xref: /linux/kernel/sys.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 
32 #include <linux/compat.h>
33 #include <linux/syscalls.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/io.h>
37 #include <asm/unistd.h>
38 
39 #ifndef SET_UNALIGN_CTL
40 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
41 #endif
42 #ifndef GET_UNALIGN_CTL
43 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
44 #endif
45 #ifndef SET_FPEMU_CTL
46 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
47 #endif
48 #ifndef GET_FPEMU_CTL
49 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
50 #endif
51 #ifndef SET_FPEXC_CTL
52 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
53 #endif
54 #ifndef GET_FPEXC_CTL
55 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
56 #endif
57 
58 /*
59  * this is where the system-wide overflow UID and GID are defined, for
60  * architectures that now have 32-bit UID/GID but didn't in the past
61  */
62 
63 int overflowuid = DEFAULT_OVERFLOWUID;
64 int overflowgid = DEFAULT_OVERFLOWGID;
65 
66 #ifdef CONFIG_UID16
67 EXPORT_SYMBOL(overflowuid);
68 EXPORT_SYMBOL(overflowgid);
69 #endif
70 
71 /*
72  * the same as above, but for filesystems which can only store a 16-bit
73  * UID and GID. as such, this is needed on all architectures
74  */
75 
76 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
77 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
78 
79 EXPORT_SYMBOL(fs_overflowuid);
80 EXPORT_SYMBOL(fs_overflowgid);
81 
82 /*
83  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
84  */
85 
86 int C_A_D = 1;
87 int cad_pid = 1;
88 
89 /*
90  *	Notifier list for kernel code which wants to be called
91  *	at shutdown. This is used to stop any idling DMA operations
92  *	and the like.
93  */
94 
95 static struct notifier_block *reboot_notifier_list;
96 static DEFINE_RWLOCK(notifier_lock);
97 
98 /**
99  *	notifier_chain_register	- Add notifier to a notifier chain
100  *	@list: Pointer to root list pointer
101  *	@n: New entry in notifier chain
102  *
103  *	Adds a notifier to a notifier chain.
104  *
105  *	Currently always returns zero.
106  */
107 
108 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
109 {
110 	write_lock(&notifier_lock);
111 	while(*list)
112 	{
113 		if(n->priority > (*list)->priority)
114 			break;
115 		list= &((*list)->next);
116 	}
117 	n->next = *list;
118 	*list=n;
119 	write_unlock(&notifier_lock);
120 	return 0;
121 }
122 
123 EXPORT_SYMBOL(notifier_chain_register);
124 
125 /**
126  *	notifier_chain_unregister - Remove notifier from a notifier chain
127  *	@nl: Pointer to root list pointer
128  *	@n: New entry in notifier chain
129  *
130  *	Removes a notifier from a notifier chain.
131  *
132  *	Returns zero on success, or %-ENOENT on failure.
133  */
134 
135 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
136 {
137 	write_lock(&notifier_lock);
138 	while((*nl)!=NULL)
139 	{
140 		if((*nl)==n)
141 		{
142 			*nl=n->next;
143 			write_unlock(&notifier_lock);
144 			return 0;
145 		}
146 		nl=&((*nl)->next);
147 	}
148 	write_unlock(&notifier_lock);
149 	return -ENOENT;
150 }
151 
152 EXPORT_SYMBOL(notifier_chain_unregister);
153 
154 /**
155  *	notifier_call_chain - Call functions in a notifier chain
156  *	@n: Pointer to root pointer of notifier chain
157  *	@val: Value passed unmodified to notifier function
158  *	@v: Pointer passed unmodified to notifier function
159  *
160  *	Calls each function in a notifier chain in turn.
161  *
162  *	If the return value of the notifier can be and'd
163  *	with %NOTIFY_STOP_MASK, then notifier_call_chain
164  *	will return immediately, with the return value of
165  *	the notifier function which halted execution.
166  *	Otherwise, the return value is the return value
167  *	of the last notifier function called.
168  */
169 
170 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
171 {
172 	int ret=NOTIFY_DONE;
173 	struct notifier_block *nb = *n;
174 
175 	while(nb)
176 	{
177 		ret=nb->notifier_call(nb,val,v);
178 		if(ret&NOTIFY_STOP_MASK)
179 		{
180 			return ret;
181 		}
182 		nb=nb->next;
183 	}
184 	return ret;
185 }
186 
187 EXPORT_SYMBOL(notifier_call_chain);
188 
189 /**
190  *	register_reboot_notifier - Register function to be called at reboot time
191  *	@nb: Info about notifier function to be called
192  *
193  *	Registers a function with the list of functions
194  *	to be called at reboot time.
195  *
196  *	Currently always returns zero, as notifier_chain_register
197  *	always returns zero.
198  */
199 
200 int register_reboot_notifier(struct notifier_block * nb)
201 {
202 	return notifier_chain_register(&reboot_notifier_list, nb);
203 }
204 
205 EXPORT_SYMBOL(register_reboot_notifier);
206 
207 /**
208  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
209  *	@nb: Hook to be unregistered
210  *
211  *	Unregisters a previously registered reboot
212  *	notifier function.
213  *
214  *	Returns zero on success, or %-ENOENT on failure.
215  */
216 
217 int unregister_reboot_notifier(struct notifier_block * nb)
218 {
219 	return notifier_chain_unregister(&reboot_notifier_list, nb);
220 }
221 
222 EXPORT_SYMBOL(unregister_reboot_notifier);
223 
224 static int set_one_prio(struct task_struct *p, int niceval, int error)
225 {
226 	int no_nice;
227 
228 	if (p->uid != current->euid &&
229 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
230 		error = -EPERM;
231 		goto out;
232 	}
233 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
234 		error = -EACCES;
235 		goto out;
236 	}
237 	no_nice = security_task_setnice(p, niceval);
238 	if (no_nice) {
239 		error = no_nice;
240 		goto out;
241 	}
242 	if (error == -ESRCH)
243 		error = 0;
244 	set_user_nice(p, niceval);
245 out:
246 	return error;
247 }
248 
249 asmlinkage long sys_setpriority(int which, int who, int niceval)
250 {
251 	struct task_struct *g, *p;
252 	struct user_struct *user;
253 	int error = -EINVAL;
254 
255 	if (which > 2 || which < 0)
256 		goto out;
257 
258 	/* normalize: avoid signed division (rounding problems) */
259 	error = -ESRCH;
260 	if (niceval < -20)
261 		niceval = -20;
262 	if (niceval > 19)
263 		niceval = 19;
264 
265 	read_lock(&tasklist_lock);
266 	switch (which) {
267 		case PRIO_PROCESS:
268 			if (!who)
269 				who = current->pid;
270 			p = find_task_by_pid(who);
271 			if (p)
272 				error = set_one_prio(p, niceval, error);
273 			break;
274 		case PRIO_PGRP:
275 			if (!who)
276 				who = process_group(current);
277 			do_each_task_pid(who, PIDTYPE_PGID, p) {
278 				error = set_one_prio(p, niceval, error);
279 			} while_each_task_pid(who, PIDTYPE_PGID, p);
280 			break;
281 		case PRIO_USER:
282 			user = current->user;
283 			if (!who)
284 				who = current->uid;
285 			else
286 				if ((who != current->uid) && !(user = find_user(who)))
287 					goto out_unlock;	/* No processes for this user */
288 
289 			do_each_thread(g, p)
290 				if (p->uid == who)
291 					error = set_one_prio(p, niceval, error);
292 			while_each_thread(g, p);
293 			if (who != current->uid)
294 				free_uid(user);		/* For find_user() */
295 			break;
296 	}
297 out_unlock:
298 	read_unlock(&tasklist_lock);
299 out:
300 	return error;
301 }
302 
303 /*
304  * Ugh. To avoid negative return values, "getpriority()" will
305  * not return the normal nice-value, but a negated value that
306  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
307  * to stay compatible.
308  */
309 asmlinkage long sys_getpriority(int which, int who)
310 {
311 	struct task_struct *g, *p;
312 	struct user_struct *user;
313 	long niceval, retval = -ESRCH;
314 
315 	if (which > 2 || which < 0)
316 		return -EINVAL;
317 
318 	read_lock(&tasklist_lock);
319 	switch (which) {
320 		case PRIO_PROCESS:
321 			if (!who)
322 				who = current->pid;
323 			p = find_task_by_pid(who);
324 			if (p) {
325 				niceval = 20 - task_nice(p);
326 				if (niceval > retval)
327 					retval = niceval;
328 			}
329 			break;
330 		case PRIO_PGRP:
331 			if (!who)
332 				who = process_group(current);
333 			do_each_task_pid(who, PIDTYPE_PGID, p) {
334 				niceval = 20 - task_nice(p);
335 				if (niceval > retval)
336 					retval = niceval;
337 			} while_each_task_pid(who, PIDTYPE_PGID, p);
338 			break;
339 		case PRIO_USER:
340 			user = current->user;
341 			if (!who)
342 				who = current->uid;
343 			else
344 				if ((who != current->uid) && !(user = find_user(who)))
345 					goto out_unlock;	/* No processes for this user */
346 
347 			do_each_thread(g, p)
348 				if (p->uid == who) {
349 					niceval = 20 - task_nice(p);
350 					if (niceval > retval)
351 						retval = niceval;
352 				}
353 			while_each_thread(g, p);
354 			if (who != current->uid)
355 				free_uid(user);		/* for find_user() */
356 			break;
357 	}
358 out_unlock:
359 	read_unlock(&tasklist_lock);
360 
361 	return retval;
362 }
363 
364 void emergency_restart(void)
365 {
366 	machine_emergency_restart();
367 }
368 EXPORT_SYMBOL_GPL(emergency_restart);
369 
370 void kernel_restart(char *cmd)
371 {
372 	notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
373 	system_state = SYSTEM_RESTART;
374 	device_shutdown();
375 	if (!cmd) {
376 		printk(KERN_EMERG "Restarting system.\n");
377 	} else {
378 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
379 	}
380 	printk(".\n");
381 	machine_restart(cmd);
382 }
383 EXPORT_SYMBOL_GPL(kernel_restart);
384 
385 void kernel_kexec(void)
386 {
387 #ifdef CONFIG_KEXEC
388 	struct kimage *image;
389 	image = xchg(&kexec_image, 0);
390 	if (!image) {
391 		return;
392 	}
393 	notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
394 	system_state = SYSTEM_RESTART;
395 	device_shutdown();
396 	printk(KERN_EMERG "Starting new kernel\n");
397 	machine_shutdown();
398 	machine_kexec(image);
399 #endif
400 }
401 EXPORT_SYMBOL_GPL(kernel_kexec);
402 
403 void kernel_halt(void)
404 {
405 	notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
406 	system_state = SYSTEM_HALT;
407 	device_shutdown();
408 	printk(KERN_EMERG "System halted.\n");
409 	machine_halt();
410 }
411 EXPORT_SYMBOL_GPL(kernel_halt);
412 
413 void kernel_power_off(void)
414 {
415 	notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
416 	system_state = SYSTEM_POWER_OFF;
417 	device_shutdown();
418 	printk(KERN_EMERG "Power down.\n");
419 	machine_power_off();
420 }
421 EXPORT_SYMBOL_GPL(kernel_power_off);
422 
423 /*
424  * Reboot system call: for obvious reasons only root may call it,
425  * and even root needs to set up some magic numbers in the registers
426  * so that some mistake won't make this reboot the whole machine.
427  * You can also set the meaning of the ctrl-alt-del-key here.
428  *
429  * reboot doesn't sync: do that yourself before calling this.
430  */
431 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
432 {
433 	char buffer[256];
434 
435 	/* We only trust the superuser with rebooting the system. */
436 	if (!capable(CAP_SYS_BOOT))
437 		return -EPERM;
438 
439 	/* For safety, we require "magic" arguments. */
440 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
441 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
442 	                magic2 != LINUX_REBOOT_MAGIC2A &&
443 			magic2 != LINUX_REBOOT_MAGIC2B &&
444 	                magic2 != LINUX_REBOOT_MAGIC2C))
445 		return -EINVAL;
446 
447 	lock_kernel();
448 	switch (cmd) {
449 	case LINUX_REBOOT_CMD_RESTART:
450 		kernel_restart(NULL);
451 		break;
452 
453 	case LINUX_REBOOT_CMD_CAD_ON:
454 		C_A_D = 1;
455 		break;
456 
457 	case LINUX_REBOOT_CMD_CAD_OFF:
458 		C_A_D = 0;
459 		break;
460 
461 	case LINUX_REBOOT_CMD_HALT:
462 		kernel_halt();
463 		unlock_kernel();
464 		do_exit(0);
465 		break;
466 
467 	case LINUX_REBOOT_CMD_POWER_OFF:
468 		kernel_power_off();
469 		unlock_kernel();
470 		do_exit(0);
471 		break;
472 
473 	case LINUX_REBOOT_CMD_RESTART2:
474 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
475 			unlock_kernel();
476 			return -EFAULT;
477 		}
478 		buffer[sizeof(buffer) - 1] = '\0';
479 
480 		kernel_restart(buffer);
481 		break;
482 
483 	case LINUX_REBOOT_CMD_KEXEC:
484 		kernel_kexec();
485 		unlock_kernel();
486 		return -EINVAL;
487 
488 #ifdef CONFIG_SOFTWARE_SUSPEND
489 	case LINUX_REBOOT_CMD_SW_SUSPEND:
490 		{
491 			int ret = software_suspend();
492 			unlock_kernel();
493 			return ret;
494 		}
495 #endif
496 
497 	default:
498 		unlock_kernel();
499 		return -EINVAL;
500 	}
501 	unlock_kernel();
502 	return 0;
503 }
504 
505 static void deferred_cad(void *dummy)
506 {
507 	kernel_restart(NULL);
508 }
509 
510 /*
511  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
512  * As it's called within an interrupt, it may NOT sync: the only choice
513  * is whether to reboot at once, or just ignore the ctrl-alt-del.
514  */
515 void ctrl_alt_del(void)
516 {
517 	static DECLARE_WORK(cad_work, deferred_cad, NULL);
518 
519 	if (C_A_D)
520 		schedule_work(&cad_work);
521 	else
522 		kill_proc(cad_pid, SIGINT, 1);
523 }
524 
525 
526 /*
527  * Unprivileged users may change the real gid to the effective gid
528  * or vice versa.  (BSD-style)
529  *
530  * If you set the real gid at all, or set the effective gid to a value not
531  * equal to the real gid, then the saved gid is set to the new effective gid.
532  *
533  * This makes it possible for a setgid program to completely drop its
534  * privileges, which is often a useful assertion to make when you are doing
535  * a security audit over a program.
536  *
537  * The general idea is that a program which uses just setregid() will be
538  * 100% compatible with BSD.  A program which uses just setgid() will be
539  * 100% compatible with POSIX with saved IDs.
540  *
541  * SMP: There are not races, the GIDs are checked only by filesystem
542  *      operations (as far as semantic preservation is concerned).
543  */
544 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
545 {
546 	int old_rgid = current->gid;
547 	int old_egid = current->egid;
548 	int new_rgid = old_rgid;
549 	int new_egid = old_egid;
550 	int retval;
551 
552 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
553 	if (retval)
554 		return retval;
555 
556 	if (rgid != (gid_t) -1) {
557 		if ((old_rgid == rgid) ||
558 		    (current->egid==rgid) ||
559 		    capable(CAP_SETGID))
560 			new_rgid = rgid;
561 		else
562 			return -EPERM;
563 	}
564 	if (egid != (gid_t) -1) {
565 		if ((old_rgid == egid) ||
566 		    (current->egid == egid) ||
567 		    (current->sgid == egid) ||
568 		    capable(CAP_SETGID))
569 			new_egid = egid;
570 		else {
571 			return -EPERM;
572 		}
573 	}
574 	if (new_egid != old_egid)
575 	{
576 		current->mm->dumpable = suid_dumpable;
577 		smp_wmb();
578 	}
579 	if (rgid != (gid_t) -1 ||
580 	    (egid != (gid_t) -1 && egid != old_rgid))
581 		current->sgid = new_egid;
582 	current->fsgid = new_egid;
583 	current->egid = new_egid;
584 	current->gid = new_rgid;
585 	key_fsgid_changed(current);
586 	return 0;
587 }
588 
589 /*
590  * setgid() is implemented like SysV w/ SAVED_IDS
591  *
592  * SMP: Same implicit races as above.
593  */
594 asmlinkage long sys_setgid(gid_t gid)
595 {
596 	int old_egid = current->egid;
597 	int retval;
598 
599 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
600 	if (retval)
601 		return retval;
602 
603 	if (capable(CAP_SETGID))
604 	{
605 		if(old_egid != gid)
606 		{
607 			current->mm->dumpable = suid_dumpable;
608 			smp_wmb();
609 		}
610 		current->gid = current->egid = current->sgid = current->fsgid = gid;
611 	}
612 	else if ((gid == current->gid) || (gid == current->sgid))
613 	{
614 		if(old_egid != gid)
615 		{
616 			current->mm->dumpable = suid_dumpable;
617 			smp_wmb();
618 		}
619 		current->egid = current->fsgid = gid;
620 	}
621 	else
622 		return -EPERM;
623 
624 	key_fsgid_changed(current);
625 	return 0;
626 }
627 
628 static int set_user(uid_t new_ruid, int dumpclear)
629 {
630 	struct user_struct *new_user;
631 
632 	new_user = alloc_uid(new_ruid);
633 	if (!new_user)
634 		return -EAGAIN;
635 
636 	if (atomic_read(&new_user->processes) >=
637 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
638 			new_user != &root_user) {
639 		free_uid(new_user);
640 		return -EAGAIN;
641 	}
642 
643 	switch_uid(new_user);
644 
645 	if(dumpclear)
646 	{
647 		current->mm->dumpable = suid_dumpable;
648 		smp_wmb();
649 	}
650 	current->uid = new_ruid;
651 	return 0;
652 }
653 
654 /*
655  * Unprivileged users may change the real uid to the effective uid
656  * or vice versa.  (BSD-style)
657  *
658  * If you set the real uid at all, or set the effective uid to a value not
659  * equal to the real uid, then the saved uid is set to the new effective uid.
660  *
661  * This makes it possible for a setuid program to completely drop its
662  * privileges, which is often a useful assertion to make when you are doing
663  * a security audit over a program.
664  *
665  * The general idea is that a program which uses just setreuid() will be
666  * 100% compatible with BSD.  A program which uses just setuid() will be
667  * 100% compatible with POSIX with saved IDs.
668  */
669 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
670 {
671 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
672 	int retval;
673 
674 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
675 	if (retval)
676 		return retval;
677 
678 	new_ruid = old_ruid = current->uid;
679 	new_euid = old_euid = current->euid;
680 	old_suid = current->suid;
681 
682 	if (ruid != (uid_t) -1) {
683 		new_ruid = ruid;
684 		if ((old_ruid != ruid) &&
685 		    (current->euid != ruid) &&
686 		    !capable(CAP_SETUID))
687 			return -EPERM;
688 	}
689 
690 	if (euid != (uid_t) -1) {
691 		new_euid = euid;
692 		if ((old_ruid != euid) &&
693 		    (current->euid != euid) &&
694 		    (current->suid != euid) &&
695 		    !capable(CAP_SETUID))
696 			return -EPERM;
697 	}
698 
699 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
700 		return -EAGAIN;
701 
702 	if (new_euid != old_euid)
703 	{
704 		current->mm->dumpable = suid_dumpable;
705 		smp_wmb();
706 	}
707 	current->fsuid = current->euid = new_euid;
708 	if (ruid != (uid_t) -1 ||
709 	    (euid != (uid_t) -1 && euid != old_ruid))
710 		current->suid = current->euid;
711 	current->fsuid = current->euid;
712 
713 	key_fsuid_changed(current);
714 
715 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
716 }
717 
718 
719 
720 /*
721  * setuid() is implemented like SysV with SAVED_IDS
722  *
723  * Note that SAVED_ID's is deficient in that a setuid root program
724  * like sendmail, for example, cannot set its uid to be a normal
725  * user and then switch back, because if you're root, setuid() sets
726  * the saved uid too.  If you don't like this, blame the bright people
727  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
728  * will allow a root program to temporarily drop privileges and be able to
729  * regain them by swapping the real and effective uid.
730  */
731 asmlinkage long sys_setuid(uid_t uid)
732 {
733 	int old_euid = current->euid;
734 	int old_ruid, old_suid, new_ruid, new_suid;
735 	int retval;
736 
737 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
738 	if (retval)
739 		return retval;
740 
741 	old_ruid = new_ruid = current->uid;
742 	old_suid = current->suid;
743 	new_suid = old_suid;
744 
745 	if (capable(CAP_SETUID)) {
746 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
747 			return -EAGAIN;
748 		new_suid = uid;
749 	} else if ((uid != current->uid) && (uid != new_suid))
750 		return -EPERM;
751 
752 	if (old_euid != uid)
753 	{
754 		current->mm->dumpable = suid_dumpable;
755 		smp_wmb();
756 	}
757 	current->fsuid = current->euid = uid;
758 	current->suid = new_suid;
759 
760 	key_fsuid_changed(current);
761 
762 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
763 }
764 
765 
766 /*
767  * This function implements a generic ability to update ruid, euid,
768  * and suid.  This allows you to implement the 4.4 compatible seteuid().
769  */
770 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
771 {
772 	int old_ruid = current->uid;
773 	int old_euid = current->euid;
774 	int old_suid = current->suid;
775 	int retval;
776 
777 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
778 	if (retval)
779 		return retval;
780 
781 	if (!capable(CAP_SETUID)) {
782 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
783 		    (ruid != current->euid) && (ruid != current->suid))
784 			return -EPERM;
785 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
786 		    (euid != current->euid) && (euid != current->suid))
787 			return -EPERM;
788 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
789 		    (suid != current->euid) && (suid != current->suid))
790 			return -EPERM;
791 	}
792 	if (ruid != (uid_t) -1) {
793 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
794 			return -EAGAIN;
795 	}
796 	if (euid != (uid_t) -1) {
797 		if (euid != current->euid)
798 		{
799 			current->mm->dumpable = suid_dumpable;
800 			smp_wmb();
801 		}
802 		current->euid = euid;
803 	}
804 	current->fsuid = current->euid;
805 	if (suid != (uid_t) -1)
806 		current->suid = suid;
807 
808 	key_fsuid_changed(current);
809 
810 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
811 }
812 
813 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
814 {
815 	int retval;
816 
817 	if (!(retval = put_user(current->uid, ruid)) &&
818 	    !(retval = put_user(current->euid, euid)))
819 		retval = put_user(current->suid, suid);
820 
821 	return retval;
822 }
823 
824 /*
825  * Same as above, but for rgid, egid, sgid.
826  */
827 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
828 {
829 	int retval;
830 
831 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
832 	if (retval)
833 		return retval;
834 
835 	if (!capable(CAP_SETGID)) {
836 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
837 		    (rgid != current->egid) && (rgid != current->sgid))
838 			return -EPERM;
839 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
840 		    (egid != current->egid) && (egid != current->sgid))
841 			return -EPERM;
842 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
843 		    (sgid != current->egid) && (sgid != current->sgid))
844 			return -EPERM;
845 	}
846 	if (egid != (gid_t) -1) {
847 		if (egid != current->egid)
848 		{
849 			current->mm->dumpable = suid_dumpable;
850 			smp_wmb();
851 		}
852 		current->egid = egid;
853 	}
854 	current->fsgid = current->egid;
855 	if (rgid != (gid_t) -1)
856 		current->gid = rgid;
857 	if (sgid != (gid_t) -1)
858 		current->sgid = sgid;
859 
860 	key_fsgid_changed(current);
861 	return 0;
862 }
863 
864 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
865 {
866 	int retval;
867 
868 	if (!(retval = put_user(current->gid, rgid)) &&
869 	    !(retval = put_user(current->egid, egid)))
870 		retval = put_user(current->sgid, sgid);
871 
872 	return retval;
873 }
874 
875 
876 /*
877  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
878  * is used for "access()" and for the NFS daemon (letting nfsd stay at
879  * whatever uid it wants to). It normally shadows "euid", except when
880  * explicitly set by setfsuid() or for access..
881  */
882 asmlinkage long sys_setfsuid(uid_t uid)
883 {
884 	int old_fsuid;
885 
886 	old_fsuid = current->fsuid;
887 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
888 		return old_fsuid;
889 
890 	if (uid == current->uid || uid == current->euid ||
891 	    uid == current->suid || uid == current->fsuid ||
892 	    capable(CAP_SETUID))
893 	{
894 		if (uid != old_fsuid)
895 		{
896 			current->mm->dumpable = suid_dumpable;
897 			smp_wmb();
898 		}
899 		current->fsuid = uid;
900 	}
901 
902 	key_fsuid_changed(current);
903 
904 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
905 
906 	return old_fsuid;
907 }
908 
909 /*
910  * Samma p� svenska..
911  */
912 asmlinkage long sys_setfsgid(gid_t gid)
913 {
914 	int old_fsgid;
915 
916 	old_fsgid = current->fsgid;
917 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
918 		return old_fsgid;
919 
920 	if (gid == current->gid || gid == current->egid ||
921 	    gid == current->sgid || gid == current->fsgid ||
922 	    capable(CAP_SETGID))
923 	{
924 		if (gid != old_fsgid)
925 		{
926 			current->mm->dumpable = suid_dumpable;
927 			smp_wmb();
928 		}
929 		current->fsgid = gid;
930 		key_fsgid_changed(current);
931 	}
932 	return old_fsgid;
933 }
934 
935 asmlinkage long sys_times(struct tms __user * tbuf)
936 {
937 	/*
938 	 *	In the SMP world we might just be unlucky and have one of
939 	 *	the times increment as we use it. Since the value is an
940 	 *	atomically safe type this is just fine. Conceptually its
941 	 *	as if the syscall took an instant longer to occur.
942 	 */
943 	if (tbuf) {
944 		struct tms tmp;
945 		cputime_t utime, stime, cutime, cstime;
946 
947 #ifdef CONFIG_SMP
948 		if (thread_group_empty(current)) {
949 			/*
950 			 * Single thread case without the use of any locks.
951 			 *
952 			 * We may race with release_task if two threads are
953 			 * executing. However, release task first adds up the
954 			 * counters (__exit_signal) before  removing the task
955 			 * from the process tasklist (__unhash_process).
956 			 * __exit_signal also acquires and releases the
957 			 * siglock which results in the proper memory ordering
958 			 * so that the list modifications are always visible
959 			 * after the counters have been updated.
960 			 *
961 			 * If the counters have been updated by the second thread
962 			 * but the thread has not yet been removed from the list
963 			 * then the other branch will be executing which will
964 			 * block on tasklist_lock until the exit handling of the
965 			 * other task is finished.
966 			 *
967 			 * This also implies that the sighand->siglock cannot
968 			 * be held by another processor. So we can also
969 			 * skip acquiring that lock.
970 			 */
971 			utime = cputime_add(current->signal->utime, current->utime);
972 			stime = cputime_add(current->signal->utime, current->stime);
973 			cutime = current->signal->cutime;
974 			cstime = current->signal->cstime;
975 		} else
976 #endif
977 		{
978 
979 			/* Process with multiple threads */
980 			struct task_struct *tsk = current;
981 			struct task_struct *t;
982 
983 			read_lock(&tasklist_lock);
984 			utime = tsk->signal->utime;
985 			stime = tsk->signal->stime;
986 			t = tsk;
987 			do {
988 				utime = cputime_add(utime, t->utime);
989 				stime = cputime_add(stime, t->stime);
990 				t = next_thread(t);
991 			} while (t != tsk);
992 
993 			/*
994 			 * While we have tasklist_lock read-locked, no dying thread
995 			 * can be updating current->signal->[us]time.  Instead,
996 			 * we got their counts included in the live thread loop.
997 			 * However, another thread can come in right now and
998 			 * do a wait call that updates current->signal->c[us]time.
999 			 * To make sure we always see that pair updated atomically,
1000 			 * we take the siglock around fetching them.
1001 			 */
1002 			spin_lock_irq(&tsk->sighand->siglock);
1003 			cutime = tsk->signal->cutime;
1004 			cstime = tsk->signal->cstime;
1005 			spin_unlock_irq(&tsk->sighand->siglock);
1006 			read_unlock(&tasklist_lock);
1007 		}
1008 		tmp.tms_utime = cputime_to_clock_t(utime);
1009 		tmp.tms_stime = cputime_to_clock_t(stime);
1010 		tmp.tms_cutime = cputime_to_clock_t(cutime);
1011 		tmp.tms_cstime = cputime_to_clock_t(cstime);
1012 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1013 			return -EFAULT;
1014 	}
1015 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1016 }
1017 
1018 /*
1019  * This needs some heavy checking ...
1020  * I just haven't the stomach for it. I also don't fully
1021  * understand sessions/pgrp etc. Let somebody who does explain it.
1022  *
1023  * OK, I think I have the protection semantics right.... this is really
1024  * only important on a multi-user system anyway, to make sure one user
1025  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1026  *
1027  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1028  * LBT 04.03.94
1029  */
1030 
1031 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1032 {
1033 	struct task_struct *p;
1034 	int err = -EINVAL;
1035 
1036 	if (!pid)
1037 		pid = current->pid;
1038 	if (!pgid)
1039 		pgid = pid;
1040 	if (pgid < 0)
1041 		return -EINVAL;
1042 
1043 	/* From this point forward we keep holding onto the tasklist lock
1044 	 * so that our parent does not change from under us. -DaveM
1045 	 */
1046 	write_lock_irq(&tasklist_lock);
1047 
1048 	err = -ESRCH;
1049 	p = find_task_by_pid(pid);
1050 	if (!p)
1051 		goto out;
1052 
1053 	err = -EINVAL;
1054 	if (!thread_group_leader(p))
1055 		goto out;
1056 
1057 	if (p->parent == current || p->real_parent == current) {
1058 		err = -EPERM;
1059 		if (p->signal->session != current->signal->session)
1060 			goto out;
1061 		err = -EACCES;
1062 		if (p->did_exec)
1063 			goto out;
1064 	} else {
1065 		err = -ESRCH;
1066 		if (p != current)
1067 			goto out;
1068 	}
1069 
1070 	err = -EPERM;
1071 	if (p->signal->leader)
1072 		goto out;
1073 
1074 	if (pgid != pid) {
1075 		struct task_struct *p;
1076 
1077 		do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1078 			if (p->signal->session == current->signal->session)
1079 				goto ok_pgid;
1080 		} while_each_task_pid(pgid, PIDTYPE_PGID, p);
1081 		goto out;
1082 	}
1083 
1084 ok_pgid:
1085 	err = security_task_setpgid(p, pgid);
1086 	if (err)
1087 		goto out;
1088 
1089 	if (process_group(p) != pgid) {
1090 		detach_pid(p, PIDTYPE_PGID);
1091 		p->signal->pgrp = pgid;
1092 		attach_pid(p, PIDTYPE_PGID, pgid);
1093 	}
1094 
1095 	err = 0;
1096 out:
1097 	/* All paths lead to here, thus we are safe. -DaveM */
1098 	write_unlock_irq(&tasklist_lock);
1099 	return err;
1100 }
1101 
1102 asmlinkage long sys_getpgid(pid_t pid)
1103 {
1104 	if (!pid) {
1105 		return process_group(current);
1106 	} else {
1107 		int retval;
1108 		struct task_struct *p;
1109 
1110 		read_lock(&tasklist_lock);
1111 		p = find_task_by_pid(pid);
1112 
1113 		retval = -ESRCH;
1114 		if (p) {
1115 			retval = security_task_getpgid(p);
1116 			if (!retval)
1117 				retval = process_group(p);
1118 		}
1119 		read_unlock(&tasklist_lock);
1120 		return retval;
1121 	}
1122 }
1123 
1124 #ifdef __ARCH_WANT_SYS_GETPGRP
1125 
1126 asmlinkage long sys_getpgrp(void)
1127 {
1128 	/* SMP - assuming writes are word atomic this is fine */
1129 	return process_group(current);
1130 }
1131 
1132 #endif
1133 
1134 asmlinkage long sys_getsid(pid_t pid)
1135 {
1136 	if (!pid) {
1137 		return current->signal->session;
1138 	} else {
1139 		int retval;
1140 		struct task_struct *p;
1141 
1142 		read_lock(&tasklist_lock);
1143 		p = find_task_by_pid(pid);
1144 
1145 		retval = -ESRCH;
1146 		if(p) {
1147 			retval = security_task_getsid(p);
1148 			if (!retval)
1149 				retval = p->signal->session;
1150 		}
1151 		read_unlock(&tasklist_lock);
1152 		return retval;
1153 	}
1154 }
1155 
1156 asmlinkage long sys_setsid(void)
1157 {
1158 	struct pid *pid;
1159 	int err = -EPERM;
1160 
1161 	if (!thread_group_leader(current))
1162 		return -EINVAL;
1163 
1164 	down(&tty_sem);
1165 	write_lock_irq(&tasklist_lock);
1166 
1167 	pid = find_pid(PIDTYPE_PGID, current->pid);
1168 	if (pid)
1169 		goto out;
1170 
1171 	current->signal->leader = 1;
1172 	__set_special_pids(current->pid, current->pid);
1173 	current->signal->tty = NULL;
1174 	current->signal->tty_old_pgrp = 0;
1175 	err = process_group(current);
1176 out:
1177 	write_unlock_irq(&tasklist_lock);
1178 	up(&tty_sem);
1179 	return err;
1180 }
1181 
1182 /*
1183  * Supplementary group IDs
1184  */
1185 
1186 /* init to 2 - one for init_task, one to ensure it is never freed */
1187 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1188 
1189 struct group_info *groups_alloc(int gidsetsize)
1190 {
1191 	struct group_info *group_info;
1192 	int nblocks;
1193 	int i;
1194 
1195 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1196 	/* Make sure we always allocate at least one indirect block pointer */
1197 	nblocks = nblocks ? : 1;
1198 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1199 	if (!group_info)
1200 		return NULL;
1201 	group_info->ngroups = gidsetsize;
1202 	group_info->nblocks = nblocks;
1203 	atomic_set(&group_info->usage, 1);
1204 
1205 	if (gidsetsize <= NGROUPS_SMALL) {
1206 		group_info->blocks[0] = group_info->small_block;
1207 	} else {
1208 		for (i = 0; i < nblocks; i++) {
1209 			gid_t *b;
1210 			b = (void *)__get_free_page(GFP_USER);
1211 			if (!b)
1212 				goto out_undo_partial_alloc;
1213 			group_info->blocks[i] = b;
1214 		}
1215 	}
1216 	return group_info;
1217 
1218 out_undo_partial_alloc:
1219 	while (--i >= 0) {
1220 		free_page((unsigned long)group_info->blocks[i]);
1221 	}
1222 	kfree(group_info);
1223 	return NULL;
1224 }
1225 
1226 EXPORT_SYMBOL(groups_alloc);
1227 
1228 void groups_free(struct group_info *group_info)
1229 {
1230 	if (group_info->blocks[0] != group_info->small_block) {
1231 		int i;
1232 		for (i = 0; i < group_info->nblocks; i++)
1233 			free_page((unsigned long)group_info->blocks[i]);
1234 	}
1235 	kfree(group_info);
1236 }
1237 
1238 EXPORT_SYMBOL(groups_free);
1239 
1240 /* export the group_info to a user-space array */
1241 static int groups_to_user(gid_t __user *grouplist,
1242     struct group_info *group_info)
1243 {
1244 	int i;
1245 	int count = group_info->ngroups;
1246 
1247 	for (i = 0; i < group_info->nblocks; i++) {
1248 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1249 		int off = i * NGROUPS_PER_BLOCK;
1250 		int len = cp_count * sizeof(*grouplist);
1251 
1252 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1253 			return -EFAULT;
1254 
1255 		count -= cp_count;
1256 	}
1257 	return 0;
1258 }
1259 
1260 /* fill a group_info from a user-space array - it must be allocated already */
1261 static int groups_from_user(struct group_info *group_info,
1262     gid_t __user *grouplist)
1263  {
1264 	int i;
1265 	int count = group_info->ngroups;
1266 
1267 	for (i = 0; i < group_info->nblocks; i++) {
1268 		int cp_count = min(NGROUPS_PER_BLOCK, count);
1269 		int off = i * NGROUPS_PER_BLOCK;
1270 		int len = cp_count * sizeof(*grouplist);
1271 
1272 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1273 			return -EFAULT;
1274 
1275 		count -= cp_count;
1276 	}
1277 	return 0;
1278 }
1279 
1280 /* a simple Shell sort */
1281 static void groups_sort(struct group_info *group_info)
1282 {
1283 	int base, max, stride;
1284 	int gidsetsize = group_info->ngroups;
1285 
1286 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1287 		; /* nothing */
1288 	stride /= 3;
1289 
1290 	while (stride) {
1291 		max = gidsetsize - stride;
1292 		for (base = 0; base < max; base++) {
1293 			int left = base;
1294 			int right = left + stride;
1295 			gid_t tmp = GROUP_AT(group_info, right);
1296 
1297 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1298 				GROUP_AT(group_info, right) =
1299 				    GROUP_AT(group_info, left);
1300 				right = left;
1301 				left -= stride;
1302 			}
1303 			GROUP_AT(group_info, right) = tmp;
1304 		}
1305 		stride /= 3;
1306 	}
1307 }
1308 
1309 /* a simple bsearch */
1310 int groups_search(struct group_info *group_info, gid_t grp)
1311 {
1312 	int left, right;
1313 
1314 	if (!group_info)
1315 		return 0;
1316 
1317 	left = 0;
1318 	right = group_info->ngroups;
1319 	while (left < right) {
1320 		int mid = (left+right)/2;
1321 		int cmp = grp - GROUP_AT(group_info, mid);
1322 		if (cmp > 0)
1323 			left = mid + 1;
1324 		else if (cmp < 0)
1325 			right = mid;
1326 		else
1327 			return 1;
1328 	}
1329 	return 0;
1330 }
1331 
1332 /* validate and set current->group_info */
1333 int set_current_groups(struct group_info *group_info)
1334 {
1335 	int retval;
1336 	struct group_info *old_info;
1337 
1338 	retval = security_task_setgroups(group_info);
1339 	if (retval)
1340 		return retval;
1341 
1342 	groups_sort(group_info);
1343 	get_group_info(group_info);
1344 
1345 	task_lock(current);
1346 	old_info = current->group_info;
1347 	current->group_info = group_info;
1348 	task_unlock(current);
1349 
1350 	put_group_info(old_info);
1351 
1352 	return 0;
1353 }
1354 
1355 EXPORT_SYMBOL(set_current_groups);
1356 
1357 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1358 {
1359 	int i = 0;
1360 
1361 	/*
1362 	 *	SMP: Nobody else can change our grouplist. Thus we are
1363 	 *	safe.
1364 	 */
1365 
1366 	if (gidsetsize < 0)
1367 		return -EINVAL;
1368 
1369 	/* no need to grab task_lock here; it cannot change */
1370 	get_group_info(current->group_info);
1371 	i = current->group_info->ngroups;
1372 	if (gidsetsize) {
1373 		if (i > gidsetsize) {
1374 			i = -EINVAL;
1375 			goto out;
1376 		}
1377 		if (groups_to_user(grouplist, current->group_info)) {
1378 			i = -EFAULT;
1379 			goto out;
1380 		}
1381 	}
1382 out:
1383 	put_group_info(current->group_info);
1384 	return i;
1385 }
1386 
1387 /*
1388  *	SMP: Our groups are copy-on-write. We can set them safely
1389  *	without another task interfering.
1390  */
1391 
1392 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1393 {
1394 	struct group_info *group_info;
1395 	int retval;
1396 
1397 	if (!capable(CAP_SETGID))
1398 		return -EPERM;
1399 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1400 		return -EINVAL;
1401 
1402 	group_info = groups_alloc(gidsetsize);
1403 	if (!group_info)
1404 		return -ENOMEM;
1405 	retval = groups_from_user(group_info, grouplist);
1406 	if (retval) {
1407 		put_group_info(group_info);
1408 		return retval;
1409 	}
1410 
1411 	retval = set_current_groups(group_info);
1412 	put_group_info(group_info);
1413 
1414 	return retval;
1415 }
1416 
1417 /*
1418  * Check whether we're fsgid/egid or in the supplemental group..
1419  */
1420 int in_group_p(gid_t grp)
1421 {
1422 	int retval = 1;
1423 	if (grp != current->fsgid) {
1424 		get_group_info(current->group_info);
1425 		retval = groups_search(current->group_info, grp);
1426 		put_group_info(current->group_info);
1427 	}
1428 	return retval;
1429 }
1430 
1431 EXPORT_SYMBOL(in_group_p);
1432 
1433 int in_egroup_p(gid_t grp)
1434 {
1435 	int retval = 1;
1436 	if (grp != current->egid) {
1437 		get_group_info(current->group_info);
1438 		retval = groups_search(current->group_info, grp);
1439 		put_group_info(current->group_info);
1440 	}
1441 	return retval;
1442 }
1443 
1444 EXPORT_SYMBOL(in_egroup_p);
1445 
1446 DECLARE_RWSEM(uts_sem);
1447 
1448 EXPORT_SYMBOL(uts_sem);
1449 
1450 asmlinkage long sys_newuname(struct new_utsname __user * name)
1451 {
1452 	int errno = 0;
1453 
1454 	down_read(&uts_sem);
1455 	if (copy_to_user(name,&system_utsname,sizeof *name))
1456 		errno = -EFAULT;
1457 	up_read(&uts_sem);
1458 	return errno;
1459 }
1460 
1461 asmlinkage long sys_sethostname(char __user *name, int len)
1462 {
1463 	int errno;
1464 	char tmp[__NEW_UTS_LEN];
1465 
1466 	if (!capable(CAP_SYS_ADMIN))
1467 		return -EPERM;
1468 	if (len < 0 || len > __NEW_UTS_LEN)
1469 		return -EINVAL;
1470 	down_write(&uts_sem);
1471 	errno = -EFAULT;
1472 	if (!copy_from_user(tmp, name, len)) {
1473 		memcpy(system_utsname.nodename, tmp, len);
1474 		system_utsname.nodename[len] = 0;
1475 		errno = 0;
1476 	}
1477 	up_write(&uts_sem);
1478 	return errno;
1479 }
1480 
1481 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1482 
1483 asmlinkage long sys_gethostname(char __user *name, int len)
1484 {
1485 	int i, errno;
1486 
1487 	if (len < 0)
1488 		return -EINVAL;
1489 	down_read(&uts_sem);
1490 	i = 1 + strlen(system_utsname.nodename);
1491 	if (i > len)
1492 		i = len;
1493 	errno = 0;
1494 	if (copy_to_user(name, system_utsname.nodename, i))
1495 		errno = -EFAULT;
1496 	up_read(&uts_sem);
1497 	return errno;
1498 }
1499 
1500 #endif
1501 
1502 /*
1503  * Only setdomainname; getdomainname can be implemented by calling
1504  * uname()
1505  */
1506 asmlinkage long sys_setdomainname(char __user *name, int len)
1507 {
1508 	int errno;
1509 	char tmp[__NEW_UTS_LEN];
1510 
1511 	if (!capable(CAP_SYS_ADMIN))
1512 		return -EPERM;
1513 	if (len < 0 || len > __NEW_UTS_LEN)
1514 		return -EINVAL;
1515 
1516 	down_write(&uts_sem);
1517 	errno = -EFAULT;
1518 	if (!copy_from_user(tmp, name, len)) {
1519 		memcpy(system_utsname.domainname, tmp, len);
1520 		system_utsname.domainname[len] = 0;
1521 		errno = 0;
1522 	}
1523 	up_write(&uts_sem);
1524 	return errno;
1525 }
1526 
1527 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1528 {
1529 	if (resource >= RLIM_NLIMITS)
1530 		return -EINVAL;
1531 	else {
1532 		struct rlimit value;
1533 		task_lock(current->group_leader);
1534 		value = current->signal->rlim[resource];
1535 		task_unlock(current->group_leader);
1536 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1537 	}
1538 }
1539 
1540 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1541 
1542 /*
1543  *	Back compatibility for getrlimit. Needed for some apps.
1544  */
1545 
1546 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1547 {
1548 	struct rlimit x;
1549 	if (resource >= RLIM_NLIMITS)
1550 		return -EINVAL;
1551 
1552 	task_lock(current->group_leader);
1553 	x = current->signal->rlim[resource];
1554 	task_unlock(current->group_leader);
1555 	if(x.rlim_cur > 0x7FFFFFFF)
1556 		x.rlim_cur = 0x7FFFFFFF;
1557 	if(x.rlim_max > 0x7FFFFFFF)
1558 		x.rlim_max = 0x7FFFFFFF;
1559 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1560 }
1561 
1562 #endif
1563 
1564 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1565 {
1566 	struct rlimit new_rlim, *old_rlim;
1567 	int retval;
1568 
1569 	if (resource >= RLIM_NLIMITS)
1570 		return -EINVAL;
1571 	if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1572 		return -EFAULT;
1573        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1574                return -EINVAL;
1575 	old_rlim = current->signal->rlim + resource;
1576 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1577 	    !capable(CAP_SYS_RESOURCE))
1578 		return -EPERM;
1579 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1580 			return -EPERM;
1581 
1582 	retval = security_task_setrlimit(resource, &new_rlim);
1583 	if (retval)
1584 		return retval;
1585 
1586 	task_lock(current->group_leader);
1587 	*old_rlim = new_rlim;
1588 	task_unlock(current->group_leader);
1589 
1590 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1591 	    (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1592 	     new_rlim.rlim_cur <= cputime_to_secs(
1593 		     current->signal->it_prof_expires))) {
1594 		cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1595 		read_lock(&tasklist_lock);
1596 		spin_lock_irq(&current->sighand->siglock);
1597 		set_process_cpu_timer(current, CPUCLOCK_PROF,
1598 				      &cputime, NULL);
1599 		spin_unlock_irq(&current->sighand->siglock);
1600 		read_unlock(&tasklist_lock);
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 /*
1607  * It would make sense to put struct rusage in the task_struct,
1608  * except that would make the task_struct be *really big*.  After
1609  * task_struct gets moved into malloc'ed memory, it would
1610  * make sense to do this.  It will make moving the rest of the information
1611  * a lot simpler!  (Which we're not doing right now because we're not
1612  * measuring them yet).
1613  *
1614  * This expects to be called with tasklist_lock read-locked or better,
1615  * and the siglock not locked.  It may momentarily take the siglock.
1616  *
1617  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1618  * races with threads incrementing their own counters.  But since word
1619  * reads are atomic, we either get new values or old values and we don't
1620  * care which for the sums.  We always take the siglock to protect reading
1621  * the c* fields from p->signal from races with exit.c updating those
1622  * fields when reaping, so a sample either gets all the additions of a
1623  * given child after it's reaped, or none so this sample is before reaping.
1624  */
1625 
1626 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1627 {
1628 	struct task_struct *t;
1629 	unsigned long flags;
1630 	cputime_t utime, stime;
1631 
1632 	memset((char *) r, 0, sizeof *r);
1633 
1634 	if (unlikely(!p->signal))
1635 		return;
1636 
1637 	switch (who) {
1638 		case RUSAGE_CHILDREN:
1639 			spin_lock_irqsave(&p->sighand->siglock, flags);
1640 			utime = p->signal->cutime;
1641 			stime = p->signal->cstime;
1642 			r->ru_nvcsw = p->signal->cnvcsw;
1643 			r->ru_nivcsw = p->signal->cnivcsw;
1644 			r->ru_minflt = p->signal->cmin_flt;
1645 			r->ru_majflt = p->signal->cmaj_flt;
1646 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647 			cputime_to_timeval(utime, &r->ru_utime);
1648 			cputime_to_timeval(stime, &r->ru_stime);
1649 			break;
1650 		case RUSAGE_SELF:
1651 			spin_lock_irqsave(&p->sighand->siglock, flags);
1652 			utime = stime = cputime_zero;
1653 			goto sum_group;
1654 		case RUSAGE_BOTH:
1655 			spin_lock_irqsave(&p->sighand->siglock, flags);
1656 			utime = p->signal->cutime;
1657 			stime = p->signal->cstime;
1658 			r->ru_nvcsw = p->signal->cnvcsw;
1659 			r->ru_nivcsw = p->signal->cnivcsw;
1660 			r->ru_minflt = p->signal->cmin_flt;
1661 			r->ru_majflt = p->signal->cmaj_flt;
1662 		sum_group:
1663 			utime = cputime_add(utime, p->signal->utime);
1664 			stime = cputime_add(stime, p->signal->stime);
1665 			r->ru_nvcsw += p->signal->nvcsw;
1666 			r->ru_nivcsw += p->signal->nivcsw;
1667 			r->ru_minflt += p->signal->min_flt;
1668 			r->ru_majflt += p->signal->maj_flt;
1669 			t = p;
1670 			do {
1671 				utime = cputime_add(utime, t->utime);
1672 				stime = cputime_add(stime, t->stime);
1673 				r->ru_nvcsw += t->nvcsw;
1674 				r->ru_nivcsw += t->nivcsw;
1675 				r->ru_minflt += t->min_flt;
1676 				r->ru_majflt += t->maj_flt;
1677 				t = next_thread(t);
1678 			} while (t != p);
1679 			spin_unlock_irqrestore(&p->sighand->siglock, flags);
1680 			cputime_to_timeval(utime, &r->ru_utime);
1681 			cputime_to_timeval(stime, &r->ru_stime);
1682 			break;
1683 		default:
1684 			BUG();
1685 	}
1686 }
1687 
1688 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1689 {
1690 	struct rusage r;
1691 	read_lock(&tasklist_lock);
1692 	k_getrusage(p, who, &r);
1693 	read_unlock(&tasklist_lock);
1694 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1695 }
1696 
1697 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1698 {
1699 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1700 		return -EINVAL;
1701 	return getrusage(current, who, ru);
1702 }
1703 
1704 asmlinkage long sys_umask(int mask)
1705 {
1706 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1707 	return mask;
1708 }
1709 
1710 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1711 			  unsigned long arg4, unsigned long arg5)
1712 {
1713 	long error;
1714 
1715 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1716 	if (error)
1717 		return error;
1718 
1719 	switch (option) {
1720 		case PR_SET_PDEATHSIG:
1721 			if (!valid_signal(arg2)) {
1722 				error = -EINVAL;
1723 				break;
1724 			}
1725 			current->pdeath_signal = arg2;
1726 			break;
1727 		case PR_GET_PDEATHSIG:
1728 			error = put_user(current->pdeath_signal, (int __user *)arg2);
1729 			break;
1730 		case PR_GET_DUMPABLE:
1731 			if (current->mm->dumpable)
1732 				error = 1;
1733 			break;
1734 		case PR_SET_DUMPABLE:
1735 			if (arg2 < 0 || arg2 > 2) {
1736 				error = -EINVAL;
1737 				break;
1738 			}
1739 			current->mm->dumpable = arg2;
1740 			break;
1741 
1742 		case PR_SET_UNALIGN:
1743 			error = SET_UNALIGN_CTL(current, arg2);
1744 			break;
1745 		case PR_GET_UNALIGN:
1746 			error = GET_UNALIGN_CTL(current, arg2);
1747 			break;
1748 		case PR_SET_FPEMU:
1749 			error = SET_FPEMU_CTL(current, arg2);
1750 			break;
1751 		case PR_GET_FPEMU:
1752 			error = GET_FPEMU_CTL(current, arg2);
1753 			break;
1754 		case PR_SET_FPEXC:
1755 			error = SET_FPEXC_CTL(current, arg2);
1756 			break;
1757 		case PR_GET_FPEXC:
1758 			error = GET_FPEXC_CTL(current, arg2);
1759 			break;
1760 		case PR_GET_TIMING:
1761 			error = PR_TIMING_STATISTICAL;
1762 			break;
1763 		case PR_SET_TIMING:
1764 			if (arg2 == PR_TIMING_STATISTICAL)
1765 				error = 0;
1766 			else
1767 				error = -EINVAL;
1768 			break;
1769 
1770 		case PR_GET_KEEPCAPS:
1771 			if (current->keep_capabilities)
1772 				error = 1;
1773 			break;
1774 		case PR_SET_KEEPCAPS:
1775 			if (arg2 != 0 && arg2 != 1) {
1776 				error = -EINVAL;
1777 				break;
1778 			}
1779 			current->keep_capabilities = arg2;
1780 			break;
1781 		case PR_SET_NAME: {
1782 			struct task_struct *me = current;
1783 			unsigned char ncomm[sizeof(me->comm)];
1784 
1785 			ncomm[sizeof(me->comm)-1] = 0;
1786 			if (strncpy_from_user(ncomm, (char __user *)arg2,
1787 						sizeof(me->comm)-1) < 0)
1788 				return -EFAULT;
1789 			set_task_comm(me, ncomm);
1790 			return 0;
1791 		}
1792 		case PR_GET_NAME: {
1793 			struct task_struct *me = current;
1794 			unsigned char tcomm[sizeof(me->comm)];
1795 
1796 			get_task_comm(tcomm, me);
1797 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1798 				return -EFAULT;
1799 			return 0;
1800 		}
1801 		default:
1802 			error = -EINVAL;
1803 			break;
1804 	}
1805 	return error;
1806 }
1807