
91  */
92 
93 static struct notifier_block *reboot_notifier_list;
94 static DEFINE_RWLOCK(notifier_lock);
95 
96 /**
97  *	notifier_chain_register	- Add notifier to a notifier chain
98  *	@list: Pointer to root list pointer
99  *	@n: New entry in notifier chain
100  *
101  *	Adds a notifier to a notifier chain.
102  *
103  *	Currently always returns zero.
104  */
105 
106 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
107 {
108 	write_lock(&notifier_lock);
109 	while(*list)
110 	{
111 		if(n->priority > (*list)->priority)
112 			break;
113 		list= &((*list)->next);
114 	}
115 	n->next = *list;
116 	*list=n;
117 	write_unlock(&notifier_lock);
118 	return 0;
119 }
120 
121 EXPORT_SYMBOL(notifier_chain_register);
122 
123 /**
124  *	notifier_chain_unregister - Remove notifier from a notifier chain
125  *	@nl: Pointer to root list pointer
126  *	@n: New entry in notifier chain
127  *
128  *	Removes a notifier from a notifier chain.
129  *
130  *	Returns zero on success, or %-ENOENT on failure.
131  */
132 
133 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
134 {
135 	write_lock(&notifier_lock);
136 	while((*nl)!=NULL)
137 	{
138 		if((*nl)==n)
139 		{
140 			*nl=n->next;
141 			write_unlock(&notifier_lock);
142 			return 0;
143 		}
144 		nl=&((*nl)->next);
145 	}
146 	write_unlock(&notifier_lock);
147 	return -ENOENT;
148 }
149 
150 EXPORT_SYMBOL(notifier_chain_unregister);
151 
152 /**
153  *	notifier_call_chain - Call functions in a notifier chain
154  *	@n: Pointer to root pointer of notifier chain
155  *	@val: Value passed unmodified to notifier function
156  *	@v: Pointer passed unmodified to notifier function
157  *
158  *	Calls each function in a notifier chain in turn.
159  *
160  *	If the return value of the notifier can be and'd
161  *	with %NOTIFY_STOP_MASK, then notifier_call_chain
162  *	will return immediately, with the return value of
163  *	the notifier function which halted execution.
164  *	Otherwise, the return value is the return value
165  *	of the last notifier function called.
166  */
167 
168 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
169 {
170 	int ret=NOTIFY_DONE;
171 	struct notifier_block *nb = *n;
172 
173 	while(nb)
174 	{
175 		ret=nb->notifier_call(nb,val,v);
176 		if(ret&NOTIFY_STOP_MASK)
177 		{
178 			return ret;
179 		}
180 		nb=nb->next;
181 	}
182 	return ret;
183 }
184 
185 EXPORT_SYMBOL(notifier_call_chain);
186 
187 /**
188  *	register_reboot_notifier - Register function to be called at reboot time
189  *	@nb: Info about notifier function to be called
190  *
191  *	Registers a function with the list of functions
192  *	to be called at reboot time.
193  *
194  *	Currently always returns zero, as notifier_chain_register
195  *	always returns zero.
196  */
197 
198 int register_reboot_notifier(struct notifier_block * nb)
199 {
200 	return notifier_chain_register(&reboot_notifier_list, nb);
201 }
202 
203 EXPORT_SYMBOL(register_reboot_notifier);
204 
205 /**
206  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
207  *	@nb: Hook to be unregistered
208  *
209  *	Unregisters a previously registered reboot
210  *	notifier function.
211  *
212  *	Returns zero on success, or %-ENOENT on failure.
213  */
214 
215 int unregister_reboot_notifier(struct notifier_block * nb)
216 {
217 	return notifier_chain_unregister(&reboot_notifier_list, nb);
218 }
219 
220 EXPORT_SYMBOL(unregister_reboot_notifier);
221 
222 static int set_one_prio(struct task_struct *p, int niceval, int error)
223 {
224 	int no_nice;
225 
226 	if (p->uid != current->euid &&
227 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
228 		error = -EPERM;
229 		goto out;
230 	}
231 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
232 		error = -EACCES;
233 		goto out;
234 	}
235 	no_nice = security_task_setnice(p, niceval);
236 	if (no_nice) {
237 		error = no_nice;
238 		goto out;
239 	}
240 	if (error == -ESRCH)
241 		error = 0;
242 	set_user_nice(p, niceval);
243 out:
244 	return error;
245 }
246 
247 asmlinkage long sys_setpriority(int which, int who, int niceval)
248 {
249 	struct task_struct *g, *p;
250 	struct user_struct *user;
251 	int error = -EINVAL;
252 
253 	if (which > 2 || which < 0)
254 		goto out;
255 
256 	/* normalize: avoid signed division (rounding problems) */
257 	error = -ESRCH;
258 	if (niceval < -20)
259 		niceval = -20;
260 	if (niceval > 19)
261 		niceval = 19;
262 
263 	read_lock(&tasklist_lock);
264 	switch (which) {
265 		case PRIO_PROCESS:
266 			if (!who)
267 				who = current->pid;
268 			p = find_task_by_pid(who);
269 			if (p)
270 				error = set_one_prio(p, niceval, error);
271 			break;
272 		case PRIO_PGRP:
273 			if (!who)
274 				who = process_group(current);
275 			do_each_task_pid(who, PIDTYPE_PGID, p) {
276 				error = set_one_prio(p, niceval, error);
277 			} while_each_task_pid(who, PIDTYPE_PGID, p);
278 			break;
279 		case PRIO_USER:
280 			user = current->user;
281 			if (!who)
282 				who = current->uid;
283 			else
284 				if ((who != current->uid) && !(user = find_user(who)))
285 					goto out_unlock;	/* No processes for this user */
286 
287 			do_each_thread(g, p)
288 				if (p->uid == who)
289 					error = set_one_prio(p, niceval, error);
290 			while_each_thread(g, p);
291 			if (who != current->uid)
292 				free_uid(user);		/* For find_user() */
293 			break;
294 	}
295 out_unlock:
296 	read_unlock(&tasklist_lock);
297 out:
298 	return error;
299 }
300 
301 /*
302  * Ugh. To avoid negative return values, "getpriority()" will
303  * not return the normal nice-value, but a negated value that
304  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
305  * to stay compatible.
306  */
307 asmlinkage long sys_getpriority(int which, int who)
308 {
309 	struct task_struct *g, *p;
310 	struct user_struct *user;
311 	long niceval, retval = -ESRCH;
312 
313 	if (which > 2 || which < 0)
314 		return -EINVAL;
315 
316 	read_lock(&tasklist_lock);
317 	switch (which) {
318 		case PRIO_PROCESS:
319 			if (!who)
320 				who = current->pid;
321 			p = find_task_by_pid(who);
322 			if (p) {
323 				niceval = 20 - task_nice(p);
324 				if (niceval > retval)
325 					retval = niceval;
326 			}
327 			break;
328 		case PRIO_PGRP:
329 			if (!who)
330 				who = process_group(current);
331 			do_each_task_pid(who, PIDTYPE_PGID, p) {
332 				niceval = 20 - task_nice(p);
333 				if (niceval > retval)
334 					retval = niceval;
335 			} while_each_task_pid(who, PIDTYPE_PGID, p);
336 			break;
337 		case PRIO_USER:
338 			user = current->user;
339 			if (!who)
340 				who = current->uid;
341 			else
342 				if ((who != current->uid) && !(user = find_user(who)))
343 					goto out_unlock;	/* No processes for this user */
344 
345 			do_each_thread(g, p)
346 				if (p->uid == who) {
347 					niceval = 20 - task_nice(p);
348 					if (niceval > retval)
349 						retval = niceval;
350 				}
351 			while_each_thread(g, p);
352 			if (who != current->uid)
353 				free_uid(user);		/* for find_user() */
354 			break;
355 	}
356 out_unlock:
357 	read_unlock(&tasklist_lock);
358 
359 	return retval;
360 }
361 
362 
363 /*
364  * Reboot system call: for obvious reasons only root may call it,
365  * and even root needs to set up some magic numbers in the registers
366  * so that some mistake won't make this reboot the whole machine.
367  * You can also set the meaning of the ctrl-alt-del-key here.
368  *
369  * reboot doesn't sync: do that yourself before calling this.
370  */
371 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
372 {
373 	char buffer[256];
374 
375 	/* We only trust the superuser with rebooting the system. */
376 	if (!capable(CAP_SYS_BOOT))
377 		return -EPERM;
378 
379 	/* For safety, we require "magic" arguments. */
380 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
381 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
382 	                magic2 != LINUX_REBOOT_MAGIC2A &&
383 			magic2 != LINUX_REBOOT_MAGIC2B &&
384 	                magic2 != LINUX_REBOOT_MAGIC2C))
385 		return -EINVAL;
386 
387 	lock_kernel();
388 	switch (cmd) {
389 	case LINUX_REBOOT_CMD_RESTART:
390 		notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
391 		system_state = SYSTEM_RESTART;
392 		device_shutdown();
393 		printk(KERN_EMERG "Restarting system.\n");
394 		machine_restart(NULL);
395 		break;
396 
397 	case LINUX_REBOOT_CMD_CAD_ON:
398 		C_A_D = 1;
399 		break;
400 
401 	case LINUX_REBOOT_CMD_CAD_OFF:
402 		C_A_D = 0;
403 		break;
404 
405 	case LINUX_REBOOT_CMD_HALT:
406 		notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
407 		system_state = SYSTEM_HALT;
408 		device_shutdown();
409 		printk(KERN_EMERG "System halted.\n");
410 		machine_halt();
411 		unlock_kernel();
412 		do_exit(0);
413 		break;
414 
415 	case LINUX_REBOOT_CMD_POWER_OFF:
416 		notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
417 		system_state = SYSTEM_POWER_OFF;
418 		device_shutdown();
419 		printk(KERN_EMERG "Power down.\n");
420 		machine_power_off();
421 		unlock_kernel();
422 		do_exit(0);
423 		break;
424 
425 	case LINUX_REBOOT_CMD_RESTART2:
426 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
427 			unlock_kernel();
428 			return -EFAULT;
429 		}
430 		buffer[sizeof(buffer) - 1] = '\0';
431 
432 		notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
433 		system_state = SYSTEM_RESTART;
434 		device_shutdown();
435 		printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
436 		machine_restart(buffer);
437 		break;
438 
439 #ifdef CONFIG_SOFTWARE_SUSPEND
440 	case LINUX_REBOOT_CMD_SW_SUSPEND:
441 		{
442 			int ret = software_suspend();
443 			unlock_kernel();
444 			return ret;
445 		}
446 #endif
447 
448 	default:
449 		unlock_kernel();
450 		return -EINVAL;
451 	}
452 	unlock_kernel();
453 	return 0;
454 }
455 
456 static void deferred_cad(void *dummy)
457 {
458 	notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
459 	machine_restart(NULL);
460 }
461 
462 /*
463  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
464  * As it's called within an interrupt, it may NOT sync: the only choice
465  * is whether to reboot at once, or just ignore the ctrl-alt-del.
466  */
467 void ctrl_alt_del(void)
468 {
469 	static DECLARE_WORK(cad_work, deferred_cad, NULL);
470 
471 	if (C_A_D)
472 		schedule_work(&cad_work);
473 	else
474 		kill_proc(cad_pid, SIGINT, 1);
475 }
476 
477 
478 /*
479  * Unprivileged users may change the real gid to the effective gid
480  * or vice versa.  (BSD-style)
481  *
482  * If you set the real gid at all, or set the effective gid to a value not
483  * equal to the real gid, then the saved gid is set to the new effective gid.
484  *
485  * This makes it possible for a setgid program to completely drop its
486  * privileges, which is often a useful assertion to make when you are doing
487  * a security audit over a program.
488  *
489  * The general idea is that a program which uses just setregid() will be
490  * 100% compatible with BSD.  A program which uses just setgid() will be
491  * 100% compatible with POSIX with saved IDs.
492  *
493  * SMP: There are not races, the GIDs are checked only by filesystem
494  *      operations (as far as semantic preservation is concerned).
495  */
496 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
497 {
498 	int old_rgid = current->gid;
499 	int old_egid = current->egid;
500 	int new_rgid = old_rgid;
501 	int new_egid = old_egid;
502 	int retval;
503 
504 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
505 	if (retval)
506 		return retval;
507 
508 	if (rgid != (gid_t) -1) {
509 		if ((old_rgid == rgid) ||
510 		    (current->egid==rgid) ||
511 		    capable(CAP_SETGID))
512 			new_rgid = rgid;
513 		else
514 			return -EPERM;
515 	}
516 	if (egid != (gid_t) -1) {
517 		if ((old_rgid == egid) ||
518 		    (current->egid == egid) ||
519 		    (current->sgid == egid) ||
520 		    capable(CAP_SETGID))
521 			new_egid = egid;
522 		else {
523 			return -EPERM;
524 		}
525 	}
526 	if (new_egid != old_egid)
527 	{
528 		current->mm->dumpable = 0;
529 		smp_wmb();
530 	}
531 	if (rgid != (gid_t) -1 ||
532 	    (egid != (gid_t) -1 && egid != old_rgid))
533 		current->sgid = new_egid;
534 	current->fsgid = new_egid;
535 	current->egid = new_egid;
536 	current->gid = new_rgid;
537 	key_fsgid_changed(current);
538 	return 0;
539 }
540 
541 /*
542  * setgid() is implemented like SysV w/ SAVED_IDS
543  *
544  * SMP: Same implicit races as above.
545  */
546 asmlinkage long sys_setgid(gid_t gid)
547 {
548 	int old_egid = current->egid;
549 	int retval;
550 
551 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
552 	if (retval)
553 		return retval;
554 
555 	if (capable(CAP_SETGID))
556 	{
557 		if(old_egid != gid)
558 		{
559 			current->mm->dumpable=0;
560 			smp_wmb();
561 		}
562 		current->gid = current->egid = current->sgid = current->fsgid = gid;
563 	}
564 	else if ((gid == current->gid) || (gid == current->sgid))
565 	{
566 		if(old_egid != gid)
567 		{
568 			current->mm->dumpable=0;
569 			smp_wmb();
570 		}
571 		current->egid = current->fsgid = gid;
572 	}
573 	else
574 		return -EPERM;
575 
576 	key_fsgid_changed(current);
577 	return 0;
578 }
579 
580 static int set_user(uid_t new_ruid, int dumpclear)
581 {
582 	struct user_struct *new_user;
583 
584 	new_user = alloc_uid(new_ruid);
585 	if (!new_user)
586 		return -EAGAIN;
587 
588 	if (atomic_read(&new_user->processes) >=
589 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
590 			new_user != &root_user) {
591 		free_uid(new_user);
592 		return -EAGAIN;
593 	}
594 
595 	switch_uid(new_user);
596 
597 	if(dumpclear)
598 	{
599 		current->mm->dumpable = 0;
600 		smp_wmb();
601 	}
602 	current->uid = new_ruid;
603 	return 0;
604 }
605 
606 /*
607  * Unprivileged users may change the real uid to the effective uid
608  * or vice versa.  (BSD-style)
609  *
610  * If you set the real uid at all, or set the effective uid to a value not
611  * equal to the real uid, then the saved uid is set to the new effective uid.
612  *
613  * This makes it possible for a setuid program to completely drop its
614  * privileges, which is often a useful assertion to make when you are doing
615  * a security audit over a program.
616  *
617  * The general idea is that a program which uses just setreuid() will be
618  * 100% compatible with BSD.  A program which uses just setuid() will be
619  * 100% compatible with POSIX with saved IDs.
620  */
621 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
622 {
623 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
624 	int retval;
625 
626 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
627 	if (retval)
628 		return retval;
629 
630 	new_ruid = old_ruid = current->uid;
631 	new_euid = old_euid = current->euid;
632 	old_suid = current->suid;
633 
634 	if (ruid != (uid_t) -1) {
635 		new_ruid = ruid;
636 		if ((old_ruid != ruid) &&
637 		    (current->euid != ruid) &&
638 		    !capable(CAP_SETUID))
639 			return -EPERM;
640 	}
641 
642 	if (euid != (uid_t) -1) {
643 		new_euid = euid;
644 		if ((old_ruid != euid) &&
645 		    (current->euid != euid) &&
646 		    (current->suid != euid) &&
647 		    !capable(CAP_SETUID))
648 			return -EPERM;
649 	}
650 
651 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
652 		return -EAGAIN;
653 
654 	if (new_euid != old_euid)
655 	{
656 		current->mm->dumpable=0;
657 		smp_wmb();
658 	}
659 	current->fsuid = current->euid = new_euid;
660 	if (ruid != (uid_t) -1 ||
661 	    (euid != (uid_t) -1 && euid != old_ruid))
662 		current->suid = current->euid;
663 	current->fsuid = current->euid;
664 
665 	key_fsuid_changed(current);
666 
667 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
668 }
669 
670 
671 
672 /*
673  * setuid() is implemented like SysV with SAVED_IDS
674  *
675  * Note that SAVED_ID's is deficient in that a setuid root program
676  * like sendmail, for example, cannot set its uid to be a normal
677  * user and then switch back, because if you're root, setuid() sets
678  * the saved uid too.  If you don't like this, blame the bright people
679  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
680  * will allow a root program to temporarily drop privileges and be able to
681  * regain them by swapping the real and effective uid.
682  */
683 asmlinkage long sys_setuid(uid_t uid)
684 {
685 	int old_euid = current->euid;
686 	int old_ruid, old_suid, new_ruid, new_suid;
687 	int retval;
688 
689 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
690 	if (retval)
691 		return retval;
692 
693 	old_ruid = new_ruid = current->uid;
694 	old_suid = current->suid;
695 	new_suid = old_suid;
696 
697 	if (capable(CAP_SETUID)) {
698 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
699 			return -EAGAIN;
700 		new_suid = uid;
701 	} else if ((uid != current->uid) && (uid != new_suid))
702 		return -EPERM;
703 
704 	if (old_euid != uid)
705 	{
706 		current->mm->dumpable = 0;
707 		smp_wmb();
708 	}
709 	current->fsuid = current->euid = uid;
710 	current->suid = new_suid;
711 
712 	key_fsuid_changed(current);
713 
714 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
715 }
716 
717 
718 /*
719  * This function implements a generic ability to update ruid, euid,
720  * and suid.  This allows you to implement the 4.4 compatible seteuid().
721  */
722 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
723 {
724 	int old_ruid = current->uid;
725 	int old_euid = current->euid;
726 	int old_suid = current->suid;
727 	int retval;
728 
729 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
730 	if (retval)
731 		return retval;
732 
733 	if (!capable(CAP_SETUID)) {
734 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
735 		    (ruid != current->euid) && (ruid != current->suid))
736 			return -EPERM;
737 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
738 		    (euid != current->euid) && (euid != current->suid))
739 			return -EPERM;
740 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
741 		    (suid != current->euid) && (suid != current->suid))
742 			return -EPERM;
743 	}
744 	if (ruid != (uid_t) -1) {
745 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
746 			return -EAGAIN;
747 	}
748 	if (euid != (uid_t) -1) {
749 		if (euid != current->euid)
750 		{
751 			current->mm->dumpable = 0;
752 			smp_wmb();
753 		}
754 		current->euid = euid;
755 	}
756 	current->fsuid = current->euid;
757 	if (suid != (uid_t) -1)
758 		current->suid = suid;
759 
760 	key_fsuid_changed(current);
761 
762 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
763 }
764 
765 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
766 {
767 	int retval;
768 
769 	if (!(retval = put_user(current->uid, ruid)) &&
770 	    !(retval = put_user(current->euid, euid)))
771 		retval = put_user(current->suid, suid);
772 
773 	return retval;
774 }
775 
776 /*
777  * Same as above, but for rgid, egid, sgid.
778  */
779 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
780 {
781 	int retval;
782 
783 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
784 	if (retval)
785 		return retval;
786 
787 	if (!capable(CAP_SETGID)) {
788 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
789 		    (rgid != current->egid) && (rgid != current->sgid))
790 			return -EPERM;
791 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
792 		    (egid != current->egid) && (egid != current->sgid))
793 			return -EPERM;
794 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
795 		    (sgid != current->egid) && (sgid != current->sgid))
796 			return -EPERM;
797 	}
798 	if (egid != (gid_t) -1) {
799 		if (egid != current->egid)
800 		{
801 			current->mm->dumpable = 0;
802 			smp_wmb();
803 		}
804 		current->egid = egid;
805 	}
806 	current->fsgid = current->egid;
807 	if (rgid != (gid_t) -1)
808 		current->gid = rgid;
809 	if (sgid != (gid_t) -1)
810 		current->sgid = sgid;
811 
812 	key_fsgid_changed(current);
813 	return 0;
814 }
815 
816 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
817 {
818 	int retval;
819 
820 	if (!(retval = put_user(current->gid, rgid)) &&
821 	    !(retval = put_user(current->egid, egid)))
822 		retval = put_user(current->sgid, sgid);
823 
824 	return retval;
825 }
826 
827 
828 /*
829  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
830  * is used for "access()" and for the NFS daemon (letting nfsd stay at
831  * whatever uid it wants to). It normally shadows "euid", except when
832  * explicitly set by setfsuid() or for access..
833  */
834 asmlinkage long sys_setfsuid(uid_t uid)
835 {
836 	int old_fsuid;
837 
838 	old_fsuid = current->fsuid;
839 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
840 		return old_fsuid;
841 
842 	if (uid == current->uid || uid == current->euid ||
843 	    uid == current->suid || uid == current->fsuid ||
844 	    capable(CAP_SETUID))
845 	{
846 		if (uid != old_fsuid)
847 		{
848 			current->mm->dumpable = 0;
849 			smp_wmb();
850 		}
851 		current->fsuid = uid;
852 	}
853 
854 	key_fsuid_changed(current);
855 
856 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
857 
858 	return old_fsuid;
859 }
860 
861 /*
862  * Samma p� svenska..
863  */
864 asmlinkage long sys_setfsgid(gid_t gid)
865 {
866 	int old_fsgid;
867 
868 	old_fsgid = current->fsgid;
869 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
870 		return old_fsgid;
871 
872 	if (gid == current->gid || gid == current->egid ||
873 	    gid == current->sgid || gid == current->fsgid ||
874 	    capable(CAP_SETGID))
875 	{
876 		if (gid != old_fsgid)
877 		{
878 			current->mm->dumpable = 0;
879 			smp_wmb();
880 		}
881 		current->fsgid = gid;
882 		key_fsgid_changed(current);
883 	}
884 	return old_fsgid;
885 }
886 
887 asmlinkage long sys_times(struct tms __user * tbuf)
888 {
889 	/*
890 	 *	In the SMP world we might just be unlucky and have one of
891 	 *	the times increment as we use it. Since the value is an
892 	 *	atomically safe type this is just fine. Conceptually its
893 	 *	as if the syscall took an instant longer to occur.
894 	 */
895 	if (tbuf) {
896 		struct tms tmp;
897 		struct task_struct *tsk = current;
898 		struct task_struct *t;
899 		cputime_t utime, stime, cutime, cstime;
900 
901 		read_lock(&tasklist_lock);
902 		utime = tsk->signal->utime;
903 		stime = tsk->signal->stime;
904 		t = tsk;
905 		do {
906 			utime = cputime_add(utime, t->utime);
907 			stime = cputime_add(stime, t->stime);
908 			t = next_thread(t);
909 		} while (t != tsk);
910 
911 		/*
912 		 * While we have tasklist_lock read-locked, no dying thread
913 		 * can be updating current->signal->[us]time.  Instead,
914 		 * we got their counts included in the live thread loop.
915 		 * However, another thread can come in right now and
916 		 * do a wait call that updates current->signal->c[us]time.
917 		 * To make sure we always see that pair updated atomically,
918 		 * we take the siglock around fetching them.
919 		 */
920 		spin_lock_irq(&tsk->sighand->siglock);
921 		cutime = tsk->signal->cutime;
922 		cstime = tsk->signal->cstime;
923 		spin_unlock_irq(&tsk->sighand->siglock);
924 		read_unlock(&tasklist_lock);
925 
926 		tmp.tms_utime = cputime_to_clock_t(utime);
927 		tmp.tms_stime = cputime_to_clock_t(stime);
928 		tmp.tms_cutime = cputime_to_clock_t(cutime);
929 		tmp.tms_cstime = cputime_to_clock_t(cstime);
930 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
931 			return -EFAULT;
932 	}
933 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
934 }
935 
936 /*
937  * This needs some heavy checking ...
938  * I just haven't the stomach for it. I also don't fully
939  * understand sessions/pgrp etc. Let somebody who does explain it.
940  *
941  * OK, I think I have the protection semantics right.... this is really
942  * only important on a multi-user system anyway, to make sure one user
943  * can't send a signal to a process owned by another.  -TYT, 12/12/91
944  *
945  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
946  * LBT 04.03.94
947  */
948 
949 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
950 {
951 	struct task_struct *p;
952 	int err = -EINVAL;
953 
954 	if (!pid)
955 		pid = current->pid;
956 	if (!pgid)
957 		pgid = pid;
958 	if (pgid < 0)
959 		return -EINVAL;
960 
961 	/* From this point forward we keep holding onto the tasklist lock
962 	 * so that our parent does not change from under us. -DaveM
963 	 */
964 	write_lock_irq(&tasklist_lock);
965 
966 	err = -ESRCH;
967 	p = find_task_by_pid(pid);
968 	if (!p)
969 		goto out;
970 
971 	err = -EINVAL;
972 	if (!thread_group_leader(p))
973 		goto out;
974 
975 	if (p->parent == current || p->real_parent == current) {
976 		err = -EPERM;
977 		if (p->signal->session != current->signal->session)
978 			goto out;
979 		err = -EACCES;
980 		if (p->did_exec)
981 			goto out;
982 	} else {
983 		err = -ESRCH;
984 		if (p != current)
985 			goto out;
986 	}
987 
988 	err = -EPERM;
989 	if (p->signal->leader)
990 		goto out;
991 
992 	if (pgid != pid) {
993 		struct task_struct *p;
994 
995 		do_each_task_pid(pgid, PIDTYPE_PGID, p) {
996 			if (p->signal->session == current->signal->session)
997 				goto ok_pgid;
998 		} while_each_task_pid(pgid, PIDTYPE_PGID, p);
999 		goto out;
1000 	}
1001 
1002 ok_pgid:
1003 	err = security_task_setpgid(p, pgid);
1004 	if (err)
1005 		goto out;
1006 
1007 	if (process_group(p) != pgid) {
1008 		detach_pid(p, PIDTYPE_PGID);
1009 		p->signal->pgrp = pgid;
1010 		attach_pid(p, PIDTYPE_PGID, pgid);
1011 	}
1012 
1013 	err = 0;
1014 out:
1015 	/* All paths lead to here, thus we are safe. -DaveM */
1016 	write_unlock_irq(&tasklist_lock);
1017 	return err;
1018 }
1019 
1020 asmlinkage long sys_getpgid(pid_t pid)
1021 {
1022 	if (!pid) {
1023 		return process_group(current);
1024 	} else {
1025 		int retval;
1026 		struct task_struct *p;
1027 
1028 		read_lock(&tasklist_lock);
1029 		p = find_task_by_pid(pid);
1030 
1031 		retval = -ESRCH;
1032 		if (p) {
1033 			retval = security_task_getpgid(p);
1034 			if (!retval)
1035 				retval = process_group(p);
1036 		}
1037 		read_unlock(&tasklist_lock);
1038 		return retval;
1039 	}
1040 }
1041 
1042 #ifdef __ARCH_WANT_SYS_GETPGRP
1043 
1044 asmlinkage long sys_getpgrp(void)
1045 {
1046 	/* SMP - assuming writes are word atomic this is fine */
1047 	return process_group(current);
1048 }
1049 
1050 #endif
1051 
1052 asmlinkage long sys_getsid(pid_t pid)
1053 {
1054 	if (!pid) {
1055 		return current->signal->session;
1056 	} else {
1057 		int retval;
1058 		struct task_struct *p;
1059 
1060 		read_lock(&tasklist_lock);
1061 		p = find_task_by_pid(pid);
1062 
1063 		retval = -ESRCH;
1064 		if(p) {
1065 			retval = security_task_getsid(p);
1066 			if (!retval)
1067 				retval = p->signal->session;
1068 		}
1069 		read_unlock(&tasklist_lock);
1070 		return retval;
1071 	}
1072 }
1073 
1074 asmlinkage long sys_setsid(void)
1075 {
1076 	struct pid *pid;
1077 	int err = -EPERM;
1078 
1079 	if (!thread_group_leader(current))
1080 		return -EINVAL;
1081 
1082 	down(&tty_sem);
1083 	write_lock_irq(&tasklist_lock);
1084 
1085 	pid = find_pid(PIDTYPE_PGID, current->pid);
1086 	if (pid)
1087 		goto out;
1088 
1089 	current->signal->leader = 1;
1090 	__set_special_pids(current->pid, current->pid);
1091 	current->signal->tty = NULL;
1092 	current->signal->tty_old_pgrp = 0;
1093 	err = process_group(current);
1094 out:
1095 	write_unlock_irq(&tasklist_lock);
1096 	up(&tty_sem);
1097 	return err;
1098 }
1099 
1100 /*
1101  * Supplementary group IDs
1102  */
1103 
1104 /* init to 2 - one for init_task, one to ensure it is never freed */
1105 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1106 
1107 struct group_info *groups_alloc(int gidsetsize)
1108 {
1109 	struct group_info *group_info;
1110 	int nblocks;
1111 	int i;
1112 
1113 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1114 	/* Make sure we always allocate at least one indirect block pointer */
1115 	nblocks = nblocks ? : 1;
1116 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1117 	if (!group_info)
1118 		return NULL;
1119 	group_info->ngroups = gidsetsize;
1120 	group_info->nblocks = nblocks;
1121 	atomic_set(&group_info->usage, 1);
1122 
1123 	if (gidsetsize <= NGROUPS_SMALL) {
1124 		group_info->blocks[0] = group_info->small_block;
1125 	} else {
1126 		for (i = 0; i < nblocks; i++) {
1127 			gid_t *b;
1128 			b = (void *)__get_free_page(GFP_USER);
1129 			if (!b)
1130 				goto out_undo_partial_alloc;
1131 			group_info->blocks[i] = b;
1132 		}
1133 	}
1134 	return group_info;
1135 
1136 out_undo_partial_alloc:
1137 	while (--i >= 0) {
1138 		free_page((unsigned long)group_info->blocks[i]);
1139 	}
1140 	kfree(group_info);
1141 	return NULL;
1142 }
1143 
1144 EXPORT_SYMBOL(groups_alloc);
1145 
1146 void groups_free(struct group_info *group_info)
1147 {
1148 	if (group_info->blocks[0] != group_info->small_block) {
1149 		int i;
1150 		for (i = 0; i < group_info->nblocks; i++)
1151 			free_page((unsigned long)group_info->blocks[i]);
1152 	}
1153 	kfree(group_info);
1154 }
1155 
1156 EXPORT_SYMBOL(groups_free);
1157 
1158 /* export the group_info to a user-space array */
1159 static int groups_to_user(gid_t __user *grouplist,
1160     struct group_info *group_info)
1161 {
1162 	int i;
1163 	int count = group_info->ngroups;
1164 
1165 	for (i = 0; i < group_info->nblocks; i++) {
1166 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1167 		int off = i * NGROUPS_PER_BLOCK;
1168 		int len = cp_count * sizeof(*grouplist);
1169 
1170 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1171 			return -EFAULT;
1172 
1173 		count -= cp_count;
1174 	}
1175 	return 0;
1176 }
1177 
1178 /* fill a group_info from a user-space array - it must be allocated already */
1179 static int groups_from_user(struct group_info *group_info,
1180     gid_t __user *grouplist)
1181  {
1182 	int i;
1183 	int count = group_info->ngroups;
1184 
1185 	for (i = 0; i < group_info->nblocks; i++) {
1186 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1187 		int off = i * NGROUPS_PER_BLOCK;
1188 		int len = cp_count * sizeof(*grouplist);
1189 
1190 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1191 			return -EFAULT;
1192 
1193 		count -= cp_count;
1194 	}
1195 	return 0;
1196 }
1197 
1198 /* a simple Shell sort */
1199 static void groups_sort(struct group_info *group_info)
1200 {
1201 	int base, max, stride;
1202 	int gidsetsize = group_info->ngroups;
1203 
1204 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1205 		; /* nothing */
1206 	stride /= 3;
1207 
1208 	while (stride) {
1209 		max = gidsetsize - stride;
1210 		for (base = 0; base < max; base++) {
1211 			int left = base;
1212 			int right = left + stride;
1213 			gid_t tmp = GROUP_AT(group_info, right);
1214 
1215 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1216 				GROUP_AT(group_info, right) =
1217 				    GROUP_AT(group_info, left);
1218 				right = left;
1219 				left -= stride;
1220 			}
1221 			GROUP_AT(group_info, right) = tmp;
1222 		}
1223 		stride /= 3;
1224 	}
1225 }
1226 
1227 /* a simple bsearch */
1228 static int groups_search(struct group_info *group_info, gid_t grp)
1229 {
1230 	int left, right;
1231 
1232 	if (!group_info)
1233 		return 0;
1234 
1235 	left = 0;
1236 	right = group_info->ngroups;
1237 	while (left < right) {
1238 		int mid = (left+right)/2;
1239 		int cmp = grp - GROUP_AT(group_info, mid);
1240 		if (cmp > 0)
1241 			left = mid + 1;
1242 		else if (cmp < 0)
1243 			right = mid;
1244 		else
1245 			return 1;
1246 	}
1247 	return 0;
1248 }
1249 
1250 /* validate and set current->group_info */
1251 int set_current_groups(struct group_info *group_info)
1252 {
1253 	int retval;
1254 	struct group_info *old_info;
1255 
1256 	retval = security_task_setgroups(group_info);
1257 	if (retval)
1258 		return retval;
1259 
1260 	groups_sort(group_info);
1261 	get_group_info(group_info);
1262 
1263 	task_lock(current);
1264 	old_info = current->group_info;
1265 	current->group_info = group_info;
1266 	task_unlock(current);
1267 
1268 	put_group_info(old_info);
1269 
1270 	return 0;
1271 }
1272 
1273 EXPORT_SYMBOL(set_current_groups);
1274 
1275 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1276 {
1277 	int i = 0;
1278 
1279 	/*
1280 	 *	SMP: Nobody else can change our grouplist. Thus we are
1281 	 *	safe.
1282 	 */
1283 
1284 	if (gidsetsize < 0)
1285 		return -EINVAL;
1286 
1287 	/* no need to grab task_lock here; it cannot change */
1288 	get_group_info(current->group_info);
1289 	i = current->group_info->ngroups;
1290 	if (gidsetsize) {
1291 		if (i > gidsetsize) {
1292 			i = -EINVAL;
1293 			goto out;
1294 		}
1295 		if (groups_to_user(grouplist, current->group_info)) {
1296 			i = -EFAULT;
1297 			goto out;
1298 		}
1299 	}
1300 out:
1301 	put_group_info(current->group_info);
1302 	return i;
1303 }
1304 
1305 /*
1306  *	SMP: Our groups are copy-on-write. We can set them safely
1307  *	without another task interfering.
1308  */
1309 
1310 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1311 {
1312 	struct group_info *group_info;
1313 	int retval;
1314 
1315 	if (!capable(CAP_SETGID))
1316 		return -EPERM;
1317 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1318 		return -EINVAL;
1319 
1320 	group_info = groups_alloc(gidsetsize);
1321 	if (!group_info)
1322 		return -ENOMEM;
1323 	retval = groups_from_user(group_info, grouplist);
1324 	if (retval) {
1325 		put_group_info(group_info);
1326 		return retval;
1327 	}
1328 
1329 	retval = set_current_groups(group_info);
1330 	put_group_info(group_info);
1331 
1332 	return retval;
1333 }
1334 
1335 /*
1336  * Check whether we're fsgid/egid or in the supplemental group..
1337  */
1338 int in_group_p(gid_t grp)
1339 {
1340 	int retval = 1;
1341 	if (grp != current->fsgid) {
1342 		get_group_info(current->group_info);
1343 		retval = groups_search(current->group_info, grp);
1344 		put_group_info(current->group_info);
1345 	}
1346 	return retval;
1347 }
1348 
1349 EXPORT_SYMBOL(in_group_p);
1350 
1351 int in_egroup_p(gid_t grp)
1352 {
1353 	int retval = 1;
1354 	if (grp != current->egid) {
1355 		get_group_info(current->group_info);
1356 		retval = groups_search(current->group_info, grp);
1357 		put_group_info(current->group_info);
1358 	}
1359 	return retval;
1360 }
1361 
1362 EXPORT_SYMBOL(in_egroup_p);
1363 
1364 DECLARE_RWSEM(uts_sem);
1365 
1366 EXPORT_SYMBOL(uts_sem);
1367 
1368 asmlinkage long sys_newuname(struct new_utsname __user * name)
1369 {
1370 	int errno = 0;
1371 
1372 	down_read(&uts_sem);
1373 	if (copy_to_user(name,&system_utsname,sizeof *name))
1374 		errno = -EFAULT;
1375 	up_read(&uts_sem);
1376 	return errno;
1377 }
1378 
1379 asmlinkage long sys_sethostname(char __user *name, int len)
1380 {
1381 	int errno;
1382 	char tmp[__NEW_UTS_LEN];
1383 
1384 	if (!capable(CAP_SYS_ADMIN))
1385 		return -EPERM;
1386 	if (len < 0 || len > __NEW_UTS_LEN)
1387 		return -EINVAL;
1388 	down_write(&uts_sem);
1389 	errno = -EFAULT;
1390 	if (!copy_from_user(tmp, name, len)) {
1391 		memcpy(system_utsname.nodename, tmp, len);
1392 		system_utsname.nodename[len] = 0;
1393 		errno = 0;
1394 	}
1395 	up_write(&uts_sem);
1396 	return errno;
1397 }
1398 
1399 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1400 
1401 asmlinkage long sys_gethostname(char __user *name, int len)
1402 {
1403 	int i, errno;
1404 
1405 	if (len < 0)
1406 		return -EINVAL;
1407 	down_read(&uts_sem);
1408 	i = 1 + strlen(system_utsname.nodename);
1409 	if (i > len)
1410 		i = len;
1411 	errno = 0;
1412 	if (copy_to_user(name, system_utsname.nodename, i))
1413 		errno = -EFAULT;
1414 	up_read(&uts_sem);
1415 	return errno;
1416 }
1417 
1418 #endif
1419 
1420 /*
1421  * Only setdomainname; getdomainname can be implemented by calling
1422  * uname()
1423  */
1424 asmlinkage long sys_setdomainname(char __user *name, int len)
1425 {
1426 	int errno;
1427 	char tmp[__NEW_UTS_LEN];
1428 
1429 	if (!capable(CAP_SYS_ADMIN))
1430 		return -EPERM;
1431 	if (len < 0 || len > __NEW_UTS_LEN)
1432 		return -EINVAL;
1433 
1434 	down_write(&uts_sem);
1435 	errno = -EFAULT;
1436 	if (!copy_from_user(tmp, name, len)) {
1437 		memcpy(system_utsname.domainname, tmp, len);
1438 		system_utsname.domainname[len] = 0;
1439 		errno = 0;
1440 	}
1441 	up_write(&uts_sem);
1442 	return errno;
1443 }
1444 
1445 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1446 {
1447 	if (resource >= RLIM_NLIMITS)
1448 		return -EINVAL;
1449 	else {
1450 		struct rlimit value;
1451 		task_lock(current->group_leader);
1452 		value = current->signal->rlim[resource];
1453 		task_unlock(current->group_leader);
1454 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1455 	}
1456 }
1457 
1458 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1459 
1460 /*
1461  *	Back compatibility for getrlimit. Needed for some apps.
1462  */
1463 
1464 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1465 {
1466 	struct rlimit x;
1467 	if (resource >= RLIM_NLIMITS)
1468 		return -EINVAL;
1469 
1470 	task_lock(current->group_leader);
1471 	x = current->signal->rlim[resource];
1472 	task_unlock(current->group_leader);
1473 	if(x.rlim_cur > 0x7FFFFFFF)
1474 		x.rlim_cur = 0x7FFFFFFF;
1475 	if(x.rlim_max > 0x7FFFFFFF)
1476 		x.rlim_max = 0x7FFFFFFF;
1477 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1478 }
1479 
1480 #endif
1481 
1482 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1483 {
1484 	struct rlimit new_rlim, *old_rlim;
1485 	int retval;
1486 
1487 	if (resource >= RLIM_NLIMITS)
1488 		return -EINVAL;
1489 	if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1490 		return -EFAULT;
1491        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1492                return -EINVAL;
1493 	old_rlim = current->signal->rlim + resource;
1494 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1495 	    !capable(CAP_SYS_RESOURCE))
1496 		return -EPERM;
1497 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1498 			return -EPERM;
1499 
1500 	retval = security_task_setrlimit(resource, &new_rlim);
1501 	if (retval)
1502 		return retval;
1503 
1504 	task_lock(current->group_leader);
1505 	*old_rlim = new_rlim;
1506 	task_unlock(current->group_leader);
1507 
1508 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1509 	    (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1510 	     new_rlim.rlim_cur <= cputime_to_secs(
1511 		     current->signal->it_prof_expires))) {
1512 		cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1513 		read_lock(&tasklist_lock);
1514 		spin_lock_irq(&current->sighand->siglock);
1515 		set_process_cpu_timer(current, CPUCLOCK_PROF,
1516 				      &cputime, NULL);
1517 		spin_unlock_irq(&current->sighand->siglock);
1518 		read_unlock(&tasklist_lock);
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 /*
1525  * It would make sense to put struct rusage in the task_struct,
1526  * except that would make the task_struct be *really big*.  After
1527  * task_struct gets moved into malloc'ed memory, it would
1528  * make sense to do this.  It will make moving the rest of the information
1529  * a lot simpler!  (Which we're not doing right now because we're not
1530  * measuring them yet).
1531  *
1532  * This expects to be called with tasklist_lock read-locked or better,
1533  * and the siglock not locked.  It may momentarily take the siglock.
1534  *
1535  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1536  * races with threads incrementing their own counters.  But since word
1537  * reads are atomic, we either get new values or old values and we don't
1538  * care which for the sums.  We always take the siglock to protect reading
1539  * the c* fields from p->signal from races with exit.c updating those
1540  * fields when reaping, so a sample either gets all the additions of a
1541  * given child after it's reaped, or none so this sample is before reaping.
1542  */
1543 
1544 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1545 {
1546 	struct task_struct *t;
1547 	unsigned long flags;
1548 	cputime_t utime, stime;
1549 
1550 	memset((char *) r, 0, sizeof *r);
1551 
1552 	if (unlikely(!p->signal))
1553 		return;
1554 
1555 	switch (who) {
1556 		case RUSAGE_CHILDREN:
1557 			spin_lock_irqsave(&p->sighand->siglock, flags);
1558 			utime = p->signal->cutime;
1559 			stime = p->signal->cstime;
1560 			r->ru_nvcsw = p->signal->cnvcsw;
1561 			r->ru_nivcsw = p->signal->cnivcsw;
1562 			r->ru_minflt = p->signal->cmin_flt;
1563 			r->ru_majflt = p->signal->cmaj_flt;
1564 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1565 			cputime_to_timeval(utime, &r->ru_utime);
1566 			cputime_to_timeval(stime, &r->ru_stime);
1567 			break;
1568 		case RUSAGE_SELF:
1569 			spin_lock_irqsave(&p->sighand->siglock, flags);
1570 			utime = stime = cputime_zero;
1571 			goto sum_group;
1572 		case RUSAGE_BOTH:
1573 			spin_lock_irqsave(&p->sighand->siglock, flags);
1574 			utime = p->signal->cutime;
1575 			stime = p->signal->cstime;
1576 			r->ru_nvcsw = p->signal->cnvcsw;
1577 			r->ru_nivcsw = p->signal->cnivcsw;
1578 			r->ru_minflt = p->signal->cmin_flt;
1579 			r->ru_majflt = p->signal->cmaj_flt;
1580 		sum_group:
1581 			utime = cputime_add(utime, p->signal->utime);
1582 			stime = cputime_add(stime, p->signal->stime);
1583 			r->ru_nvcsw += p->signal->nvcsw;
1584 			r->ru_nivcsw += p->signal->nivcsw;
1585 			r->ru_minflt += p->signal->min_flt;
1586 			r->ru_majflt += p->signal->maj_flt;
1587 			t = p;
1588 			do {
1589 				utime = cputime_add(utime, t->utime);
1590 				stime = cputime_add(stime, t->stime);
1591 				r->ru_nvcsw += t->nvcsw;
1592 				r->ru_nivcsw += t->nivcsw;
1593 				r->ru_minflt += t->min_flt;
1594 				r->ru_majflt += t->maj_flt;
1595 				t = next_thread(t);
1596 			} while (t != p);
1597 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1598 			cputime_to_timeval(utime, &r->ru_utime);
1599 			cputime_to_timeval(stime, &r->ru_stime);
1600 			break;
1601 		default:
1602 			BUG();
1603 	}
1604 }
1605 
1606 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1607 {
1608 	struct rusage r;
1609 	read_lock(&tasklist_lock);
1610 	k_getrusage(p, who, &r);
1611 	read_unlock(&tasklist_lock);
1612 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1613 }
1614 
1615 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1616 {
1617 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1618 		return -EINVAL;
1619 	return getrusage(current, who, ru);
1620 }
1621 
1622 asmlinkage long sys_umask(int mask)
1623 {
1624 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1625 	return mask;
1626 }
1627 
1628 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1629 			  unsigned long arg4, unsigned long arg5)
1630 {
1631 	long error;
1632 	int sig;
1633 
1634 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1635 	if (error)
1636 		return error;
1637 
1638 	switch (option) {
1639 		case PR_SET_PDEATHSIG:
1640 			sig = arg2;
1641 			if (!valid_signal(sig)) {
1642 				error = -EINVAL;
1643 				break;
1644 			}
1645 			current->pdeath_signal = sig;
1646 			break;
1647 		case PR_GET_PDEATHSIG:
1648 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1649 			break;
1650 		case PR_GET_DUMPABLE:
1651 			if (current->mm->dumpable)
1652 				error = 1;
1653 			break;
1654 		case PR_SET_DUMPABLE:
1655 			if (arg2 != 0 && arg2 != 1) {
1656 				error = -EINVAL;
1657 				break;
1658 			}
1659 			current->mm->dumpable = arg2;
1660 			break;
1661 
1662 		case PR_SET_UNALIGN:
1663 			error = SET_UNALIGN_CTL(current, arg2);
1664 			break;
1665 		case PR_GET_UNALIGN:
1666 			error = GET_UNALIGN_CTL(current, arg2);
1667 			break;
1668 		case PR_SET_FPEMU:
1669 			error = SET_FPEMU_CTL(current, arg2);
1670 			break;
1671 		case PR_GET_FPEMU:
1672 			error = GET_FPEMU_CTL(current, arg2);
1673 			break;
1674 		case PR_SET_FPEXC:
1675 			error = SET_FPEXC_CTL(current, arg2);
1676 			break;
1677 		case PR_GET_FPEXC:
1678 			error = GET_FPEXC_CTL(current, arg2);
1679 			break;
1680 		case PR_GET_TIMING:
1681 			error = PR_TIMING_STATISTICAL;
1682 			break;
1683 		case PR_SET_TIMING:
1684 			if (arg2 == PR_TIMING_STATISTICAL)
1685 				error = 0;
1686 			else
1687 				error = -EINVAL;
1688 			break;
1689 
1690 		case PR_GET_KEEPCAPS:
1691 			if (current->keep_capabilities)
1692 				error = 1;
1693 			break;
1694 		case PR_SET_KEEPCAPS:
1695 			if (arg2 != 0 && arg2 != 1) {
1696 				error = -EINVAL;
1697 				break;
1698 			}
1699 			current->keep_capabilities = arg2;
1700 			break;
1701 		case PR_SET_NAME: {
1702 			struct task_struct *me = current;
1703 			unsigned char ncomm[sizeof(me->comm)];
1704 
1705 			ncomm[sizeof(me->comm)-1] = 0;
1706 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1707 						sizeof(me->comm)-1) < 0)
1708 				return -EFAULT;
1709 			set_task_comm(me, ncomm);
1710 			return 0;
1711 		}
1712 		case PR_GET_NAME: {
1713 			struct task_struct *me = current;
1714 			unsigned char tcomm[sizeof(me->comm)];
1715 
1716 			get_task_comm(tcomm, me);
1717 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1718 				return -EFAULT;
1719 			return 0;
1720 		}
1721 		default:
1722 			error = -EINVAL;
1723 			break;
1724 	}
1725 	return error;
1726 }
1727