1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/smp_lock.h> 12 #include <linux/notifier.h> 13 #include <linux/reboot.h> 14 #include <linux/prctl.h> 15 #include <linux/highuid.h> 16 #include <linux/fs.h> 17 #include <linux/kernel.h> 18 #include <linux/kexec.h> 19 #include <linux/workqueue.h> 20 #include <linux/capability.h> 21 #include <linux/device.h> 22 #include <linux/key.h> 23 #include <linux/times.h> 24 #include <linux/posix-timers.h> 25 #include <linux/security.h> 26 #include <linux/dcookies.h> 27 #include <linux/suspend.h> 28 #include <linux/tty.h> 29 #include <linux/signal.h> 30 #include <linux/cn_proc.h> 31 32 #include <linux/compat.h> 33 #include <linux/syscalls.h> 34 #include <linux/kprobes.h> 35 36 #include <asm/uaccess.h> 37 #include <asm/io.h> 38 #include <asm/unistd.h> 39 40 #ifndef SET_UNALIGN_CTL 41 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 42 #endif 43 #ifndef GET_UNALIGN_CTL 44 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 45 #endif 46 #ifndef SET_FPEMU_CTL 47 # define SET_FPEMU_CTL(a,b) (-EINVAL) 48 #endif 49 #ifndef GET_FPEMU_CTL 50 # define GET_FPEMU_CTL(a,b) (-EINVAL) 51 #endif 52 #ifndef SET_FPEXC_CTL 53 # define SET_FPEXC_CTL(a,b) (-EINVAL) 54 #endif 55 #ifndef GET_FPEXC_CTL 56 # define GET_FPEXC_CTL(a,b) (-EINVAL) 57 #endif 58 #ifndef GET_ENDIAN 59 # define GET_ENDIAN(a,b) (-EINVAL) 60 #endif 61 #ifndef SET_ENDIAN 62 # define SET_ENDIAN(a,b) (-EINVAL) 63 #endif 64 65 /* 66 * this is where the system-wide overflow UID and GID are defined, for 67 * architectures that now have 32-bit UID/GID but didn't in the past 68 */ 69 70 int overflowuid = DEFAULT_OVERFLOWUID; 71 int overflowgid = DEFAULT_OVERFLOWGID; 72 73 #ifdef CONFIG_UID16 74 EXPORT_SYMBOL(overflowuid); 75 EXPORT_SYMBOL(overflowgid); 76 #endif 77 78 /* 79 * the same as above, but for filesystems which can only store a 16-bit 80 * UID and GID. as such, this is needed on all architectures 81 */ 82 83 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 84 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 85 86 EXPORT_SYMBOL(fs_overflowuid); 87 EXPORT_SYMBOL(fs_overflowgid); 88 89 /* 90 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 91 */ 92 93 int C_A_D = 1; 94 int cad_pid = 1; 95 96 /* 97 * Notifier list for kernel code which wants to be called 98 * at shutdown. This is used to stop any idling DMA operations 99 * and the like. 100 */ 101 102 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list); 103 104 /* 105 * Notifier chain core routines. The exported routines below 106 * are layered on top of these, with appropriate locking added. 107 */ 108 109 static int notifier_chain_register(struct notifier_block **nl, 110 struct notifier_block *n) 111 { 112 while ((*nl) != NULL) { 113 if (n->priority > (*nl)->priority) 114 break; 115 nl = &((*nl)->next); 116 } 117 n->next = *nl; 118 rcu_assign_pointer(*nl, n); 119 return 0; 120 } 121 122 static int notifier_chain_unregister(struct notifier_block **nl, 123 struct notifier_block *n) 124 { 125 while ((*nl) != NULL) { 126 if ((*nl) == n) { 127 rcu_assign_pointer(*nl, n->next); 128 return 0; 129 } 130 nl = &((*nl)->next); 131 } 132 return -ENOENT; 133 } 134 135 static int __kprobes notifier_call_chain(struct notifier_block **nl, 136 unsigned long val, void *v) 137 { 138 int ret = NOTIFY_DONE; 139 struct notifier_block *nb, *next_nb; 140 141 nb = rcu_dereference(*nl); 142 while (nb) { 143 next_nb = rcu_dereference(nb->next); 144 ret = nb->notifier_call(nb, val, v); 145 if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK) 146 break; 147 nb = next_nb; 148 } 149 return ret; 150 } 151 152 /* 153 * Atomic notifier chain routines. Registration and unregistration 154 * use a mutex, and call_chain is synchronized by RCU (no locks). 155 */ 156 157 /** 158 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain 159 * @nh: Pointer to head of the atomic notifier chain 160 * @n: New entry in notifier chain 161 * 162 * Adds a notifier to an atomic notifier chain. 163 * 164 * Currently always returns zero. 165 */ 166 167 int atomic_notifier_chain_register(struct atomic_notifier_head *nh, 168 struct notifier_block *n) 169 { 170 unsigned long flags; 171 int ret; 172 173 spin_lock_irqsave(&nh->lock, flags); 174 ret = notifier_chain_register(&nh->head, n); 175 spin_unlock_irqrestore(&nh->lock, flags); 176 return ret; 177 } 178 179 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register); 180 181 /** 182 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain 183 * @nh: Pointer to head of the atomic notifier chain 184 * @n: Entry to remove from notifier chain 185 * 186 * Removes a notifier from an atomic notifier chain. 187 * 188 * Returns zero on success or %-ENOENT on failure. 189 */ 190 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh, 191 struct notifier_block *n) 192 { 193 unsigned long flags; 194 int ret; 195 196 spin_lock_irqsave(&nh->lock, flags); 197 ret = notifier_chain_unregister(&nh->head, n); 198 spin_unlock_irqrestore(&nh->lock, flags); 199 synchronize_rcu(); 200 return ret; 201 } 202 203 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister); 204 205 /** 206 * atomic_notifier_call_chain - Call functions in an atomic notifier chain 207 * @nh: Pointer to head of the atomic notifier chain 208 * @val: Value passed unmodified to notifier function 209 * @v: Pointer passed unmodified to notifier function 210 * 211 * Calls each function in a notifier chain in turn. The functions 212 * run in an atomic context, so they must not block. 213 * This routine uses RCU to synchronize with changes to the chain. 214 * 215 * If the return value of the notifier can be and'ed 216 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain 217 * will return immediately, with the return value of 218 * the notifier function which halted execution. 219 * Otherwise the return value is the return value 220 * of the last notifier function called. 221 */ 222 223 int atomic_notifier_call_chain(struct atomic_notifier_head *nh, 224 unsigned long val, void *v) 225 { 226 int ret; 227 228 rcu_read_lock(); 229 ret = notifier_call_chain(&nh->head, val, v); 230 rcu_read_unlock(); 231 return ret; 232 } 233 234 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain); 235 236 /* 237 * Blocking notifier chain routines. All access to the chain is 238 * synchronized by an rwsem. 239 */ 240 241 /** 242 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain 243 * @nh: Pointer to head of the blocking notifier chain 244 * @n: New entry in notifier chain 245 * 246 * Adds a notifier to a blocking notifier chain. 247 * Must be called in process context. 248 * 249 * Currently always returns zero. 250 */ 251 252 int blocking_notifier_chain_register(struct blocking_notifier_head *nh, 253 struct notifier_block *n) 254 { 255 int ret; 256 257 /* 258 * This code gets used during boot-up, when task switching is 259 * not yet working and interrupts must remain disabled. At 260 * such times we must not call down_write(). 261 */ 262 if (unlikely(system_state == SYSTEM_BOOTING)) 263 return notifier_chain_register(&nh->head, n); 264 265 down_write(&nh->rwsem); 266 ret = notifier_chain_register(&nh->head, n); 267 up_write(&nh->rwsem); 268 return ret; 269 } 270 271 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register); 272 273 /** 274 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain 275 * @nh: Pointer to head of the blocking notifier chain 276 * @n: Entry to remove from notifier chain 277 * 278 * Removes a notifier from a blocking notifier chain. 279 * Must be called from process context. 280 * 281 * Returns zero on success or %-ENOENT on failure. 282 */ 283 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh, 284 struct notifier_block *n) 285 { 286 int ret; 287 288 /* 289 * This code gets used during boot-up, when task switching is 290 * not yet working and interrupts must remain disabled. At 291 * such times we must not call down_write(). 292 */ 293 if (unlikely(system_state == SYSTEM_BOOTING)) 294 return notifier_chain_unregister(&nh->head, n); 295 296 down_write(&nh->rwsem); 297 ret = notifier_chain_unregister(&nh->head, n); 298 up_write(&nh->rwsem); 299 return ret; 300 } 301 302 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister); 303 304 /** 305 * blocking_notifier_call_chain - Call functions in a blocking notifier chain 306 * @nh: Pointer to head of the blocking notifier chain 307 * @val: Value passed unmodified to notifier function 308 * @v: Pointer passed unmodified to notifier function 309 * 310 * Calls each function in a notifier chain in turn. The functions 311 * run in a process context, so they are allowed to block. 312 * 313 * If the return value of the notifier can be and'ed 314 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain 315 * will return immediately, with the return value of 316 * the notifier function which halted execution. 317 * Otherwise the return value is the return value 318 * of the last notifier function called. 319 */ 320 321 int blocking_notifier_call_chain(struct blocking_notifier_head *nh, 322 unsigned long val, void *v) 323 { 324 int ret; 325 326 down_read(&nh->rwsem); 327 ret = notifier_call_chain(&nh->head, val, v); 328 up_read(&nh->rwsem); 329 return ret; 330 } 331 332 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain); 333 334 /* 335 * Raw notifier chain routines. There is no protection; 336 * the caller must provide it. Use at your own risk! 337 */ 338 339 /** 340 * raw_notifier_chain_register - Add notifier to a raw notifier chain 341 * @nh: Pointer to head of the raw notifier chain 342 * @n: New entry in notifier chain 343 * 344 * Adds a notifier to a raw notifier chain. 345 * All locking must be provided by the caller. 346 * 347 * Currently always returns zero. 348 */ 349 350 int raw_notifier_chain_register(struct raw_notifier_head *nh, 351 struct notifier_block *n) 352 { 353 return notifier_chain_register(&nh->head, n); 354 } 355 356 EXPORT_SYMBOL_GPL(raw_notifier_chain_register); 357 358 /** 359 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain 360 * @nh: Pointer to head of the raw notifier chain 361 * @n: Entry to remove from notifier chain 362 * 363 * Removes a notifier from a raw notifier chain. 364 * All locking must be provided by the caller. 365 * 366 * Returns zero on success or %-ENOENT on failure. 367 */ 368 int raw_notifier_chain_unregister(struct raw_notifier_head *nh, 369 struct notifier_block *n) 370 { 371 return notifier_chain_unregister(&nh->head, n); 372 } 373 374 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister); 375 376 /** 377 * raw_notifier_call_chain - Call functions in a raw notifier chain 378 * @nh: Pointer to head of the raw notifier chain 379 * @val: Value passed unmodified to notifier function 380 * @v: Pointer passed unmodified to notifier function 381 * 382 * Calls each function in a notifier chain in turn. The functions 383 * run in an undefined context. 384 * All locking must be provided by the caller. 385 * 386 * If the return value of the notifier can be and'ed 387 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain 388 * will return immediately, with the return value of 389 * the notifier function which halted execution. 390 * Otherwise the return value is the return value 391 * of the last notifier function called. 392 */ 393 394 int raw_notifier_call_chain(struct raw_notifier_head *nh, 395 unsigned long val, void *v) 396 { 397 return notifier_call_chain(&nh->head, val, v); 398 } 399 400 EXPORT_SYMBOL_GPL(raw_notifier_call_chain); 401 402 /** 403 * register_reboot_notifier - Register function to be called at reboot time 404 * @nb: Info about notifier function to be called 405 * 406 * Registers a function with the list of functions 407 * to be called at reboot time. 408 * 409 * Currently always returns zero, as blocking_notifier_chain_register 410 * always returns zero. 411 */ 412 413 int register_reboot_notifier(struct notifier_block * nb) 414 { 415 return blocking_notifier_chain_register(&reboot_notifier_list, nb); 416 } 417 418 EXPORT_SYMBOL(register_reboot_notifier); 419 420 /** 421 * unregister_reboot_notifier - Unregister previously registered reboot notifier 422 * @nb: Hook to be unregistered 423 * 424 * Unregisters a previously registered reboot 425 * notifier function. 426 * 427 * Returns zero on success, or %-ENOENT on failure. 428 */ 429 430 int unregister_reboot_notifier(struct notifier_block * nb) 431 { 432 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb); 433 } 434 435 EXPORT_SYMBOL(unregister_reboot_notifier); 436 437 static int set_one_prio(struct task_struct *p, int niceval, int error) 438 { 439 int no_nice; 440 441 if (p->uid != current->euid && 442 p->euid != current->euid && !capable(CAP_SYS_NICE)) { 443 error = -EPERM; 444 goto out; 445 } 446 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 447 error = -EACCES; 448 goto out; 449 } 450 no_nice = security_task_setnice(p, niceval); 451 if (no_nice) { 452 error = no_nice; 453 goto out; 454 } 455 if (error == -ESRCH) 456 error = 0; 457 set_user_nice(p, niceval); 458 out: 459 return error; 460 } 461 462 asmlinkage long sys_setpriority(int which, int who, int niceval) 463 { 464 struct task_struct *g, *p; 465 struct user_struct *user; 466 int error = -EINVAL; 467 468 if (which > 2 || which < 0) 469 goto out; 470 471 /* normalize: avoid signed division (rounding problems) */ 472 error = -ESRCH; 473 if (niceval < -20) 474 niceval = -20; 475 if (niceval > 19) 476 niceval = 19; 477 478 read_lock(&tasklist_lock); 479 switch (which) { 480 case PRIO_PROCESS: 481 if (!who) 482 who = current->pid; 483 p = find_task_by_pid(who); 484 if (p) 485 error = set_one_prio(p, niceval, error); 486 break; 487 case PRIO_PGRP: 488 if (!who) 489 who = process_group(current); 490 do_each_task_pid(who, PIDTYPE_PGID, p) { 491 error = set_one_prio(p, niceval, error); 492 } while_each_task_pid(who, PIDTYPE_PGID, p); 493 break; 494 case PRIO_USER: 495 user = current->user; 496 if (!who) 497 who = current->uid; 498 else 499 if ((who != current->uid) && !(user = find_user(who))) 500 goto out_unlock; /* No processes for this user */ 501 502 do_each_thread(g, p) 503 if (p->uid == who) 504 error = set_one_prio(p, niceval, error); 505 while_each_thread(g, p); 506 if (who != current->uid) 507 free_uid(user); /* For find_user() */ 508 break; 509 } 510 out_unlock: 511 read_unlock(&tasklist_lock); 512 out: 513 return error; 514 } 515 516 /* 517 * Ugh. To avoid negative return values, "getpriority()" will 518 * not return the normal nice-value, but a negated value that 519 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 520 * to stay compatible. 521 */ 522 asmlinkage long sys_getpriority(int which, int who) 523 { 524 struct task_struct *g, *p; 525 struct user_struct *user; 526 long niceval, retval = -ESRCH; 527 528 if (which > 2 || which < 0) 529 return -EINVAL; 530 531 read_lock(&tasklist_lock); 532 switch (which) { 533 case PRIO_PROCESS: 534 if (!who) 535 who = current->pid; 536 p = find_task_by_pid(who); 537 if (p) { 538 niceval = 20 - task_nice(p); 539 if (niceval > retval) 540 retval = niceval; 541 } 542 break; 543 case PRIO_PGRP: 544 if (!who) 545 who = process_group(current); 546 do_each_task_pid(who, PIDTYPE_PGID, p) { 547 niceval = 20 - task_nice(p); 548 if (niceval > retval) 549 retval = niceval; 550 } while_each_task_pid(who, PIDTYPE_PGID, p); 551 break; 552 case PRIO_USER: 553 user = current->user; 554 if (!who) 555 who = current->uid; 556 else 557 if ((who != current->uid) && !(user = find_user(who))) 558 goto out_unlock; /* No processes for this user */ 559 560 do_each_thread(g, p) 561 if (p->uid == who) { 562 niceval = 20 - task_nice(p); 563 if (niceval > retval) 564 retval = niceval; 565 } 566 while_each_thread(g, p); 567 if (who != current->uid) 568 free_uid(user); /* for find_user() */ 569 break; 570 } 571 out_unlock: 572 read_unlock(&tasklist_lock); 573 574 return retval; 575 } 576 577 /** 578 * emergency_restart - reboot the system 579 * 580 * Without shutting down any hardware or taking any locks 581 * reboot the system. This is called when we know we are in 582 * trouble so this is our best effort to reboot. This is 583 * safe to call in interrupt context. 584 */ 585 void emergency_restart(void) 586 { 587 machine_emergency_restart(); 588 } 589 EXPORT_SYMBOL_GPL(emergency_restart); 590 591 static void kernel_restart_prepare(char *cmd) 592 { 593 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 594 system_state = SYSTEM_RESTART; 595 device_shutdown(); 596 } 597 598 /** 599 * kernel_restart - reboot the system 600 * @cmd: pointer to buffer containing command to execute for restart 601 * or %NULL 602 * 603 * Shutdown everything and perform a clean reboot. 604 * This is not safe to call in interrupt context. 605 */ 606 void kernel_restart(char *cmd) 607 { 608 kernel_restart_prepare(cmd); 609 if (!cmd) { 610 printk(KERN_EMERG "Restarting system.\n"); 611 } else { 612 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 613 } 614 printk(".\n"); 615 machine_restart(cmd); 616 } 617 EXPORT_SYMBOL_GPL(kernel_restart); 618 619 /** 620 * kernel_kexec - reboot the system 621 * 622 * Move into place and start executing a preloaded standalone 623 * executable. If nothing was preloaded return an error. 624 */ 625 static void kernel_kexec(void) 626 { 627 #ifdef CONFIG_KEXEC 628 struct kimage *image; 629 image = xchg(&kexec_image, NULL); 630 if (!image) { 631 return; 632 } 633 kernel_restart_prepare(NULL); 634 printk(KERN_EMERG "Starting new kernel\n"); 635 machine_shutdown(); 636 machine_kexec(image); 637 #endif 638 } 639 640 void kernel_shutdown_prepare(enum system_states state) 641 { 642 blocking_notifier_call_chain(&reboot_notifier_list, 643 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 644 system_state = state; 645 device_shutdown(); 646 } 647 /** 648 * kernel_halt - halt the system 649 * 650 * Shutdown everything and perform a clean system halt. 651 */ 652 void kernel_halt(void) 653 { 654 kernel_shutdown_prepare(SYSTEM_HALT); 655 printk(KERN_EMERG "System halted.\n"); 656 machine_halt(); 657 } 658 659 EXPORT_SYMBOL_GPL(kernel_halt); 660 661 /** 662 * kernel_power_off - power_off the system 663 * 664 * Shutdown everything and perform a clean system power_off. 665 */ 666 void kernel_power_off(void) 667 { 668 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 669 printk(KERN_EMERG "Power down.\n"); 670 machine_power_off(); 671 } 672 EXPORT_SYMBOL_GPL(kernel_power_off); 673 /* 674 * Reboot system call: for obvious reasons only root may call it, 675 * and even root needs to set up some magic numbers in the registers 676 * so that some mistake won't make this reboot the whole machine. 677 * You can also set the meaning of the ctrl-alt-del-key here. 678 * 679 * reboot doesn't sync: do that yourself before calling this. 680 */ 681 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 682 { 683 char buffer[256]; 684 685 /* We only trust the superuser with rebooting the system. */ 686 if (!capable(CAP_SYS_BOOT)) 687 return -EPERM; 688 689 /* For safety, we require "magic" arguments. */ 690 if (magic1 != LINUX_REBOOT_MAGIC1 || 691 (magic2 != LINUX_REBOOT_MAGIC2 && 692 magic2 != LINUX_REBOOT_MAGIC2A && 693 magic2 != LINUX_REBOOT_MAGIC2B && 694 magic2 != LINUX_REBOOT_MAGIC2C)) 695 return -EINVAL; 696 697 /* Instead of trying to make the power_off code look like 698 * halt when pm_power_off is not set do it the easy way. 699 */ 700 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 701 cmd = LINUX_REBOOT_CMD_HALT; 702 703 lock_kernel(); 704 switch (cmd) { 705 case LINUX_REBOOT_CMD_RESTART: 706 kernel_restart(NULL); 707 break; 708 709 case LINUX_REBOOT_CMD_CAD_ON: 710 C_A_D = 1; 711 break; 712 713 case LINUX_REBOOT_CMD_CAD_OFF: 714 C_A_D = 0; 715 break; 716 717 case LINUX_REBOOT_CMD_HALT: 718 kernel_halt(); 719 unlock_kernel(); 720 do_exit(0); 721 break; 722 723 case LINUX_REBOOT_CMD_POWER_OFF: 724 kernel_power_off(); 725 unlock_kernel(); 726 do_exit(0); 727 break; 728 729 case LINUX_REBOOT_CMD_RESTART2: 730 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 731 unlock_kernel(); 732 return -EFAULT; 733 } 734 buffer[sizeof(buffer) - 1] = '\0'; 735 736 kernel_restart(buffer); 737 break; 738 739 case LINUX_REBOOT_CMD_KEXEC: 740 kernel_kexec(); 741 unlock_kernel(); 742 return -EINVAL; 743 744 #ifdef CONFIG_SOFTWARE_SUSPEND 745 case LINUX_REBOOT_CMD_SW_SUSPEND: 746 { 747 int ret = software_suspend(); 748 unlock_kernel(); 749 return ret; 750 } 751 #endif 752 753 default: 754 unlock_kernel(); 755 return -EINVAL; 756 } 757 unlock_kernel(); 758 return 0; 759 } 760 761 static void deferred_cad(void *dummy) 762 { 763 kernel_restart(NULL); 764 } 765 766 /* 767 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 768 * As it's called within an interrupt, it may NOT sync: the only choice 769 * is whether to reboot at once, or just ignore the ctrl-alt-del. 770 */ 771 void ctrl_alt_del(void) 772 { 773 static DECLARE_WORK(cad_work, deferred_cad, NULL); 774 775 if (C_A_D) 776 schedule_work(&cad_work); 777 else 778 kill_proc(cad_pid, SIGINT, 1); 779 } 780 781 782 /* 783 * Unprivileged users may change the real gid to the effective gid 784 * or vice versa. (BSD-style) 785 * 786 * If you set the real gid at all, or set the effective gid to a value not 787 * equal to the real gid, then the saved gid is set to the new effective gid. 788 * 789 * This makes it possible for a setgid program to completely drop its 790 * privileges, which is often a useful assertion to make when you are doing 791 * a security audit over a program. 792 * 793 * The general idea is that a program which uses just setregid() will be 794 * 100% compatible with BSD. A program which uses just setgid() will be 795 * 100% compatible with POSIX with saved IDs. 796 * 797 * SMP: There are not races, the GIDs are checked only by filesystem 798 * operations (as far as semantic preservation is concerned). 799 */ 800 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 801 { 802 int old_rgid = current->gid; 803 int old_egid = current->egid; 804 int new_rgid = old_rgid; 805 int new_egid = old_egid; 806 int retval; 807 808 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 809 if (retval) 810 return retval; 811 812 if (rgid != (gid_t) -1) { 813 if ((old_rgid == rgid) || 814 (current->egid==rgid) || 815 capable(CAP_SETGID)) 816 new_rgid = rgid; 817 else 818 return -EPERM; 819 } 820 if (egid != (gid_t) -1) { 821 if ((old_rgid == egid) || 822 (current->egid == egid) || 823 (current->sgid == egid) || 824 capable(CAP_SETGID)) 825 new_egid = egid; 826 else { 827 return -EPERM; 828 } 829 } 830 if (new_egid != old_egid) 831 { 832 current->mm->dumpable = suid_dumpable; 833 smp_wmb(); 834 } 835 if (rgid != (gid_t) -1 || 836 (egid != (gid_t) -1 && egid != old_rgid)) 837 current->sgid = new_egid; 838 current->fsgid = new_egid; 839 current->egid = new_egid; 840 current->gid = new_rgid; 841 key_fsgid_changed(current); 842 proc_id_connector(current, PROC_EVENT_GID); 843 return 0; 844 } 845 846 /* 847 * setgid() is implemented like SysV w/ SAVED_IDS 848 * 849 * SMP: Same implicit races as above. 850 */ 851 asmlinkage long sys_setgid(gid_t gid) 852 { 853 int old_egid = current->egid; 854 int retval; 855 856 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 857 if (retval) 858 return retval; 859 860 if (capable(CAP_SETGID)) 861 { 862 if(old_egid != gid) 863 { 864 current->mm->dumpable = suid_dumpable; 865 smp_wmb(); 866 } 867 current->gid = current->egid = current->sgid = current->fsgid = gid; 868 } 869 else if ((gid == current->gid) || (gid == current->sgid)) 870 { 871 if(old_egid != gid) 872 { 873 current->mm->dumpable = suid_dumpable; 874 smp_wmb(); 875 } 876 current->egid = current->fsgid = gid; 877 } 878 else 879 return -EPERM; 880 881 key_fsgid_changed(current); 882 proc_id_connector(current, PROC_EVENT_GID); 883 return 0; 884 } 885 886 static int set_user(uid_t new_ruid, int dumpclear) 887 { 888 struct user_struct *new_user; 889 890 new_user = alloc_uid(new_ruid); 891 if (!new_user) 892 return -EAGAIN; 893 894 if (atomic_read(&new_user->processes) >= 895 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 896 new_user != &root_user) { 897 free_uid(new_user); 898 return -EAGAIN; 899 } 900 901 switch_uid(new_user); 902 903 if(dumpclear) 904 { 905 current->mm->dumpable = suid_dumpable; 906 smp_wmb(); 907 } 908 current->uid = new_ruid; 909 return 0; 910 } 911 912 /* 913 * Unprivileged users may change the real uid to the effective uid 914 * or vice versa. (BSD-style) 915 * 916 * If you set the real uid at all, or set the effective uid to a value not 917 * equal to the real uid, then the saved uid is set to the new effective uid. 918 * 919 * This makes it possible for a setuid program to completely drop its 920 * privileges, which is often a useful assertion to make when you are doing 921 * a security audit over a program. 922 * 923 * The general idea is that a program which uses just setreuid() will be 924 * 100% compatible with BSD. A program which uses just setuid() will be 925 * 100% compatible with POSIX with saved IDs. 926 */ 927 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 928 { 929 int old_ruid, old_euid, old_suid, new_ruid, new_euid; 930 int retval; 931 932 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 933 if (retval) 934 return retval; 935 936 new_ruid = old_ruid = current->uid; 937 new_euid = old_euid = current->euid; 938 old_suid = current->suid; 939 940 if (ruid != (uid_t) -1) { 941 new_ruid = ruid; 942 if ((old_ruid != ruid) && 943 (current->euid != ruid) && 944 !capable(CAP_SETUID)) 945 return -EPERM; 946 } 947 948 if (euid != (uid_t) -1) { 949 new_euid = euid; 950 if ((old_ruid != euid) && 951 (current->euid != euid) && 952 (current->suid != euid) && 953 !capable(CAP_SETUID)) 954 return -EPERM; 955 } 956 957 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) 958 return -EAGAIN; 959 960 if (new_euid != old_euid) 961 { 962 current->mm->dumpable = suid_dumpable; 963 smp_wmb(); 964 } 965 current->fsuid = current->euid = new_euid; 966 if (ruid != (uid_t) -1 || 967 (euid != (uid_t) -1 && euid != old_ruid)) 968 current->suid = current->euid; 969 current->fsuid = current->euid; 970 971 key_fsuid_changed(current); 972 proc_id_connector(current, PROC_EVENT_UID); 973 974 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); 975 } 976 977 978 979 /* 980 * setuid() is implemented like SysV with SAVED_IDS 981 * 982 * Note that SAVED_ID's is deficient in that a setuid root program 983 * like sendmail, for example, cannot set its uid to be a normal 984 * user and then switch back, because if you're root, setuid() sets 985 * the saved uid too. If you don't like this, blame the bright people 986 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 987 * will allow a root program to temporarily drop privileges and be able to 988 * regain them by swapping the real and effective uid. 989 */ 990 asmlinkage long sys_setuid(uid_t uid) 991 { 992 int old_euid = current->euid; 993 int old_ruid, old_suid, new_ruid, new_suid; 994 int retval; 995 996 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 997 if (retval) 998 return retval; 999 1000 old_ruid = new_ruid = current->uid; 1001 old_suid = current->suid; 1002 new_suid = old_suid; 1003 1004 if (capable(CAP_SETUID)) { 1005 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) 1006 return -EAGAIN; 1007 new_suid = uid; 1008 } else if ((uid != current->uid) && (uid != new_suid)) 1009 return -EPERM; 1010 1011 if (old_euid != uid) 1012 { 1013 current->mm->dumpable = suid_dumpable; 1014 smp_wmb(); 1015 } 1016 current->fsuid = current->euid = uid; 1017 current->suid = new_suid; 1018 1019 key_fsuid_changed(current); 1020 proc_id_connector(current, PROC_EVENT_UID); 1021 1022 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); 1023 } 1024 1025 1026 /* 1027 * This function implements a generic ability to update ruid, euid, 1028 * and suid. This allows you to implement the 4.4 compatible seteuid(). 1029 */ 1030 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 1031 { 1032 int old_ruid = current->uid; 1033 int old_euid = current->euid; 1034 int old_suid = current->suid; 1035 int retval; 1036 1037 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 1038 if (retval) 1039 return retval; 1040 1041 if (!capable(CAP_SETUID)) { 1042 if ((ruid != (uid_t) -1) && (ruid != current->uid) && 1043 (ruid != current->euid) && (ruid != current->suid)) 1044 return -EPERM; 1045 if ((euid != (uid_t) -1) && (euid != current->uid) && 1046 (euid != current->euid) && (euid != current->suid)) 1047 return -EPERM; 1048 if ((suid != (uid_t) -1) && (suid != current->uid) && 1049 (suid != current->euid) && (suid != current->suid)) 1050 return -EPERM; 1051 } 1052 if (ruid != (uid_t) -1) { 1053 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) 1054 return -EAGAIN; 1055 } 1056 if (euid != (uid_t) -1) { 1057 if (euid != current->euid) 1058 { 1059 current->mm->dumpable = suid_dumpable; 1060 smp_wmb(); 1061 } 1062 current->euid = euid; 1063 } 1064 current->fsuid = current->euid; 1065 if (suid != (uid_t) -1) 1066 current->suid = suid; 1067 1068 key_fsuid_changed(current); 1069 proc_id_connector(current, PROC_EVENT_UID); 1070 1071 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); 1072 } 1073 1074 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 1075 { 1076 int retval; 1077 1078 if (!(retval = put_user(current->uid, ruid)) && 1079 !(retval = put_user(current->euid, euid))) 1080 retval = put_user(current->suid, suid); 1081 1082 return retval; 1083 } 1084 1085 /* 1086 * Same as above, but for rgid, egid, sgid. 1087 */ 1088 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 1089 { 1090 int retval; 1091 1092 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 1093 if (retval) 1094 return retval; 1095 1096 if (!capable(CAP_SETGID)) { 1097 if ((rgid != (gid_t) -1) && (rgid != current->gid) && 1098 (rgid != current->egid) && (rgid != current->sgid)) 1099 return -EPERM; 1100 if ((egid != (gid_t) -1) && (egid != current->gid) && 1101 (egid != current->egid) && (egid != current->sgid)) 1102 return -EPERM; 1103 if ((sgid != (gid_t) -1) && (sgid != current->gid) && 1104 (sgid != current->egid) && (sgid != current->sgid)) 1105 return -EPERM; 1106 } 1107 if (egid != (gid_t) -1) { 1108 if (egid != current->egid) 1109 { 1110 current->mm->dumpable = suid_dumpable; 1111 smp_wmb(); 1112 } 1113 current->egid = egid; 1114 } 1115 current->fsgid = current->egid; 1116 if (rgid != (gid_t) -1) 1117 current->gid = rgid; 1118 if (sgid != (gid_t) -1) 1119 current->sgid = sgid; 1120 1121 key_fsgid_changed(current); 1122 proc_id_connector(current, PROC_EVENT_GID); 1123 return 0; 1124 } 1125 1126 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 1127 { 1128 int retval; 1129 1130 if (!(retval = put_user(current->gid, rgid)) && 1131 !(retval = put_user(current->egid, egid))) 1132 retval = put_user(current->sgid, sgid); 1133 1134 return retval; 1135 } 1136 1137 1138 /* 1139 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 1140 * is used for "access()" and for the NFS daemon (letting nfsd stay at 1141 * whatever uid it wants to). It normally shadows "euid", except when 1142 * explicitly set by setfsuid() or for access.. 1143 */ 1144 asmlinkage long sys_setfsuid(uid_t uid) 1145 { 1146 int old_fsuid; 1147 1148 old_fsuid = current->fsuid; 1149 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) 1150 return old_fsuid; 1151 1152 if (uid == current->uid || uid == current->euid || 1153 uid == current->suid || uid == current->fsuid || 1154 capable(CAP_SETUID)) 1155 { 1156 if (uid != old_fsuid) 1157 { 1158 current->mm->dumpable = suid_dumpable; 1159 smp_wmb(); 1160 } 1161 current->fsuid = uid; 1162 } 1163 1164 key_fsuid_changed(current); 1165 proc_id_connector(current, PROC_EVENT_UID); 1166 1167 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); 1168 1169 return old_fsuid; 1170 } 1171 1172 /* 1173 * Samma p� svenska.. 1174 */ 1175 asmlinkage long sys_setfsgid(gid_t gid) 1176 { 1177 int old_fsgid; 1178 1179 old_fsgid = current->fsgid; 1180 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 1181 return old_fsgid; 1182 1183 if (gid == current->gid || gid == current->egid || 1184 gid == current->sgid || gid == current->fsgid || 1185 capable(CAP_SETGID)) 1186 { 1187 if (gid != old_fsgid) 1188 { 1189 current->mm->dumpable = suid_dumpable; 1190 smp_wmb(); 1191 } 1192 current->fsgid = gid; 1193 key_fsgid_changed(current); 1194 proc_id_connector(current, PROC_EVENT_GID); 1195 } 1196 return old_fsgid; 1197 } 1198 1199 asmlinkage long sys_times(struct tms __user * tbuf) 1200 { 1201 /* 1202 * In the SMP world we might just be unlucky and have one of 1203 * the times increment as we use it. Since the value is an 1204 * atomically safe type this is just fine. Conceptually its 1205 * as if the syscall took an instant longer to occur. 1206 */ 1207 if (tbuf) { 1208 struct tms tmp; 1209 struct task_struct *tsk = current; 1210 struct task_struct *t; 1211 cputime_t utime, stime, cutime, cstime; 1212 1213 spin_lock_irq(&tsk->sighand->siglock); 1214 utime = tsk->signal->utime; 1215 stime = tsk->signal->stime; 1216 t = tsk; 1217 do { 1218 utime = cputime_add(utime, t->utime); 1219 stime = cputime_add(stime, t->stime); 1220 t = next_thread(t); 1221 } while (t != tsk); 1222 1223 cutime = tsk->signal->cutime; 1224 cstime = tsk->signal->cstime; 1225 spin_unlock_irq(&tsk->sighand->siglock); 1226 1227 tmp.tms_utime = cputime_to_clock_t(utime); 1228 tmp.tms_stime = cputime_to_clock_t(stime); 1229 tmp.tms_cutime = cputime_to_clock_t(cutime); 1230 tmp.tms_cstime = cputime_to_clock_t(cstime); 1231 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 1232 return -EFAULT; 1233 } 1234 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 1235 } 1236 1237 /* 1238 * This needs some heavy checking ... 1239 * I just haven't the stomach for it. I also don't fully 1240 * understand sessions/pgrp etc. Let somebody who does explain it. 1241 * 1242 * OK, I think I have the protection semantics right.... this is really 1243 * only important on a multi-user system anyway, to make sure one user 1244 * can't send a signal to a process owned by another. -TYT, 12/12/91 1245 * 1246 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 1247 * LBT 04.03.94 1248 */ 1249 1250 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 1251 { 1252 struct task_struct *p; 1253 struct task_struct *group_leader = current->group_leader; 1254 int err = -EINVAL; 1255 1256 if (!pid) 1257 pid = group_leader->pid; 1258 if (!pgid) 1259 pgid = pid; 1260 if (pgid < 0) 1261 return -EINVAL; 1262 1263 /* From this point forward we keep holding onto the tasklist lock 1264 * so that our parent does not change from under us. -DaveM 1265 */ 1266 write_lock_irq(&tasklist_lock); 1267 1268 err = -ESRCH; 1269 p = find_task_by_pid(pid); 1270 if (!p) 1271 goto out; 1272 1273 err = -EINVAL; 1274 if (!thread_group_leader(p)) 1275 goto out; 1276 1277 if (p->real_parent == group_leader) { 1278 err = -EPERM; 1279 if (p->signal->session != group_leader->signal->session) 1280 goto out; 1281 err = -EACCES; 1282 if (p->did_exec) 1283 goto out; 1284 } else { 1285 err = -ESRCH; 1286 if (p != group_leader) 1287 goto out; 1288 } 1289 1290 err = -EPERM; 1291 if (p->signal->leader) 1292 goto out; 1293 1294 if (pgid != pid) { 1295 struct task_struct *p; 1296 1297 do_each_task_pid(pgid, PIDTYPE_PGID, p) { 1298 if (p->signal->session == group_leader->signal->session) 1299 goto ok_pgid; 1300 } while_each_task_pid(pgid, PIDTYPE_PGID, p); 1301 goto out; 1302 } 1303 1304 ok_pgid: 1305 err = security_task_setpgid(p, pgid); 1306 if (err) 1307 goto out; 1308 1309 if (process_group(p) != pgid) { 1310 detach_pid(p, PIDTYPE_PGID); 1311 p->signal->pgrp = pgid; 1312 attach_pid(p, PIDTYPE_PGID, pgid); 1313 } 1314 1315 err = 0; 1316 out: 1317 /* All paths lead to here, thus we are safe. -DaveM */ 1318 write_unlock_irq(&tasklist_lock); 1319 return err; 1320 } 1321 1322 asmlinkage long sys_getpgid(pid_t pid) 1323 { 1324 if (!pid) { 1325 return process_group(current); 1326 } else { 1327 int retval; 1328 struct task_struct *p; 1329 1330 read_lock(&tasklist_lock); 1331 p = find_task_by_pid(pid); 1332 1333 retval = -ESRCH; 1334 if (p) { 1335 retval = security_task_getpgid(p); 1336 if (!retval) 1337 retval = process_group(p); 1338 } 1339 read_unlock(&tasklist_lock); 1340 return retval; 1341 } 1342 } 1343 1344 #ifdef __ARCH_WANT_SYS_GETPGRP 1345 1346 asmlinkage long sys_getpgrp(void) 1347 { 1348 /* SMP - assuming writes are word atomic this is fine */ 1349 return process_group(current); 1350 } 1351 1352 #endif 1353 1354 asmlinkage long sys_getsid(pid_t pid) 1355 { 1356 if (!pid) { 1357 return current->signal->session; 1358 } else { 1359 int retval; 1360 struct task_struct *p; 1361 1362 read_lock(&tasklist_lock); 1363 p = find_task_by_pid(pid); 1364 1365 retval = -ESRCH; 1366 if(p) { 1367 retval = security_task_getsid(p); 1368 if (!retval) 1369 retval = p->signal->session; 1370 } 1371 read_unlock(&tasklist_lock); 1372 return retval; 1373 } 1374 } 1375 1376 asmlinkage long sys_setsid(void) 1377 { 1378 struct task_struct *group_leader = current->group_leader; 1379 pid_t session; 1380 int err = -EPERM; 1381 1382 mutex_lock(&tty_mutex); 1383 write_lock_irq(&tasklist_lock); 1384 1385 /* Fail if I am already a session leader */ 1386 if (group_leader->signal->leader) 1387 goto out; 1388 1389 session = group_leader->pid; 1390 /* Fail if a process group id already exists that equals the 1391 * proposed session id. 1392 * 1393 * Don't check if session id == 1 because kernel threads use this 1394 * session id and so the check will always fail and make it so 1395 * init cannot successfully call setsid. 1396 */ 1397 if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session)) 1398 goto out; 1399 1400 group_leader->signal->leader = 1; 1401 __set_special_pids(session, session); 1402 group_leader->signal->tty = NULL; 1403 group_leader->signal->tty_old_pgrp = 0; 1404 err = process_group(group_leader); 1405 out: 1406 write_unlock_irq(&tasklist_lock); 1407 mutex_unlock(&tty_mutex); 1408 return err; 1409 } 1410 1411 /* 1412 * Supplementary group IDs 1413 */ 1414 1415 /* init to 2 - one for init_task, one to ensure it is never freed */ 1416 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1417 1418 struct group_info *groups_alloc(int gidsetsize) 1419 { 1420 struct group_info *group_info; 1421 int nblocks; 1422 int i; 1423 1424 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1425 /* Make sure we always allocate at least one indirect block pointer */ 1426 nblocks = nblocks ? : 1; 1427 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1428 if (!group_info) 1429 return NULL; 1430 group_info->ngroups = gidsetsize; 1431 group_info->nblocks = nblocks; 1432 atomic_set(&group_info->usage, 1); 1433 1434 if (gidsetsize <= NGROUPS_SMALL) { 1435 group_info->blocks[0] = group_info->small_block; 1436 } else { 1437 for (i = 0; i < nblocks; i++) { 1438 gid_t *b; 1439 b = (void *)__get_free_page(GFP_USER); 1440 if (!b) 1441 goto out_undo_partial_alloc; 1442 group_info->blocks[i] = b; 1443 } 1444 } 1445 return group_info; 1446 1447 out_undo_partial_alloc: 1448 while (--i >= 0) { 1449 free_page((unsigned long)group_info->blocks[i]); 1450 } 1451 kfree(group_info); 1452 return NULL; 1453 } 1454 1455 EXPORT_SYMBOL(groups_alloc); 1456 1457 void groups_free(struct group_info *group_info) 1458 { 1459 if (group_info->blocks[0] != group_info->small_block) { 1460 int i; 1461 for (i = 0; i < group_info->nblocks; i++) 1462 free_page((unsigned long)group_info->blocks[i]); 1463 } 1464 kfree(group_info); 1465 } 1466 1467 EXPORT_SYMBOL(groups_free); 1468 1469 /* export the group_info to a user-space array */ 1470 static int groups_to_user(gid_t __user *grouplist, 1471 struct group_info *group_info) 1472 { 1473 int i; 1474 int count = group_info->ngroups; 1475 1476 for (i = 0; i < group_info->nblocks; i++) { 1477 int cp_count = min(NGROUPS_PER_BLOCK, count); 1478 int off = i * NGROUPS_PER_BLOCK; 1479 int len = cp_count * sizeof(*grouplist); 1480 1481 if (copy_to_user(grouplist+off, group_info->blocks[i], len)) 1482 return -EFAULT; 1483 1484 count -= cp_count; 1485 } 1486 return 0; 1487 } 1488 1489 /* fill a group_info from a user-space array - it must be allocated already */ 1490 static int groups_from_user(struct group_info *group_info, 1491 gid_t __user *grouplist) 1492 { 1493 int i; 1494 int count = group_info->ngroups; 1495 1496 for (i = 0; i < group_info->nblocks; i++) { 1497 int cp_count = min(NGROUPS_PER_BLOCK, count); 1498 int off = i * NGROUPS_PER_BLOCK; 1499 int len = cp_count * sizeof(*grouplist); 1500 1501 if (copy_from_user(group_info->blocks[i], grouplist+off, len)) 1502 return -EFAULT; 1503 1504 count -= cp_count; 1505 } 1506 return 0; 1507 } 1508 1509 /* a simple Shell sort */ 1510 static void groups_sort(struct group_info *group_info) 1511 { 1512 int base, max, stride; 1513 int gidsetsize = group_info->ngroups; 1514 1515 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1516 ; /* nothing */ 1517 stride /= 3; 1518 1519 while (stride) { 1520 max = gidsetsize - stride; 1521 for (base = 0; base < max; base++) { 1522 int left = base; 1523 int right = left + stride; 1524 gid_t tmp = GROUP_AT(group_info, right); 1525 1526 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1527 GROUP_AT(group_info, right) = 1528 GROUP_AT(group_info, left); 1529 right = left; 1530 left -= stride; 1531 } 1532 GROUP_AT(group_info, right) = tmp; 1533 } 1534 stride /= 3; 1535 } 1536 } 1537 1538 /* a simple bsearch */ 1539 int groups_search(struct group_info *group_info, gid_t grp) 1540 { 1541 unsigned int left, right; 1542 1543 if (!group_info) 1544 return 0; 1545 1546 left = 0; 1547 right = group_info->ngroups; 1548 while (left < right) { 1549 unsigned int mid = (left+right)/2; 1550 int cmp = grp - GROUP_AT(group_info, mid); 1551 if (cmp > 0) 1552 left = mid + 1; 1553 else if (cmp < 0) 1554 right = mid; 1555 else 1556 return 1; 1557 } 1558 return 0; 1559 } 1560 1561 /* validate and set current->group_info */ 1562 int set_current_groups(struct group_info *group_info) 1563 { 1564 int retval; 1565 struct group_info *old_info; 1566 1567 retval = security_task_setgroups(group_info); 1568 if (retval) 1569 return retval; 1570 1571 groups_sort(group_info); 1572 get_group_info(group_info); 1573 1574 task_lock(current); 1575 old_info = current->group_info; 1576 current->group_info = group_info; 1577 task_unlock(current); 1578 1579 put_group_info(old_info); 1580 1581 return 0; 1582 } 1583 1584 EXPORT_SYMBOL(set_current_groups); 1585 1586 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1587 { 1588 int i = 0; 1589 1590 /* 1591 * SMP: Nobody else can change our grouplist. Thus we are 1592 * safe. 1593 */ 1594 1595 if (gidsetsize < 0) 1596 return -EINVAL; 1597 1598 /* no need to grab task_lock here; it cannot change */ 1599 i = current->group_info->ngroups; 1600 if (gidsetsize) { 1601 if (i > gidsetsize) { 1602 i = -EINVAL; 1603 goto out; 1604 } 1605 if (groups_to_user(grouplist, current->group_info)) { 1606 i = -EFAULT; 1607 goto out; 1608 } 1609 } 1610 out: 1611 return i; 1612 } 1613 1614 /* 1615 * SMP: Our groups are copy-on-write. We can set them safely 1616 * without another task interfering. 1617 */ 1618 1619 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1620 { 1621 struct group_info *group_info; 1622 int retval; 1623 1624 if (!capable(CAP_SETGID)) 1625 return -EPERM; 1626 if ((unsigned)gidsetsize > NGROUPS_MAX) 1627 return -EINVAL; 1628 1629 group_info = groups_alloc(gidsetsize); 1630 if (!group_info) 1631 return -ENOMEM; 1632 retval = groups_from_user(group_info, grouplist); 1633 if (retval) { 1634 put_group_info(group_info); 1635 return retval; 1636 } 1637 1638 retval = set_current_groups(group_info); 1639 put_group_info(group_info); 1640 1641 return retval; 1642 } 1643 1644 /* 1645 * Check whether we're fsgid/egid or in the supplemental group.. 1646 */ 1647 int in_group_p(gid_t grp) 1648 { 1649 int retval = 1; 1650 if (grp != current->fsgid) { 1651 retval = groups_search(current->group_info, grp); 1652 } 1653 return retval; 1654 } 1655 1656 EXPORT_SYMBOL(in_group_p); 1657 1658 int in_egroup_p(gid_t grp) 1659 { 1660 int retval = 1; 1661 if (grp != current->egid) { 1662 retval = groups_search(current->group_info, grp); 1663 } 1664 return retval; 1665 } 1666 1667 EXPORT_SYMBOL(in_egroup_p); 1668 1669 DECLARE_RWSEM(uts_sem); 1670 1671 EXPORT_SYMBOL(uts_sem); 1672 1673 asmlinkage long sys_newuname(struct new_utsname __user * name) 1674 { 1675 int errno = 0; 1676 1677 down_read(&uts_sem); 1678 if (copy_to_user(name,&system_utsname,sizeof *name)) 1679 errno = -EFAULT; 1680 up_read(&uts_sem); 1681 return errno; 1682 } 1683 1684 asmlinkage long sys_sethostname(char __user *name, int len) 1685 { 1686 int errno; 1687 char tmp[__NEW_UTS_LEN]; 1688 1689 if (!capable(CAP_SYS_ADMIN)) 1690 return -EPERM; 1691 if (len < 0 || len > __NEW_UTS_LEN) 1692 return -EINVAL; 1693 down_write(&uts_sem); 1694 errno = -EFAULT; 1695 if (!copy_from_user(tmp, name, len)) { 1696 memcpy(system_utsname.nodename, tmp, len); 1697 system_utsname.nodename[len] = 0; 1698 errno = 0; 1699 } 1700 up_write(&uts_sem); 1701 return errno; 1702 } 1703 1704 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1705 1706 asmlinkage long sys_gethostname(char __user *name, int len) 1707 { 1708 int i, errno; 1709 1710 if (len < 0) 1711 return -EINVAL; 1712 down_read(&uts_sem); 1713 i = 1 + strlen(system_utsname.nodename); 1714 if (i > len) 1715 i = len; 1716 errno = 0; 1717 if (copy_to_user(name, system_utsname.nodename, i)) 1718 errno = -EFAULT; 1719 up_read(&uts_sem); 1720 return errno; 1721 } 1722 1723 #endif 1724 1725 /* 1726 * Only setdomainname; getdomainname can be implemented by calling 1727 * uname() 1728 */ 1729 asmlinkage long sys_setdomainname(char __user *name, int len) 1730 { 1731 int errno; 1732 char tmp[__NEW_UTS_LEN]; 1733 1734 if (!capable(CAP_SYS_ADMIN)) 1735 return -EPERM; 1736 if (len < 0 || len > __NEW_UTS_LEN) 1737 return -EINVAL; 1738 1739 down_write(&uts_sem); 1740 errno = -EFAULT; 1741 if (!copy_from_user(tmp, name, len)) { 1742 memcpy(system_utsname.domainname, tmp, len); 1743 system_utsname.domainname[len] = 0; 1744 errno = 0; 1745 } 1746 up_write(&uts_sem); 1747 return errno; 1748 } 1749 1750 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1751 { 1752 if (resource >= RLIM_NLIMITS) 1753 return -EINVAL; 1754 else { 1755 struct rlimit value; 1756 task_lock(current->group_leader); 1757 value = current->signal->rlim[resource]; 1758 task_unlock(current->group_leader); 1759 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1760 } 1761 } 1762 1763 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1764 1765 /* 1766 * Back compatibility for getrlimit. Needed for some apps. 1767 */ 1768 1769 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1770 { 1771 struct rlimit x; 1772 if (resource >= RLIM_NLIMITS) 1773 return -EINVAL; 1774 1775 task_lock(current->group_leader); 1776 x = current->signal->rlim[resource]; 1777 task_unlock(current->group_leader); 1778 if(x.rlim_cur > 0x7FFFFFFF) 1779 x.rlim_cur = 0x7FFFFFFF; 1780 if(x.rlim_max > 0x7FFFFFFF) 1781 x.rlim_max = 0x7FFFFFFF; 1782 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1783 } 1784 1785 #endif 1786 1787 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1788 { 1789 struct rlimit new_rlim, *old_rlim; 1790 unsigned long it_prof_secs; 1791 int retval; 1792 1793 if (resource >= RLIM_NLIMITS) 1794 return -EINVAL; 1795 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1796 return -EFAULT; 1797 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1798 return -EINVAL; 1799 old_rlim = current->signal->rlim + resource; 1800 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1801 !capable(CAP_SYS_RESOURCE)) 1802 return -EPERM; 1803 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) 1804 return -EPERM; 1805 1806 retval = security_task_setrlimit(resource, &new_rlim); 1807 if (retval) 1808 return retval; 1809 1810 task_lock(current->group_leader); 1811 *old_rlim = new_rlim; 1812 task_unlock(current->group_leader); 1813 1814 if (resource != RLIMIT_CPU) 1815 goto out; 1816 1817 /* 1818 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1819 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1820 * very long-standing error, and fixing it now risks breakage of 1821 * applications, so we live with it 1822 */ 1823 if (new_rlim.rlim_cur == RLIM_INFINITY) 1824 goto out; 1825 1826 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires); 1827 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) { 1828 unsigned long rlim_cur = new_rlim.rlim_cur; 1829 cputime_t cputime; 1830 1831 if (rlim_cur == 0) { 1832 /* 1833 * The caller is asking for an immediate RLIMIT_CPU 1834 * expiry. But we use the zero value to mean "it was 1835 * never set". So let's cheat and make it one second 1836 * instead 1837 */ 1838 rlim_cur = 1; 1839 } 1840 cputime = secs_to_cputime(rlim_cur); 1841 read_lock(&tasklist_lock); 1842 spin_lock_irq(¤t->sighand->siglock); 1843 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); 1844 spin_unlock_irq(¤t->sighand->siglock); 1845 read_unlock(&tasklist_lock); 1846 } 1847 out: 1848 return 0; 1849 } 1850 1851 /* 1852 * It would make sense to put struct rusage in the task_struct, 1853 * except that would make the task_struct be *really big*. After 1854 * task_struct gets moved into malloc'ed memory, it would 1855 * make sense to do this. It will make moving the rest of the information 1856 * a lot simpler! (Which we're not doing right now because we're not 1857 * measuring them yet). 1858 * 1859 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1860 * races with threads incrementing their own counters. But since word 1861 * reads are atomic, we either get new values or old values and we don't 1862 * care which for the sums. We always take the siglock to protect reading 1863 * the c* fields from p->signal from races with exit.c updating those 1864 * fields when reaping, so a sample either gets all the additions of a 1865 * given child after it's reaped, or none so this sample is before reaping. 1866 * 1867 * Locking: 1868 * We need to take the siglock for CHILDEREN, SELF and BOTH 1869 * for the cases current multithreaded, non-current single threaded 1870 * non-current multithreaded. Thread traversal is now safe with 1871 * the siglock held. 1872 * Strictly speaking, we donot need to take the siglock if we are current and 1873 * single threaded, as no one else can take our signal_struct away, no one 1874 * else can reap the children to update signal->c* counters, and no one else 1875 * can race with the signal-> fields. If we do not take any lock, the 1876 * signal-> fields could be read out of order while another thread was just 1877 * exiting. So we should place a read memory barrier when we avoid the lock. 1878 * On the writer side, write memory barrier is implied in __exit_signal 1879 * as __exit_signal releases the siglock spinlock after updating the signal-> 1880 * fields. But we don't do this yet to keep things simple. 1881 * 1882 */ 1883 1884 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1885 { 1886 struct task_struct *t; 1887 unsigned long flags; 1888 cputime_t utime, stime; 1889 1890 memset((char *) r, 0, sizeof *r); 1891 utime = stime = cputime_zero; 1892 1893 rcu_read_lock(); 1894 if (!lock_task_sighand(p, &flags)) { 1895 rcu_read_unlock(); 1896 return; 1897 } 1898 1899 switch (who) { 1900 case RUSAGE_BOTH: 1901 case RUSAGE_CHILDREN: 1902 utime = p->signal->cutime; 1903 stime = p->signal->cstime; 1904 r->ru_nvcsw = p->signal->cnvcsw; 1905 r->ru_nivcsw = p->signal->cnivcsw; 1906 r->ru_minflt = p->signal->cmin_flt; 1907 r->ru_majflt = p->signal->cmaj_flt; 1908 1909 if (who == RUSAGE_CHILDREN) 1910 break; 1911 1912 case RUSAGE_SELF: 1913 utime = cputime_add(utime, p->signal->utime); 1914 stime = cputime_add(stime, p->signal->stime); 1915 r->ru_nvcsw += p->signal->nvcsw; 1916 r->ru_nivcsw += p->signal->nivcsw; 1917 r->ru_minflt += p->signal->min_flt; 1918 r->ru_majflt += p->signal->maj_flt; 1919 t = p; 1920 do { 1921 utime = cputime_add(utime, t->utime); 1922 stime = cputime_add(stime, t->stime); 1923 r->ru_nvcsw += t->nvcsw; 1924 r->ru_nivcsw += t->nivcsw; 1925 r->ru_minflt += t->min_flt; 1926 r->ru_majflt += t->maj_flt; 1927 t = next_thread(t); 1928 } while (t != p); 1929 break; 1930 1931 default: 1932 BUG(); 1933 } 1934 1935 unlock_task_sighand(p, &flags); 1936 rcu_read_unlock(); 1937 1938 cputime_to_timeval(utime, &r->ru_utime); 1939 cputime_to_timeval(stime, &r->ru_stime); 1940 } 1941 1942 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1943 { 1944 struct rusage r; 1945 k_getrusage(p, who, &r); 1946 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1947 } 1948 1949 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 1950 { 1951 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) 1952 return -EINVAL; 1953 return getrusage(current, who, ru); 1954 } 1955 1956 asmlinkage long sys_umask(int mask) 1957 { 1958 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1959 return mask; 1960 } 1961 1962 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 1963 unsigned long arg4, unsigned long arg5) 1964 { 1965 long error; 1966 1967 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1968 if (error) 1969 return error; 1970 1971 switch (option) { 1972 case PR_SET_PDEATHSIG: 1973 if (!valid_signal(arg2)) { 1974 error = -EINVAL; 1975 break; 1976 } 1977 current->pdeath_signal = arg2; 1978 break; 1979 case PR_GET_PDEATHSIG: 1980 error = put_user(current->pdeath_signal, (int __user *)arg2); 1981 break; 1982 case PR_GET_DUMPABLE: 1983 error = current->mm->dumpable; 1984 break; 1985 case PR_SET_DUMPABLE: 1986 if (arg2 < 0 || arg2 > 2) { 1987 error = -EINVAL; 1988 break; 1989 } 1990 current->mm->dumpable = arg2; 1991 break; 1992 1993 case PR_SET_UNALIGN: 1994 error = SET_UNALIGN_CTL(current, arg2); 1995 break; 1996 case PR_GET_UNALIGN: 1997 error = GET_UNALIGN_CTL(current, arg2); 1998 break; 1999 case PR_SET_FPEMU: 2000 error = SET_FPEMU_CTL(current, arg2); 2001 break; 2002 case PR_GET_FPEMU: 2003 error = GET_FPEMU_CTL(current, arg2); 2004 break; 2005 case PR_SET_FPEXC: 2006 error = SET_FPEXC_CTL(current, arg2); 2007 break; 2008 case PR_GET_FPEXC: 2009 error = GET_FPEXC_CTL(current, arg2); 2010 break; 2011 case PR_GET_TIMING: 2012 error = PR_TIMING_STATISTICAL; 2013 break; 2014 case PR_SET_TIMING: 2015 if (arg2 == PR_TIMING_STATISTICAL) 2016 error = 0; 2017 else 2018 error = -EINVAL; 2019 break; 2020 2021 case PR_GET_KEEPCAPS: 2022 if (current->keep_capabilities) 2023 error = 1; 2024 break; 2025 case PR_SET_KEEPCAPS: 2026 if (arg2 != 0 && arg2 != 1) { 2027 error = -EINVAL; 2028 break; 2029 } 2030 current->keep_capabilities = arg2; 2031 break; 2032 case PR_SET_NAME: { 2033 struct task_struct *me = current; 2034 unsigned char ncomm[sizeof(me->comm)]; 2035 2036 ncomm[sizeof(me->comm)-1] = 0; 2037 if (strncpy_from_user(ncomm, (char __user *)arg2, 2038 sizeof(me->comm)-1) < 0) 2039 return -EFAULT; 2040 set_task_comm(me, ncomm); 2041 return 0; 2042 } 2043 case PR_GET_NAME: { 2044 struct task_struct *me = current; 2045 unsigned char tcomm[sizeof(me->comm)]; 2046 2047 get_task_comm(tcomm, me); 2048 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) 2049 return -EFAULT; 2050 return 0; 2051 } 2052 case PR_GET_ENDIAN: 2053 error = GET_ENDIAN(current, arg2); 2054 break; 2055 case PR_SET_ENDIAN: 2056 error = SET_ENDIAN(current, arg2); 2057 break; 2058 2059 default: 2060 error = -EINVAL; 2061 break; 2062 } 2063 return error; 2064 } 2065