1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/sys.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/utsname.h> 11 #include <linux/mman.h> 12 #include <linux/reboot.h> 13 #include <linux/prctl.h> 14 #include <linux/highuid.h> 15 #include <linux/fs.h> 16 #include <linux/kmod.h> 17 #include <linux/perf_event.h> 18 #include <linux/resource.h> 19 #include <linux/kernel.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 #include <linux/personality.h> 37 #include <linux/ptrace.h> 38 #include <linux/fs_struct.h> 39 #include <linux/file.h> 40 #include <linux/mount.h> 41 #include <linux/gfp.h> 42 #include <linux/syscore_ops.h> 43 #include <linux/version.h> 44 #include <linux/ctype.h> 45 46 #include <linux/compat.h> 47 #include <linux/syscalls.h> 48 #include <linux/kprobes.h> 49 #include <linux/user_namespace.h> 50 #include <linux/binfmts.h> 51 52 #include <linux/sched.h> 53 #include <linux/sched/autogroup.h> 54 #include <linux/sched/loadavg.h> 55 #include <linux/sched/stat.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/coredump.h> 58 #include <linux/sched/task.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/rcupdate.h> 61 #include <linux/uidgid.h> 62 #include <linux/cred.h> 63 64 #include <linux/nospec.h> 65 66 #include <linux/kmsg_dump.h> 67 /* Move somewhere else to avoid recompiling? */ 68 #include <generated/utsrelease.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/io.h> 72 #include <asm/unistd.h> 73 74 #include "uid16.h" 75 76 #ifndef SET_UNALIGN_CTL 77 # define SET_UNALIGN_CTL(a, b) (-EINVAL) 78 #endif 79 #ifndef GET_UNALIGN_CTL 80 # define GET_UNALIGN_CTL(a, b) (-EINVAL) 81 #endif 82 #ifndef SET_FPEMU_CTL 83 # define SET_FPEMU_CTL(a, b) (-EINVAL) 84 #endif 85 #ifndef GET_FPEMU_CTL 86 # define GET_FPEMU_CTL(a, b) (-EINVAL) 87 #endif 88 #ifndef SET_FPEXC_CTL 89 # define SET_FPEXC_CTL(a, b) (-EINVAL) 90 #endif 91 #ifndef GET_FPEXC_CTL 92 # define GET_FPEXC_CTL(a, b) (-EINVAL) 93 #endif 94 #ifndef GET_ENDIAN 95 # define GET_ENDIAN(a, b) (-EINVAL) 96 #endif 97 #ifndef SET_ENDIAN 98 # define SET_ENDIAN(a, b) (-EINVAL) 99 #endif 100 #ifndef GET_TSC_CTL 101 # define GET_TSC_CTL(a) (-EINVAL) 102 #endif 103 #ifndef SET_TSC_CTL 104 # define SET_TSC_CTL(a) (-EINVAL) 105 #endif 106 #ifndef GET_FP_MODE 107 # define GET_FP_MODE(a) (-EINVAL) 108 #endif 109 #ifndef SET_FP_MODE 110 # define SET_FP_MODE(a,b) (-EINVAL) 111 #endif 112 #ifndef SVE_SET_VL 113 # define SVE_SET_VL(a) (-EINVAL) 114 #endif 115 #ifndef SVE_GET_VL 116 # define SVE_GET_VL() (-EINVAL) 117 #endif 118 #ifndef PAC_RESET_KEYS 119 # define PAC_RESET_KEYS(a, b) (-EINVAL) 120 #endif 121 #ifndef SET_TAGGED_ADDR_CTRL 122 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL) 123 #endif 124 #ifndef GET_TAGGED_ADDR_CTRL 125 # define GET_TAGGED_ADDR_CTRL() (-EINVAL) 126 #endif 127 128 /* 129 * this is where the system-wide overflow UID and GID are defined, for 130 * architectures that now have 32-bit UID/GID but didn't in the past 131 */ 132 133 int overflowuid = DEFAULT_OVERFLOWUID; 134 int overflowgid = DEFAULT_OVERFLOWGID; 135 136 EXPORT_SYMBOL(overflowuid); 137 EXPORT_SYMBOL(overflowgid); 138 139 /* 140 * the same as above, but for filesystems which can only store a 16-bit 141 * UID and GID. as such, this is needed on all architectures 142 */ 143 144 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 145 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID; 146 147 EXPORT_SYMBOL(fs_overflowuid); 148 EXPORT_SYMBOL(fs_overflowgid); 149 150 /* 151 * Returns true if current's euid is same as p's uid or euid, 152 * or has CAP_SYS_NICE to p's user_ns. 153 * 154 * Called with rcu_read_lock, creds are safe 155 */ 156 static bool set_one_prio_perm(struct task_struct *p) 157 { 158 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 159 160 if (uid_eq(pcred->uid, cred->euid) || 161 uid_eq(pcred->euid, cred->euid)) 162 return true; 163 if (ns_capable(pcred->user_ns, CAP_SYS_NICE)) 164 return true; 165 return false; 166 } 167 168 /* 169 * set the priority of a task 170 * - the caller must hold the RCU read lock 171 */ 172 static int set_one_prio(struct task_struct *p, int niceval, int error) 173 { 174 int no_nice; 175 176 if (!set_one_prio_perm(p)) { 177 error = -EPERM; 178 goto out; 179 } 180 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 181 error = -EACCES; 182 goto out; 183 } 184 no_nice = security_task_setnice(p, niceval); 185 if (no_nice) { 186 error = no_nice; 187 goto out; 188 } 189 if (error == -ESRCH) 190 error = 0; 191 set_user_nice(p, niceval); 192 out: 193 return error; 194 } 195 196 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) 197 { 198 struct task_struct *g, *p; 199 struct user_struct *user; 200 const struct cred *cred = current_cred(); 201 int error = -EINVAL; 202 struct pid *pgrp; 203 kuid_t uid; 204 205 if (which > PRIO_USER || which < PRIO_PROCESS) 206 goto out; 207 208 /* normalize: avoid signed division (rounding problems) */ 209 error = -ESRCH; 210 if (niceval < MIN_NICE) 211 niceval = MIN_NICE; 212 if (niceval > MAX_NICE) 213 niceval = MAX_NICE; 214 215 rcu_read_lock(); 216 read_lock(&tasklist_lock); 217 switch (which) { 218 case PRIO_PROCESS: 219 if (who) 220 p = find_task_by_vpid(who); 221 else 222 p = current; 223 if (p) 224 error = set_one_prio(p, niceval, error); 225 break; 226 case PRIO_PGRP: 227 if (who) 228 pgrp = find_vpid(who); 229 else 230 pgrp = task_pgrp(current); 231 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 232 error = set_one_prio(p, niceval, error); 233 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 234 break; 235 case PRIO_USER: 236 uid = make_kuid(cred->user_ns, who); 237 user = cred->user; 238 if (!who) 239 uid = cred->uid; 240 else if (!uid_eq(uid, cred->uid)) { 241 user = find_user(uid); 242 if (!user) 243 goto out_unlock; /* No processes for this user */ 244 } 245 do_each_thread(g, p) { 246 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) 247 error = set_one_prio(p, niceval, error); 248 } while_each_thread(g, p); 249 if (!uid_eq(uid, cred->uid)) 250 free_uid(user); /* For find_user() */ 251 break; 252 } 253 out_unlock: 254 read_unlock(&tasklist_lock); 255 rcu_read_unlock(); 256 out: 257 return error; 258 } 259 260 /* 261 * Ugh. To avoid negative return values, "getpriority()" will 262 * not return the normal nice-value, but a negated value that 263 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 264 * to stay compatible. 265 */ 266 SYSCALL_DEFINE2(getpriority, int, which, int, who) 267 { 268 struct task_struct *g, *p; 269 struct user_struct *user; 270 const struct cred *cred = current_cred(); 271 long niceval, retval = -ESRCH; 272 struct pid *pgrp; 273 kuid_t uid; 274 275 if (which > PRIO_USER || which < PRIO_PROCESS) 276 return -EINVAL; 277 278 rcu_read_lock(); 279 read_lock(&tasklist_lock); 280 switch (which) { 281 case PRIO_PROCESS: 282 if (who) 283 p = find_task_by_vpid(who); 284 else 285 p = current; 286 if (p) { 287 niceval = nice_to_rlimit(task_nice(p)); 288 if (niceval > retval) 289 retval = niceval; 290 } 291 break; 292 case PRIO_PGRP: 293 if (who) 294 pgrp = find_vpid(who); 295 else 296 pgrp = task_pgrp(current); 297 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 298 niceval = nice_to_rlimit(task_nice(p)); 299 if (niceval > retval) 300 retval = niceval; 301 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 302 break; 303 case PRIO_USER: 304 uid = make_kuid(cred->user_ns, who); 305 user = cred->user; 306 if (!who) 307 uid = cred->uid; 308 else if (!uid_eq(uid, cred->uid)) { 309 user = find_user(uid); 310 if (!user) 311 goto out_unlock; /* No processes for this user */ 312 } 313 do_each_thread(g, p) { 314 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) { 315 niceval = nice_to_rlimit(task_nice(p)); 316 if (niceval > retval) 317 retval = niceval; 318 } 319 } while_each_thread(g, p); 320 if (!uid_eq(uid, cred->uid)) 321 free_uid(user); /* for find_user() */ 322 break; 323 } 324 out_unlock: 325 read_unlock(&tasklist_lock); 326 rcu_read_unlock(); 327 328 return retval; 329 } 330 331 /* 332 * Unprivileged users may change the real gid to the effective gid 333 * or vice versa. (BSD-style) 334 * 335 * If you set the real gid at all, or set the effective gid to a value not 336 * equal to the real gid, then the saved gid is set to the new effective gid. 337 * 338 * This makes it possible for a setgid program to completely drop its 339 * privileges, which is often a useful assertion to make when you are doing 340 * a security audit over a program. 341 * 342 * The general idea is that a program which uses just setregid() will be 343 * 100% compatible with BSD. A program which uses just setgid() will be 344 * 100% compatible with POSIX with saved IDs. 345 * 346 * SMP: There are not races, the GIDs are checked only by filesystem 347 * operations (as far as semantic preservation is concerned). 348 */ 349 #ifdef CONFIG_MULTIUSER 350 long __sys_setregid(gid_t rgid, gid_t egid) 351 { 352 struct user_namespace *ns = current_user_ns(); 353 const struct cred *old; 354 struct cred *new; 355 int retval; 356 kgid_t krgid, kegid; 357 358 krgid = make_kgid(ns, rgid); 359 kegid = make_kgid(ns, egid); 360 361 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 362 return -EINVAL; 363 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 364 return -EINVAL; 365 366 new = prepare_creds(); 367 if (!new) 368 return -ENOMEM; 369 old = current_cred(); 370 371 retval = -EPERM; 372 if (rgid != (gid_t) -1) { 373 if (gid_eq(old->gid, krgid) || 374 gid_eq(old->egid, krgid) || 375 ns_capable(old->user_ns, CAP_SETGID)) 376 new->gid = krgid; 377 else 378 goto error; 379 } 380 if (egid != (gid_t) -1) { 381 if (gid_eq(old->gid, kegid) || 382 gid_eq(old->egid, kegid) || 383 gid_eq(old->sgid, kegid) || 384 ns_capable(old->user_ns, CAP_SETGID)) 385 new->egid = kegid; 386 else 387 goto error; 388 } 389 390 if (rgid != (gid_t) -1 || 391 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid))) 392 new->sgid = new->egid; 393 new->fsgid = new->egid; 394 395 return commit_creds(new); 396 397 error: 398 abort_creds(new); 399 return retval; 400 } 401 402 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) 403 { 404 return __sys_setregid(rgid, egid); 405 } 406 407 /* 408 * setgid() is implemented like SysV w/ SAVED_IDS 409 * 410 * SMP: Same implicit races as above. 411 */ 412 long __sys_setgid(gid_t gid) 413 { 414 struct user_namespace *ns = current_user_ns(); 415 const struct cred *old; 416 struct cred *new; 417 int retval; 418 kgid_t kgid; 419 420 kgid = make_kgid(ns, gid); 421 if (!gid_valid(kgid)) 422 return -EINVAL; 423 424 new = prepare_creds(); 425 if (!new) 426 return -ENOMEM; 427 old = current_cred(); 428 429 retval = -EPERM; 430 if (ns_capable(old->user_ns, CAP_SETGID)) 431 new->gid = new->egid = new->sgid = new->fsgid = kgid; 432 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid)) 433 new->egid = new->fsgid = kgid; 434 else 435 goto error; 436 437 return commit_creds(new); 438 439 error: 440 abort_creds(new); 441 return retval; 442 } 443 444 SYSCALL_DEFINE1(setgid, gid_t, gid) 445 { 446 return __sys_setgid(gid); 447 } 448 449 /* 450 * change the user struct in a credentials set to match the new UID 451 */ 452 static int set_user(struct cred *new) 453 { 454 struct user_struct *new_user; 455 456 new_user = alloc_uid(new->uid); 457 if (!new_user) 458 return -EAGAIN; 459 460 /* 461 * We don't fail in case of NPROC limit excess here because too many 462 * poorly written programs don't check set*uid() return code, assuming 463 * it never fails if called by root. We may still enforce NPROC limit 464 * for programs doing set*uid()+execve() by harmlessly deferring the 465 * failure to the execve() stage. 466 */ 467 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && 468 new_user != INIT_USER) 469 current->flags |= PF_NPROC_EXCEEDED; 470 else 471 current->flags &= ~PF_NPROC_EXCEEDED; 472 473 free_uid(new->user); 474 new->user = new_user; 475 return 0; 476 } 477 478 /* 479 * Unprivileged users may change the real uid to the effective uid 480 * or vice versa. (BSD-style) 481 * 482 * If you set the real uid at all, or set the effective uid to a value not 483 * equal to the real uid, then the saved uid is set to the new effective uid. 484 * 485 * This makes it possible for a setuid program to completely drop its 486 * privileges, which is often a useful assertion to make when you are doing 487 * a security audit over a program. 488 * 489 * The general idea is that a program which uses just setreuid() will be 490 * 100% compatible with BSD. A program which uses just setuid() will be 491 * 100% compatible with POSIX with saved IDs. 492 */ 493 long __sys_setreuid(uid_t ruid, uid_t euid) 494 { 495 struct user_namespace *ns = current_user_ns(); 496 const struct cred *old; 497 struct cred *new; 498 int retval; 499 kuid_t kruid, keuid; 500 501 kruid = make_kuid(ns, ruid); 502 keuid = make_kuid(ns, euid); 503 504 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 505 return -EINVAL; 506 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 507 return -EINVAL; 508 509 new = prepare_creds(); 510 if (!new) 511 return -ENOMEM; 512 old = current_cred(); 513 514 retval = -EPERM; 515 if (ruid != (uid_t) -1) { 516 new->uid = kruid; 517 if (!uid_eq(old->uid, kruid) && 518 !uid_eq(old->euid, kruid) && 519 !ns_capable_setid(old->user_ns, CAP_SETUID)) 520 goto error; 521 } 522 523 if (euid != (uid_t) -1) { 524 new->euid = keuid; 525 if (!uid_eq(old->uid, keuid) && 526 !uid_eq(old->euid, keuid) && 527 !uid_eq(old->suid, keuid) && 528 !ns_capable_setid(old->user_ns, CAP_SETUID)) 529 goto error; 530 } 531 532 if (!uid_eq(new->uid, old->uid)) { 533 retval = set_user(new); 534 if (retval < 0) 535 goto error; 536 } 537 if (ruid != (uid_t) -1 || 538 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid))) 539 new->suid = new->euid; 540 new->fsuid = new->euid; 541 542 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 543 if (retval < 0) 544 goto error; 545 546 return commit_creds(new); 547 548 error: 549 abort_creds(new); 550 return retval; 551 } 552 553 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) 554 { 555 return __sys_setreuid(ruid, euid); 556 } 557 558 /* 559 * setuid() is implemented like SysV with SAVED_IDS 560 * 561 * Note that SAVED_ID's is deficient in that a setuid root program 562 * like sendmail, for example, cannot set its uid to be a normal 563 * user and then switch back, because if you're root, setuid() sets 564 * the saved uid too. If you don't like this, blame the bright people 565 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 566 * will allow a root program to temporarily drop privileges and be able to 567 * regain them by swapping the real and effective uid. 568 */ 569 long __sys_setuid(uid_t uid) 570 { 571 struct user_namespace *ns = current_user_ns(); 572 const struct cred *old; 573 struct cred *new; 574 int retval; 575 kuid_t kuid; 576 577 kuid = make_kuid(ns, uid); 578 if (!uid_valid(kuid)) 579 return -EINVAL; 580 581 new = prepare_creds(); 582 if (!new) 583 return -ENOMEM; 584 old = current_cred(); 585 586 retval = -EPERM; 587 if (ns_capable_setid(old->user_ns, CAP_SETUID)) { 588 new->suid = new->uid = kuid; 589 if (!uid_eq(kuid, old->uid)) { 590 retval = set_user(new); 591 if (retval < 0) 592 goto error; 593 } 594 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) { 595 goto error; 596 } 597 598 new->fsuid = new->euid = kuid; 599 600 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 601 if (retval < 0) 602 goto error; 603 604 return commit_creds(new); 605 606 error: 607 abort_creds(new); 608 return retval; 609 } 610 611 SYSCALL_DEFINE1(setuid, uid_t, uid) 612 { 613 return __sys_setuid(uid); 614 } 615 616 617 /* 618 * This function implements a generic ability to update ruid, euid, 619 * and suid. This allows you to implement the 4.4 compatible seteuid(). 620 */ 621 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 622 { 623 struct user_namespace *ns = current_user_ns(); 624 const struct cred *old; 625 struct cred *new; 626 int retval; 627 kuid_t kruid, keuid, ksuid; 628 629 kruid = make_kuid(ns, ruid); 630 keuid = make_kuid(ns, euid); 631 ksuid = make_kuid(ns, suid); 632 633 if ((ruid != (uid_t) -1) && !uid_valid(kruid)) 634 return -EINVAL; 635 636 if ((euid != (uid_t) -1) && !uid_valid(keuid)) 637 return -EINVAL; 638 639 if ((suid != (uid_t) -1) && !uid_valid(ksuid)) 640 return -EINVAL; 641 642 new = prepare_creds(); 643 if (!new) 644 return -ENOMEM; 645 646 old = current_cred(); 647 648 retval = -EPERM; 649 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) { 650 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) && 651 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid)) 652 goto error; 653 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) && 654 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid)) 655 goto error; 656 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) && 657 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid)) 658 goto error; 659 } 660 661 if (ruid != (uid_t) -1) { 662 new->uid = kruid; 663 if (!uid_eq(kruid, old->uid)) { 664 retval = set_user(new); 665 if (retval < 0) 666 goto error; 667 } 668 } 669 if (euid != (uid_t) -1) 670 new->euid = keuid; 671 if (suid != (uid_t) -1) 672 new->suid = ksuid; 673 new->fsuid = new->euid; 674 675 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 676 if (retval < 0) 677 goto error; 678 679 return commit_creds(new); 680 681 error: 682 abort_creds(new); 683 return retval; 684 } 685 686 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 687 { 688 return __sys_setresuid(ruid, euid, suid); 689 } 690 691 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp) 692 { 693 const struct cred *cred = current_cred(); 694 int retval; 695 uid_t ruid, euid, suid; 696 697 ruid = from_kuid_munged(cred->user_ns, cred->uid); 698 euid = from_kuid_munged(cred->user_ns, cred->euid); 699 suid = from_kuid_munged(cred->user_ns, cred->suid); 700 701 retval = put_user(ruid, ruidp); 702 if (!retval) { 703 retval = put_user(euid, euidp); 704 if (!retval) 705 return put_user(suid, suidp); 706 } 707 return retval; 708 } 709 710 /* 711 * Same as above, but for rgid, egid, sgid. 712 */ 713 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 714 { 715 struct user_namespace *ns = current_user_ns(); 716 const struct cred *old; 717 struct cred *new; 718 int retval; 719 kgid_t krgid, kegid, ksgid; 720 721 krgid = make_kgid(ns, rgid); 722 kegid = make_kgid(ns, egid); 723 ksgid = make_kgid(ns, sgid); 724 725 if ((rgid != (gid_t) -1) && !gid_valid(krgid)) 726 return -EINVAL; 727 if ((egid != (gid_t) -1) && !gid_valid(kegid)) 728 return -EINVAL; 729 if ((sgid != (gid_t) -1) && !gid_valid(ksgid)) 730 return -EINVAL; 731 732 new = prepare_creds(); 733 if (!new) 734 return -ENOMEM; 735 old = current_cred(); 736 737 retval = -EPERM; 738 if (!ns_capable(old->user_ns, CAP_SETGID)) { 739 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) && 740 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid)) 741 goto error; 742 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) && 743 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid)) 744 goto error; 745 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) && 746 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid)) 747 goto error; 748 } 749 750 if (rgid != (gid_t) -1) 751 new->gid = krgid; 752 if (egid != (gid_t) -1) 753 new->egid = kegid; 754 if (sgid != (gid_t) -1) 755 new->sgid = ksgid; 756 new->fsgid = new->egid; 757 758 return commit_creds(new); 759 760 error: 761 abort_creds(new); 762 return retval; 763 } 764 765 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 766 { 767 return __sys_setresgid(rgid, egid, sgid); 768 } 769 770 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp) 771 { 772 const struct cred *cred = current_cred(); 773 int retval; 774 gid_t rgid, egid, sgid; 775 776 rgid = from_kgid_munged(cred->user_ns, cred->gid); 777 egid = from_kgid_munged(cred->user_ns, cred->egid); 778 sgid = from_kgid_munged(cred->user_ns, cred->sgid); 779 780 retval = put_user(rgid, rgidp); 781 if (!retval) { 782 retval = put_user(egid, egidp); 783 if (!retval) 784 retval = put_user(sgid, sgidp); 785 } 786 787 return retval; 788 } 789 790 791 /* 792 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 793 * is used for "access()" and for the NFS daemon (letting nfsd stay at 794 * whatever uid it wants to). It normally shadows "euid", except when 795 * explicitly set by setfsuid() or for access.. 796 */ 797 long __sys_setfsuid(uid_t uid) 798 { 799 const struct cred *old; 800 struct cred *new; 801 uid_t old_fsuid; 802 kuid_t kuid; 803 804 old = current_cred(); 805 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid); 806 807 kuid = make_kuid(old->user_ns, uid); 808 if (!uid_valid(kuid)) 809 return old_fsuid; 810 811 new = prepare_creds(); 812 if (!new) 813 return old_fsuid; 814 815 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) || 816 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) || 817 ns_capable_setid(old->user_ns, CAP_SETUID)) { 818 if (!uid_eq(kuid, old->fsuid)) { 819 new->fsuid = kuid; 820 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 821 goto change_okay; 822 } 823 } 824 825 abort_creds(new); 826 return old_fsuid; 827 828 change_okay: 829 commit_creds(new); 830 return old_fsuid; 831 } 832 833 SYSCALL_DEFINE1(setfsuid, uid_t, uid) 834 { 835 return __sys_setfsuid(uid); 836 } 837 838 /* 839 * Samma på svenska.. 840 */ 841 long __sys_setfsgid(gid_t gid) 842 { 843 const struct cred *old; 844 struct cred *new; 845 gid_t old_fsgid; 846 kgid_t kgid; 847 848 old = current_cred(); 849 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid); 850 851 kgid = make_kgid(old->user_ns, gid); 852 if (!gid_valid(kgid)) 853 return old_fsgid; 854 855 new = prepare_creds(); 856 if (!new) 857 return old_fsgid; 858 859 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) || 860 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) || 861 ns_capable(old->user_ns, CAP_SETGID)) { 862 if (!gid_eq(kgid, old->fsgid)) { 863 new->fsgid = kgid; 864 goto change_okay; 865 } 866 } 867 868 abort_creds(new); 869 return old_fsgid; 870 871 change_okay: 872 commit_creds(new); 873 return old_fsgid; 874 } 875 876 SYSCALL_DEFINE1(setfsgid, gid_t, gid) 877 { 878 return __sys_setfsgid(gid); 879 } 880 #endif /* CONFIG_MULTIUSER */ 881 882 /** 883 * sys_getpid - return the thread group id of the current process 884 * 885 * Note, despite the name, this returns the tgid not the pid. The tgid and 886 * the pid are identical unless CLONE_THREAD was specified on clone() in 887 * which case the tgid is the same in all threads of the same group. 888 * 889 * This is SMP safe as current->tgid does not change. 890 */ 891 SYSCALL_DEFINE0(getpid) 892 { 893 return task_tgid_vnr(current); 894 } 895 896 /* Thread ID - the internal kernel "pid" */ 897 SYSCALL_DEFINE0(gettid) 898 { 899 return task_pid_vnr(current); 900 } 901 902 /* 903 * Accessing ->real_parent is not SMP-safe, it could 904 * change from under us. However, we can use a stale 905 * value of ->real_parent under rcu_read_lock(), see 906 * release_task()->call_rcu(delayed_put_task_struct). 907 */ 908 SYSCALL_DEFINE0(getppid) 909 { 910 int pid; 911 912 rcu_read_lock(); 913 pid = task_tgid_vnr(rcu_dereference(current->real_parent)); 914 rcu_read_unlock(); 915 916 return pid; 917 } 918 919 SYSCALL_DEFINE0(getuid) 920 { 921 /* Only we change this so SMP safe */ 922 return from_kuid_munged(current_user_ns(), current_uid()); 923 } 924 925 SYSCALL_DEFINE0(geteuid) 926 { 927 /* Only we change this so SMP safe */ 928 return from_kuid_munged(current_user_ns(), current_euid()); 929 } 930 931 SYSCALL_DEFINE0(getgid) 932 { 933 /* Only we change this so SMP safe */ 934 return from_kgid_munged(current_user_ns(), current_gid()); 935 } 936 937 SYSCALL_DEFINE0(getegid) 938 { 939 /* Only we change this so SMP safe */ 940 return from_kgid_munged(current_user_ns(), current_egid()); 941 } 942 943 static void do_sys_times(struct tms *tms) 944 { 945 u64 tgutime, tgstime, cutime, cstime; 946 947 thread_group_cputime_adjusted(current, &tgutime, &tgstime); 948 cutime = current->signal->cutime; 949 cstime = current->signal->cstime; 950 tms->tms_utime = nsec_to_clock_t(tgutime); 951 tms->tms_stime = nsec_to_clock_t(tgstime); 952 tms->tms_cutime = nsec_to_clock_t(cutime); 953 tms->tms_cstime = nsec_to_clock_t(cstime); 954 } 955 956 SYSCALL_DEFINE1(times, struct tms __user *, tbuf) 957 { 958 if (tbuf) { 959 struct tms tmp; 960 961 do_sys_times(&tmp); 962 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 963 return -EFAULT; 964 } 965 force_successful_syscall_return(); 966 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 967 } 968 969 #ifdef CONFIG_COMPAT 970 static compat_clock_t clock_t_to_compat_clock_t(clock_t x) 971 { 972 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x)); 973 } 974 975 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf) 976 { 977 if (tbuf) { 978 struct tms tms; 979 struct compat_tms tmp; 980 981 do_sys_times(&tms); 982 /* Convert our struct tms to the compat version. */ 983 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime); 984 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime); 985 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime); 986 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime); 987 if (copy_to_user(tbuf, &tmp, sizeof(tmp))) 988 return -EFAULT; 989 } 990 force_successful_syscall_return(); 991 return compat_jiffies_to_clock_t(jiffies); 992 } 993 #endif 994 995 /* 996 * This needs some heavy checking ... 997 * I just haven't the stomach for it. I also don't fully 998 * understand sessions/pgrp etc. Let somebody who does explain it. 999 * 1000 * OK, I think I have the protection semantics right.... this is really 1001 * only important on a multi-user system anyway, to make sure one user 1002 * can't send a signal to a process owned by another. -TYT, 12/12/91 1003 * 1004 * !PF_FORKNOEXEC check to conform completely to POSIX. 1005 */ 1006 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) 1007 { 1008 struct task_struct *p; 1009 struct task_struct *group_leader = current->group_leader; 1010 struct pid *pgrp; 1011 int err; 1012 1013 if (!pid) 1014 pid = task_pid_vnr(group_leader); 1015 if (!pgid) 1016 pgid = pid; 1017 if (pgid < 0) 1018 return -EINVAL; 1019 rcu_read_lock(); 1020 1021 /* From this point forward we keep holding onto the tasklist lock 1022 * so that our parent does not change from under us. -DaveM 1023 */ 1024 write_lock_irq(&tasklist_lock); 1025 1026 err = -ESRCH; 1027 p = find_task_by_vpid(pid); 1028 if (!p) 1029 goto out; 1030 1031 err = -EINVAL; 1032 if (!thread_group_leader(p)) 1033 goto out; 1034 1035 if (same_thread_group(p->real_parent, group_leader)) { 1036 err = -EPERM; 1037 if (task_session(p) != task_session(group_leader)) 1038 goto out; 1039 err = -EACCES; 1040 if (!(p->flags & PF_FORKNOEXEC)) 1041 goto out; 1042 } else { 1043 err = -ESRCH; 1044 if (p != group_leader) 1045 goto out; 1046 } 1047 1048 err = -EPERM; 1049 if (p->signal->leader) 1050 goto out; 1051 1052 pgrp = task_pid(p); 1053 if (pgid != pid) { 1054 struct task_struct *g; 1055 1056 pgrp = find_vpid(pgid); 1057 g = pid_task(pgrp, PIDTYPE_PGID); 1058 if (!g || task_session(g) != task_session(group_leader)) 1059 goto out; 1060 } 1061 1062 err = security_task_setpgid(p, pgid); 1063 if (err) 1064 goto out; 1065 1066 if (task_pgrp(p) != pgrp) 1067 change_pid(p, PIDTYPE_PGID, pgrp); 1068 1069 err = 0; 1070 out: 1071 /* All paths lead to here, thus we are safe. -DaveM */ 1072 write_unlock_irq(&tasklist_lock); 1073 rcu_read_unlock(); 1074 return err; 1075 } 1076 1077 static int do_getpgid(pid_t pid) 1078 { 1079 struct task_struct *p; 1080 struct pid *grp; 1081 int retval; 1082 1083 rcu_read_lock(); 1084 if (!pid) 1085 grp = task_pgrp(current); 1086 else { 1087 retval = -ESRCH; 1088 p = find_task_by_vpid(pid); 1089 if (!p) 1090 goto out; 1091 grp = task_pgrp(p); 1092 if (!grp) 1093 goto out; 1094 1095 retval = security_task_getpgid(p); 1096 if (retval) 1097 goto out; 1098 } 1099 retval = pid_vnr(grp); 1100 out: 1101 rcu_read_unlock(); 1102 return retval; 1103 } 1104 1105 SYSCALL_DEFINE1(getpgid, pid_t, pid) 1106 { 1107 return do_getpgid(pid); 1108 } 1109 1110 #ifdef __ARCH_WANT_SYS_GETPGRP 1111 1112 SYSCALL_DEFINE0(getpgrp) 1113 { 1114 return do_getpgid(0); 1115 } 1116 1117 #endif 1118 1119 SYSCALL_DEFINE1(getsid, pid_t, pid) 1120 { 1121 struct task_struct *p; 1122 struct pid *sid; 1123 int retval; 1124 1125 rcu_read_lock(); 1126 if (!pid) 1127 sid = task_session(current); 1128 else { 1129 retval = -ESRCH; 1130 p = find_task_by_vpid(pid); 1131 if (!p) 1132 goto out; 1133 sid = task_session(p); 1134 if (!sid) 1135 goto out; 1136 1137 retval = security_task_getsid(p); 1138 if (retval) 1139 goto out; 1140 } 1141 retval = pid_vnr(sid); 1142 out: 1143 rcu_read_unlock(); 1144 return retval; 1145 } 1146 1147 static void set_special_pids(struct pid *pid) 1148 { 1149 struct task_struct *curr = current->group_leader; 1150 1151 if (task_session(curr) != pid) 1152 change_pid(curr, PIDTYPE_SID, pid); 1153 1154 if (task_pgrp(curr) != pid) 1155 change_pid(curr, PIDTYPE_PGID, pid); 1156 } 1157 1158 int ksys_setsid(void) 1159 { 1160 struct task_struct *group_leader = current->group_leader; 1161 struct pid *sid = task_pid(group_leader); 1162 pid_t session = pid_vnr(sid); 1163 int err = -EPERM; 1164 1165 write_lock_irq(&tasklist_lock); 1166 /* Fail if I am already a session leader */ 1167 if (group_leader->signal->leader) 1168 goto out; 1169 1170 /* Fail if a process group id already exists that equals the 1171 * proposed session id. 1172 */ 1173 if (pid_task(sid, PIDTYPE_PGID)) 1174 goto out; 1175 1176 group_leader->signal->leader = 1; 1177 set_special_pids(sid); 1178 1179 proc_clear_tty(group_leader); 1180 1181 err = session; 1182 out: 1183 write_unlock_irq(&tasklist_lock); 1184 if (err > 0) { 1185 proc_sid_connector(group_leader); 1186 sched_autogroup_create_attach(group_leader); 1187 } 1188 return err; 1189 } 1190 1191 SYSCALL_DEFINE0(setsid) 1192 { 1193 return ksys_setsid(); 1194 } 1195 1196 DECLARE_RWSEM(uts_sem); 1197 1198 #ifdef COMPAT_UTS_MACHINE 1199 #define override_architecture(name) \ 1200 (personality(current->personality) == PER_LINUX32 && \ 1201 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ 1202 sizeof(COMPAT_UTS_MACHINE))) 1203 #else 1204 #define override_architecture(name) 0 1205 #endif 1206 1207 /* 1208 * Work around broken programs that cannot handle "Linux 3.0". 1209 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 1210 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be 1211 * 2.6.60. 1212 */ 1213 static int override_release(char __user *release, size_t len) 1214 { 1215 int ret = 0; 1216 1217 if (current->personality & UNAME26) { 1218 const char *rest = UTS_RELEASE; 1219 char buf[65] = { 0 }; 1220 int ndots = 0; 1221 unsigned v; 1222 size_t copy; 1223 1224 while (*rest) { 1225 if (*rest == '.' && ++ndots >= 3) 1226 break; 1227 if (!isdigit(*rest) && *rest != '.') 1228 break; 1229 rest++; 1230 } 1231 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60; 1232 copy = clamp_t(size_t, len, 1, sizeof(buf)); 1233 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest); 1234 ret = copy_to_user(release, buf, copy + 1); 1235 } 1236 return ret; 1237 } 1238 1239 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) 1240 { 1241 struct new_utsname tmp; 1242 1243 down_read(&uts_sem); 1244 memcpy(&tmp, utsname(), sizeof(tmp)); 1245 up_read(&uts_sem); 1246 if (copy_to_user(name, &tmp, sizeof(tmp))) 1247 return -EFAULT; 1248 1249 if (override_release(name->release, sizeof(name->release))) 1250 return -EFAULT; 1251 if (override_architecture(name)) 1252 return -EFAULT; 1253 return 0; 1254 } 1255 1256 #ifdef __ARCH_WANT_SYS_OLD_UNAME 1257 /* 1258 * Old cruft 1259 */ 1260 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) 1261 { 1262 struct old_utsname tmp; 1263 1264 if (!name) 1265 return -EFAULT; 1266 1267 down_read(&uts_sem); 1268 memcpy(&tmp, utsname(), sizeof(tmp)); 1269 up_read(&uts_sem); 1270 if (copy_to_user(name, &tmp, sizeof(tmp))) 1271 return -EFAULT; 1272 1273 if (override_release(name->release, sizeof(name->release))) 1274 return -EFAULT; 1275 if (override_architecture(name)) 1276 return -EFAULT; 1277 return 0; 1278 } 1279 1280 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) 1281 { 1282 struct oldold_utsname tmp = {}; 1283 1284 if (!name) 1285 return -EFAULT; 1286 1287 down_read(&uts_sem); 1288 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN); 1289 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN); 1290 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN); 1291 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN); 1292 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN); 1293 up_read(&uts_sem); 1294 if (copy_to_user(name, &tmp, sizeof(tmp))) 1295 return -EFAULT; 1296 1297 if (override_architecture(name)) 1298 return -EFAULT; 1299 if (override_release(name->release, sizeof(name->release))) 1300 return -EFAULT; 1301 return 0; 1302 } 1303 #endif 1304 1305 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) 1306 { 1307 int errno; 1308 char tmp[__NEW_UTS_LEN]; 1309 1310 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1311 return -EPERM; 1312 1313 if (len < 0 || len > __NEW_UTS_LEN) 1314 return -EINVAL; 1315 errno = -EFAULT; 1316 if (!copy_from_user(tmp, name, len)) { 1317 struct new_utsname *u; 1318 1319 down_write(&uts_sem); 1320 u = utsname(); 1321 memcpy(u->nodename, tmp, len); 1322 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1323 errno = 0; 1324 uts_proc_notify(UTS_PROC_HOSTNAME); 1325 up_write(&uts_sem); 1326 } 1327 return errno; 1328 } 1329 1330 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1331 1332 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) 1333 { 1334 int i; 1335 struct new_utsname *u; 1336 char tmp[__NEW_UTS_LEN + 1]; 1337 1338 if (len < 0) 1339 return -EINVAL; 1340 down_read(&uts_sem); 1341 u = utsname(); 1342 i = 1 + strlen(u->nodename); 1343 if (i > len) 1344 i = len; 1345 memcpy(tmp, u->nodename, i); 1346 up_read(&uts_sem); 1347 if (copy_to_user(name, tmp, i)) 1348 return -EFAULT; 1349 return 0; 1350 } 1351 1352 #endif 1353 1354 /* 1355 * Only setdomainname; getdomainname can be implemented by calling 1356 * uname() 1357 */ 1358 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) 1359 { 1360 int errno; 1361 char tmp[__NEW_UTS_LEN]; 1362 1363 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) 1364 return -EPERM; 1365 if (len < 0 || len > __NEW_UTS_LEN) 1366 return -EINVAL; 1367 1368 errno = -EFAULT; 1369 if (!copy_from_user(tmp, name, len)) { 1370 struct new_utsname *u; 1371 1372 down_write(&uts_sem); 1373 u = utsname(); 1374 memcpy(u->domainname, tmp, len); 1375 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1376 errno = 0; 1377 uts_proc_notify(UTS_PROC_DOMAINNAME); 1378 up_write(&uts_sem); 1379 } 1380 return errno; 1381 } 1382 1383 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1384 { 1385 struct rlimit value; 1386 int ret; 1387 1388 ret = do_prlimit(current, resource, NULL, &value); 1389 if (!ret) 1390 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1391 1392 return ret; 1393 } 1394 1395 #ifdef CONFIG_COMPAT 1396 1397 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource, 1398 struct compat_rlimit __user *, rlim) 1399 { 1400 struct rlimit r; 1401 struct compat_rlimit r32; 1402 1403 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit))) 1404 return -EFAULT; 1405 1406 if (r32.rlim_cur == COMPAT_RLIM_INFINITY) 1407 r.rlim_cur = RLIM_INFINITY; 1408 else 1409 r.rlim_cur = r32.rlim_cur; 1410 if (r32.rlim_max == COMPAT_RLIM_INFINITY) 1411 r.rlim_max = RLIM_INFINITY; 1412 else 1413 r.rlim_max = r32.rlim_max; 1414 return do_prlimit(current, resource, &r, NULL); 1415 } 1416 1417 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource, 1418 struct compat_rlimit __user *, rlim) 1419 { 1420 struct rlimit r; 1421 int ret; 1422 1423 ret = do_prlimit(current, resource, NULL, &r); 1424 if (!ret) { 1425 struct compat_rlimit r32; 1426 if (r.rlim_cur > COMPAT_RLIM_INFINITY) 1427 r32.rlim_cur = COMPAT_RLIM_INFINITY; 1428 else 1429 r32.rlim_cur = r.rlim_cur; 1430 if (r.rlim_max > COMPAT_RLIM_INFINITY) 1431 r32.rlim_max = COMPAT_RLIM_INFINITY; 1432 else 1433 r32.rlim_max = r.rlim_max; 1434 1435 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit))) 1436 return -EFAULT; 1437 } 1438 return ret; 1439 } 1440 1441 #endif 1442 1443 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1444 1445 /* 1446 * Back compatibility for getrlimit. Needed for some apps. 1447 */ 1448 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1449 struct rlimit __user *, rlim) 1450 { 1451 struct rlimit x; 1452 if (resource >= RLIM_NLIMITS) 1453 return -EINVAL; 1454 1455 resource = array_index_nospec(resource, RLIM_NLIMITS); 1456 task_lock(current->group_leader); 1457 x = current->signal->rlim[resource]; 1458 task_unlock(current->group_leader); 1459 if (x.rlim_cur > 0x7FFFFFFF) 1460 x.rlim_cur = 0x7FFFFFFF; 1461 if (x.rlim_max > 0x7FFFFFFF) 1462 x.rlim_max = 0x7FFFFFFF; 1463 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0; 1464 } 1465 1466 #ifdef CONFIG_COMPAT 1467 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, 1468 struct compat_rlimit __user *, rlim) 1469 { 1470 struct rlimit r; 1471 1472 if (resource >= RLIM_NLIMITS) 1473 return -EINVAL; 1474 1475 resource = array_index_nospec(resource, RLIM_NLIMITS); 1476 task_lock(current->group_leader); 1477 r = current->signal->rlim[resource]; 1478 task_unlock(current->group_leader); 1479 if (r.rlim_cur > 0x7FFFFFFF) 1480 r.rlim_cur = 0x7FFFFFFF; 1481 if (r.rlim_max > 0x7FFFFFFF) 1482 r.rlim_max = 0x7FFFFFFF; 1483 1484 if (put_user(r.rlim_cur, &rlim->rlim_cur) || 1485 put_user(r.rlim_max, &rlim->rlim_max)) 1486 return -EFAULT; 1487 return 0; 1488 } 1489 #endif 1490 1491 #endif 1492 1493 static inline bool rlim64_is_infinity(__u64 rlim64) 1494 { 1495 #if BITS_PER_LONG < 64 1496 return rlim64 >= ULONG_MAX; 1497 #else 1498 return rlim64 == RLIM64_INFINITY; 1499 #endif 1500 } 1501 1502 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) 1503 { 1504 if (rlim->rlim_cur == RLIM_INFINITY) 1505 rlim64->rlim_cur = RLIM64_INFINITY; 1506 else 1507 rlim64->rlim_cur = rlim->rlim_cur; 1508 if (rlim->rlim_max == RLIM_INFINITY) 1509 rlim64->rlim_max = RLIM64_INFINITY; 1510 else 1511 rlim64->rlim_max = rlim->rlim_max; 1512 } 1513 1514 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) 1515 { 1516 if (rlim64_is_infinity(rlim64->rlim_cur)) 1517 rlim->rlim_cur = RLIM_INFINITY; 1518 else 1519 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; 1520 if (rlim64_is_infinity(rlim64->rlim_max)) 1521 rlim->rlim_max = RLIM_INFINITY; 1522 else 1523 rlim->rlim_max = (unsigned long)rlim64->rlim_max; 1524 } 1525 1526 /* make sure you are allowed to change @tsk limits before calling this */ 1527 int do_prlimit(struct task_struct *tsk, unsigned int resource, 1528 struct rlimit *new_rlim, struct rlimit *old_rlim) 1529 { 1530 struct rlimit *rlim; 1531 int retval = 0; 1532 1533 if (resource >= RLIM_NLIMITS) 1534 return -EINVAL; 1535 if (new_rlim) { 1536 if (new_rlim->rlim_cur > new_rlim->rlim_max) 1537 return -EINVAL; 1538 if (resource == RLIMIT_NOFILE && 1539 new_rlim->rlim_max > sysctl_nr_open) 1540 return -EPERM; 1541 } 1542 1543 /* protect tsk->signal and tsk->sighand from disappearing */ 1544 read_lock(&tasklist_lock); 1545 if (!tsk->sighand) { 1546 retval = -ESRCH; 1547 goto out; 1548 } 1549 1550 rlim = tsk->signal->rlim + resource; 1551 task_lock(tsk->group_leader); 1552 if (new_rlim) { 1553 /* Keep the capable check against init_user_ns until 1554 cgroups can contain all limits */ 1555 if (new_rlim->rlim_max > rlim->rlim_max && 1556 !capable(CAP_SYS_RESOURCE)) 1557 retval = -EPERM; 1558 if (!retval) 1559 retval = security_task_setrlimit(tsk, resource, new_rlim); 1560 } 1561 if (!retval) { 1562 if (old_rlim) 1563 *old_rlim = *rlim; 1564 if (new_rlim) 1565 *rlim = *new_rlim; 1566 } 1567 task_unlock(tsk->group_leader); 1568 1569 /* 1570 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not 1571 * infite. In case of RLIM_INFINITY the posix CPU timer code 1572 * ignores the rlimit. 1573 */ 1574 if (!retval && new_rlim && resource == RLIMIT_CPU && 1575 new_rlim->rlim_cur != RLIM_INFINITY && 1576 IS_ENABLED(CONFIG_POSIX_TIMERS)) 1577 update_rlimit_cpu(tsk, new_rlim->rlim_cur); 1578 out: 1579 read_unlock(&tasklist_lock); 1580 return retval; 1581 } 1582 1583 /* rcu lock must be held */ 1584 static int check_prlimit_permission(struct task_struct *task, 1585 unsigned int flags) 1586 { 1587 const struct cred *cred = current_cred(), *tcred; 1588 bool id_match; 1589 1590 if (current == task) 1591 return 0; 1592 1593 tcred = __task_cred(task); 1594 id_match = (uid_eq(cred->uid, tcred->euid) && 1595 uid_eq(cred->uid, tcred->suid) && 1596 uid_eq(cred->uid, tcred->uid) && 1597 gid_eq(cred->gid, tcred->egid) && 1598 gid_eq(cred->gid, tcred->sgid) && 1599 gid_eq(cred->gid, tcred->gid)); 1600 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE)) 1601 return -EPERM; 1602 1603 return security_task_prlimit(cred, tcred, flags); 1604 } 1605 1606 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, 1607 const struct rlimit64 __user *, new_rlim, 1608 struct rlimit64 __user *, old_rlim) 1609 { 1610 struct rlimit64 old64, new64; 1611 struct rlimit old, new; 1612 struct task_struct *tsk; 1613 unsigned int checkflags = 0; 1614 int ret; 1615 1616 if (old_rlim) 1617 checkflags |= LSM_PRLIMIT_READ; 1618 1619 if (new_rlim) { 1620 if (copy_from_user(&new64, new_rlim, sizeof(new64))) 1621 return -EFAULT; 1622 rlim64_to_rlim(&new64, &new); 1623 checkflags |= LSM_PRLIMIT_WRITE; 1624 } 1625 1626 rcu_read_lock(); 1627 tsk = pid ? find_task_by_vpid(pid) : current; 1628 if (!tsk) { 1629 rcu_read_unlock(); 1630 return -ESRCH; 1631 } 1632 ret = check_prlimit_permission(tsk, checkflags); 1633 if (ret) { 1634 rcu_read_unlock(); 1635 return ret; 1636 } 1637 get_task_struct(tsk); 1638 rcu_read_unlock(); 1639 1640 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, 1641 old_rlim ? &old : NULL); 1642 1643 if (!ret && old_rlim) { 1644 rlim_to_rlim64(&old, &old64); 1645 if (copy_to_user(old_rlim, &old64, sizeof(old64))) 1646 ret = -EFAULT; 1647 } 1648 1649 put_task_struct(tsk); 1650 return ret; 1651 } 1652 1653 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) 1654 { 1655 struct rlimit new_rlim; 1656 1657 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1658 return -EFAULT; 1659 return do_prlimit(current, resource, &new_rlim, NULL); 1660 } 1661 1662 /* 1663 * It would make sense to put struct rusage in the task_struct, 1664 * except that would make the task_struct be *really big*. After 1665 * task_struct gets moved into malloc'ed memory, it would 1666 * make sense to do this. It will make moving the rest of the information 1667 * a lot simpler! (Which we're not doing right now because we're not 1668 * measuring them yet). 1669 * 1670 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1671 * races with threads incrementing their own counters. But since word 1672 * reads are atomic, we either get new values or old values and we don't 1673 * care which for the sums. We always take the siglock to protect reading 1674 * the c* fields from p->signal from races with exit.c updating those 1675 * fields when reaping, so a sample either gets all the additions of a 1676 * given child after it's reaped, or none so this sample is before reaping. 1677 * 1678 * Locking: 1679 * We need to take the siglock for CHILDEREN, SELF and BOTH 1680 * for the cases current multithreaded, non-current single threaded 1681 * non-current multithreaded. Thread traversal is now safe with 1682 * the siglock held. 1683 * Strictly speaking, we donot need to take the siglock if we are current and 1684 * single threaded, as no one else can take our signal_struct away, no one 1685 * else can reap the children to update signal->c* counters, and no one else 1686 * can race with the signal-> fields. If we do not take any lock, the 1687 * signal-> fields could be read out of order while another thread was just 1688 * exiting. So we should place a read memory barrier when we avoid the lock. 1689 * On the writer side, write memory barrier is implied in __exit_signal 1690 * as __exit_signal releases the siglock spinlock after updating the signal-> 1691 * fields. But we don't do this yet to keep things simple. 1692 * 1693 */ 1694 1695 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1696 { 1697 r->ru_nvcsw += t->nvcsw; 1698 r->ru_nivcsw += t->nivcsw; 1699 r->ru_minflt += t->min_flt; 1700 r->ru_majflt += t->maj_flt; 1701 r->ru_inblock += task_io_get_inblock(t); 1702 r->ru_oublock += task_io_get_oublock(t); 1703 } 1704 1705 void getrusage(struct task_struct *p, int who, struct rusage *r) 1706 { 1707 struct task_struct *t; 1708 unsigned long flags; 1709 u64 tgutime, tgstime, utime, stime; 1710 unsigned long maxrss = 0; 1711 1712 memset((char *)r, 0, sizeof (*r)); 1713 utime = stime = 0; 1714 1715 if (who == RUSAGE_THREAD) { 1716 task_cputime_adjusted(current, &utime, &stime); 1717 accumulate_thread_rusage(p, r); 1718 maxrss = p->signal->maxrss; 1719 goto out; 1720 } 1721 1722 if (!lock_task_sighand(p, &flags)) 1723 return; 1724 1725 switch (who) { 1726 case RUSAGE_BOTH: 1727 case RUSAGE_CHILDREN: 1728 utime = p->signal->cutime; 1729 stime = p->signal->cstime; 1730 r->ru_nvcsw = p->signal->cnvcsw; 1731 r->ru_nivcsw = p->signal->cnivcsw; 1732 r->ru_minflt = p->signal->cmin_flt; 1733 r->ru_majflt = p->signal->cmaj_flt; 1734 r->ru_inblock = p->signal->cinblock; 1735 r->ru_oublock = p->signal->coublock; 1736 maxrss = p->signal->cmaxrss; 1737 1738 if (who == RUSAGE_CHILDREN) 1739 break; 1740 /* fall through */ 1741 1742 case RUSAGE_SELF: 1743 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1744 utime += tgutime; 1745 stime += tgstime; 1746 r->ru_nvcsw += p->signal->nvcsw; 1747 r->ru_nivcsw += p->signal->nivcsw; 1748 r->ru_minflt += p->signal->min_flt; 1749 r->ru_majflt += p->signal->maj_flt; 1750 r->ru_inblock += p->signal->inblock; 1751 r->ru_oublock += p->signal->oublock; 1752 if (maxrss < p->signal->maxrss) 1753 maxrss = p->signal->maxrss; 1754 t = p; 1755 do { 1756 accumulate_thread_rusage(t, r); 1757 } while_each_thread(p, t); 1758 break; 1759 1760 default: 1761 BUG(); 1762 } 1763 unlock_task_sighand(p, &flags); 1764 1765 out: 1766 r->ru_utime = ns_to_timeval(utime); 1767 r->ru_stime = ns_to_timeval(stime); 1768 1769 if (who != RUSAGE_CHILDREN) { 1770 struct mm_struct *mm = get_task_mm(p); 1771 1772 if (mm) { 1773 setmax_mm_hiwater_rss(&maxrss, mm); 1774 mmput(mm); 1775 } 1776 } 1777 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ 1778 } 1779 1780 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) 1781 { 1782 struct rusage r; 1783 1784 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1785 who != RUSAGE_THREAD) 1786 return -EINVAL; 1787 1788 getrusage(current, who, &r); 1789 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1790 } 1791 1792 #ifdef CONFIG_COMPAT 1793 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru) 1794 { 1795 struct rusage r; 1796 1797 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1798 who != RUSAGE_THREAD) 1799 return -EINVAL; 1800 1801 getrusage(current, who, &r); 1802 return put_compat_rusage(&r, ru); 1803 } 1804 #endif 1805 1806 SYSCALL_DEFINE1(umask, int, mask) 1807 { 1808 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1809 return mask; 1810 } 1811 1812 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd) 1813 { 1814 struct fd exe; 1815 struct file *old_exe, *exe_file; 1816 struct inode *inode; 1817 int err; 1818 1819 exe = fdget(fd); 1820 if (!exe.file) 1821 return -EBADF; 1822 1823 inode = file_inode(exe.file); 1824 1825 /* 1826 * Because the original mm->exe_file points to executable file, make 1827 * sure that this one is executable as well, to avoid breaking an 1828 * overall picture. 1829 */ 1830 err = -EACCES; 1831 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path)) 1832 goto exit; 1833 1834 err = inode_permission(inode, MAY_EXEC); 1835 if (err) 1836 goto exit; 1837 1838 /* 1839 * Forbid mm->exe_file change if old file still mapped. 1840 */ 1841 exe_file = get_mm_exe_file(mm); 1842 err = -EBUSY; 1843 if (exe_file) { 1844 struct vm_area_struct *vma; 1845 1846 down_read(&mm->mmap_sem); 1847 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1848 if (!vma->vm_file) 1849 continue; 1850 if (path_equal(&vma->vm_file->f_path, 1851 &exe_file->f_path)) 1852 goto exit_err; 1853 } 1854 1855 up_read(&mm->mmap_sem); 1856 fput(exe_file); 1857 } 1858 1859 err = 0; 1860 /* set the new file, lockless */ 1861 get_file(exe.file); 1862 old_exe = xchg(&mm->exe_file, exe.file); 1863 if (old_exe) 1864 fput(old_exe); 1865 exit: 1866 fdput(exe); 1867 return err; 1868 exit_err: 1869 up_read(&mm->mmap_sem); 1870 fput(exe_file); 1871 goto exit; 1872 } 1873 1874 /* 1875 * Check arithmetic relations of passed addresses. 1876 * 1877 * WARNING: we don't require any capability here so be very careful 1878 * in what is allowed for modification from userspace. 1879 */ 1880 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map) 1881 { 1882 unsigned long mmap_max_addr = TASK_SIZE; 1883 int error = -EINVAL, i; 1884 1885 static const unsigned char offsets[] = { 1886 offsetof(struct prctl_mm_map, start_code), 1887 offsetof(struct prctl_mm_map, end_code), 1888 offsetof(struct prctl_mm_map, start_data), 1889 offsetof(struct prctl_mm_map, end_data), 1890 offsetof(struct prctl_mm_map, start_brk), 1891 offsetof(struct prctl_mm_map, brk), 1892 offsetof(struct prctl_mm_map, start_stack), 1893 offsetof(struct prctl_mm_map, arg_start), 1894 offsetof(struct prctl_mm_map, arg_end), 1895 offsetof(struct prctl_mm_map, env_start), 1896 offsetof(struct prctl_mm_map, env_end), 1897 }; 1898 1899 /* 1900 * Make sure the members are not somewhere outside 1901 * of allowed address space. 1902 */ 1903 for (i = 0; i < ARRAY_SIZE(offsets); i++) { 1904 u64 val = *(u64 *)((char *)prctl_map + offsets[i]); 1905 1906 if ((unsigned long)val >= mmap_max_addr || 1907 (unsigned long)val < mmap_min_addr) 1908 goto out; 1909 } 1910 1911 /* 1912 * Make sure the pairs are ordered. 1913 */ 1914 #define __prctl_check_order(__m1, __op, __m2) \ 1915 ((unsigned long)prctl_map->__m1 __op \ 1916 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL 1917 error = __prctl_check_order(start_code, <, end_code); 1918 error |= __prctl_check_order(start_data,<=, end_data); 1919 error |= __prctl_check_order(start_brk, <=, brk); 1920 error |= __prctl_check_order(arg_start, <=, arg_end); 1921 error |= __prctl_check_order(env_start, <=, env_end); 1922 if (error) 1923 goto out; 1924 #undef __prctl_check_order 1925 1926 error = -EINVAL; 1927 1928 /* 1929 * @brk should be after @end_data in traditional maps. 1930 */ 1931 if (prctl_map->start_brk <= prctl_map->end_data || 1932 prctl_map->brk <= prctl_map->end_data) 1933 goto out; 1934 1935 /* 1936 * Neither we should allow to override limits if they set. 1937 */ 1938 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk, 1939 prctl_map->start_brk, prctl_map->end_data, 1940 prctl_map->start_data)) 1941 goto out; 1942 1943 error = 0; 1944 out: 1945 return error; 1946 } 1947 1948 #ifdef CONFIG_CHECKPOINT_RESTORE 1949 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size) 1950 { 1951 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, }; 1952 unsigned long user_auxv[AT_VECTOR_SIZE]; 1953 struct mm_struct *mm = current->mm; 1954 int error; 1955 1956 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 1957 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256); 1958 1959 if (opt == PR_SET_MM_MAP_SIZE) 1960 return put_user((unsigned int)sizeof(prctl_map), 1961 (unsigned int __user *)addr); 1962 1963 if (data_size != sizeof(prctl_map)) 1964 return -EINVAL; 1965 1966 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map))) 1967 return -EFAULT; 1968 1969 error = validate_prctl_map_addr(&prctl_map); 1970 if (error) 1971 return error; 1972 1973 if (prctl_map.auxv_size) { 1974 /* 1975 * Someone is trying to cheat the auxv vector. 1976 */ 1977 if (!prctl_map.auxv || 1978 prctl_map.auxv_size > sizeof(mm->saved_auxv)) 1979 return -EINVAL; 1980 1981 memset(user_auxv, 0, sizeof(user_auxv)); 1982 if (copy_from_user(user_auxv, 1983 (const void __user *)prctl_map.auxv, 1984 prctl_map.auxv_size)) 1985 return -EFAULT; 1986 1987 /* Last entry must be AT_NULL as specification requires */ 1988 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL; 1989 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL; 1990 } 1991 1992 if (prctl_map.exe_fd != (u32)-1) { 1993 /* 1994 * Make sure the caller has the rights to 1995 * change /proc/pid/exe link: only local sys admin should 1996 * be allowed to. 1997 */ 1998 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1999 return -EINVAL; 2000 2001 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd); 2002 if (error) 2003 return error; 2004 } 2005 2006 /* 2007 * arg_lock protects concurent updates but we still need mmap_sem for 2008 * read to exclude races with sys_brk. 2009 */ 2010 down_read(&mm->mmap_sem); 2011 2012 /* 2013 * We don't validate if these members are pointing to 2014 * real present VMAs because application may have correspond 2015 * VMAs already unmapped and kernel uses these members for statistics 2016 * output in procfs mostly, except 2017 * 2018 * - @start_brk/@brk which are used in do_brk but kernel lookups 2019 * for VMAs when updating these memvers so anything wrong written 2020 * here cause kernel to swear at userspace program but won't lead 2021 * to any problem in kernel itself 2022 */ 2023 2024 spin_lock(&mm->arg_lock); 2025 mm->start_code = prctl_map.start_code; 2026 mm->end_code = prctl_map.end_code; 2027 mm->start_data = prctl_map.start_data; 2028 mm->end_data = prctl_map.end_data; 2029 mm->start_brk = prctl_map.start_brk; 2030 mm->brk = prctl_map.brk; 2031 mm->start_stack = prctl_map.start_stack; 2032 mm->arg_start = prctl_map.arg_start; 2033 mm->arg_end = prctl_map.arg_end; 2034 mm->env_start = prctl_map.env_start; 2035 mm->env_end = prctl_map.env_end; 2036 spin_unlock(&mm->arg_lock); 2037 2038 /* 2039 * Note this update of @saved_auxv is lockless thus 2040 * if someone reads this member in procfs while we're 2041 * updating -- it may get partly updated results. It's 2042 * known and acceptable trade off: we leave it as is to 2043 * not introduce additional locks here making the kernel 2044 * more complex. 2045 */ 2046 if (prctl_map.auxv_size) 2047 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv)); 2048 2049 up_read(&mm->mmap_sem); 2050 return 0; 2051 } 2052 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2053 2054 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr, 2055 unsigned long len) 2056 { 2057 /* 2058 * This doesn't move the auxiliary vector itself since it's pinned to 2059 * mm_struct, but it permits filling the vector with new values. It's 2060 * up to the caller to provide sane values here, otherwise userspace 2061 * tools which use this vector might be unhappy. 2062 */ 2063 unsigned long user_auxv[AT_VECTOR_SIZE]; 2064 2065 if (len > sizeof(user_auxv)) 2066 return -EINVAL; 2067 2068 if (copy_from_user(user_auxv, (const void __user *)addr, len)) 2069 return -EFAULT; 2070 2071 /* Make sure the last entry is always AT_NULL */ 2072 user_auxv[AT_VECTOR_SIZE - 2] = 0; 2073 user_auxv[AT_VECTOR_SIZE - 1] = 0; 2074 2075 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); 2076 2077 task_lock(current); 2078 memcpy(mm->saved_auxv, user_auxv, len); 2079 task_unlock(current); 2080 2081 return 0; 2082 } 2083 2084 static int prctl_set_mm(int opt, unsigned long addr, 2085 unsigned long arg4, unsigned long arg5) 2086 { 2087 struct mm_struct *mm = current->mm; 2088 struct prctl_mm_map prctl_map = { 2089 .auxv = NULL, 2090 .auxv_size = 0, 2091 .exe_fd = -1, 2092 }; 2093 struct vm_area_struct *vma; 2094 int error; 2095 2096 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV && 2097 opt != PR_SET_MM_MAP && 2098 opt != PR_SET_MM_MAP_SIZE))) 2099 return -EINVAL; 2100 2101 #ifdef CONFIG_CHECKPOINT_RESTORE 2102 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE) 2103 return prctl_set_mm_map(opt, (const void __user *)addr, arg4); 2104 #endif 2105 2106 if (!capable(CAP_SYS_RESOURCE)) 2107 return -EPERM; 2108 2109 if (opt == PR_SET_MM_EXE_FILE) 2110 return prctl_set_mm_exe_file(mm, (unsigned int)addr); 2111 2112 if (opt == PR_SET_MM_AUXV) 2113 return prctl_set_auxv(mm, addr, arg4); 2114 2115 if (addr >= TASK_SIZE || addr < mmap_min_addr) 2116 return -EINVAL; 2117 2118 error = -EINVAL; 2119 2120 /* 2121 * arg_lock protects concurent updates of arg boundaries, we need 2122 * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr 2123 * validation. 2124 */ 2125 down_read(&mm->mmap_sem); 2126 vma = find_vma(mm, addr); 2127 2128 spin_lock(&mm->arg_lock); 2129 prctl_map.start_code = mm->start_code; 2130 prctl_map.end_code = mm->end_code; 2131 prctl_map.start_data = mm->start_data; 2132 prctl_map.end_data = mm->end_data; 2133 prctl_map.start_brk = mm->start_brk; 2134 prctl_map.brk = mm->brk; 2135 prctl_map.start_stack = mm->start_stack; 2136 prctl_map.arg_start = mm->arg_start; 2137 prctl_map.arg_end = mm->arg_end; 2138 prctl_map.env_start = mm->env_start; 2139 prctl_map.env_end = mm->env_end; 2140 2141 switch (opt) { 2142 case PR_SET_MM_START_CODE: 2143 prctl_map.start_code = addr; 2144 break; 2145 case PR_SET_MM_END_CODE: 2146 prctl_map.end_code = addr; 2147 break; 2148 case PR_SET_MM_START_DATA: 2149 prctl_map.start_data = addr; 2150 break; 2151 case PR_SET_MM_END_DATA: 2152 prctl_map.end_data = addr; 2153 break; 2154 case PR_SET_MM_START_STACK: 2155 prctl_map.start_stack = addr; 2156 break; 2157 case PR_SET_MM_START_BRK: 2158 prctl_map.start_brk = addr; 2159 break; 2160 case PR_SET_MM_BRK: 2161 prctl_map.brk = addr; 2162 break; 2163 case PR_SET_MM_ARG_START: 2164 prctl_map.arg_start = addr; 2165 break; 2166 case PR_SET_MM_ARG_END: 2167 prctl_map.arg_end = addr; 2168 break; 2169 case PR_SET_MM_ENV_START: 2170 prctl_map.env_start = addr; 2171 break; 2172 case PR_SET_MM_ENV_END: 2173 prctl_map.env_end = addr; 2174 break; 2175 default: 2176 goto out; 2177 } 2178 2179 error = validate_prctl_map_addr(&prctl_map); 2180 if (error) 2181 goto out; 2182 2183 switch (opt) { 2184 /* 2185 * If command line arguments and environment 2186 * are placed somewhere else on stack, we can 2187 * set them up here, ARG_START/END to setup 2188 * command line argumets and ENV_START/END 2189 * for environment. 2190 */ 2191 case PR_SET_MM_START_STACK: 2192 case PR_SET_MM_ARG_START: 2193 case PR_SET_MM_ARG_END: 2194 case PR_SET_MM_ENV_START: 2195 case PR_SET_MM_ENV_END: 2196 if (!vma) { 2197 error = -EFAULT; 2198 goto out; 2199 } 2200 } 2201 2202 mm->start_code = prctl_map.start_code; 2203 mm->end_code = prctl_map.end_code; 2204 mm->start_data = prctl_map.start_data; 2205 mm->end_data = prctl_map.end_data; 2206 mm->start_brk = prctl_map.start_brk; 2207 mm->brk = prctl_map.brk; 2208 mm->start_stack = prctl_map.start_stack; 2209 mm->arg_start = prctl_map.arg_start; 2210 mm->arg_end = prctl_map.arg_end; 2211 mm->env_start = prctl_map.env_start; 2212 mm->env_end = prctl_map.env_end; 2213 2214 error = 0; 2215 out: 2216 spin_unlock(&mm->arg_lock); 2217 up_read(&mm->mmap_sem); 2218 return error; 2219 } 2220 2221 #ifdef CONFIG_CHECKPOINT_RESTORE 2222 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr) 2223 { 2224 return put_user(me->clear_child_tid, tid_addr); 2225 } 2226 #else 2227 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr) 2228 { 2229 return -EINVAL; 2230 } 2231 #endif 2232 2233 static int propagate_has_child_subreaper(struct task_struct *p, void *data) 2234 { 2235 /* 2236 * If task has has_child_subreaper - all its decendants 2237 * already have these flag too and new decendants will 2238 * inherit it on fork, skip them. 2239 * 2240 * If we've found child_reaper - skip descendants in 2241 * it's subtree as they will never get out pidns. 2242 */ 2243 if (p->signal->has_child_subreaper || 2244 is_child_reaper(task_pid(p))) 2245 return 0; 2246 2247 p->signal->has_child_subreaper = 1; 2248 return 1; 2249 } 2250 2251 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which) 2252 { 2253 return -EINVAL; 2254 } 2255 2256 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which, 2257 unsigned long ctrl) 2258 { 2259 return -EINVAL; 2260 } 2261 2262 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, 2263 unsigned long, arg4, unsigned long, arg5) 2264 { 2265 struct task_struct *me = current; 2266 unsigned char comm[sizeof(me->comm)]; 2267 long error; 2268 2269 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 2270 if (error != -ENOSYS) 2271 return error; 2272 2273 error = 0; 2274 switch (option) { 2275 case PR_SET_PDEATHSIG: 2276 if (!valid_signal(arg2)) { 2277 error = -EINVAL; 2278 break; 2279 } 2280 me->pdeath_signal = arg2; 2281 break; 2282 case PR_GET_PDEATHSIG: 2283 error = put_user(me->pdeath_signal, (int __user *)arg2); 2284 break; 2285 case PR_GET_DUMPABLE: 2286 error = get_dumpable(me->mm); 2287 break; 2288 case PR_SET_DUMPABLE: 2289 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) { 2290 error = -EINVAL; 2291 break; 2292 } 2293 set_dumpable(me->mm, arg2); 2294 break; 2295 2296 case PR_SET_UNALIGN: 2297 error = SET_UNALIGN_CTL(me, arg2); 2298 break; 2299 case PR_GET_UNALIGN: 2300 error = GET_UNALIGN_CTL(me, arg2); 2301 break; 2302 case PR_SET_FPEMU: 2303 error = SET_FPEMU_CTL(me, arg2); 2304 break; 2305 case PR_GET_FPEMU: 2306 error = GET_FPEMU_CTL(me, arg2); 2307 break; 2308 case PR_SET_FPEXC: 2309 error = SET_FPEXC_CTL(me, arg2); 2310 break; 2311 case PR_GET_FPEXC: 2312 error = GET_FPEXC_CTL(me, arg2); 2313 break; 2314 case PR_GET_TIMING: 2315 error = PR_TIMING_STATISTICAL; 2316 break; 2317 case PR_SET_TIMING: 2318 if (arg2 != PR_TIMING_STATISTICAL) 2319 error = -EINVAL; 2320 break; 2321 case PR_SET_NAME: 2322 comm[sizeof(me->comm) - 1] = 0; 2323 if (strncpy_from_user(comm, (char __user *)arg2, 2324 sizeof(me->comm) - 1) < 0) 2325 return -EFAULT; 2326 set_task_comm(me, comm); 2327 proc_comm_connector(me); 2328 break; 2329 case PR_GET_NAME: 2330 get_task_comm(comm, me); 2331 if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) 2332 return -EFAULT; 2333 break; 2334 case PR_GET_ENDIAN: 2335 error = GET_ENDIAN(me, arg2); 2336 break; 2337 case PR_SET_ENDIAN: 2338 error = SET_ENDIAN(me, arg2); 2339 break; 2340 case PR_GET_SECCOMP: 2341 error = prctl_get_seccomp(); 2342 break; 2343 case PR_SET_SECCOMP: 2344 error = prctl_set_seccomp(arg2, (char __user *)arg3); 2345 break; 2346 case PR_GET_TSC: 2347 error = GET_TSC_CTL(arg2); 2348 break; 2349 case PR_SET_TSC: 2350 error = SET_TSC_CTL(arg2); 2351 break; 2352 case PR_TASK_PERF_EVENTS_DISABLE: 2353 error = perf_event_task_disable(); 2354 break; 2355 case PR_TASK_PERF_EVENTS_ENABLE: 2356 error = perf_event_task_enable(); 2357 break; 2358 case PR_GET_TIMERSLACK: 2359 if (current->timer_slack_ns > ULONG_MAX) 2360 error = ULONG_MAX; 2361 else 2362 error = current->timer_slack_ns; 2363 break; 2364 case PR_SET_TIMERSLACK: 2365 if (arg2 <= 0) 2366 current->timer_slack_ns = 2367 current->default_timer_slack_ns; 2368 else 2369 current->timer_slack_ns = arg2; 2370 break; 2371 case PR_MCE_KILL: 2372 if (arg4 | arg5) 2373 return -EINVAL; 2374 switch (arg2) { 2375 case PR_MCE_KILL_CLEAR: 2376 if (arg3 != 0) 2377 return -EINVAL; 2378 current->flags &= ~PF_MCE_PROCESS; 2379 break; 2380 case PR_MCE_KILL_SET: 2381 current->flags |= PF_MCE_PROCESS; 2382 if (arg3 == PR_MCE_KILL_EARLY) 2383 current->flags |= PF_MCE_EARLY; 2384 else if (arg3 == PR_MCE_KILL_LATE) 2385 current->flags &= ~PF_MCE_EARLY; 2386 else if (arg3 == PR_MCE_KILL_DEFAULT) 2387 current->flags &= 2388 ~(PF_MCE_EARLY|PF_MCE_PROCESS); 2389 else 2390 return -EINVAL; 2391 break; 2392 default: 2393 return -EINVAL; 2394 } 2395 break; 2396 case PR_MCE_KILL_GET: 2397 if (arg2 | arg3 | arg4 | arg5) 2398 return -EINVAL; 2399 if (current->flags & PF_MCE_PROCESS) 2400 error = (current->flags & PF_MCE_EARLY) ? 2401 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; 2402 else 2403 error = PR_MCE_KILL_DEFAULT; 2404 break; 2405 case PR_SET_MM: 2406 error = prctl_set_mm(arg2, arg3, arg4, arg5); 2407 break; 2408 case PR_GET_TID_ADDRESS: 2409 error = prctl_get_tid_address(me, (int __user **)arg2); 2410 break; 2411 case PR_SET_CHILD_SUBREAPER: 2412 me->signal->is_child_subreaper = !!arg2; 2413 if (!arg2) 2414 break; 2415 2416 walk_process_tree(me, propagate_has_child_subreaper, NULL); 2417 break; 2418 case PR_GET_CHILD_SUBREAPER: 2419 error = put_user(me->signal->is_child_subreaper, 2420 (int __user *)arg2); 2421 break; 2422 case PR_SET_NO_NEW_PRIVS: 2423 if (arg2 != 1 || arg3 || arg4 || arg5) 2424 return -EINVAL; 2425 2426 task_set_no_new_privs(current); 2427 break; 2428 case PR_GET_NO_NEW_PRIVS: 2429 if (arg2 || arg3 || arg4 || arg5) 2430 return -EINVAL; 2431 return task_no_new_privs(current) ? 1 : 0; 2432 case PR_GET_THP_DISABLE: 2433 if (arg2 || arg3 || arg4 || arg5) 2434 return -EINVAL; 2435 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags); 2436 break; 2437 case PR_SET_THP_DISABLE: 2438 if (arg3 || arg4 || arg5) 2439 return -EINVAL; 2440 if (down_write_killable(&me->mm->mmap_sem)) 2441 return -EINTR; 2442 if (arg2) 2443 set_bit(MMF_DISABLE_THP, &me->mm->flags); 2444 else 2445 clear_bit(MMF_DISABLE_THP, &me->mm->flags); 2446 up_write(&me->mm->mmap_sem); 2447 break; 2448 case PR_MPX_ENABLE_MANAGEMENT: 2449 case PR_MPX_DISABLE_MANAGEMENT: 2450 /* No longer implemented: */ 2451 return -EINVAL; 2452 case PR_SET_FP_MODE: 2453 error = SET_FP_MODE(me, arg2); 2454 break; 2455 case PR_GET_FP_MODE: 2456 error = GET_FP_MODE(me); 2457 break; 2458 case PR_SVE_SET_VL: 2459 error = SVE_SET_VL(arg2); 2460 break; 2461 case PR_SVE_GET_VL: 2462 error = SVE_GET_VL(); 2463 break; 2464 case PR_GET_SPECULATION_CTRL: 2465 if (arg3 || arg4 || arg5) 2466 return -EINVAL; 2467 error = arch_prctl_spec_ctrl_get(me, arg2); 2468 break; 2469 case PR_SET_SPECULATION_CTRL: 2470 if (arg4 || arg5) 2471 return -EINVAL; 2472 error = arch_prctl_spec_ctrl_set(me, arg2, arg3); 2473 break; 2474 case PR_PAC_RESET_KEYS: 2475 if (arg3 || arg4 || arg5) 2476 return -EINVAL; 2477 error = PAC_RESET_KEYS(me, arg2); 2478 break; 2479 case PR_SET_TAGGED_ADDR_CTRL: 2480 if (arg3 || arg4 || arg5) 2481 return -EINVAL; 2482 error = SET_TAGGED_ADDR_CTRL(arg2); 2483 break; 2484 case PR_GET_TAGGED_ADDR_CTRL: 2485 if (arg2 || arg3 || arg4 || arg5) 2486 return -EINVAL; 2487 error = GET_TAGGED_ADDR_CTRL(); 2488 break; 2489 default: 2490 error = -EINVAL; 2491 break; 2492 } 2493 return error; 2494 } 2495 2496 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, 2497 struct getcpu_cache __user *, unused) 2498 { 2499 int err = 0; 2500 int cpu = raw_smp_processor_id(); 2501 2502 if (cpup) 2503 err |= put_user(cpu, cpup); 2504 if (nodep) 2505 err |= put_user(cpu_to_node(cpu), nodep); 2506 return err ? -EFAULT : 0; 2507 } 2508 2509 /** 2510 * do_sysinfo - fill in sysinfo struct 2511 * @info: pointer to buffer to fill 2512 */ 2513 static int do_sysinfo(struct sysinfo *info) 2514 { 2515 unsigned long mem_total, sav_total; 2516 unsigned int mem_unit, bitcount; 2517 struct timespec64 tp; 2518 2519 memset(info, 0, sizeof(struct sysinfo)); 2520 2521 ktime_get_boottime_ts64(&tp); 2522 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); 2523 2524 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); 2525 2526 info->procs = nr_threads; 2527 2528 si_meminfo(info); 2529 si_swapinfo(info); 2530 2531 /* 2532 * If the sum of all the available memory (i.e. ram + swap) 2533 * is less than can be stored in a 32 bit unsigned long then 2534 * we can be binary compatible with 2.2.x kernels. If not, 2535 * well, in that case 2.2.x was broken anyways... 2536 * 2537 * -Erik Andersen <andersee@debian.org> 2538 */ 2539 2540 mem_total = info->totalram + info->totalswap; 2541 if (mem_total < info->totalram || mem_total < info->totalswap) 2542 goto out; 2543 bitcount = 0; 2544 mem_unit = info->mem_unit; 2545 while (mem_unit > 1) { 2546 bitcount++; 2547 mem_unit >>= 1; 2548 sav_total = mem_total; 2549 mem_total <<= 1; 2550 if (mem_total < sav_total) 2551 goto out; 2552 } 2553 2554 /* 2555 * If mem_total did not overflow, multiply all memory values by 2556 * info->mem_unit and set it to 1. This leaves things compatible 2557 * with 2.2.x, and also retains compatibility with earlier 2.4.x 2558 * kernels... 2559 */ 2560 2561 info->mem_unit = 1; 2562 info->totalram <<= bitcount; 2563 info->freeram <<= bitcount; 2564 info->sharedram <<= bitcount; 2565 info->bufferram <<= bitcount; 2566 info->totalswap <<= bitcount; 2567 info->freeswap <<= bitcount; 2568 info->totalhigh <<= bitcount; 2569 info->freehigh <<= bitcount; 2570 2571 out: 2572 return 0; 2573 } 2574 2575 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) 2576 { 2577 struct sysinfo val; 2578 2579 do_sysinfo(&val); 2580 2581 if (copy_to_user(info, &val, sizeof(struct sysinfo))) 2582 return -EFAULT; 2583 2584 return 0; 2585 } 2586 2587 #ifdef CONFIG_COMPAT 2588 struct compat_sysinfo { 2589 s32 uptime; 2590 u32 loads[3]; 2591 u32 totalram; 2592 u32 freeram; 2593 u32 sharedram; 2594 u32 bufferram; 2595 u32 totalswap; 2596 u32 freeswap; 2597 u16 procs; 2598 u16 pad; 2599 u32 totalhigh; 2600 u32 freehigh; 2601 u32 mem_unit; 2602 char _f[20-2*sizeof(u32)-sizeof(int)]; 2603 }; 2604 2605 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info) 2606 { 2607 struct sysinfo s; 2608 2609 do_sysinfo(&s); 2610 2611 /* Check to see if any memory value is too large for 32-bit and scale 2612 * down if needed 2613 */ 2614 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) { 2615 int bitcount = 0; 2616 2617 while (s.mem_unit < PAGE_SIZE) { 2618 s.mem_unit <<= 1; 2619 bitcount++; 2620 } 2621 2622 s.totalram >>= bitcount; 2623 s.freeram >>= bitcount; 2624 s.sharedram >>= bitcount; 2625 s.bufferram >>= bitcount; 2626 s.totalswap >>= bitcount; 2627 s.freeswap >>= bitcount; 2628 s.totalhigh >>= bitcount; 2629 s.freehigh >>= bitcount; 2630 } 2631 2632 if (!access_ok(info, sizeof(struct compat_sysinfo)) || 2633 __put_user(s.uptime, &info->uptime) || 2634 __put_user(s.loads[0], &info->loads[0]) || 2635 __put_user(s.loads[1], &info->loads[1]) || 2636 __put_user(s.loads[2], &info->loads[2]) || 2637 __put_user(s.totalram, &info->totalram) || 2638 __put_user(s.freeram, &info->freeram) || 2639 __put_user(s.sharedram, &info->sharedram) || 2640 __put_user(s.bufferram, &info->bufferram) || 2641 __put_user(s.totalswap, &info->totalswap) || 2642 __put_user(s.freeswap, &info->freeswap) || 2643 __put_user(s.procs, &info->procs) || 2644 __put_user(s.totalhigh, &info->totalhigh) || 2645 __put_user(s.freehigh, &info->freehigh) || 2646 __put_user(s.mem_unit, &info->mem_unit)) 2647 return -EFAULT; 2648 2649 return 0; 2650 } 2651 #endif /* CONFIG_COMPAT */ 2652