1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/config.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/utsname.h> 11 #include <linux/mman.h> 12 #include <linux/smp_lock.h> 13 #include <linux/notifier.h> 14 #include <linux/reboot.h> 15 #include <linux/prctl.h> 16 #include <linux/init.h> 17 #include <linux/highuid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kexec.h> 21 #include <linux/workqueue.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 32 #include <linux/compat.h> 33 #include <linux/syscalls.h> 34 35 #include <asm/uaccess.h> 36 #include <asm/io.h> 37 #include <asm/unistd.h> 38 39 #ifndef SET_UNALIGN_CTL 40 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 41 #endif 42 #ifndef GET_UNALIGN_CTL 43 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 44 #endif 45 #ifndef SET_FPEMU_CTL 46 # define SET_FPEMU_CTL(a,b) (-EINVAL) 47 #endif 48 #ifndef GET_FPEMU_CTL 49 # define GET_FPEMU_CTL(a,b) (-EINVAL) 50 #endif 51 #ifndef SET_FPEXC_CTL 52 # define SET_FPEXC_CTL(a,b) (-EINVAL) 53 #endif 54 #ifndef GET_FPEXC_CTL 55 # define GET_FPEXC_CTL(a,b) (-EINVAL) 56 #endif 57 58 /* 59 * this is where the system-wide overflow UID and GID are defined, for 60 * architectures that now have 32-bit UID/GID but didn't in the past 61 */ 62 63 int overflowuid = DEFAULT_OVERFLOWUID; 64 int overflowgid = DEFAULT_OVERFLOWGID; 65 66 #ifdef CONFIG_UID16 67 EXPORT_SYMBOL(overflowuid); 68 EXPORT_SYMBOL(overflowgid); 69 #endif 70 71 /* 72 * the same as above, but for filesystems which can only store a 16-bit 73 * UID and GID. as such, this is needed on all architectures 74 */ 75 76 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 77 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 78 79 EXPORT_SYMBOL(fs_overflowuid); 80 EXPORT_SYMBOL(fs_overflowgid); 81 82 /* 83 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 84 */ 85 86 int C_A_D = 1; 87 int cad_pid = 1; 88 89 /* 90 * Notifier list for kernel code which wants to be called 91 * at shutdown. This is used to stop any idling DMA operations 92 * and the like. 93 */ 94 95 static struct notifier_block *reboot_notifier_list; 96 static DEFINE_RWLOCK(notifier_lock); 97 98 /** 99 * notifier_chain_register - Add notifier to a notifier chain 100 * @list: Pointer to root list pointer 101 * @n: New entry in notifier chain 102 * 103 * Adds a notifier to a notifier chain. 104 * 105 * Currently always returns zero. 106 */ 107 108 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n) 109 { 110 write_lock(¬ifier_lock); 111 while(*list) 112 { 113 if(n->priority > (*list)->priority) 114 break; 115 list= &((*list)->next); 116 } 117 n->next = *list; 118 *list=n; 119 write_unlock(¬ifier_lock); 120 return 0; 121 } 122 123 EXPORT_SYMBOL(notifier_chain_register); 124 125 /** 126 * notifier_chain_unregister - Remove notifier from a notifier chain 127 * @nl: Pointer to root list pointer 128 * @n: New entry in notifier chain 129 * 130 * Removes a notifier from a notifier chain. 131 * 132 * Returns zero on success, or %-ENOENT on failure. 133 */ 134 135 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n) 136 { 137 write_lock(¬ifier_lock); 138 while((*nl)!=NULL) 139 { 140 if((*nl)==n) 141 { 142 *nl=n->next; 143 write_unlock(¬ifier_lock); 144 return 0; 145 } 146 nl=&((*nl)->next); 147 } 148 write_unlock(¬ifier_lock); 149 return -ENOENT; 150 } 151 152 EXPORT_SYMBOL(notifier_chain_unregister); 153 154 /** 155 * notifier_call_chain - Call functions in a notifier chain 156 * @n: Pointer to root pointer of notifier chain 157 * @val: Value passed unmodified to notifier function 158 * @v: Pointer passed unmodified to notifier function 159 * 160 * Calls each function in a notifier chain in turn. 161 * 162 * If the return value of the notifier can be and'd 163 * with %NOTIFY_STOP_MASK, then notifier_call_chain 164 * will return immediately, with the return value of 165 * the notifier function which halted execution. 166 * Otherwise, the return value is the return value 167 * of the last notifier function called. 168 */ 169 170 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v) 171 { 172 int ret=NOTIFY_DONE; 173 struct notifier_block *nb = *n; 174 175 while(nb) 176 { 177 ret=nb->notifier_call(nb,val,v); 178 if(ret&NOTIFY_STOP_MASK) 179 { 180 return ret; 181 } 182 nb=nb->next; 183 } 184 return ret; 185 } 186 187 EXPORT_SYMBOL(notifier_call_chain); 188 189 /** 190 * register_reboot_notifier - Register function to be called at reboot time 191 * @nb: Info about notifier function to be called 192 * 193 * Registers a function with the list of functions 194 * to be called at reboot time. 195 * 196 * Currently always returns zero, as notifier_chain_register 197 * always returns zero. 198 */ 199 200 int register_reboot_notifier(struct notifier_block * nb) 201 { 202 return notifier_chain_register(&reboot_notifier_list, nb); 203 } 204 205 EXPORT_SYMBOL(register_reboot_notifier); 206 207 /** 208 * unregister_reboot_notifier - Unregister previously registered reboot notifier 209 * @nb: Hook to be unregistered 210 * 211 * Unregisters a previously registered reboot 212 * notifier function. 213 * 214 * Returns zero on success, or %-ENOENT on failure. 215 */ 216 217 int unregister_reboot_notifier(struct notifier_block * nb) 218 { 219 return notifier_chain_unregister(&reboot_notifier_list, nb); 220 } 221 222 EXPORT_SYMBOL(unregister_reboot_notifier); 223 224 static int set_one_prio(struct task_struct *p, int niceval, int error) 225 { 226 int no_nice; 227 228 if (p->uid != current->euid && 229 p->euid != current->euid && !capable(CAP_SYS_NICE)) { 230 error = -EPERM; 231 goto out; 232 } 233 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 234 error = -EACCES; 235 goto out; 236 } 237 no_nice = security_task_setnice(p, niceval); 238 if (no_nice) { 239 error = no_nice; 240 goto out; 241 } 242 if (error == -ESRCH) 243 error = 0; 244 set_user_nice(p, niceval); 245 out: 246 return error; 247 } 248 249 asmlinkage long sys_setpriority(int which, int who, int niceval) 250 { 251 struct task_struct *g, *p; 252 struct user_struct *user; 253 int error = -EINVAL; 254 255 if (which > 2 || which < 0) 256 goto out; 257 258 /* normalize: avoid signed division (rounding problems) */ 259 error = -ESRCH; 260 if (niceval < -20) 261 niceval = -20; 262 if (niceval > 19) 263 niceval = 19; 264 265 read_lock(&tasklist_lock); 266 switch (which) { 267 case PRIO_PROCESS: 268 if (!who) 269 who = current->pid; 270 p = find_task_by_pid(who); 271 if (p) 272 error = set_one_prio(p, niceval, error); 273 break; 274 case PRIO_PGRP: 275 if (!who) 276 who = process_group(current); 277 do_each_task_pid(who, PIDTYPE_PGID, p) { 278 error = set_one_prio(p, niceval, error); 279 } while_each_task_pid(who, PIDTYPE_PGID, p); 280 break; 281 case PRIO_USER: 282 user = current->user; 283 if (!who) 284 who = current->uid; 285 else 286 if ((who != current->uid) && !(user = find_user(who))) 287 goto out_unlock; /* No processes for this user */ 288 289 do_each_thread(g, p) 290 if (p->uid == who) 291 error = set_one_prio(p, niceval, error); 292 while_each_thread(g, p); 293 if (who != current->uid) 294 free_uid(user); /* For find_user() */ 295 break; 296 } 297 out_unlock: 298 read_unlock(&tasklist_lock); 299 out: 300 return error; 301 } 302 303 /* 304 * Ugh. To avoid negative return values, "getpriority()" will 305 * not return the normal nice-value, but a negated value that 306 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 307 * to stay compatible. 308 */ 309 asmlinkage long sys_getpriority(int which, int who) 310 { 311 struct task_struct *g, *p; 312 struct user_struct *user; 313 long niceval, retval = -ESRCH; 314 315 if (which > 2 || which < 0) 316 return -EINVAL; 317 318 read_lock(&tasklist_lock); 319 switch (which) { 320 case PRIO_PROCESS: 321 if (!who) 322 who = current->pid; 323 p = find_task_by_pid(who); 324 if (p) { 325 niceval = 20 - task_nice(p); 326 if (niceval > retval) 327 retval = niceval; 328 } 329 break; 330 case PRIO_PGRP: 331 if (!who) 332 who = process_group(current); 333 do_each_task_pid(who, PIDTYPE_PGID, p) { 334 niceval = 20 - task_nice(p); 335 if (niceval > retval) 336 retval = niceval; 337 } while_each_task_pid(who, PIDTYPE_PGID, p); 338 break; 339 case PRIO_USER: 340 user = current->user; 341 if (!who) 342 who = current->uid; 343 else 344 if ((who != current->uid) && !(user = find_user(who))) 345 goto out_unlock; /* No processes for this user */ 346 347 do_each_thread(g, p) 348 if (p->uid == who) { 349 niceval = 20 - task_nice(p); 350 if (niceval > retval) 351 retval = niceval; 352 } 353 while_each_thread(g, p); 354 if (who != current->uid) 355 free_uid(user); /* for find_user() */ 356 break; 357 } 358 out_unlock: 359 read_unlock(&tasklist_lock); 360 361 return retval; 362 } 363 364 void emergency_restart(void) 365 { 366 machine_emergency_restart(); 367 } 368 EXPORT_SYMBOL_GPL(emergency_restart); 369 370 void kernel_restart(char *cmd) 371 { 372 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 373 system_state = SYSTEM_RESTART; 374 device_shutdown(); 375 if (!cmd) { 376 printk(KERN_EMERG "Restarting system.\n"); 377 } else { 378 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 379 } 380 printk(".\n"); 381 machine_restart(cmd); 382 } 383 EXPORT_SYMBOL_GPL(kernel_restart); 384 385 void kernel_kexec(void) 386 { 387 #ifdef CONFIG_KEXEC 388 struct kimage *image; 389 image = xchg(&kexec_image, 0); 390 if (!image) { 391 return; 392 } 393 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL); 394 system_state = SYSTEM_RESTART; 395 device_shutdown(); 396 printk(KERN_EMERG "Starting new kernel\n"); 397 machine_shutdown(); 398 machine_kexec(image); 399 #endif 400 } 401 EXPORT_SYMBOL_GPL(kernel_kexec); 402 403 void kernel_halt(void) 404 { 405 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL); 406 system_state = SYSTEM_HALT; 407 device_shutdown(); 408 printk(KERN_EMERG "System halted.\n"); 409 machine_halt(); 410 } 411 EXPORT_SYMBOL_GPL(kernel_halt); 412 413 void kernel_power_off(void) 414 { 415 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL); 416 system_state = SYSTEM_POWER_OFF; 417 device_shutdown(); 418 printk(KERN_EMERG "Power down.\n"); 419 machine_power_off(); 420 } 421 EXPORT_SYMBOL_GPL(kernel_power_off); 422 423 /* 424 * Reboot system call: for obvious reasons only root may call it, 425 * and even root needs to set up some magic numbers in the registers 426 * so that some mistake won't make this reboot the whole machine. 427 * You can also set the meaning of the ctrl-alt-del-key here. 428 * 429 * reboot doesn't sync: do that yourself before calling this. 430 */ 431 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 432 { 433 char buffer[256]; 434 435 /* We only trust the superuser with rebooting the system. */ 436 if (!capable(CAP_SYS_BOOT)) 437 return -EPERM; 438 439 /* For safety, we require "magic" arguments. */ 440 if (magic1 != LINUX_REBOOT_MAGIC1 || 441 (magic2 != LINUX_REBOOT_MAGIC2 && 442 magic2 != LINUX_REBOOT_MAGIC2A && 443 magic2 != LINUX_REBOOT_MAGIC2B && 444 magic2 != LINUX_REBOOT_MAGIC2C)) 445 return -EINVAL; 446 447 lock_kernel(); 448 switch (cmd) { 449 case LINUX_REBOOT_CMD_RESTART: 450 kernel_restart(NULL); 451 break; 452 453 case LINUX_REBOOT_CMD_CAD_ON: 454 C_A_D = 1; 455 break; 456 457 case LINUX_REBOOT_CMD_CAD_OFF: 458 C_A_D = 0; 459 break; 460 461 case LINUX_REBOOT_CMD_HALT: 462 kernel_halt(); 463 unlock_kernel(); 464 do_exit(0); 465 break; 466 467 case LINUX_REBOOT_CMD_POWER_OFF: 468 kernel_power_off(); 469 unlock_kernel(); 470 do_exit(0); 471 break; 472 473 case LINUX_REBOOT_CMD_RESTART2: 474 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 475 unlock_kernel(); 476 return -EFAULT; 477 } 478 buffer[sizeof(buffer) - 1] = '\0'; 479 480 kernel_restart(buffer); 481 break; 482 483 case LINUX_REBOOT_CMD_KEXEC: 484 kernel_kexec(); 485 unlock_kernel(); 486 return -EINVAL; 487 488 #ifdef CONFIG_SOFTWARE_SUSPEND 489 case LINUX_REBOOT_CMD_SW_SUSPEND: 490 { 491 int ret = software_suspend(); 492 unlock_kernel(); 493 return ret; 494 } 495 #endif 496 497 default: 498 unlock_kernel(); 499 return -EINVAL; 500 } 501 unlock_kernel(); 502 return 0; 503 } 504 505 static void deferred_cad(void *dummy) 506 { 507 kernel_restart(NULL); 508 } 509 510 /* 511 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 512 * As it's called within an interrupt, it may NOT sync: the only choice 513 * is whether to reboot at once, or just ignore the ctrl-alt-del. 514 */ 515 void ctrl_alt_del(void) 516 { 517 static DECLARE_WORK(cad_work, deferred_cad, NULL); 518 519 if (C_A_D) 520 schedule_work(&cad_work); 521 else 522 kill_proc(cad_pid, SIGINT, 1); 523 } 524 525 526 /* 527 * Unprivileged users may change the real gid to the effective gid 528 * or vice versa. (BSD-style) 529 * 530 * If you set the real gid at all, or set the effective gid to a value not 531 * equal to the real gid, then the saved gid is set to the new effective gid. 532 * 533 * This makes it possible for a setgid program to completely drop its 534 * privileges, which is often a useful assertion to make when you are doing 535 * a security audit over a program. 536 * 537 * The general idea is that a program which uses just setregid() will be 538 * 100% compatible with BSD. A program which uses just setgid() will be 539 * 100% compatible with POSIX with saved IDs. 540 * 541 * SMP: There are not races, the GIDs are checked only by filesystem 542 * operations (as far as semantic preservation is concerned). 543 */ 544 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 545 { 546 int old_rgid = current->gid; 547 int old_egid = current->egid; 548 int new_rgid = old_rgid; 549 int new_egid = old_egid; 550 int retval; 551 552 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 553 if (retval) 554 return retval; 555 556 if (rgid != (gid_t) -1) { 557 if ((old_rgid == rgid) || 558 (current->egid==rgid) || 559 capable(CAP_SETGID)) 560 new_rgid = rgid; 561 else 562 return -EPERM; 563 } 564 if (egid != (gid_t) -1) { 565 if ((old_rgid == egid) || 566 (current->egid == egid) || 567 (current->sgid == egid) || 568 capable(CAP_SETGID)) 569 new_egid = egid; 570 else { 571 return -EPERM; 572 } 573 } 574 if (new_egid != old_egid) 575 { 576 current->mm->dumpable = suid_dumpable; 577 smp_wmb(); 578 } 579 if (rgid != (gid_t) -1 || 580 (egid != (gid_t) -1 && egid != old_rgid)) 581 current->sgid = new_egid; 582 current->fsgid = new_egid; 583 current->egid = new_egid; 584 current->gid = new_rgid; 585 key_fsgid_changed(current); 586 return 0; 587 } 588 589 /* 590 * setgid() is implemented like SysV w/ SAVED_IDS 591 * 592 * SMP: Same implicit races as above. 593 */ 594 asmlinkage long sys_setgid(gid_t gid) 595 { 596 int old_egid = current->egid; 597 int retval; 598 599 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 600 if (retval) 601 return retval; 602 603 if (capable(CAP_SETGID)) 604 { 605 if(old_egid != gid) 606 { 607 current->mm->dumpable = suid_dumpable; 608 smp_wmb(); 609 } 610 current->gid = current->egid = current->sgid = current->fsgid = gid; 611 } 612 else if ((gid == current->gid) || (gid == current->sgid)) 613 { 614 if(old_egid != gid) 615 { 616 current->mm->dumpable = suid_dumpable; 617 smp_wmb(); 618 } 619 current->egid = current->fsgid = gid; 620 } 621 else 622 return -EPERM; 623 624 key_fsgid_changed(current); 625 return 0; 626 } 627 628 static int set_user(uid_t new_ruid, int dumpclear) 629 { 630 struct user_struct *new_user; 631 632 new_user = alloc_uid(new_ruid); 633 if (!new_user) 634 return -EAGAIN; 635 636 if (atomic_read(&new_user->processes) >= 637 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 638 new_user != &root_user) { 639 free_uid(new_user); 640 return -EAGAIN; 641 } 642 643 switch_uid(new_user); 644 645 if(dumpclear) 646 { 647 current->mm->dumpable = suid_dumpable; 648 smp_wmb(); 649 } 650 current->uid = new_ruid; 651 return 0; 652 } 653 654 /* 655 * Unprivileged users may change the real uid to the effective uid 656 * or vice versa. (BSD-style) 657 * 658 * If you set the real uid at all, or set the effective uid to a value not 659 * equal to the real uid, then the saved uid is set to the new effective uid. 660 * 661 * This makes it possible for a setuid program to completely drop its 662 * privileges, which is often a useful assertion to make when you are doing 663 * a security audit over a program. 664 * 665 * The general idea is that a program which uses just setreuid() will be 666 * 100% compatible with BSD. A program which uses just setuid() will be 667 * 100% compatible with POSIX with saved IDs. 668 */ 669 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 670 { 671 int old_ruid, old_euid, old_suid, new_ruid, new_euid; 672 int retval; 673 674 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 675 if (retval) 676 return retval; 677 678 new_ruid = old_ruid = current->uid; 679 new_euid = old_euid = current->euid; 680 old_suid = current->suid; 681 682 if (ruid != (uid_t) -1) { 683 new_ruid = ruid; 684 if ((old_ruid != ruid) && 685 (current->euid != ruid) && 686 !capable(CAP_SETUID)) 687 return -EPERM; 688 } 689 690 if (euid != (uid_t) -1) { 691 new_euid = euid; 692 if ((old_ruid != euid) && 693 (current->euid != euid) && 694 (current->suid != euid) && 695 !capable(CAP_SETUID)) 696 return -EPERM; 697 } 698 699 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) 700 return -EAGAIN; 701 702 if (new_euid != old_euid) 703 { 704 current->mm->dumpable = suid_dumpable; 705 smp_wmb(); 706 } 707 current->fsuid = current->euid = new_euid; 708 if (ruid != (uid_t) -1 || 709 (euid != (uid_t) -1 && euid != old_ruid)) 710 current->suid = current->euid; 711 current->fsuid = current->euid; 712 713 key_fsuid_changed(current); 714 715 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); 716 } 717 718 719 720 /* 721 * setuid() is implemented like SysV with SAVED_IDS 722 * 723 * Note that SAVED_ID's is deficient in that a setuid root program 724 * like sendmail, for example, cannot set its uid to be a normal 725 * user and then switch back, because if you're root, setuid() sets 726 * the saved uid too. If you don't like this, blame the bright people 727 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 728 * will allow a root program to temporarily drop privileges and be able to 729 * regain them by swapping the real and effective uid. 730 */ 731 asmlinkage long sys_setuid(uid_t uid) 732 { 733 int old_euid = current->euid; 734 int old_ruid, old_suid, new_ruid, new_suid; 735 int retval; 736 737 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 738 if (retval) 739 return retval; 740 741 old_ruid = new_ruid = current->uid; 742 old_suid = current->suid; 743 new_suid = old_suid; 744 745 if (capable(CAP_SETUID)) { 746 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) 747 return -EAGAIN; 748 new_suid = uid; 749 } else if ((uid != current->uid) && (uid != new_suid)) 750 return -EPERM; 751 752 if (old_euid != uid) 753 { 754 current->mm->dumpable = suid_dumpable; 755 smp_wmb(); 756 } 757 current->fsuid = current->euid = uid; 758 current->suid = new_suid; 759 760 key_fsuid_changed(current); 761 762 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); 763 } 764 765 766 /* 767 * This function implements a generic ability to update ruid, euid, 768 * and suid. This allows you to implement the 4.4 compatible seteuid(). 769 */ 770 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 771 { 772 int old_ruid = current->uid; 773 int old_euid = current->euid; 774 int old_suid = current->suid; 775 int retval; 776 777 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 778 if (retval) 779 return retval; 780 781 if (!capable(CAP_SETUID)) { 782 if ((ruid != (uid_t) -1) && (ruid != current->uid) && 783 (ruid != current->euid) && (ruid != current->suid)) 784 return -EPERM; 785 if ((euid != (uid_t) -1) && (euid != current->uid) && 786 (euid != current->euid) && (euid != current->suid)) 787 return -EPERM; 788 if ((suid != (uid_t) -1) && (suid != current->uid) && 789 (suid != current->euid) && (suid != current->suid)) 790 return -EPERM; 791 } 792 if (ruid != (uid_t) -1) { 793 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) 794 return -EAGAIN; 795 } 796 if (euid != (uid_t) -1) { 797 if (euid != current->euid) 798 { 799 current->mm->dumpable = suid_dumpable; 800 smp_wmb(); 801 } 802 current->euid = euid; 803 } 804 current->fsuid = current->euid; 805 if (suid != (uid_t) -1) 806 current->suid = suid; 807 808 key_fsuid_changed(current); 809 810 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); 811 } 812 813 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 814 { 815 int retval; 816 817 if (!(retval = put_user(current->uid, ruid)) && 818 !(retval = put_user(current->euid, euid))) 819 retval = put_user(current->suid, suid); 820 821 return retval; 822 } 823 824 /* 825 * Same as above, but for rgid, egid, sgid. 826 */ 827 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 828 { 829 int retval; 830 831 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 832 if (retval) 833 return retval; 834 835 if (!capable(CAP_SETGID)) { 836 if ((rgid != (gid_t) -1) && (rgid != current->gid) && 837 (rgid != current->egid) && (rgid != current->sgid)) 838 return -EPERM; 839 if ((egid != (gid_t) -1) && (egid != current->gid) && 840 (egid != current->egid) && (egid != current->sgid)) 841 return -EPERM; 842 if ((sgid != (gid_t) -1) && (sgid != current->gid) && 843 (sgid != current->egid) && (sgid != current->sgid)) 844 return -EPERM; 845 } 846 if (egid != (gid_t) -1) { 847 if (egid != current->egid) 848 { 849 current->mm->dumpable = suid_dumpable; 850 smp_wmb(); 851 } 852 current->egid = egid; 853 } 854 current->fsgid = current->egid; 855 if (rgid != (gid_t) -1) 856 current->gid = rgid; 857 if (sgid != (gid_t) -1) 858 current->sgid = sgid; 859 860 key_fsgid_changed(current); 861 return 0; 862 } 863 864 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 865 { 866 int retval; 867 868 if (!(retval = put_user(current->gid, rgid)) && 869 !(retval = put_user(current->egid, egid))) 870 retval = put_user(current->sgid, sgid); 871 872 return retval; 873 } 874 875 876 /* 877 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 878 * is used for "access()" and for the NFS daemon (letting nfsd stay at 879 * whatever uid it wants to). It normally shadows "euid", except when 880 * explicitly set by setfsuid() or for access.. 881 */ 882 asmlinkage long sys_setfsuid(uid_t uid) 883 { 884 int old_fsuid; 885 886 old_fsuid = current->fsuid; 887 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) 888 return old_fsuid; 889 890 if (uid == current->uid || uid == current->euid || 891 uid == current->suid || uid == current->fsuid || 892 capable(CAP_SETUID)) 893 { 894 if (uid != old_fsuid) 895 { 896 current->mm->dumpable = suid_dumpable; 897 smp_wmb(); 898 } 899 current->fsuid = uid; 900 } 901 902 key_fsuid_changed(current); 903 904 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); 905 906 return old_fsuid; 907 } 908 909 /* 910 * Samma p� svenska.. 911 */ 912 asmlinkage long sys_setfsgid(gid_t gid) 913 { 914 int old_fsgid; 915 916 old_fsgid = current->fsgid; 917 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 918 return old_fsgid; 919 920 if (gid == current->gid || gid == current->egid || 921 gid == current->sgid || gid == current->fsgid || 922 capable(CAP_SETGID)) 923 { 924 if (gid != old_fsgid) 925 { 926 current->mm->dumpable = suid_dumpable; 927 smp_wmb(); 928 } 929 current->fsgid = gid; 930 key_fsgid_changed(current); 931 } 932 return old_fsgid; 933 } 934 935 asmlinkage long sys_times(struct tms __user * tbuf) 936 { 937 /* 938 * In the SMP world we might just be unlucky and have one of 939 * the times increment as we use it. Since the value is an 940 * atomically safe type this is just fine. Conceptually its 941 * as if the syscall took an instant longer to occur. 942 */ 943 if (tbuf) { 944 struct tms tmp; 945 cputime_t utime, stime, cutime, cstime; 946 947 #ifdef CONFIG_SMP 948 if (thread_group_empty(current)) { 949 /* 950 * Single thread case without the use of any locks. 951 * 952 * We may race with release_task if two threads are 953 * executing. However, release task first adds up the 954 * counters (__exit_signal) before removing the task 955 * from the process tasklist (__unhash_process). 956 * __exit_signal also acquires and releases the 957 * siglock which results in the proper memory ordering 958 * so that the list modifications are always visible 959 * after the counters have been updated. 960 * 961 * If the counters have been updated by the second thread 962 * but the thread has not yet been removed from the list 963 * then the other branch will be executing which will 964 * block on tasklist_lock until the exit handling of the 965 * other task is finished. 966 * 967 * This also implies that the sighand->siglock cannot 968 * be held by another processor. So we can also 969 * skip acquiring that lock. 970 */ 971 utime = cputime_add(current->signal->utime, current->utime); 972 stime = cputime_add(current->signal->utime, current->stime); 973 cutime = current->signal->cutime; 974 cstime = current->signal->cstime; 975 } else 976 #endif 977 { 978 979 /* Process with multiple threads */ 980 struct task_struct *tsk = current; 981 struct task_struct *t; 982 983 read_lock(&tasklist_lock); 984 utime = tsk->signal->utime; 985 stime = tsk->signal->stime; 986 t = tsk; 987 do { 988 utime = cputime_add(utime, t->utime); 989 stime = cputime_add(stime, t->stime); 990 t = next_thread(t); 991 } while (t != tsk); 992 993 /* 994 * While we have tasklist_lock read-locked, no dying thread 995 * can be updating current->signal->[us]time. Instead, 996 * we got their counts included in the live thread loop. 997 * However, another thread can come in right now and 998 * do a wait call that updates current->signal->c[us]time. 999 * To make sure we always see that pair updated atomically, 1000 * we take the siglock around fetching them. 1001 */ 1002 spin_lock_irq(&tsk->sighand->siglock); 1003 cutime = tsk->signal->cutime; 1004 cstime = tsk->signal->cstime; 1005 spin_unlock_irq(&tsk->sighand->siglock); 1006 read_unlock(&tasklist_lock); 1007 } 1008 tmp.tms_utime = cputime_to_clock_t(utime); 1009 tmp.tms_stime = cputime_to_clock_t(stime); 1010 tmp.tms_cutime = cputime_to_clock_t(cutime); 1011 tmp.tms_cstime = cputime_to_clock_t(cstime); 1012 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 1013 return -EFAULT; 1014 } 1015 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 1016 } 1017 1018 /* 1019 * This needs some heavy checking ... 1020 * I just haven't the stomach for it. I also don't fully 1021 * understand sessions/pgrp etc. Let somebody who does explain it. 1022 * 1023 * OK, I think I have the protection semantics right.... this is really 1024 * only important on a multi-user system anyway, to make sure one user 1025 * can't send a signal to a process owned by another. -TYT, 12/12/91 1026 * 1027 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 1028 * LBT 04.03.94 1029 */ 1030 1031 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 1032 { 1033 struct task_struct *p; 1034 int err = -EINVAL; 1035 1036 if (!pid) 1037 pid = current->pid; 1038 if (!pgid) 1039 pgid = pid; 1040 if (pgid < 0) 1041 return -EINVAL; 1042 1043 /* From this point forward we keep holding onto the tasklist lock 1044 * so that our parent does not change from under us. -DaveM 1045 */ 1046 write_lock_irq(&tasklist_lock); 1047 1048 err = -ESRCH; 1049 p = find_task_by_pid(pid); 1050 if (!p) 1051 goto out; 1052 1053 err = -EINVAL; 1054 if (!thread_group_leader(p)) 1055 goto out; 1056 1057 if (p->parent == current || p->real_parent == current) { 1058 err = -EPERM; 1059 if (p->signal->session != current->signal->session) 1060 goto out; 1061 err = -EACCES; 1062 if (p->did_exec) 1063 goto out; 1064 } else { 1065 err = -ESRCH; 1066 if (p != current) 1067 goto out; 1068 } 1069 1070 err = -EPERM; 1071 if (p->signal->leader) 1072 goto out; 1073 1074 if (pgid != pid) { 1075 struct task_struct *p; 1076 1077 do_each_task_pid(pgid, PIDTYPE_PGID, p) { 1078 if (p->signal->session == current->signal->session) 1079 goto ok_pgid; 1080 } while_each_task_pid(pgid, PIDTYPE_PGID, p); 1081 goto out; 1082 } 1083 1084 ok_pgid: 1085 err = security_task_setpgid(p, pgid); 1086 if (err) 1087 goto out; 1088 1089 if (process_group(p) != pgid) { 1090 detach_pid(p, PIDTYPE_PGID); 1091 p->signal->pgrp = pgid; 1092 attach_pid(p, PIDTYPE_PGID, pgid); 1093 } 1094 1095 err = 0; 1096 out: 1097 /* All paths lead to here, thus we are safe. -DaveM */ 1098 write_unlock_irq(&tasklist_lock); 1099 return err; 1100 } 1101 1102 asmlinkage long sys_getpgid(pid_t pid) 1103 { 1104 if (!pid) { 1105 return process_group(current); 1106 } else { 1107 int retval; 1108 struct task_struct *p; 1109 1110 read_lock(&tasklist_lock); 1111 p = find_task_by_pid(pid); 1112 1113 retval = -ESRCH; 1114 if (p) { 1115 retval = security_task_getpgid(p); 1116 if (!retval) 1117 retval = process_group(p); 1118 } 1119 read_unlock(&tasklist_lock); 1120 return retval; 1121 } 1122 } 1123 1124 #ifdef __ARCH_WANT_SYS_GETPGRP 1125 1126 asmlinkage long sys_getpgrp(void) 1127 { 1128 /* SMP - assuming writes are word atomic this is fine */ 1129 return process_group(current); 1130 } 1131 1132 #endif 1133 1134 asmlinkage long sys_getsid(pid_t pid) 1135 { 1136 if (!pid) { 1137 return current->signal->session; 1138 } else { 1139 int retval; 1140 struct task_struct *p; 1141 1142 read_lock(&tasklist_lock); 1143 p = find_task_by_pid(pid); 1144 1145 retval = -ESRCH; 1146 if(p) { 1147 retval = security_task_getsid(p); 1148 if (!retval) 1149 retval = p->signal->session; 1150 } 1151 read_unlock(&tasklist_lock); 1152 return retval; 1153 } 1154 } 1155 1156 asmlinkage long sys_setsid(void) 1157 { 1158 struct pid *pid; 1159 int err = -EPERM; 1160 1161 if (!thread_group_leader(current)) 1162 return -EINVAL; 1163 1164 down(&tty_sem); 1165 write_lock_irq(&tasklist_lock); 1166 1167 pid = find_pid(PIDTYPE_PGID, current->pid); 1168 if (pid) 1169 goto out; 1170 1171 current->signal->leader = 1; 1172 __set_special_pids(current->pid, current->pid); 1173 current->signal->tty = NULL; 1174 current->signal->tty_old_pgrp = 0; 1175 err = process_group(current); 1176 out: 1177 write_unlock_irq(&tasklist_lock); 1178 up(&tty_sem); 1179 return err; 1180 } 1181 1182 /* 1183 * Supplementary group IDs 1184 */ 1185 1186 /* init to 2 - one for init_task, one to ensure it is never freed */ 1187 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1188 1189 struct group_info *groups_alloc(int gidsetsize) 1190 { 1191 struct group_info *group_info; 1192 int nblocks; 1193 int i; 1194 1195 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1196 /* Make sure we always allocate at least one indirect block pointer */ 1197 nblocks = nblocks ? : 1; 1198 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1199 if (!group_info) 1200 return NULL; 1201 group_info->ngroups = gidsetsize; 1202 group_info->nblocks = nblocks; 1203 atomic_set(&group_info->usage, 1); 1204 1205 if (gidsetsize <= NGROUPS_SMALL) { 1206 group_info->blocks[0] = group_info->small_block; 1207 } else { 1208 for (i = 0; i < nblocks; i++) { 1209 gid_t *b; 1210 b = (void *)__get_free_page(GFP_USER); 1211 if (!b) 1212 goto out_undo_partial_alloc; 1213 group_info->blocks[i] = b; 1214 } 1215 } 1216 return group_info; 1217 1218 out_undo_partial_alloc: 1219 while (--i >= 0) { 1220 free_page((unsigned long)group_info->blocks[i]); 1221 } 1222 kfree(group_info); 1223 return NULL; 1224 } 1225 1226 EXPORT_SYMBOL(groups_alloc); 1227 1228 void groups_free(struct group_info *group_info) 1229 { 1230 if (group_info->blocks[0] != group_info->small_block) { 1231 int i; 1232 for (i = 0; i < group_info->nblocks; i++) 1233 free_page((unsigned long)group_info->blocks[i]); 1234 } 1235 kfree(group_info); 1236 } 1237 1238 EXPORT_SYMBOL(groups_free); 1239 1240 /* export the group_info to a user-space array */ 1241 static int groups_to_user(gid_t __user *grouplist, 1242 struct group_info *group_info) 1243 { 1244 int i; 1245 int count = group_info->ngroups; 1246 1247 for (i = 0; i < group_info->nblocks; i++) { 1248 int cp_count = min(NGROUPS_PER_BLOCK, count); 1249 int off = i * NGROUPS_PER_BLOCK; 1250 int len = cp_count * sizeof(*grouplist); 1251 1252 if (copy_to_user(grouplist+off, group_info->blocks[i], len)) 1253 return -EFAULT; 1254 1255 count -= cp_count; 1256 } 1257 return 0; 1258 } 1259 1260 /* fill a group_info from a user-space array - it must be allocated already */ 1261 static int groups_from_user(struct group_info *group_info, 1262 gid_t __user *grouplist) 1263 { 1264 int i; 1265 int count = group_info->ngroups; 1266 1267 for (i = 0; i < group_info->nblocks; i++) { 1268 int cp_count = min(NGROUPS_PER_BLOCK, count); 1269 int off = i * NGROUPS_PER_BLOCK; 1270 int len = cp_count * sizeof(*grouplist); 1271 1272 if (copy_from_user(group_info->blocks[i], grouplist+off, len)) 1273 return -EFAULT; 1274 1275 count -= cp_count; 1276 } 1277 return 0; 1278 } 1279 1280 /* a simple Shell sort */ 1281 static void groups_sort(struct group_info *group_info) 1282 { 1283 int base, max, stride; 1284 int gidsetsize = group_info->ngroups; 1285 1286 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1287 ; /* nothing */ 1288 stride /= 3; 1289 1290 while (stride) { 1291 max = gidsetsize - stride; 1292 for (base = 0; base < max; base++) { 1293 int left = base; 1294 int right = left + stride; 1295 gid_t tmp = GROUP_AT(group_info, right); 1296 1297 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1298 GROUP_AT(group_info, right) = 1299 GROUP_AT(group_info, left); 1300 right = left; 1301 left -= stride; 1302 } 1303 GROUP_AT(group_info, right) = tmp; 1304 } 1305 stride /= 3; 1306 } 1307 } 1308 1309 /* a simple bsearch */ 1310 int groups_search(struct group_info *group_info, gid_t grp) 1311 { 1312 int left, right; 1313 1314 if (!group_info) 1315 return 0; 1316 1317 left = 0; 1318 right = group_info->ngroups; 1319 while (left < right) { 1320 int mid = (left+right)/2; 1321 int cmp = grp - GROUP_AT(group_info, mid); 1322 if (cmp > 0) 1323 left = mid + 1; 1324 else if (cmp < 0) 1325 right = mid; 1326 else 1327 return 1; 1328 } 1329 return 0; 1330 } 1331 1332 /* validate and set current->group_info */ 1333 int set_current_groups(struct group_info *group_info) 1334 { 1335 int retval; 1336 struct group_info *old_info; 1337 1338 retval = security_task_setgroups(group_info); 1339 if (retval) 1340 return retval; 1341 1342 groups_sort(group_info); 1343 get_group_info(group_info); 1344 1345 task_lock(current); 1346 old_info = current->group_info; 1347 current->group_info = group_info; 1348 task_unlock(current); 1349 1350 put_group_info(old_info); 1351 1352 return 0; 1353 } 1354 1355 EXPORT_SYMBOL(set_current_groups); 1356 1357 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1358 { 1359 int i = 0; 1360 1361 /* 1362 * SMP: Nobody else can change our grouplist. Thus we are 1363 * safe. 1364 */ 1365 1366 if (gidsetsize < 0) 1367 return -EINVAL; 1368 1369 /* no need to grab task_lock here; it cannot change */ 1370 get_group_info(current->group_info); 1371 i = current->group_info->ngroups; 1372 if (gidsetsize) { 1373 if (i > gidsetsize) { 1374 i = -EINVAL; 1375 goto out; 1376 } 1377 if (groups_to_user(grouplist, current->group_info)) { 1378 i = -EFAULT; 1379 goto out; 1380 } 1381 } 1382 out: 1383 put_group_info(current->group_info); 1384 return i; 1385 } 1386 1387 /* 1388 * SMP: Our groups are copy-on-write. We can set them safely 1389 * without another task interfering. 1390 */ 1391 1392 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1393 { 1394 struct group_info *group_info; 1395 int retval; 1396 1397 if (!capable(CAP_SETGID)) 1398 return -EPERM; 1399 if ((unsigned)gidsetsize > NGROUPS_MAX) 1400 return -EINVAL; 1401 1402 group_info = groups_alloc(gidsetsize); 1403 if (!group_info) 1404 return -ENOMEM; 1405 retval = groups_from_user(group_info, grouplist); 1406 if (retval) { 1407 put_group_info(group_info); 1408 return retval; 1409 } 1410 1411 retval = set_current_groups(group_info); 1412 put_group_info(group_info); 1413 1414 return retval; 1415 } 1416 1417 /* 1418 * Check whether we're fsgid/egid or in the supplemental group.. 1419 */ 1420 int in_group_p(gid_t grp) 1421 { 1422 int retval = 1; 1423 if (grp != current->fsgid) { 1424 get_group_info(current->group_info); 1425 retval = groups_search(current->group_info, grp); 1426 put_group_info(current->group_info); 1427 } 1428 return retval; 1429 } 1430 1431 EXPORT_SYMBOL(in_group_p); 1432 1433 int in_egroup_p(gid_t grp) 1434 { 1435 int retval = 1; 1436 if (grp != current->egid) { 1437 get_group_info(current->group_info); 1438 retval = groups_search(current->group_info, grp); 1439 put_group_info(current->group_info); 1440 } 1441 return retval; 1442 } 1443 1444 EXPORT_SYMBOL(in_egroup_p); 1445 1446 DECLARE_RWSEM(uts_sem); 1447 1448 EXPORT_SYMBOL(uts_sem); 1449 1450 asmlinkage long sys_newuname(struct new_utsname __user * name) 1451 { 1452 int errno = 0; 1453 1454 down_read(&uts_sem); 1455 if (copy_to_user(name,&system_utsname,sizeof *name)) 1456 errno = -EFAULT; 1457 up_read(&uts_sem); 1458 return errno; 1459 } 1460 1461 asmlinkage long sys_sethostname(char __user *name, int len) 1462 { 1463 int errno; 1464 char tmp[__NEW_UTS_LEN]; 1465 1466 if (!capable(CAP_SYS_ADMIN)) 1467 return -EPERM; 1468 if (len < 0 || len > __NEW_UTS_LEN) 1469 return -EINVAL; 1470 down_write(&uts_sem); 1471 errno = -EFAULT; 1472 if (!copy_from_user(tmp, name, len)) { 1473 memcpy(system_utsname.nodename, tmp, len); 1474 system_utsname.nodename[len] = 0; 1475 errno = 0; 1476 } 1477 up_write(&uts_sem); 1478 return errno; 1479 } 1480 1481 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1482 1483 asmlinkage long sys_gethostname(char __user *name, int len) 1484 { 1485 int i, errno; 1486 1487 if (len < 0) 1488 return -EINVAL; 1489 down_read(&uts_sem); 1490 i = 1 + strlen(system_utsname.nodename); 1491 if (i > len) 1492 i = len; 1493 errno = 0; 1494 if (copy_to_user(name, system_utsname.nodename, i)) 1495 errno = -EFAULT; 1496 up_read(&uts_sem); 1497 return errno; 1498 } 1499 1500 #endif 1501 1502 /* 1503 * Only setdomainname; getdomainname can be implemented by calling 1504 * uname() 1505 */ 1506 asmlinkage long sys_setdomainname(char __user *name, int len) 1507 { 1508 int errno; 1509 char tmp[__NEW_UTS_LEN]; 1510 1511 if (!capable(CAP_SYS_ADMIN)) 1512 return -EPERM; 1513 if (len < 0 || len > __NEW_UTS_LEN) 1514 return -EINVAL; 1515 1516 down_write(&uts_sem); 1517 errno = -EFAULT; 1518 if (!copy_from_user(tmp, name, len)) { 1519 memcpy(system_utsname.domainname, tmp, len); 1520 system_utsname.domainname[len] = 0; 1521 errno = 0; 1522 } 1523 up_write(&uts_sem); 1524 return errno; 1525 } 1526 1527 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1528 { 1529 if (resource >= RLIM_NLIMITS) 1530 return -EINVAL; 1531 else { 1532 struct rlimit value; 1533 task_lock(current->group_leader); 1534 value = current->signal->rlim[resource]; 1535 task_unlock(current->group_leader); 1536 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1537 } 1538 } 1539 1540 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1541 1542 /* 1543 * Back compatibility for getrlimit. Needed for some apps. 1544 */ 1545 1546 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1547 { 1548 struct rlimit x; 1549 if (resource >= RLIM_NLIMITS) 1550 return -EINVAL; 1551 1552 task_lock(current->group_leader); 1553 x = current->signal->rlim[resource]; 1554 task_unlock(current->group_leader); 1555 if(x.rlim_cur > 0x7FFFFFFF) 1556 x.rlim_cur = 0x7FFFFFFF; 1557 if(x.rlim_max > 0x7FFFFFFF) 1558 x.rlim_max = 0x7FFFFFFF; 1559 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1560 } 1561 1562 #endif 1563 1564 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1565 { 1566 struct rlimit new_rlim, *old_rlim; 1567 int retval; 1568 1569 if (resource >= RLIM_NLIMITS) 1570 return -EINVAL; 1571 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1572 return -EFAULT; 1573 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1574 return -EINVAL; 1575 old_rlim = current->signal->rlim + resource; 1576 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1577 !capable(CAP_SYS_RESOURCE)) 1578 return -EPERM; 1579 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) 1580 return -EPERM; 1581 1582 retval = security_task_setrlimit(resource, &new_rlim); 1583 if (retval) 1584 return retval; 1585 1586 task_lock(current->group_leader); 1587 *old_rlim = new_rlim; 1588 task_unlock(current->group_leader); 1589 1590 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY && 1591 (cputime_eq(current->signal->it_prof_expires, cputime_zero) || 1592 new_rlim.rlim_cur <= cputime_to_secs( 1593 current->signal->it_prof_expires))) { 1594 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur); 1595 read_lock(&tasklist_lock); 1596 spin_lock_irq(¤t->sighand->siglock); 1597 set_process_cpu_timer(current, CPUCLOCK_PROF, 1598 &cputime, NULL); 1599 spin_unlock_irq(¤t->sighand->siglock); 1600 read_unlock(&tasklist_lock); 1601 } 1602 1603 return 0; 1604 } 1605 1606 /* 1607 * It would make sense to put struct rusage in the task_struct, 1608 * except that would make the task_struct be *really big*. After 1609 * task_struct gets moved into malloc'ed memory, it would 1610 * make sense to do this. It will make moving the rest of the information 1611 * a lot simpler! (Which we're not doing right now because we're not 1612 * measuring them yet). 1613 * 1614 * This expects to be called with tasklist_lock read-locked or better, 1615 * and the siglock not locked. It may momentarily take the siglock. 1616 * 1617 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1618 * races with threads incrementing their own counters. But since word 1619 * reads are atomic, we either get new values or old values and we don't 1620 * care which for the sums. We always take the siglock to protect reading 1621 * the c* fields from p->signal from races with exit.c updating those 1622 * fields when reaping, so a sample either gets all the additions of a 1623 * given child after it's reaped, or none so this sample is before reaping. 1624 */ 1625 1626 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1627 { 1628 struct task_struct *t; 1629 unsigned long flags; 1630 cputime_t utime, stime; 1631 1632 memset((char *) r, 0, sizeof *r); 1633 1634 if (unlikely(!p->signal)) 1635 return; 1636 1637 switch (who) { 1638 case RUSAGE_CHILDREN: 1639 spin_lock_irqsave(&p->sighand->siglock, flags); 1640 utime = p->signal->cutime; 1641 stime = p->signal->cstime; 1642 r->ru_nvcsw = p->signal->cnvcsw; 1643 r->ru_nivcsw = p->signal->cnivcsw; 1644 r->ru_minflt = p->signal->cmin_flt; 1645 r->ru_majflt = p->signal->cmaj_flt; 1646 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1647 cputime_to_timeval(utime, &r->ru_utime); 1648 cputime_to_timeval(stime, &r->ru_stime); 1649 break; 1650 case RUSAGE_SELF: 1651 spin_lock_irqsave(&p->sighand->siglock, flags); 1652 utime = stime = cputime_zero; 1653 goto sum_group; 1654 case RUSAGE_BOTH: 1655 spin_lock_irqsave(&p->sighand->siglock, flags); 1656 utime = p->signal->cutime; 1657 stime = p->signal->cstime; 1658 r->ru_nvcsw = p->signal->cnvcsw; 1659 r->ru_nivcsw = p->signal->cnivcsw; 1660 r->ru_minflt = p->signal->cmin_flt; 1661 r->ru_majflt = p->signal->cmaj_flt; 1662 sum_group: 1663 utime = cputime_add(utime, p->signal->utime); 1664 stime = cputime_add(stime, p->signal->stime); 1665 r->ru_nvcsw += p->signal->nvcsw; 1666 r->ru_nivcsw += p->signal->nivcsw; 1667 r->ru_minflt += p->signal->min_flt; 1668 r->ru_majflt += p->signal->maj_flt; 1669 t = p; 1670 do { 1671 utime = cputime_add(utime, t->utime); 1672 stime = cputime_add(stime, t->stime); 1673 r->ru_nvcsw += t->nvcsw; 1674 r->ru_nivcsw += t->nivcsw; 1675 r->ru_minflt += t->min_flt; 1676 r->ru_majflt += t->maj_flt; 1677 t = next_thread(t); 1678 } while (t != p); 1679 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1680 cputime_to_timeval(utime, &r->ru_utime); 1681 cputime_to_timeval(stime, &r->ru_stime); 1682 break; 1683 default: 1684 BUG(); 1685 } 1686 } 1687 1688 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1689 { 1690 struct rusage r; 1691 read_lock(&tasklist_lock); 1692 k_getrusage(p, who, &r); 1693 read_unlock(&tasklist_lock); 1694 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1695 } 1696 1697 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 1698 { 1699 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) 1700 return -EINVAL; 1701 return getrusage(current, who, ru); 1702 } 1703 1704 asmlinkage long sys_umask(int mask) 1705 { 1706 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1707 return mask; 1708 } 1709 1710 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 1711 unsigned long arg4, unsigned long arg5) 1712 { 1713 long error; 1714 int sig; 1715 1716 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1717 if (error) 1718 return error; 1719 1720 switch (option) { 1721 case PR_SET_PDEATHSIG: 1722 sig = arg2; 1723 if (!valid_signal(sig)) { 1724 error = -EINVAL; 1725 break; 1726 } 1727 current->pdeath_signal = sig; 1728 break; 1729 case PR_GET_PDEATHSIG: 1730 error = put_user(current->pdeath_signal, (int __user *)arg2); 1731 break; 1732 case PR_GET_DUMPABLE: 1733 if (current->mm->dumpable) 1734 error = 1; 1735 break; 1736 case PR_SET_DUMPABLE: 1737 if (arg2 < 0 || arg2 > 2) { 1738 error = -EINVAL; 1739 break; 1740 } 1741 current->mm->dumpable = arg2; 1742 break; 1743 1744 case PR_SET_UNALIGN: 1745 error = SET_UNALIGN_CTL(current, arg2); 1746 break; 1747 case PR_GET_UNALIGN: 1748 error = GET_UNALIGN_CTL(current, arg2); 1749 break; 1750 case PR_SET_FPEMU: 1751 error = SET_FPEMU_CTL(current, arg2); 1752 break; 1753 case PR_GET_FPEMU: 1754 error = GET_FPEMU_CTL(current, arg2); 1755 break; 1756 case PR_SET_FPEXC: 1757 error = SET_FPEXC_CTL(current, arg2); 1758 break; 1759 case PR_GET_FPEXC: 1760 error = GET_FPEXC_CTL(current, arg2); 1761 break; 1762 case PR_GET_TIMING: 1763 error = PR_TIMING_STATISTICAL; 1764 break; 1765 case PR_SET_TIMING: 1766 if (arg2 == PR_TIMING_STATISTICAL) 1767 error = 0; 1768 else 1769 error = -EINVAL; 1770 break; 1771 1772 case PR_GET_KEEPCAPS: 1773 if (current->keep_capabilities) 1774 error = 1; 1775 break; 1776 case PR_SET_KEEPCAPS: 1777 if (arg2 != 0 && arg2 != 1) { 1778 error = -EINVAL; 1779 break; 1780 } 1781 current->keep_capabilities = arg2; 1782 break; 1783 case PR_SET_NAME: { 1784 struct task_struct *me = current; 1785 unsigned char ncomm[sizeof(me->comm)]; 1786 1787 ncomm[sizeof(me->comm)-1] = 0; 1788 if (strncpy_from_user(ncomm, (char __user *)arg2, 1789 sizeof(me->comm)-1) < 0) 1790 return -EFAULT; 1791 set_task_comm(me, ncomm); 1792 return 0; 1793 } 1794 case PR_GET_NAME: { 1795 struct task_struct *me = current; 1796 unsigned char tcomm[sizeof(me->comm)]; 1797 1798 get_task_comm(tcomm, me); 1799 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) 1800 return -EFAULT; 1801 return 0; 1802 } 1803 default: 1804 error = -EINVAL; 1805 break; 1806 } 1807 return error; 1808 } 1809