xref: /linux/kernel/sys.c (revision 25489a4f556414445d342951615178368ee45cde)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/ksm.h>
19 #include <linux/perf_event.h>
20 #include <linux/resource.h>
21 #include <linux/kernel.h>
22 #include <linux/workqueue.h>
23 #include <linux/capability.h>
24 #include <linux/device.h>
25 #include <linux/key.h>
26 #include <linux/times.h>
27 #include <linux/posix-timers.h>
28 #include <linux/security.h>
29 #include <linux/random.h>
30 #include <linux/suspend.h>
31 #include <linux/tty.h>
32 #include <linux/signal.h>
33 #include <linux/cn_proc.h>
34 #include <linux/getcpu.h>
35 #include <linux/task_io_accounting_ops.h>
36 #include <linux/seccomp.h>
37 #include <linux/cpu.h>
38 #include <linux/personality.h>
39 #include <linux/ptrace.h>
40 #include <linux/fs_struct.h>
41 #include <linux/file.h>
42 #include <linux/mount.h>
43 #include <linux/gfp.h>
44 #include <linux/syscore_ops.h>
45 #include <linux/version.h>
46 #include <linux/ctype.h>
47 #include <linux/syscall_user_dispatch.h>
48 
49 #include <linux/compat.h>
50 #include <linux/syscalls.h>
51 #include <linux/kprobes.h>
52 #include <linux/user_namespace.h>
53 #include <linux/time_namespace.h>
54 #include <linux/binfmts.h>
55 #include <linux/futex.h>
56 
57 #include <linux/sched.h>
58 #include <linux/sched/autogroup.h>
59 #include <linux/sched/loadavg.h>
60 #include <linux/sched/stat.h>
61 #include <linux/sched/mm.h>
62 #include <linux/sched/coredump.h>
63 #include <linux/sched/task.h>
64 #include <linux/sched/cputime.h>
65 #include <linux/rcupdate.h>
66 #include <linux/uidgid.h>
67 #include <linux/cred.h>
68 
69 #include <linux/nospec.h>
70 
71 #include <linux/kmsg_dump.h>
72 /* Move somewhere else to avoid recompiling? */
73 #include <generated/utsrelease.h>
74 
75 #include <linux/uaccess.h>
76 #include <asm/io.h>
77 #include <asm/unistd.h>
78 
79 #include <trace/events/task.h>
80 
81 #include "uid16.h"
82 
83 #ifndef SET_UNALIGN_CTL
84 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef GET_UNALIGN_CTL
87 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef SET_FPEMU_CTL
90 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef GET_FPEMU_CTL
93 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
94 #endif
95 #ifndef SET_FPEXC_CTL
96 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
97 #endif
98 #ifndef GET_FPEXC_CTL
99 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
100 #endif
101 #ifndef GET_ENDIAN
102 # define GET_ENDIAN(a, b)	(-EINVAL)
103 #endif
104 #ifndef SET_ENDIAN
105 # define SET_ENDIAN(a, b)	(-EINVAL)
106 #endif
107 #ifndef GET_TSC_CTL
108 # define GET_TSC_CTL(a)		(-EINVAL)
109 #endif
110 #ifndef SET_TSC_CTL
111 # define SET_TSC_CTL(a)		(-EINVAL)
112 #endif
113 #ifndef GET_FP_MODE
114 # define GET_FP_MODE(a)		(-EINVAL)
115 #endif
116 #ifndef SET_FP_MODE
117 # define SET_FP_MODE(a,b)	(-EINVAL)
118 #endif
119 #ifndef SVE_SET_VL
120 # define SVE_SET_VL(a)		(-EINVAL)
121 #endif
122 #ifndef SVE_GET_VL
123 # define SVE_GET_VL()		(-EINVAL)
124 #endif
125 #ifndef SME_SET_VL
126 # define SME_SET_VL(a)		(-EINVAL)
127 #endif
128 #ifndef SME_GET_VL
129 # define SME_GET_VL()		(-EINVAL)
130 #endif
131 #ifndef PAC_RESET_KEYS
132 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
133 #endif
134 #ifndef PAC_SET_ENABLED_KEYS
135 # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
136 #endif
137 #ifndef PAC_GET_ENABLED_KEYS
138 # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
139 #endif
140 #ifndef SET_TAGGED_ADDR_CTRL
141 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
142 #endif
143 #ifndef GET_TAGGED_ADDR_CTRL
144 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
145 #endif
146 #ifndef RISCV_V_SET_CONTROL
147 # define RISCV_V_SET_CONTROL(a)		(-EINVAL)
148 #endif
149 #ifndef RISCV_V_GET_CONTROL
150 # define RISCV_V_GET_CONTROL()		(-EINVAL)
151 #endif
152 #ifndef RISCV_SET_ICACHE_FLUSH_CTX
153 # define RISCV_SET_ICACHE_FLUSH_CTX(a, b)	(-EINVAL)
154 #endif
155 #ifndef PPC_GET_DEXCR_ASPECT
156 # define PPC_GET_DEXCR_ASPECT(a, b)	(-EINVAL)
157 #endif
158 #ifndef PPC_SET_DEXCR_ASPECT
159 # define PPC_SET_DEXCR_ASPECT(a, b, c)	(-EINVAL)
160 #endif
161 
162 /*
163  * this is where the system-wide overflow UID and GID are defined, for
164  * architectures that now have 32-bit UID/GID but didn't in the past
165  */
166 
167 int overflowuid = DEFAULT_OVERFLOWUID;
168 int overflowgid = DEFAULT_OVERFLOWGID;
169 
170 EXPORT_SYMBOL(overflowuid);
171 EXPORT_SYMBOL(overflowgid);
172 
173 /*
174  * the same as above, but for filesystems which can only store a 16-bit
175  * UID and GID. as such, this is needed on all architectures
176  */
177 
178 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
179 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
180 
181 EXPORT_SYMBOL(fs_overflowuid);
182 EXPORT_SYMBOL(fs_overflowgid);
183 
184 /*
185  * Returns true if current's euid is same as p's uid or euid,
186  * or has CAP_SYS_NICE to p's user_ns.
187  *
188  * Called with rcu_read_lock, creds are safe
189  */
190 static bool set_one_prio_perm(struct task_struct *p)
191 {
192 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
193 
194 	if (uid_eq(pcred->uid,  cred->euid) ||
195 	    uid_eq(pcred->euid, cred->euid))
196 		return true;
197 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
198 		return true;
199 	return false;
200 }
201 
202 /*
203  * set the priority of a task
204  * - the caller must hold the RCU read lock
205  */
206 static int set_one_prio(struct task_struct *p, int niceval, int error)
207 {
208 	int no_nice;
209 
210 	if (!set_one_prio_perm(p)) {
211 		error = -EPERM;
212 		goto out;
213 	}
214 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
215 		error = -EACCES;
216 		goto out;
217 	}
218 	no_nice = security_task_setnice(p, niceval);
219 	if (no_nice) {
220 		error = no_nice;
221 		goto out;
222 	}
223 	if (error == -ESRCH)
224 		error = 0;
225 	set_user_nice(p, niceval);
226 out:
227 	return error;
228 }
229 
230 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
231 {
232 	struct task_struct *g, *p;
233 	struct user_struct *user;
234 	const struct cred *cred = current_cred();
235 	int error = -EINVAL;
236 	struct pid *pgrp;
237 	kuid_t uid;
238 
239 	if (which > PRIO_USER || which < PRIO_PROCESS)
240 		goto out;
241 
242 	/* normalize: avoid signed division (rounding problems) */
243 	error = -ESRCH;
244 	if (niceval < MIN_NICE)
245 		niceval = MIN_NICE;
246 	if (niceval > MAX_NICE)
247 		niceval = MAX_NICE;
248 
249 	rcu_read_lock();
250 	switch (which) {
251 	case PRIO_PROCESS:
252 		if (who)
253 			p = find_task_by_vpid(who);
254 		else
255 			p = current;
256 		if (p)
257 			error = set_one_prio(p, niceval, error);
258 		break;
259 	case PRIO_PGRP:
260 		if (who)
261 			pgrp = find_vpid(who);
262 		else
263 			pgrp = task_pgrp(current);
264 		read_lock(&tasklist_lock);
265 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
266 			error = set_one_prio(p, niceval, error);
267 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
268 		read_unlock(&tasklist_lock);
269 		break;
270 	case PRIO_USER:
271 		uid = make_kuid(cred->user_ns, who);
272 		user = cred->user;
273 		if (!who)
274 			uid = cred->uid;
275 		else if (!uid_eq(uid, cred->uid)) {
276 			user = find_user(uid);
277 			if (!user)
278 				goto out_unlock;	/* No processes for this user */
279 		}
280 		for_each_process_thread(g, p) {
281 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
282 				error = set_one_prio(p, niceval, error);
283 		}
284 		if (!uid_eq(uid, cred->uid))
285 			free_uid(user);		/* For find_user() */
286 		break;
287 	}
288 out_unlock:
289 	rcu_read_unlock();
290 out:
291 	return error;
292 }
293 
294 /*
295  * Ugh. To avoid negative return values, "getpriority()" will
296  * not return the normal nice-value, but a negated value that
297  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
298  * to stay compatible.
299  */
300 SYSCALL_DEFINE2(getpriority, int, which, int, who)
301 {
302 	struct task_struct *g, *p;
303 	struct user_struct *user;
304 	const struct cred *cred = current_cred();
305 	long niceval, retval = -ESRCH;
306 	struct pid *pgrp;
307 	kuid_t uid;
308 
309 	if (which > PRIO_USER || which < PRIO_PROCESS)
310 		return -EINVAL;
311 
312 	rcu_read_lock();
313 	switch (which) {
314 	case PRIO_PROCESS:
315 		if (who)
316 			p = find_task_by_vpid(who);
317 		else
318 			p = current;
319 		if (p) {
320 			niceval = nice_to_rlimit(task_nice(p));
321 			if (niceval > retval)
322 				retval = niceval;
323 		}
324 		break;
325 	case PRIO_PGRP:
326 		if (who)
327 			pgrp = find_vpid(who);
328 		else
329 			pgrp = task_pgrp(current);
330 		read_lock(&tasklist_lock);
331 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
332 			niceval = nice_to_rlimit(task_nice(p));
333 			if (niceval > retval)
334 				retval = niceval;
335 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
336 		read_unlock(&tasklist_lock);
337 		break;
338 	case PRIO_USER:
339 		uid = make_kuid(cred->user_ns, who);
340 		user = cred->user;
341 		if (!who)
342 			uid = cred->uid;
343 		else if (!uid_eq(uid, cred->uid)) {
344 			user = find_user(uid);
345 			if (!user)
346 				goto out_unlock;	/* No processes for this user */
347 		}
348 		for_each_process_thread(g, p) {
349 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
350 				niceval = nice_to_rlimit(task_nice(p));
351 				if (niceval > retval)
352 					retval = niceval;
353 			}
354 		}
355 		if (!uid_eq(uid, cred->uid))
356 			free_uid(user);		/* for find_user() */
357 		break;
358 	}
359 out_unlock:
360 	rcu_read_unlock();
361 
362 	return retval;
363 }
364 
365 /*
366  * Unprivileged users may change the real gid to the effective gid
367  * or vice versa.  (BSD-style)
368  *
369  * If you set the real gid at all, or set the effective gid to a value not
370  * equal to the real gid, then the saved gid is set to the new effective gid.
371  *
372  * This makes it possible for a setgid program to completely drop its
373  * privileges, which is often a useful assertion to make when you are doing
374  * a security audit over a program.
375  *
376  * The general idea is that a program which uses just setregid() will be
377  * 100% compatible with BSD.  A program which uses just setgid() will be
378  * 100% compatible with POSIX with saved IDs.
379  *
380  * SMP: There are not races, the GIDs are checked only by filesystem
381  *      operations (as far as semantic preservation is concerned).
382  */
383 #ifdef CONFIG_MULTIUSER
384 long __sys_setregid(gid_t rgid, gid_t egid)
385 {
386 	struct user_namespace *ns = current_user_ns();
387 	const struct cred *old;
388 	struct cred *new;
389 	int retval;
390 	kgid_t krgid, kegid;
391 
392 	krgid = make_kgid(ns, rgid);
393 	kegid = make_kgid(ns, egid);
394 
395 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
396 		return -EINVAL;
397 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
398 		return -EINVAL;
399 
400 	new = prepare_creds();
401 	if (!new)
402 		return -ENOMEM;
403 	old = current_cred();
404 
405 	retval = -EPERM;
406 	if (rgid != (gid_t) -1) {
407 		if (gid_eq(old->gid, krgid) ||
408 		    gid_eq(old->egid, krgid) ||
409 		    ns_capable_setid(old->user_ns, CAP_SETGID))
410 			new->gid = krgid;
411 		else
412 			goto error;
413 	}
414 	if (egid != (gid_t) -1) {
415 		if (gid_eq(old->gid, kegid) ||
416 		    gid_eq(old->egid, kegid) ||
417 		    gid_eq(old->sgid, kegid) ||
418 		    ns_capable_setid(old->user_ns, CAP_SETGID))
419 			new->egid = kegid;
420 		else
421 			goto error;
422 	}
423 
424 	if (rgid != (gid_t) -1 ||
425 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
426 		new->sgid = new->egid;
427 	new->fsgid = new->egid;
428 
429 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
430 	if (retval < 0)
431 		goto error;
432 
433 	return commit_creds(new);
434 
435 error:
436 	abort_creds(new);
437 	return retval;
438 }
439 
440 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
441 {
442 	return __sys_setregid(rgid, egid);
443 }
444 
445 /*
446  * setgid() is implemented like SysV w/ SAVED_IDS
447  *
448  * SMP: Same implicit races as above.
449  */
450 long __sys_setgid(gid_t gid)
451 {
452 	struct user_namespace *ns = current_user_ns();
453 	const struct cred *old;
454 	struct cred *new;
455 	int retval;
456 	kgid_t kgid;
457 
458 	kgid = make_kgid(ns, gid);
459 	if (!gid_valid(kgid))
460 		return -EINVAL;
461 
462 	new = prepare_creds();
463 	if (!new)
464 		return -ENOMEM;
465 	old = current_cred();
466 
467 	retval = -EPERM;
468 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
469 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
470 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
471 		new->egid = new->fsgid = kgid;
472 	else
473 		goto error;
474 
475 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
476 	if (retval < 0)
477 		goto error;
478 
479 	return commit_creds(new);
480 
481 error:
482 	abort_creds(new);
483 	return retval;
484 }
485 
486 SYSCALL_DEFINE1(setgid, gid_t, gid)
487 {
488 	return __sys_setgid(gid);
489 }
490 
491 /*
492  * change the user struct in a credentials set to match the new UID
493  */
494 static int set_user(struct cred *new)
495 {
496 	struct user_struct *new_user;
497 
498 	new_user = alloc_uid(new->uid);
499 	if (!new_user)
500 		return -EAGAIN;
501 
502 	free_uid(new->user);
503 	new->user = new_user;
504 	return 0;
505 }
506 
507 static void flag_nproc_exceeded(struct cred *new)
508 {
509 	if (new->ucounts == current_ucounts())
510 		return;
511 
512 	/*
513 	 * We don't fail in case of NPROC limit excess here because too many
514 	 * poorly written programs don't check set*uid() return code, assuming
515 	 * it never fails if called by root.  We may still enforce NPROC limit
516 	 * for programs doing set*uid()+execve() by harmlessly deferring the
517 	 * failure to the execve() stage.
518 	 */
519 	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
520 			new->user != INIT_USER)
521 		current->flags |= PF_NPROC_EXCEEDED;
522 	else
523 		current->flags &= ~PF_NPROC_EXCEEDED;
524 }
525 
526 /*
527  * Unprivileged users may change the real uid to the effective uid
528  * or vice versa.  (BSD-style)
529  *
530  * If you set the real uid at all, or set the effective uid to a value not
531  * equal to the real uid, then the saved uid is set to the new effective uid.
532  *
533  * This makes it possible for a setuid program to completely drop its
534  * privileges, which is often a useful assertion to make when you are doing
535  * a security audit over a program.
536  *
537  * The general idea is that a program which uses just setreuid() will be
538  * 100% compatible with BSD.  A program which uses just setuid() will be
539  * 100% compatible with POSIX with saved IDs.
540  */
541 long __sys_setreuid(uid_t ruid, uid_t euid)
542 {
543 	struct user_namespace *ns = current_user_ns();
544 	const struct cred *old;
545 	struct cred *new;
546 	int retval;
547 	kuid_t kruid, keuid;
548 
549 	kruid = make_kuid(ns, ruid);
550 	keuid = make_kuid(ns, euid);
551 
552 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
553 		return -EINVAL;
554 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
555 		return -EINVAL;
556 
557 	new = prepare_creds();
558 	if (!new)
559 		return -ENOMEM;
560 	old = current_cred();
561 
562 	retval = -EPERM;
563 	if (ruid != (uid_t) -1) {
564 		new->uid = kruid;
565 		if (!uid_eq(old->uid, kruid) &&
566 		    !uid_eq(old->euid, kruid) &&
567 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
568 			goto error;
569 	}
570 
571 	if (euid != (uid_t) -1) {
572 		new->euid = keuid;
573 		if (!uid_eq(old->uid, keuid) &&
574 		    !uid_eq(old->euid, keuid) &&
575 		    !uid_eq(old->suid, keuid) &&
576 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
577 			goto error;
578 	}
579 
580 	if (!uid_eq(new->uid, old->uid)) {
581 		retval = set_user(new);
582 		if (retval < 0)
583 			goto error;
584 	}
585 	if (ruid != (uid_t) -1 ||
586 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
587 		new->suid = new->euid;
588 	new->fsuid = new->euid;
589 
590 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
591 	if (retval < 0)
592 		goto error;
593 
594 	retval = set_cred_ucounts(new);
595 	if (retval < 0)
596 		goto error;
597 
598 	flag_nproc_exceeded(new);
599 	return commit_creds(new);
600 
601 error:
602 	abort_creds(new);
603 	return retval;
604 }
605 
606 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
607 {
608 	return __sys_setreuid(ruid, euid);
609 }
610 
611 /*
612  * setuid() is implemented like SysV with SAVED_IDS
613  *
614  * Note that SAVED_ID's is deficient in that a setuid root program
615  * like sendmail, for example, cannot set its uid to be a normal
616  * user and then switch back, because if you're root, setuid() sets
617  * the saved uid too.  If you don't like this, blame the bright people
618  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
619  * will allow a root program to temporarily drop privileges and be able to
620  * regain them by swapping the real and effective uid.
621  */
622 long __sys_setuid(uid_t uid)
623 {
624 	struct user_namespace *ns = current_user_ns();
625 	const struct cred *old;
626 	struct cred *new;
627 	int retval;
628 	kuid_t kuid;
629 
630 	kuid = make_kuid(ns, uid);
631 	if (!uid_valid(kuid))
632 		return -EINVAL;
633 
634 	new = prepare_creds();
635 	if (!new)
636 		return -ENOMEM;
637 	old = current_cred();
638 
639 	retval = -EPERM;
640 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
641 		new->suid = new->uid = kuid;
642 		if (!uid_eq(kuid, old->uid)) {
643 			retval = set_user(new);
644 			if (retval < 0)
645 				goto error;
646 		}
647 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
648 		goto error;
649 	}
650 
651 	new->fsuid = new->euid = kuid;
652 
653 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
654 	if (retval < 0)
655 		goto error;
656 
657 	retval = set_cred_ucounts(new);
658 	if (retval < 0)
659 		goto error;
660 
661 	flag_nproc_exceeded(new);
662 	return commit_creds(new);
663 
664 error:
665 	abort_creds(new);
666 	return retval;
667 }
668 
669 SYSCALL_DEFINE1(setuid, uid_t, uid)
670 {
671 	return __sys_setuid(uid);
672 }
673 
674 
675 /*
676  * This function implements a generic ability to update ruid, euid,
677  * and suid.  This allows you to implement the 4.4 compatible seteuid().
678  */
679 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
680 {
681 	struct user_namespace *ns = current_user_ns();
682 	const struct cred *old;
683 	struct cred *new;
684 	int retval;
685 	kuid_t kruid, keuid, ksuid;
686 	bool ruid_new, euid_new, suid_new;
687 
688 	kruid = make_kuid(ns, ruid);
689 	keuid = make_kuid(ns, euid);
690 	ksuid = make_kuid(ns, suid);
691 
692 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
693 		return -EINVAL;
694 
695 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
696 		return -EINVAL;
697 
698 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
699 		return -EINVAL;
700 
701 	old = current_cred();
702 
703 	/* check for no-op */
704 	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
705 	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
706 				    uid_eq(keuid, old->fsuid))) &&
707 	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
708 		return 0;
709 
710 	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
711 		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
712 	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
713 		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
714 	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
715 		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
716 	if ((ruid_new || euid_new || suid_new) &&
717 	    !ns_capable_setid(old->user_ns, CAP_SETUID))
718 		return -EPERM;
719 
720 	new = prepare_creds();
721 	if (!new)
722 		return -ENOMEM;
723 
724 	if (ruid != (uid_t) -1) {
725 		new->uid = kruid;
726 		if (!uid_eq(kruid, old->uid)) {
727 			retval = set_user(new);
728 			if (retval < 0)
729 				goto error;
730 		}
731 	}
732 	if (euid != (uid_t) -1)
733 		new->euid = keuid;
734 	if (suid != (uid_t) -1)
735 		new->suid = ksuid;
736 	new->fsuid = new->euid;
737 
738 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
739 	if (retval < 0)
740 		goto error;
741 
742 	retval = set_cred_ucounts(new);
743 	if (retval < 0)
744 		goto error;
745 
746 	flag_nproc_exceeded(new);
747 	return commit_creds(new);
748 
749 error:
750 	abort_creds(new);
751 	return retval;
752 }
753 
754 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
755 {
756 	return __sys_setresuid(ruid, euid, suid);
757 }
758 
759 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
760 {
761 	const struct cred *cred = current_cred();
762 	int retval;
763 	uid_t ruid, euid, suid;
764 
765 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
766 	euid = from_kuid_munged(cred->user_ns, cred->euid);
767 	suid = from_kuid_munged(cred->user_ns, cred->suid);
768 
769 	retval = put_user(ruid, ruidp);
770 	if (!retval) {
771 		retval = put_user(euid, euidp);
772 		if (!retval)
773 			return put_user(suid, suidp);
774 	}
775 	return retval;
776 }
777 
778 /*
779  * Same as above, but for rgid, egid, sgid.
780  */
781 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
782 {
783 	struct user_namespace *ns = current_user_ns();
784 	const struct cred *old;
785 	struct cred *new;
786 	int retval;
787 	kgid_t krgid, kegid, ksgid;
788 	bool rgid_new, egid_new, sgid_new;
789 
790 	krgid = make_kgid(ns, rgid);
791 	kegid = make_kgid(ns, egid);
792 	ksgid = make_kgid(ns, sgid);
793 
794 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
795 		return -EINVAL;
796 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
797 		return -EINVAL;
798 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
799 		return -EINVAL;
800 
801 	old = current_cred();
802 
803 	/* check for no-op */
804 	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
805 	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
806 				    gid_eq(kegid, old->fsgid))) &&
807 	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
808 		return 0;
809 
810 	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
811 		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
812 	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
813 		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
814 	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
815 		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
816 	if ((rgid_new || egid_new || sgid_new) &&
817 	    !ns_capable_setid(old->user_ns, CAP_SETGID))
818 		return -EPERM;
819 
820 	new = prepare_creds();
821 	if (!new)
822 		return -ENOMEM;
823 
824 	if (rgid != (gid_t) -1)
825 		new->gid = krgid;
826 	if (egid != (gid_t) -1)
827 		new->egid = kegid;
828 	if (sgid != (gid_t) -1)
829 		new->sgid = ksgid;
830 	new->fsgid = new->egid;
831 
832 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
833 	if (retval < 0)
834 		goto error;
835 
836 	return commit_creds(new);
837 
838 error:
839 	abort_creds(new);
840 	return retval;
841 }
842 
843 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
844 {
845 	return __sys_setresgid(rgid, egid, sgid);
846 }
847 
848 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
849 {
850 	const struct cred *cred = current_cred();
851 	int retval;
852 	gid_t rgid, egid, sgid;
853 
854 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
855 	egid = from_kgid_munged(cred->user_ns, cred->egid);
856 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
857 
858 	retval = put_user(rgid, rgidp);
859 	if (!retval) {
860 		retval = put_user(egid, egidp);
861 		if (!retval)
862 			retval = put_user(sgid, sgidp);
863 	}
864 
865 	return retval;
866 }
867 
868 
869 /*
870  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
871  * is used for "access()" and for the NFS daemon (letting nfsd stay at
872  * whatever uid it wants to). It normally shadows "euid", except when
873  * explicitly set by setfsuid() or for access..
874  */
875 long __sys_setfsuid(uid_t uid)
876 {
877 	const struct cred *old;
878 	struct cred *new;
879 	uid_t old_fsuid;
880 	kuid_t kuid;
881 
882 	old = current_cred();
883 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
884 
885 	kuid = make_kuid(old->user_ns, uid);
886 	if (!uid_valid(kuid))
887 		return old_fsuid;
888 
889 	new = prepare_creds();
890 	if (!new)
891 		return old_fsuid;
892 
893 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
894 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
895 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
896 		if (!uid_eq(kuid, old->fsuid)) {
897 			new->fsuid = kuid;
898 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
899 				goto change_okay;
900 		}
901 	}
902 
903 	abort_creds(new);
904 	return old_fsuid;
905 
906 change_okay:
907 	commit_creds(new);
908 	return old_fsuid;
909 }
910 
911 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
912 {
913 	return __sys_setfsuid(uid);
914 }
915 
916 /*
917  * Samma på svenska..
918  */
919 long __sys_setfsgid(gid_t gid)
920 {
921 	const struct cred *old;
922 	struct cred *new;
923 	gid_t old_fsgid;
924 	kgid_t kgid;
925 
926 	old = current_cred();
927 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
928 
929 	kgid = make_kgid(old->user_ns, gid);
930 	if (!gid_valid(kgid))
931 		return old_fsgid;
932 
933 	new = prepare_creds();
934 	if (!new)
935 		return old_fsgid;
936 
937 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
938 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
939 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
940 		if (!gid_eq(kgid, old->fsgid)) {
941 			new->fsgid = kgid;
942 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
943 				goto change_okay;
944 		}
945 	}
946 
947 	abort_creds(new);
948 	return old_fsgid;
949 
950 change_okay:
951 	commit_creds(new);
952 	return old_fsgid;
953 }
954 
955 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
956 {
957 	return __sys_setfsgid(gid);
958 }
959 #endif /* CONFIG_MULTIUSER */
960 
961 /**
962  * sys_getpid - return the thread group id of the current process
963  *
964  * Note, despite the name, this returns the tgid not the pid.  The tgid and
965  * the pid are identical unless CLONE_THREAD was specified on clone() in
966  * which case the tgid is the same in all threads of the same group.
967  *
968  * This is SMP safe as current->tgid does not change.
969  */
970 SYSCALL_DEFINE0(getpid)
971 {
972 	return task_tgid_vnr(current);
973 }
974 
975 /* Thread ID - the internal kernel "pid" */
976 SYSCALL_DEFINE0(gettid)
977 {
978 	return task_pid_vnr(current);
979 }
980 
981 /*
982  * Accessing ->real_parent is not SMP-safe, it could
983  * change from under us. However, we can use a stale
984  * value of ->real_parent under rcu_read_lock(), see
985  * release_task()->call_rcu(delayed_put_task_struct).
986  */
987 SYSCALL_DEFINE0(getppid)
988 {
989 	int pid;
990 
991 	rcu_read_lock();
992 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
993 	rcu_read_unlock();
994 
995 	return pid;
996 }
997 
998 SYSCALL_DEFINE0(getuid)
999 {
1000 	/* Only we change this so SMP safe */
1001 	return from_kuid_munged(current_user_ns(), current_uid());
1002 }
1003 
1004 SYSCALL_DEFINE0(geteuid)
1005 {
1006 	/* Only we change this so SMP safe */
1007 	return from_kuid_munged(current_user_ns(), current_euid());
1008 }
1009 
1010 SYSCALL_DEFINE0(getgid)
1011 {
1012 	/* Only we change this so SMP safe */
1013 	return from_kgid_munged(current_user_ns(), current_gid());
1014 }
1015 
1016 SYSCALL_DEFINE0(getegid)
1017 {
1018 	/* Only we change this so SMP safe */
1019 	return from_kgid_munged(current_user_ns(), current_egid());
1020 }
1021 
1022 static void do_sys_times(struct tms *tms)
1023 {
1024 	u64 tgutime, tgstime, cutime, cstime;
1025 
1026 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1027 	cutime = current->signal->cutime;
1028 	cstime = current->signal->cstime;
1029 	tms->tms_utime = nsec_to_clock_t(tgutime);
1030 	tms->tms_stime = nsec_to_clock_t(tgstime);
1031 	tms->tms_cutime = nsec_to_clock_t(cutime);
1032 	tms->tms_cstime = nsec_to_clock_t(cstime);
1033 }
1034 
1035 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1036 {
1037 	if (tbuf) {
1038 		struct tms tmp;
1039 
1040 		do_sys_times(&tmp);
1041 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1042 			return -EFAULT;
1043 	}
1044 	force_successful_syscall_return();
1045 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1046 }
1047 
1048 #ifdef CONFIG_COMPAT
1049 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1050 {
1051 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1052 }
1053 
1054 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1055 {
1056 	if (tbuf) {
1057 		struct tms tms;
1058 		struct compat_tms tmp;
1059 
1060 		do_sys_times(&tms);
1061 		/* Convert our struct tms to the compat version. */
1062 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1063 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1064 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1065 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1066 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1067 			return -EFAULT;
1068 	}
1069 	force_successful_syscall_return();
1070 	return compat_jiffies_to_clock_t(jiffies);
1071 }
1072 #endif
1073 
1074 /*
1075  * This needs some heavy checking ...
1076  * I just haven't the stomach for it. I also don't fully
1077  * understand sessions/pgrp etc. Let somebody who does explain it.
1078  *
1079  * OK, I think I have the protection semantics right.... this is really
1080  * only important on a multi-user system anyway, to make sure one user
1081  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1082  *
1083  * !PF_FORKNOEXEC check to conform completely to POSIX.
1084  */
1085 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1086 {
1087 	struct task_struct *p;
1088 	struct task_struct *group_leader = current->group_leader;
1089 	struct pid *pids[PIDTYPE_MAX] = { 0 };
1090 	struct pid *pgrp;
1091 	int err;
1092 
1093 	if (!pid)
1094 		pid = task_pid_vnr(group_leader);
1095 	if (!pgid)
1096 		pgid = pid;
1097 	if (pgid < 0)
1098 		return -EINVAL;
1099 	rcu_read_lock();
1100 
1101 	/* From this point forward we keep holding onto the tasklist lock
1102 	 * so that our parent does not change from under us. -DaveM
1103 	 */
1104 	write_lock_irq(&tasklist_lock);
1105 
1106 	err = -ESRCH;
1107 	p = find_task_by_vpid(pid);
1108 	if (!p)
1109 		goto out;
1110 
1111 	err = -EINVAL;
1112 	if (!thread_group_leader(p))
1113 		goto out;
1114 
1115 	if (same_thread_group(p->real_parent, group_leader)) {
1116 		err = -EPERM;
1117 		if (task_session(p) != task_session(group_leader))
1118 			goto out;
1119 		err = -EACCES;
1120 		if (!(p->flags & PF_FORKNOEXEC))
1121 			goto out;
1122 	} else {
1123 		err = -ESRCH;
1124 		if (p != group_leader)
1125 			goto out;
1126 	}
1127 
1128 	err = -EPERM;
1129 	if (p->signal->leader)
1130 		goto out;
1131 
1132 	pgrp = task_pid(p);
1133 	if (pgid != pid) {
1134 		struct task_struct *g;
1135 
1136 		pgrp = find_vpid(pgid);
1137 		g = pid_task(pgrp, PIDTYPE_PGID);
1138 		if (!g || task_session(g) != task_session(group_leader))
1139 			goto out;
1140 	}
1141 
1142 	err = security_task_setpgid(p, pgid);
1143 	if (err)
1144 		goto out;
1145 
1146 	if (task_pgrp(p) != pgrp)
1147 		change_pid(pids, p, PIDTYPE_PGID, pgrp);
1148 
1149 	err = 0;
1150 out:
1151 	/* All paths lead to here, thus we are safe. -DaveM */
1152 	write_unlock_irq(&tasklist_lock);
1153 	rcu_read_unlock();
1154 	free_pids(pids);
1155 	return err;
1156 }
1157 
1158 static int do_getpgid(pid_t pid)
1159 {
1160 	struct task_struct *p;
1161 	struct pid *grp;
1162 	int retval;
1163 
1164 	rcu_read_lock();
1165 	if (!pid)
1166 		grp = task_pgrp(current);
1167 	else {
1168 		retval = -ESRCH;
1169 		p = find_task_by_vpid(pid);
1170 		if (!p)
1171 			goto out;
1172 		grp = task_pgrp(p);
1173 		if (!grp)
1174 			goto out;
1175 
1176 		retval = security_task_getpgid(p);
1177 		if (retval)
1178 			goto out;
1179 	}
1180 	retval = pid_vnr(grp);
1181 out:
1182 	rcu_read_unlock();
1183 	return retval;
1184 }
1185 
1186 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1187 {
1188 	return do_getpgid(pid);
1189 }
1190 
1191 #ifdef __ARCH_WANT_SYS_GETPGRP
1192 
1193 SYSCALL_DEFINE0(getpgrp)
1194 {
1195 	return do_getpgid(0);
1196 }
1197 
1198 #endif
1199 
1200 SYSCALL_DEFINE1(getsid, pid_t, pid)
1201 {
1202 	struct task_struct *p;
1203 	struct pid *sid;
1204 	int retval;
1205 
1206 	rcu_read_lock();
1207 	if (!pid)
1208 		sid = task_session(current);
1209 	else {
1210 		retval = -ESRCH;
1211 		p = find_task_by_vpid(pid);
1212 		if (!p)
1213 			goto out;
1214 		sid = task_session(p);
1215 		if (!sid)
1216 			goto out;
1217 
1218 		retval = security_task_getsid(p);
1219 		if (retval)
1220 			goto out;
1221 	}
1222 	retval = pid_vnr(sid);
1223 out:
1224 	rcu_read_unlock();
1225 	return retval;
1226 }
1227 
1228 static void set_special_pids(struct pid **pids, struct pid *pid)
1229 {
1230 	struct task_struct *curr = current->group_leader;
1231 
1232 	if (task_session(curr) != pid)
1233 		change_pid(pids, curr, PIDTYPE_SID, pid);
1234 
1235 	if (task_pgrp(curr) != pid)
1236 		change_pid(pids, curr, PIDTYPE_PGID, pid);
1237 }
1238 
1239 int ksys_setsid(void)
1240 {
1241 	struct task_struct *group_leader = current->group_leader;
1242 	struct pid *sid = task_pid(group_leader);
1243 	struct pid *pids[PIDTYPE_MAX] = { 0 };
1244 	pid_t session = pid_vnr(sid);
1245 	int err = -EPERM;
1246 
1247 	write_lock_irq(&tasklist_lock);
1248 	/* Fail if I am already a session leader */
1249 	if (group_leader->signal->leader)
1250 		goto out;
1251 
1252 	/* Fail if a process group id already exists that equals the
1253 	 * proposed session id.
1254 	 */
1255 	if (pid_task(sid, PIDTYPE_PGID))
1256 		goto out;
1257 
1258 	group_leader->signal->leader = 1;
1259 	set_special_pids(pids, sid);
1260 
1261 	proc_clear_tty(group_leader);
1262 
1263 	err = session;
1264 out:
1265 	write_unlock_irq(&tasklist_lock);
1266 	free_pids(pids);
1267 	if (err > 0) {
1268 		proc_sid_connector(group_leader);
1269 		sched_autogroup_create_attach(group_leader);
1270 	}
1271 	return err;
1272 }
1273 
1274 SYSCALL_DEFINE0(setsid)
1275 {
1276 	return ksys_setsid();
1277 }
1278 
1279 DECLARE_RWSEM(uts_sem);
1280 
1281 #ifdef COMPAT_UTS_MACHINE
1282 #define override_architecture(name) \
1283 	(personality(current->personality) == PER_LINUX32 && \
1284 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1285 		      sizeof(COMPAT_UTS_MACHINE)))
1286 #else
1287 #define override_architecture(name)	0
1288 #endif
1289 
1290 /*
1291  * Work around broken programs that cannot handle "Linux 3.0".
1292  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1293  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1294  * 2.6.60.
1295  */
1296 static int override_release(char __user *release, size_t len)
1297 {
1298 	int ret = 0;
1299 
1300 	if (current->personality & UNAME26) {
1301 		const char *rest = UTS_RELEASE;
1302 		char buf[65] = { 0 };
1303 		int ndots = 0;
1304 		unsigned v;
1305 		size_t copy;
1306 
1307 		while (*rest) {
1308 			if (*rest == '.' && ++ndots >= 3)
1309 				break;
1310 			if (!isdigit(*rest) && *rest != '.')
1311 				break;
1312 			rest++;
1313 		}
1314 		v = LINUX_VERSION_PATCHLEVEL + 60;
1315 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1316 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1317 		ret = copy_to_user(release, buf, copy + 1);
1318 	}
1319 	return ret;
1320 }
1321 
1322 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1323 {
1324 	struct new_utsname tmp;
1325 
1326 	down_read(&uts_sem);
1327 	memcpy(&tmp, utsname(), sizeof(tmp));
1328 	up_read(&uts_sem);
1329 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1330 		return -EFAULT;
1331 
1332 	if (override_release(name->release, sizeof(name->release)))
1333 		return -EFAULT;
1334 	if (override_architecture(name))
1335 		return -EFAULT;
1336 	return 0;
1337 }
1338 
1339 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1340 /*
1341  * Old cruft
1342  */
1343 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1344 {
1345 	struct old_utsname tmp;
1346 
1347 	if (!name)
1348 		return -EFAULT;
1349 
1350 	down_read(&uts_sem);
1351 	memcpy(&tmp, utsname(), sizeof(tmp));
1352 	up_read(&uts_sem);
1353 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1354 		return -EFAULT;
1355 
1356 	if (override_release(name->release, sizeof(name->release)))
1357 		return -EFAULT;
1358 	if (override_architecture(name))
1359 		return -EFAULT;
1360 	return 0;
1361 }
1362 
1363 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1364 {
1365 	struct oldold_utsname tmp;
1366 
1367 	if (!name)
1368 		return -EFAULT;
1369 
1370 	memset(&tmp, 0, sizeof(tmp));
1371 
1372 	down_read(&uts_sem);
1373 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1374 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1375 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1376 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1377 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1378 	up_read(&uts_sem);
1379 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1380 		return -EFAULT;
1381 
1382 	if (override_architecture(name))
1383 		return -EFAULT;
1384 	if (override_release(name->release, sizeof(name->release)))
1385 		return -EFAULT;
1386 	return 0;
1387 }
1388 #endif
1389 
1390 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1391 {
1392 	int errno;
1393 	char tmp[__NEW_UTS_LEN];
1394 
1395 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1396 		return -EPERM;
1397 
1398 	if (len < 0 || len > __NEW_UTS_LEN)
1399 		return -EINVAL;
1400 	errno = -EFAULT;
1401 	if (!copy_from_user(tmp, name, len)) {
1402 		struct new_utsname *u;
1403 
1404 		add_device_randomness(tmp, len);
1405 		down_write(&uts_sem);
1406 		u = utsname();
1407 		memcpy(u->nodename, tmp, len);
1408 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1409 		errno = 0;
1410 		uts_proc_notify(UTS_PROC_HOSTNAME);
1411 		up_write(&uts_sem);
1412 	}
1413 	return errno;
1414 }
1415 
1416 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1417 
1418 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1419 {
1420 	int i;
1421 	struct new_utsname *u;
1422 	char tmp[__NEW_UTS_LEN + 1];
1423 
1424 	if (len < 0)
1425 		return -EINVAL;
1426 	down_read(&uts_sem);
1427 	u = utsname();
1428 	i = 1 + strlen(u->nodename);
1429 	if (i > len)
1430 		i = len;
1431 	memcpy(tmp, u->nodename, i);
1432 	up_read(&uts_sem);
1433 	if (copy_to_user(name, tmp, i))
1434 		return -EFAULT;
1435 	return 0;
1436 }
1437 
1438 #endif
1439 
1440 /*
1441  * Only setdomainname; getdomainname can be implemented by calling
1442  * uname()
1443  */
1444 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1445 {
1446 	int errno;
1447 	char tmp[__NEW_UTS_LEN];
1448 
1449 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1450 		return -EPERM;
1451 	if (len < 0 || len > __NEW_UTS_LEN)
1452 		return -EINVAL;
1453 
1454 	errno = -EFAULT;
1455 	if (!copy_from_user(tmp, name, len)) {
1456 		struct new_utsname *u;
1457 
1458 		add_device_randomness(tmp, len);
1459 		down_write(&uts_sem);
1460 		u = utsname();
1461 		memcpy(u->domainname, tmp, len);
1462 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1463 		errno = 0;
1464 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1465 		up_write(&uts_sem);
1466 	}
1467 	return errno;
1468 }
1469 
1470 /* make sure you are allowed to change @tsk limits before calling this */
1471 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1472 		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1473 {
1474 	struct rlimit *rlim;
1475 	int retval = 0;
1476 
1477 	if (resource >= RLIM_NLIMITS)
1478 		return -EINVAL;
1479 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1480 
1481 	if (new_rlim) {
1482 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1483 			return -EINVAL;
1484 		if (resource == RLIMIT_NOFILE &&
1485 				new_rlim->rlim_max > sysctl_nr_open)
1486 			return -EPERM;
1487 	}
1488 
1489 	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1490 	rlim = tsk->signal->rlim + resource;
1491 	task_lock(tsk->group_leader);
1492 	if (new_rlim) {
1493 		/*
1494 		 * Keep the capable check against init_user_ns until cgroups can
1495 		 * contain all limits.
1496 		 */
1497 		if (new_rlim->rlim_max > rlim->rlim_max &&
1498 				!capable(CAP_SYS_RESOURCE))
1499 			retval = -EPERM;
1500 		if (!retval)
1501 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1502 	}
1503 	if (!retval) {
1504 		if (old_rlim)
1505 			*old_rlim = *rlim;
1506 		if (new_rlim)
1507 			*rlim = *new_rlim;
1508 	}
1509 	task_unlock(tsk->group_leader);
1510 
1511 	/*
1512 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1513 	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1514 	 * ignores the rlimit.
1515 	 */
1516 	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1517 	    new_rlim->rlim_cur != RLIM_INFINITY &&
1518 	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1519 		/*
1520 		 * update_rlimit_cpu can fail if the task is exiting, but there
1521 		 * may be other tasks in the thread group that are not exiting,
1522 		 * and they need their cpu timers adjusted.
1523 		 *
1524 		 * The group_leader is the last task to be released, so if we
1525 		 * cannot update_rlimit_cpu on it, then the entire process is
1526 		 * exiting and we do not need to update at all.
1527 		 */
1528 		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1529 	}
1530 
1531 	return retval;
1532 }
1533 
1534 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1535 {
1536 	struct rlimit value;
1537 	int ret;
1538 
1539 	ret = do_prlimit(current, resource, NULL, &value);
1540 	if (!ret)
1541 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1542 
1543 	return ret;
1544 }
1545 
1546 #ifdef CONFIG_COMPAT
1547 
1548 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1549 		       struct compat_rlimit __user *, rlim)
1550 {
1551 	struct rlimit r;
1552 	struct compat_rlimit r32;
1553 
1554 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1555 		return -EFAULT;
1556 
1557 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1558 		r.rlim_cur = RLIM_INFINITY;
1559 	else
1560 		r.rlim_cur = r32.rlim_cur;
1561 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1562 		r.rlim_max = RLIM_INFINITY;
1563 	else
1564 		r.rlim_max = r32.rlim_max;
1565 	return do_prlimit(current, resource, &r, NULL);
1566 }
1567 
1568 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1569 		       struct compat_rlimit __user *, rlim)
1570 {
1571 	struct rlimit r;
1572 	int ret;
1573 
1574 	ret = do_prlimit(current, resource, NULL, &r);
1575 	if (!ret) {
1576 		struct compat_rlimit r32;
1577 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1578 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1579 		else
1580 			r32.rlim_cur = r.rlim_cur;
1581 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1582 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1583 		else
1584 			r32.rlim_max = r.rlim_max;
1585 
1586 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1587 			return -EFAULT;
1588 	}
1589 	return ret;
1590 }
1591 
1592 #endif
1593 
1594 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1595 
1596 /*
1597  *	Back compatibility for getrlimit. Needed for some apps.
1598  */
1599 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1600 		struct rlimit __user *, rlim)
1601 {
1602 	struct rlimit x;
1603 	if (resource >= RLIM_NLIMITS)
1604 		return -EINVAL;
1605 
1606 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1607 	task_lock(current->group_leader);
1608 	x = current->signal->rlim[resource];
1609 	task_unlock(current->group_leader);
1610 	if (x.rlim_cur > 0x7FFFFFFF)
1611 		x.rlim_cur = 0x7FFFFFFF;
1612 	if (x.rlim_max > 0x7FFFFFFF)
1613 		x.rlim_max = 0x7FFFFFFF;
1614 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1615 }
1616 
1617 #ifdef CONFIG_COMPAT
1618 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1619 		       struct compat_rlimit __user *, rlim)
1620 {
1621 	struct rlimit r;
1622 
1623 	if (resource >= RLIM_NLIMITS)
1624 		return -EINVAL;
1625 
1626 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1627 	task_lock(current->group_leader);
1628 	r = current->signal->rlim[resource];
1629 	task_unlock(current->group_leader);
1630 	if (r.rlim_cur > 0x7FFFFFFF)
1631 		r.rlim_cur = 0x7FFFFFFF;
1632 	if (r.rlim_max > 0x7FFFFFFF)
1633 		r.rlim_max = 0x7FFFFFFF;
1634 
1635 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1636 	    put_user(r.rlim_max, &rlim->rlim_max))
1637 		return -EFAULT;
1638 	return 0;
1639 }
1640 #endif
1641 
1642 #endif
1643 
1644 static inline bool rlim64_is_infinity(__u64 rlim64)
1645 {
1646 #if BITS_PER_LONG < 64
1647 	return rlim64 >= ULONG_MAX;
1648 #else
1649 	return rlim64 == RLIM64_INFINITY;
1650 #endif
1651 }
1652 
1653 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1654 {
1655 	if (rlim->rlim_cur == RLIM_INFINITY)
1656 		rlim64->rlim_cur = RLIM64_INFINITY;
1657 	else
1658 		rlim64->rlim_cur = rlim->rlim_cur;
1659 	if (rlim->rlim_max == RLIM_INFINITY)
1660 		rlim64->rlim_max = RLIM64_INFINITY;
1661 	else
1662 		rlim64->rlim_max = rlim->rlim_max;
1663 }
1664 
1665 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1666 {
1667 	if (rlim64_is_infinity(rlim64->rlim_cur))
1668 		rlim->rlim_cur = RLIM_INFINITY;
1669 	else
1670 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1671 	if (rlim64_is_infinity(rlim64->rlim_max))
1672 		rlim->rlim_max = RLIM_INFINITY;
1673 	else
1674 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1675 }
1676 
1677 /* rcu lock must be held */
1678 static int check_prlimit_permission(struct task_struct *task,
1679 				    unsigned int flags)
1680 {
1681 	const struct cred *cred = current_cred(), *tcred;
1682 	bool id_match;
1683 
1684 	if (current == task)
1685 		return 0;
1686 
1687 	tcred = __task_cred(task);
1688 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1689 		    uid_eq(cred->uid, tcred->suid) &&
1690 		    uid_eq(cred->uid, tcred->uid)  &&
1691 		    gid_eq(cred->gid, tcred->egid) &&
1692 		    gid_eq(cred->gid, tcred->sgid) &&
1693 		    gid_eq(cred->gid, tcred->gid));
1694 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1695 		return -EPERM;
1696 
1697 	return security_task_prlimit(cred, tcred, flags);
1698 }
1699 
1700 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1701 		const struct rlimit64 __user *, new_rlim,
1702 		struct rlimit64 __user *, old_rlim)
1703 {
1704 	struct rlimit64 old64, new64;
1705 	struct rlimit old, new;
1706 	struct task_struct *tsk;
1707 	unsigned int checkflags = 0;
1708 	int ret;
1709 
1710 	if (old_rlim)
1711 		checkflags |= LSM_PRLIMIT_READ;
1712 
1713 	if (new_rlim) {
1714 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1715 			return -EFAULT;
1716 		rlim64_to_rlim(&new64, &new);
1717 		checkflags |= LSM_PRLIMIT_WRITE;
1718 	}
1719 
1720 	rcu_read_lock();
1721 	tsk = pid ? find_task_by_vpid(pid) : current;
1722 	if (!tsk) {
1723 		rcu_read_unlock();
1724 		return -ESRCH;
1725 	}
1726 	ret = check_prlimit_permission(tsk, checkflags);
1727 	if (ret) {
1728 		rcu_read_unlock();
1729 		return ret;
1730 	}
1731 	get_task_struct(tsk);
1732 	rcu_read_unlock();
1733 
1734 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1735 			old_rlim ? &old : NULL);
1736 
1737 	if (!ret && old_rlim) {
1738 		rlim_to_rlim64(&old, &old64);
1739 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1740 			ret = -EFAULT;
1741 	}
1742 
1743 	put_task_struct(tsk);
1744 	return ret;
1745 }
1746 
1747 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1748 {
1749 	struct rlimit new_rlim;
1750 
1751 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1752 		return -EFAULT;
1753 	return do_prlimit(current, resource, &new_rlim, NULL);
1754 }
1755 
1756 /*
1757  * It would make sense to put struct rusage in the task_struct,
1758  * except that would make the task_struct be *really big*.  After
1759  * task_struct gets moved into malloc'ed memory, it would
1760  * make sense to do this.  It will make moving the rest of the information
1761  * a lot simpler!  (Which we're not doing right now because we're not
1762  * measuring them yet).
1763  *
1764  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1765  * races with threads incrementing their own counters.  But since word
1766  * reads are atomic, we either get new values or old values and we don't
1767  * care which for the sums.  We always take the siglock to protect reading
1768  * the c* fields from p->signal from races with exit.c updating those
1769  * fields when reaping, so a sample either gets all the additions of a
1770  * given child after it's reaped, or none so this sample is before reaping.
1771  *
1772  * Locking:
1773  * We need to take the siglock for CHILDEREN, SELF and BOTH
1774  * for  the cases current multithreaded, non-current single threaded
1775  * non-current multithreaded.  Thread traversal is now safe with
1776  * the siglock held.
1777  * Strictly speaking, we donot need to take the siglock if we are current and
1778  * single threaded,  as no one else can take our signal_struct away, no one
1779  * else can  reap the  children to update signal->c* counters, and no one else
1780  * can race with the signal-> fields. If we do not take any lock, the
1781  * signal-> fields could be read out of order while another thread was just
1782  * exiting. So we should  place a read memory barrier when we avoid the lock.
1783  * On the writer side,  write memory barrier is implied in  __exit_signal
1784  * as __exit_signal releases  the siglock spinlock after updating the signal->
1785  * fields. But we don't do this yet to keep things simple.
1786  *
1787  */
1788 
1789 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1790 {
1791 	r->ru_nvcsw += t->nvcsw;
1792 	r->ru_nivcsw += t->nivcsw;
1793 	r->ru_minflt += t->min_flt;
1794 	r->ru_majflt += t->maj_flt;
1795 	r->ru_inblock += task_io_get_inblock(t);
1796 	r->ru_oublock += task_io_get_oublock(t);
1797 }
1798 
1799 void getrusage(struct task_struct *p, int who, struct rusage *r)
1800 {
1801 	struct task_struct *t;
1802 	unsigned long flags;
1803 	u64 tgutime, tgstime, utime, stime;
1804 	unsigned long maxrss;
1805 	struct mm_struct *mm;
1806 	struct signal_struct *sig = p->signal;
1807 	unsigned int seq = 0;
1808 
1809 retry:
1810 	memset(r, 0, sizeof(*r));
1811 	utime = stime = 0;
1812 	maxrss = 0;
1813 
1814 	if (who == RUSAGE_THREAD) {
1815 		task_cputime_adjusted(current, &utime, &stime);
1816 		accumulate_thread_rusage(p, r);
1817 		maxrss = sig->maxrss;
1818 		goto out_thread;
1819 	}
1820 
1821 	flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1822 
1823 	switch (who) {
1824 	case RUSAGE_BOTH:
1825 	case RUSAGE_CHILDREN:
1826 		utime = sig->cutime;
1827 		stime = sig->cstime;
1828 		r->ru_nvcsw = sig->cnvcsw;
1829 		r->ru_nivcsw = sig->cnivcsw;
1830 		r->ru_minflt = sig->cmin_flt;
1831 		r->ru_majflt = sig->cmaj_flt;
1832 		r->ru_inblock = sig->cinblock;
1833 		r->ru_oublock = sig->coublock;
1834 		maxrss = sig->cmaxrss;
1835 
1836 		if (who == RUSAGE_CHILDREN)
1837 			break;
1838 		fallthrough;
1839 
1840 	case RUSAGE_SELF:
1841 		r->ru_nvcsw += sig->nvcsw;
1842 		r->ru_nivcsw += sig->nivcsw;
1843 		r->ru_minflt += sig->min_flt;
1844 		r->ru_majflt += sig->maj_flt;
1845 		r->ru_inblock += sig->inblock;
1846 		r->ru_oublock += sig->oublock;
1847 		if (maxrss < sig->maxrss)
1848 			maxrss = sig->maxrss;
1849 
1850 		rcu_read_lock();
1851 		__for_each_thread(sig, t)
1852 			accumulate_thread_rusage(t, r);
1853 		rcu_read_unlock();
1854 
1855 		break;
1856 
1857 	default:
1858 		BUG();
1859 	}
1860 
1861 	if (need_seqretry(&sig->stats_lock, seq)) {
1862 		seq = 1;
1863 		goto retry;
1864 	}
1865 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1866 
1867 	if (who == RUSAGE_CHILDREN)
1868 		goto out_children;
1869 
1870 	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1871 	utime += tgutime;
1872 	stime += tgstime;
1873 
1874 out_thread:
1875 	mm = get_task_mm(p);
1876 	if (mm) {
1877 		setmax_mm_hiwater_rss(&maxrss, mm);
1878 		mmput(mm);
1879 	}
1880 
1881 out_children:
1882 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1883 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1884 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1885 }
1886 
1887 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1888 {
1889 	struct rusage r;
1890 
1891 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1892 	    who != RUSAGE_THREAD)
1893 		return -EINVAL;
1894 
1895 	getrusage(current, who, &r);
1896 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1897 }
1898 
1899 #ifdef CONFIG_COMPAT
1900 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1901 {
1902 	struct rusage r;
1903 
1904 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1905 	    who != RUSAGE_THREAD)
1906 		return -EINVAL;
1907 
1908 	getrusage(current, who, &r);
1909 	return put_compat_rusage(&r, ru);
1910 }
1911 #endif
1912 
1913 SYSCALL_DEFINE1(umask, int, mask)
1914 {
1915 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1916 	return mask;
1917 }
1918 
1919 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1920 {
1921 	CLASS(fd, exe)(fd);
1922 	struct inode *inode;
1923 	int err;
1924 
1925 	if (fd_empty(exe))
1926 		return -EBADF;
1927 
1928 	inode = file_inode(fd_file(exe));
1929 
1930 	/*
1931 	 * Because the original mm->exe_file points to executable file, make
1932 	 * sure that this one is executable as well, to avoid breaking an
1933 	 * overall picture.
1934 	 */
1935 	if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path))
1936 		return -EACCES;
1937 
1938 	err = file_permission(fd_file(exe), MAY_EXEC);
1939 	if (err)
1940 		return err;
1941 
1942 	return replace_mm_exe_file(mm, fd_file(exe));
1943 }
1944 
1945 /*
1946  * Check arithmetic relations of passed addresses.
1947  *
1948  * WARNING: we don't require any capability here so be very careful
1949  * in what is allowed for modification from userspace.
1950  */
1951 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1952 {
1953 	unsigned long mmap_max_addr = TASK_SIZE;
1954 	int error = -EINVAL, i;
1955 
1956 	static const unsigned char offsets[] = {
1957 		offsetof(struct prctl_mm_map, start_code),
1958 		offsetof(struct prctl_mm_map, end_code),
1959 		offsetof(struct prctl_mm_map, start_data),
1960 		offsetof(struct prctl_mm_map, end_data),
1961 		offsetof(struct prctl_mm_map, start_brk),
1962 		offsetof(struct prctl_mm_map, brk),
1963 		offsetof(struct prctl_mm_map, start_stack),
1964 		offsetof(struct prctl_mm_map, arg_start),
1965 		offsetof(struct prctl_mm_map, arg_end),
1966 		offsetof(struct prctl_mm_map, env_start),
1967 		offsetof(struct prctl_mm_map, env_end),
1968 	};
1969 
1970 	/*
1971 	 * Make sure the members are not somewhere outside
1972 	 * of allowed address space.
1973 	 */
1974 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1975 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1976 
1977 		if ((unsigned long)val >= mmap_max_addr ||
1978 		    (unsigned long)val < mmap_min_addr)
1979 			goto out;
1980 	}
1981 
1982 	/*
1983 	 * Make sure the pairs are ordered.
1984 	 */
1985 #define __prctl_check_order(__m1, __op, __m2)				\
1986 	((unsigned long)prctl_map->__m1 __op				\
1987 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1988 	error  = __prctl_check_order(start_code, <, end_code);
1989 	error |= __prctl_check_order(start_data,<=, end_data);
1990 	error |= __prctl_check_order(start_brk, <=, brk);
1991 	error |= __prctl_check_order(arg_start, <=, arg_end);
1992 	error |= __prctl_check_order(env_start, <=, env_end);
1993 	if (error)
1994 		goto out;
1995 #undef __prctl_check_order
1996 
1997 	error = -EINVAL;
1998 
1999 	/*
2000 	 * Neither we should allow to override limits if they set.
2001 	 */
2002 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
2003 			      prctl_map->start_brk, prctl_map->end_data,
2004 			      prctl_map->start_data))
2005 			goto out;
2006 
2007 	error = 0;
2008 out:
2009 	return error;
2010 }
2011 
2012 #ifdef CONFIG_CHECKPOINT_RESTORE
2013 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2014 {
2015 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2016 	unsigned long user_auxv[AT_VECTOR_SIZE];
2017 	struct mm_struct *mm = current->mm;
2018 	int error;
2019 
2020 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2021 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2022 
2023 	if (opt == PR_SET_MM_MAP_SIZE)
2024 		return put_user((unsigned int)sizeof(prctl_map),
2025 				(unsigned int __user *)addr);
2026 
2027 	if (data_size != sizeof(prctl_map))
2028 		return -EINVAL;
2029 
2030 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2031 		return -EFAULT;
2032 
2033 	error = validate_prctl_map_addr(&prctl_map);
2034 	if (error)
2035 		return error;
2036 
2037 	if (prctl_map.auxv_size) {
2038 		/*
2039 		 * Someone is trying to cheat the auxv vector.
2040 		 */
2041 		if (!prctl_map.auxv ||
2042 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2043 			return -EINVAL;
2044 
2045 		memset(user_auxv, 0, sizeof(user_auxv));
2046 		if (copy_from_user(user_auxv,
2047 				   (const void __user *)prctl_map.auxv,
2048 				   prctl_map.auxv_size))
2049 			return -EFAULT;
2050 
2051 		/* Last entry must be AT_NULL as specification requires */
2052 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2053 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2054 	}
2055 
2056 	if (prctl_map.exe_fd != (u32)-1) {
2057 		/*
2058 		 * Check if the current user is checkpoint/restore capable.
2059 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2060 		 * or CAP_CHECKPOINT_RESTORE.
2061 		 * Note that a user with access to ptrace can masquerade an
2062 		 * arbitrary program as any executable, even setuid ones.
2063 		 * This may have implications in the tomoyo subsystem.
2064 		 */
2065 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2066 			return -EPERM;
2067 
2068 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2069 		if (error)
2070 			return error;
2071 	}
2072 
2073 	/*
2074 	 * arg_lock protects concurrent updates but we still need mmap_lock for
2075 	 * read to exclude races with sys_brk.
2076 	 */
2077 	mmap_read_lock(mm);
2078 
2079 	/*
2080 	 * We don't validate if these members are pointing to
2081 	 * real present VMAs because application may have correspond
2082 	 * VMAs already unmapped and kernel uses these members for statistics
2083 	 * output in procfs mostly, except
2084 	 *
2085 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2086 	 *    for VMAs when updating these members so anything wrong written
2087 	 *    here cause kernel to swear at userspace program but won't lead
2088 	 *    to any problem in kernel itself
2089 	 */
2090 
2091 	spin_lock(&mm->arg_lock);
2092 	mm->start_code	= prctl_map.start_code;
2093 	mm->end_code	= prctl_map.end_code;
2094 	mm->start_data	= prctl_map.start_data;
2095 	mm->end_data	= prctl_map.end_data;
2096 	mm->start_brk	= prctl_map.start_brk;
2097 	mm->brk		= prctl_map.brk;
2098 	mm->start_stack	= prctl_map.start_stack;
2099 	mm->arg_start	= prctl_map.arg_start;
2100 	mm->arg_end	= prctl_map.arg_end;
2101 	mm->env_start	= prctl_map.env_start;
2102 	mm->env_end	= prctl_map.env_end;
2103 	spin_unlock(&mm->arg_lock);
2104 
2105 	/*
2106 	 * Note this update of @saved_auxv is lockless thus
2107 	 * if someone reads this member in procfs while we're
2108 	 * updating -- it may get partly updated results. It's
2109 	 * known and acceptable trade off: we leave it as is to
2110 	 * not introduce additional locks here making the kernel
2111 	 * more complex.
2112 	 */
2113 	if (prctl_map.auxv_size)
2114 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2115 
2116 	mmap_read_unlock(mm);
2117 	return 0;
2118 }
2119 #endif /* CONFIG_CHECKPOINT_RESTORE */
2120 
2121 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2122 			  unsigned long len)
2123 {
2124 	/*
2125 	 * This doesn't move the auxiliary vector itself since it's pinned to
2126 	 * mm_struct, but it permits filling the vector with new values.  It's
2127 	 * up to the caller to provide sane values here, otherwise userspace
2128 	 * tools which use this vector might be unhappy.
2129 	 */
2130 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2131 
2132 	if (len > sizeof(user_auxv))
2133 		return -EINVAL;
2134 
2135 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2136 		return -EFAULT;
2137 
2138 	/* Make sure the last entry is always AT_NULL */
2139 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2140 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2141 
2142 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2143 
2144 	task_lock(current);
2145 	memcpy(mm->saved_auxv, user_auxv, len);
2146 	task_unlock(current);
2147 
2148 	return 0;
2149 }
2150 
2151 static int prctl_set_mm(int opt, unsigned long addr,
2152 			unsigned long arg4, unsigned long arg5)
2153 {
2154 	struct mm_struct *mm = current->mm;
2155 	struct prctl_mm_map prctl_map = {
2156 		.auxv = NULL,
2157 		.auxv_size = 0,
2158 		.exe_fd = -1,
2159 	};
2160 	struct vm_area_struct *vma;
2161 	int error;
2162 
2163 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2164 			      opt != PR_SET_MM_MAP &&
2165 			      opt != PR_SET_MM_MAP_SIZE)))
2166 		return -EINVAL;
2167 
2168 #ifdef CONFIG_CHECKPOINT_RESTORE
2169 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2170 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2171 #endif
2172 
2173 	if (!capable(CAP_SYS_RESOURCE))
2174 		return -EPERM;
2175 
2176 	if (opt == PR_SET_MM_EXE_FILE)
2177 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2178 
2179 	if (opt == PR_SET_MM_AUXV)
2180 		return prctl_set_auxv(mm, addr, arg4);
2181 
2182 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2183 		return -EINVAL;
2184 
2185 	error = -EINVAL;
2186 
2187 	/*
2188 	 * arg_lock protects concurrent updates of arg boundaries, we need
2189 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2190 	 * validation.
2191 	 */
2192 	mmap_read_lock(mm);
2193 	vma = find_vma(mm, addr);
2194 
2195 	spin_lock(&mm->arg_lock);
2196 	prctl_map.start_code	= mm->start_code;
2197 	prctl_map.end_code	= mm->end_code;
2198 	prctl_map.start_data	= mm->start_data;
2199 	prctl_map.end_data	= mm->end_data;
2200 	prctl_map.start_brk	= mm->start_brk;
2201 	prctl_map.brk		= mm->brk;
2202 	prctl_map.start_stack	= mm->start_stack;
2203 	prctl_map.arg_start	= mm->arg_start;
2204 	prctl_map.arg_end	= mm->arg_end;
2205 	prctl_map.env_start	= mm->env_start;
2206 	prctl_map.env_end	= mm->env_end;
2207 
2208 	switch (opt) {
2209 	case PR_SET_MM_START_CODE:
2210 		prctl_map.start_code = addr;
2211 		break;
2212 	case PR_SET_MM_END_CODE:
2213 		prctl_map.end_code = addr;
2214 		break;
2215 	case PR_SET_MM_START_DATA:
2216 		prctl_map.start_data = addr;
2217 		break;
2218 	case PR_SET_MM_END_DATA:
2219 		prctl_map.end_data = addr;
2220 		break;
2221 	case PR_SET_MM_START_STACK:
2222 		prctl_map.start_stack = addr;
2223 		break;
2224 	case PR_SET_MM_START_BRK:
2225 		prctl_map.start_brk = addr;
2226 		break;
2227 	case PR_SET_MM_BRK:
2228 		prctl_map.brk = addr;
2229 		break;
2230 	case PR_SET_MM_ARG_START:
2231 		prctl_map.arg_start = addr;
2232 		break;
2233 	case PR_SET_MM_ARG_END:
2234 		prctl_map.arg_end = addr;
2235 		break;
2236 	case PR_SET_MM_ENV_START:
2237 		prctl_map.env_start = addr;
2238 		break;
2239 	case PR_SET_MM_ENV_END:
2240 		prctl_map.env_end = addr;
2241 		break;
2242 	default:
2243 		goto out;
2244 	}
2245 
2246 	error = validate_prctl_map_addr(&prctl_map);
2247 	if (error)
2248 		goto out;
2249 
2250 	switch (opt) {
2251 	/*
2252 	 * If command line arguments and environment
2253 	 * are placed somewhere else on stack, we can
2254 	 * set them up here, ARG_START/END to setup
2255 	 * command line arguments and ENV_START/END
2256 	 * for environment.
2257 	 */
2258 	case PR_SET_MM_START_STACK:
2259 	case PR_SET_MM_ARG_START:
2260 	case PR_SET_MM_ARG_END:
2261 	case PR_SET_MM_ENV_START:
2262 	case PR_SET_MM_ENV_END:
2263 		if (!vma) {
2264 			error = -EFAULT;
2265 			goto out;
2266 		}
2267 	}
2268 
2269 	mm->start_code	= prctl_map.start_code;
2270 	mm->end_code	= prctl_map.end_code;
2271 	mm->start_data	= prctl_map.start_data;
2272 	mm->end_data	= prctl_map.end_data;
2273 	mm->start_brk	= prctl_map.start_brk;
2274 	mm->brk		= prctl_map.brk;
2275 	mm->start_stack	= prctl_map.start_stack;
2276 	mm->arg_start	= prctl_map.arg_start;
2277 	mm->arg_end	= prctl_map.arg_end;
2278 	mm->env_start	= prctl_map.env_start;
2279 	mm->env_end	= prctl_map.env_end;
2280 
2281 	error = 0;
2282 out:
2283 	spin_unlock(&mm->arg_lock);
2284 	mmap_read_unlock(mm);
2285 	return error;
2286 }
2287 
2288 #ifdef CONFIG_CHECKPOINT_RESTORE
2289 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2290 {
2291 	return put_user(me->clear_child_tid, tid_addr);
2292 }
2293 #else
2294 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2295 {
2296 	return -EINVAL;
2297 }
2298 #endif
2299 
2300 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2301 {
2302 	/*
2303 	 * If task has has_child_subreaper - all its descendants
2304 	 * already have these flag too and new descendants will
2305 	 * inherit it on fork, skip them.
2306 	 *
2307 	 * If we've found child_reaper - skip descendants in
2308 	 * it's subtree as they will never get out pidns.
2309 	 */
2310 	if (p->signal->has_child_subreaper ||
2311 	    is_child_reaper(task_pid(p)))
2312 		return 0;
2313 
2314 	p->signal->has_child_subreaper = 1;
2315 	return 1;
2316 }
2317 
2318 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2319 {
2320 	return -EINVAL;
2321 }
2322 
2323 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2324 				    unsigned long ctrl)
2325 {
2326 	return -EINVAL;
2327 }
2328 
2329 int __weak arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status)
2330 {
2331 	return -EINVAL;
2332 }
2333 
2334 int __weak arch_set_shadow_stack_status(struct task_struct *t, unsigned long status)
2335 {
2336 	return -EINVAL;
2337 }
2338 
2339 int __weak arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status)
2340 {
2341 	return -EINVAL;
2342 }
2343 
2344 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2345 
2346 #ifdef CONFIG_ANON_VMA_NAME
2347 
2348 #define ANON_VMA_NAME_MAX_LEN		80
2349 #define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2350 
2351 static inline bool is_valid_name_char(char ch)
2352 {
2353 	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2354 	return ch > 0x1f && ch < 0x7f &&
2355 		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2356 }
2357 
2358 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2359 			 unsigned long size, unsigned long arg)
2360 {
2361 	struct mm_struct *mm = current->mm;
2362 	const char __user *uname;
2363 	struct anon_vma_name *anon_name = NULL;
2364 	int error;
2365 
2366 	switch (opt) {
2367 	case PR_SET_VMA_ANON_NAME:
2368 		uname = (const char __user *)arg;
2369 		if (uname) {
2370 			char *name, *pch;
2371 
2372 			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2373 			if (IS_ERR(name))
2374 				return PTR_ERR(name);
2375 
2376 			for (pch = name; *pch != '\0'; pch++) {
2377 				if (!is_valid_name_char(*pch)) {
2378 					kfree(name);
2379 					return -EINVAL;
2380 				}
2381 			}
2382 			/* anon_vma has its own copy */
2383 			anon_name = anon_vma_name_alloc(name);
2384 			kfree(name);
2385 			if (!anon_name)
2386 				return -ENOMEM;
2387 
2388 		}
2389 
2390 		mmap_write_lock(mm);
2391 		error = madvise_set_anon_name(mm, addr, size, anon_name);
2392 		mmap_write_unlock(mm);
2393 		anon_vma_name_put(anon_name);
2394 		break;
2395 	default:
2396 		error = -EINVAL;
2397 	}
2398 
2399 	return error;
2400 }
2401 
2402 #else /* CONFIG_ANON_VMA_NAME */
2403 static int prctl_set_vma(unsigned long opt, unsigned long start,
2404 			 unsigned long size, unsigned long arg)
2405 {
2406 	return -EINVAL;
2407 }
2408 #endif /* CONFIG_ANON_VMA_NAME */
2409 
2410 static inline unsigned long get_current_mdwe(void)
2411 {
2412 	unsigned long ret = 0;
2413 
2414 	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2415 		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2416 	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2417 		ret |= PR_MDWE_NO_INHERIT;
2418 
2419 	return ret;
2420 }
2421 
2422 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2423 				 unsigned long arg4, unsigned long arg5)
2424 {
2425 	unsigned long current_bits;
2426 
2427 	if (arg3 || arg4 || arg5)
2428 		return -EINVAL;
2429 
2430 	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2431 		return -EINVAL;
2432 
2433 	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2434 	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2435 		return -EINVAL;
2436 
2437 	/*
2438 	 * EOPNOTSUPP might be more appropriate here in principle, but
2439 	 * existing userspace depends on EINVAL specifically.
2440 	 */
2441 	if (!arch_memory_deny_write_exec_supported())
2442 		return -EINVAL;
2443 
2444 	current_bits = get_current_mdwe();
2445 	if (current_bits && current_bits != bits)
2446 		return -EPERM; /* Cannot unset the flags */
2447 
2448 	if (bits & PR_MDWE_NO_INHERIT)
2449 		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2450 	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2451 		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2452 
2453 	return 0;
2454 }
2455 
2456 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2457 				 unsigned long arg4, unsigned long arg5)
2458 {
2459 	if (arg2 || arg3 || arg4 || arg5)
2460 		return -EINVAL;
2461 	return get_current_mdwe();
2462 }
2463 
2464 static int prctl_get_auxv(void __user *addr, unsigned long len)
2465 {
2466 	struct mm_struct *mm = current->mm;
2467 	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2468 
2469 	if (size && copy_to_user(addr, mm->saved_auxv, size))
2470 		return -EFAULT;
2471 	return sizeof(mm->saved_auxv);
2472 }
2473 
2474 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2475 		unsigned long, arg4, unsigned long, arg5)
2476 {
2477 	struct task_struct *me = current;
2478 	unsigned char comm[sizeof(me->comm)];
2479 	long error;
2480 
2481 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2482 	if (error != -ENOSYS)
2483 		return error;
2484 
2485 	error = 0;
2486 	switch (option) {
2487 	case PR_SET_PDEATHSIG:
2488 		if (!valid_signal(arg2)) {
2489 			error = -EINVAL;
2490 			break;
2491 		}
2492 		me->pdeath_signal = arg2;
2493 		break;
2494 	case PR_GET_PDEATHSIG:
2495 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2496 		break;
2497 	case PR_GET_DUMPABLE:
2498 		error = get_dumpable(me->mm);
2499 		break;
2500 	case PR_SET_DUMPABLE:
2501 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2502 			error = -EINVAL;
2503 			break;
2504 		}
2505 		set_dumpable(me->mm, arg2);
2506 		break;
2507 
2508 	case PR_SET_UNALIGN:
2509 		error = SET_UNALIGN_CTL(me, arg2);
2510 		break;
2511 	case PR_GET_UNALIGN:
2512 		error = GET_UNALIGN_CTL(me, arg2);
2513 		break;
2514 	case PR_SET_FPEMU:
2515 		error = SET_FPEMU_CTL(me, arg2);
2516 		break;
2517 	case PR_GET_FPEMU:
2518 		error = GET_FPEMU_CTL(me, arg2);
2519 		break;
2520 	case PR_SET_FPEXC:
2521 		error = SET_FPEXC_CTL(me, arg2);
2522 		break;
2523 	case PR_GET_FPEXC:
2524 		error = GET_FPEXC_CTL(me, arg2);
2525 		break;
2526 	case PR_GET_TIMING:
2527 		error = PR_TIMING_STATISTICAL;
2528 		break;
2529 	case PR_SET_TIMING:
2530 		if (arg2 != PR_TIMING_STATISTICAL)
2531 			error = -EINVAL;
2532 		break;
2533 	case PR_SET_NAME:
2534 		comm[sizeof(me->comm) - 1] = 0;
2535 		if (strncpy_from_user(comm, (char __user *)arg2,
2536 				      sizeof(me->comm) - 1) < 0)
2537 			return -EFAULT;
2538 		set_task_comm(me, comm);
2539 		proc_comm_connector(me);
2540 		break;
2541 	case PR_GET_NAME:
2542 		get_task_comm(comm, me);
2543 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2544 			return -EFAULT;
2545 		break;
2546 	case PR_GET_ENDIAN:
2547 		error = GET_ENDIAN(me, arg2);
2548 		break;
2549 	case PR_SET_ENDIAN:
2550 		error = SET_ENDIAN(me, arg2);
2551 		break;
2552 	case PR_GET_SECCOMP:
2553 		error = prctl_get_seccomp();
2554 		break;
2555 	case PR_SET_SECCOMP:
2556 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2557 		break;
2558 	case PR_GET_TSC:
2559 		error = GET_TSC_CTL(arg2);
2560 		break;
2561 	case PR_SET_TSC:
2562 		error = SET_TSC_CTL(arg2);
2563 		break;
2564 	case PR_TASK_PERF_EVENTS_DISABLE:
2565 		error = perf_event_task_disable();
2566 		break;
2567 	case PR_TASK_PERF_EVENTS_ENABLE:
2568 		error = perf_event_task_enable();
2569 		break;
2570 	case PR_GET_TIMERSLACK:
2571 		if (current->timer_slack_ns > ULONG_MAX)
2572 			error = ULONG_MAX;
2573 		else
2574 			error = current->timer_slack_ns;
2575 		break;
2576 	case PR_SET_TIMERSLACK:
2577 		if (rt_or_dl_task_policy(current))
2578 			break;
2579 		if (arg2 <= 0)
2580 			current->timer_slack_ns =
2581 					current->default_timer_slack_ns;
2582 		else
2583 			current->timer_slack_ns = arg2;
2584 		break;
2585 	case PR_MCE_KILL:
2586 		if (arg4 | arg5)
2587 			return -EINVAL;
2588 		switch (arg2) {
2589 		case PR_MCE_KILL_CLEAR:
2590 			if (arg3 != 0)
2591 				return -EINVAL;
2592 			current->flags &= ~PF_MCE_PROCESS;
2593 			break;
2594 		case PR_MCE_KILL_SET:
2595 			current->flags |= PF_MCE_PROCESS;
2596 			if (arg3 == PR_MCE_KILL_EARLY)
2597 				current->flags |= PF_MCE_EARLY;
2598 			else if (arg3 == PR_MCE_KILL_LATE)
2599 				current->flags &= ~PF_MCE_EARLY;
2600 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2601 				current->flags &=
2602 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2603 			else
2604 				return -EINVAL;
2605 			break;
2606 		default:
2607 			return -EINVAL;
2608 		}
2609 		break;
2610 	case PR_MCE_KILL_GET:
2611 		if (arg2 | arg3 | arg4 | arg5)
2612 			return -EINVAL;
2613 		if (current->flags & PF_MCE_PROCESS)
2614 			error = (current->flags & PF_MCE_EARLY) ?
2615 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2616 		else
2617 			error = PR_MCE_KILL_DEFAULT;
2618 		break;
2619 	case PR_SET_MM:
2620 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2621 		break;
2622 	case PR_GET_TID_ADDRESS:
2623 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2624 		break;
2625 	case PR_SET_CHILD_SUBREAPER:
2626 		me->signal->is_child_subreaper = !!arg2;
2627 		if (!arg2)
2628 			break;
2629 
2630 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2631 		break;
2632 	case PR_GET_CHILD_SUBREAPER:
2633 		error = put_user(me->signal->is_child_subreaper,
2634 				 (int __user *)arg2);
2635 		break;
2636 	case PR_SET_NO_NEW_PRIVS:
2637 		if (arg2 != 1 || arg3 || arg4 || arg5)
2638 			return -EINVAL;
2639 
2640 		task_set_no_new_privs(current);
2641 		break;
2642 	case PR_GET_NO_NEW_PRIVS:
2643 		if (arg2 || arg3 || arg4 || arg5)
2644 			return -EINVAL;
2645 		return task_no_new_privs(current) ? 1 : 0;
2646 	case PR_GET_THP_DISABLE:
2647 		if (arg2 || arg3 || arg4 || arg5)
2648 			return -EINVAL;
2649 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2650 		break;
2651 	case PR_SET_THP_DISABLE:
2652 		if (arg3 || arg4 || arg5)
2653 			return -EINVAL;
2654 		if (mmap_write_lock_killable(me->mm))
2655 			return -EINTR;
2656 		if (arg2)
2657 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2658 		else
2659 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2660 		mmap_write_unlock(me->mm);
2661 		break;
2662 	case PR_MPX_ENABLE_MANAGEMENT:
2663 	case PR_MPX_DISABLE_MANAGEMENT:
2664 		/* No longer implemented: */
2665 		return -EINVAL;
2666 	case PR_SET_FP_MODE:
2667 		error = SET_FP_MODE(me, arg2);
2668 		break;
2669 	case PR_GET_FP_MODE:
2670 		error = GET_FP_MODE(me);
2671 		break;
2672 	case PR_SVE_SET_VL:
2673 		error = SVE_SET_VL(arg2);
2674 		break;
2675 	case PR_SVE_GET_VL:
2676 		error = SVE_GET_VL();
2677 		break;
2678 	case PR_SME_SET_VL:
2679 		error = SME_SET_VL(arg2);
2680 		break;
2681 	case PR_SME_GET_VL:
2682 		error = SME_GET_VL();
2683 		break;
2684 	case PR_GET_SPECULATION_CTRL:
2685 		if (arg3 || arg4 || arg5)
2686 			return -EINVAL;
2687 		error = arch_prctl_spec_ctrl_get(me, arg2);
2688 		break;
2689 	case PR_SET_SPECULATION_CTRL:
2690 		if (arg4 || arg5)
2691 			return -EINVAL;
2692 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2693 		break;
2694 	case PR_PAC_RESET_KEYS:
2695 		if (arg3 || arg4 || arg5)
2696 			return -EINVAL;
2697 		error = PAC_RESET_KEYS(me, arg2);
2698 		break;
2699 	case PR_PAC_SET_ENABLED_KEYS:
2700 		if (arg4 || arg5)
2701 			return -EINVAL;
2702 		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2703 		break;
2704 	case PR_PAC_GET_ENABLED_KEYS:
2705 		if (arg2 || arg3 || arg4 || arg5)
2706 			return -EINVAL;
2707 		error = PAC_GET_ENABLED_KEYS(me);
2708 		break;
2709 	case PR_SET_TAGGED_ADDR_CTRL:
2710 		if (arg3 || arg4 || arg5)
2711 			return -EINVAL;
2712 		error = SET_TAGGED_ADDR_CTRL(arg2);
2713 		break;
2714 	case PR_GET_TAGGED_ADDR_CTRL:
2715 		if (arg2 || arg3 || arg4 || arg5)
2716 			return -EINVAL;
2717 		error = GET_TAGGED_ADDR_CTRL();
2718 		break;
2719 	case PR_SET_IO_FLUSHER:
2720 		if (!capable(CAP_SYS_RESOURCE))
2721 			return -EPERM;
2722 
2723 		if (arg3 || arg4 || arg5)
2724 			return -EINVAL;
2725 
2726 		if (arg2 == 1)
2727 			current->flags |= PR_IO_FLUSHER;
2728 		else if (!arg2)
2729 			current->flags &= ~PR_IO_FLUSHER;
2730 		else
2731 			return -EINVAL;
2732 		break;
2733 	case PR_GET_IO_FLUSHER:
2734 		if (!capable(CAP_SYS_RESOURCE))
2735 			return -EPERM;
2736 
2737 		if (arg2 || arg3 || arg4 || arg5)
2738 			return -EINVAL;
2739 
2740 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2741 		break;
2742 	case PR_SET_SYSCALL_USER_DISPATCH:
2743 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2744 						  (char __user *) arg5);
2745 		break;
2746 #ifdef CONFIG_SCHED_CORE
2747 	case PR_SCHED_CORE:
2748 		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2749 		break;
2750 #endif
2751 	case PR_SET_MDWE:
2752 		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2753 		break;
2754 	case PR_GET_MDWE:
2755 		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2756 		break;
2757 	case PR_PPC_GET_DEXCR:
2758 		if (arg3 || arg4 || arg5)
2759 			return -EINVAL;
2760 		error = PPC_GET_DEXCR_ASPECT(me, arg2);
2761 		break;
2762 	case PR_PPC_SET_DEXCR:
2763 		if (arg4 || arg5)
2764 			return -EINVAL;
2765 		error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2766 		break;
2767 	case PR_SET_VMA:
2768 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2769 		break;
2770 	case PR_GET_AUXV:
2771 		if (arg4 || arg5)
2772 			return -EINVAL;
2773 		error = prctl_get_auxv((void __user *)arg2, arg3);
2774 		break;
2775 #ifdef CONFIG_KSM
2776 	case PR_SET_MEMORY_MERGE:
2777 		if (arg3 || arg4 || arg5)
2778 			return -EINVAL;
2779 		if (mmap_write_lock_killable(me->mm))
2780 			return -EINTR;
2781 
2782 		if (arg2)
2783 			error = ksm_enable_merge_any(me->mm);
2784 		else
2785 			error = ksm_disable_merge_any(me->mm);
2786 		mmap_write_unlock(me->mm);
2787 		break;
2788 	case PR_GET_MEMORY_MERGE:
2789 		if (arg2 || arg3 || arg4 || arg5)
2790 			return -EINVAL;
2791 
2792 		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2793 		break;
2794 #endif
2795 	case PR_RISCV_V_SET_CONTROL:
2796 		error = RISCV_V_SET_CONTROL(arg2);
2797 		break;
2798 	case PR_RISCV_V_GET_CONTROL:
2799 		error = RISCV_V_GET_CONTROL();
2800 		break;
2801 	case PR_RISCV_SET_ICACHE_FLUSH_CTX:
2802 		error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
2803 		break;
2804 	case PR_GET_SHADOW_STACK_STATUS:
2805 		if (arg3 || arg4 || arg5)
2806 			return -EINVAL;
2807 		error = arch_get_shadow_stack_status(me, (unsigned long __user *) arg2);
2808 		break;
2809 	case PR_SET_SHADOW_STACK_STATUS:
2810 		if (arg3 || arg4 || arg5)
2811 			return -EINVAL;
2812 		error = arch_set_shadow_stack_status(me, arg2);
2813 		break;
2814 	case PR_LOCK_SHADOW_STACK_STATUS:
2815 		if (arg3 || arg4 || arg5)
2816 			return -EINVAL;
2817 		error = arch_lock_shadow_stack_status(me, arg2);
2818 		break;
2819 	case PR_TIMER_CREATE_RESTORE_IDS:
2820 		if (arg3 || arg4 || arg5)
2821 			return -EINVAL;
2822 		error = posixtimer_create_prctl(arg2);
2823 		break;
2824 	case PR_FUTEX_HASH:
2825 		error = futex_hash_prctl(arg2, arg3, arg4);
2826 		break;
2827 	default:
2828 		trace_task_prctl_unknown(option, arg2, arg3, arg4, arg5);
2829 		error = -EINVAL;
2830 		break;
2831 	}
2832 	return error;
2833 }
2834 
2835 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2836 		struct getcpu_cache __user *, unused)
2837 {
2838 	int err = 0;
2839 	int cpu = raw_smp_processor_id();
2840 
2841 	if (cpup)
2842 		err |= put_user(cpu, cpup);
2843 	if (nodep)
2844 		err |= put_user(cpu_to_node(cpu), nodep);
2845 	return err ? -EFAULT : 0;
2846 }
2847 
2848 /**
2849  * do_sysinfo - fill in sysinfo struct
2850  * @info: pointer to buffer to fill
2851  */
2852 static int do_sysinfo(struct sysinfo *info)
2853 {
2854 	unsigned long mem_total, sav_total;
2855 	unsigned int mem_unit, bitcount;
2856 	struct timespec64 tp;
2857 
2858 	memset(info, 0, sizeof(struct sysinfo));
2859 
2860 	ktime_get_boottime_ts64(&tp);
2861 	timens_add_boottime(&tp);
2862 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2863 
2864 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2865 
2866 	info->procs = nr_threads;
2867 
2868 	si_meminfo(info);
2869 	si_swapinfo(info);
2870 
2871 	/*
2872 	 * If the sum of all the available memory (i.e. ram + swap)
2873 	 * is less than can be stored in a 32 bit unsigned long then
2874 	 * we can be binary compatible with 2.2.x kernels.  If not,
2875 	 * well, in that case 2.2.x was broken anyways...
2876 	 *
2877 	 *  -Erik Andersen <andersee@debian.org>
2878 	 */
2879 
2880 	mem_total = info->totalram + info->totalswap;
2881 	if (mem_total < info->totalram || mem_total < info->totalswap)
2882 		goto out;
2883 	bitcount = 0;
2884 	mem_unit = info->mem_unit;
2885 	while (mem_unit > 1) {
2886 		bitcount++;
2887 		mem_unit >>= 1;
2888 		sav_total = mem_total;
2889 		mem_total <<= 1;
2890 		if (mem_total < sav_total)
2891 			goto out;
2892 	}
2893 
2894 	/*
2895 	 * If mem_total did not overflow, multiply all memory values by
2896 	 * info->mem_unit and set it to 1.  This leaves things compatible
2897 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2898 	 * kernels...
2899 	 */
2900 
2901 	info->mem_unit = 1;
2902 	info->totalram <<= bitcount;
2903 	info->freeram <<= bitcount;
2904 	info->sharedram <<= bitcount;
2905 	info->bufferram <<= bitcount;
2906 	info->totalswap <<= bitcount;
2907 	info->freeswap <<= bitcount;
2908 	info->totalhigh <<= bitcount;
2909 	info->freehigh <<= bitcount;
2910 
2911 out:
2912 	return 0;
2913 }
2914 
2915 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2916 {
2917 	struct sysinfo val;
2918 
2919 	do_sysinfo(&val);
2920 
2921 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2922 		return -EFAULT;
2923 
2924 	return 0;
2925 }
2926 
2927 #ifdef CONFIG_COMPAT
2928 struct compat_sysinfo {
2929 	s32 uptime;
2930 	u32 loads[3];
2931 	u32 totalram;
2932 	u32 freeram;
2933 	u32 sharedram;
2934 	u32 bufferram;
2935 	u32 totalswap;
2936 	u32 freeswap;
2937 	u16 procs;
2938 	u16 pad;
2939 	u32 totalhigh;
2940 	u32 freehigh;
2941 	u32 mem_unit;
2942 	char _f[20-2*sizeof(u32)-sizeof(int)];
2943 };
2944 
2945 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2946 {
2947 	struct sysinfo s;
2948 	struct compat_sysinfo s_32;
2949 
2950 	do_sysinfo(&s);
2951 
2952 	/* Check to see if any memory value is too large for 32-bit and scale
2953 	 *  down if needed
2954 	 */
2955 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2956 		int bitcount = 0;
2957 
2958 		while (s.mem_unit < PAGE_SIZE) {
2959 			s.mem_unit <<= 1;
2960 			bitcount++;
2961 		}
2962 
2963 		s.totalram >>= bitcount;
2964 		s.freeram >>= bitcount;
2965 		s.sharedram >>= bitcount;
2966 		s.bufferram >>= bitcount;
2967 		s.totalswap >>= bitcount;
2968 		s.freeswap >>= bitcount;
2969 		s.totalhigh >>= bitcount;
2970 		s.freehigh >>= bitcount;
2971 	}
2972 
2973 	memset(&s_32, 0, sizeof(s_32));
2974 	s_32.uptime = s.uptime;
2975 	s_32.loads[0] = s.loads[0];
2976 	s_32.loads[1] = s.loads[1];
2977 	s_32.loads[2] = s.loads[2];
2978 	s_32.totalram = s.totalram;
2979 	s_32.freeram = s.freeram;
2980 	s_32.sharedram = s.sharedram;
2981 	s_32.bufferram = s.bufferram;
2982 	s_32.totalswap = s.totalswap;
2983 	s_32.freeswap = s.freeswap;
2984 	s_32.procs = s.procs;
2985 	s_32.totalhigh = s.totalhigh;
2986 	s_32.freehigh = s.freehigh;
2987 	s_32.mem_unit = s.mem_unit;
2988 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2989 		return -EFAULT;
2990 	return 0;
2991 }
2992 #endif /* CONFIG_COMPAT */
2993