xref: /linux/kernel/sys.c (revision 026dadad6b44f0469a475efb4cae48269d8848bd)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
51 
52 #include <linux/sched.h>
53 #include <linux/rcupdate.h>
54 #include <linux/uidgid.h>
55 #include <linux/cred.h>
56 
57 #include <linux/kmsg_dump.h>
58 /* Move somewhere else to avoid recompiling? */
59 #include <generated/utsrelease.h>
60 
61 #include <asm/uaccess.h>
62 #include <asm/io.h>
63 #include <asm/unistd.h>
64 
65 #ifndef SET_UNALIGN_CTL
66 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
67 #endif
68 #ifndef GET_UNALIGN_CTL
69 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
70 #endif
71 #ifndef SET_FPEMU_CTL
72 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
73 #endif
74 #ifndef GET_FPEMU_CTL
75 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
76 #endif
77 #ifndef SET_FPEXC_CTL
78 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
79 #endif
80 #ifndef GET_FPEXC_CTL
81 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
82 #endif
83 #ifndef GET_ENDIAN
84 # define GET_ENDIAN(a,b)	(-EINVAL)
85 #endif
86 #ifndef SET_ENDIAN
87 # define SET_ENDIAN(a,b)	(-EINVAL)
88 #endif
89 #ifndef GET_TSC_CTL
90 # define GET_TSC_CTL(a)		(-EINVAL)
91 #endif
92 #ifndef SET_TSC_CTL
93 # define SET_TSC_CTL(a)		(-EINVAL)
94 #endif
95 
96 /*
97  * this is where the system-wide overflow UID and GID are defined, for
98  * architectures that now have 32-bit UID/GID but didn't in the past
99  */
100 
101 int overflowuid = DEFAULT_OVERFLOWUID;
102 int overflowgid = DEFAULT_OVERFLOWGID;
103 
104 EXPORT_SYMBOL(overflowuid);
105 EXPORT_SYMBOL(overflowgid);
106 
107 /*
108  * the same as above, but for filesystems which can only store a 16-bit
109  * UID and GID. as such, this is needed on all architectures
110  */
111 
112 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
113 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
114 
115 EXPORT_SYMBOL(fs_overflowuid);
116 EXPORT_SYMBOL(fs_overflowgid);
117 
118 /*
119  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
120  */
121 
122 int C_A_D = 1;
123 struct pid *cad_pid;
124 EXPORT_SYMBOL(cad_pid);
125 
126 /*
127  * If set, this is used for preparing the system to power off.
128  */
129 
130 void (*pm_power_off_prepare)(void);
131 
132 /*
133  * Returns true if current's euid is same as p's uid or euid,
134  * or has CAP_SYS_NICE to p's user_ns.
135  *
136  * Called with rcu_read_lock, creds are safe
137  */
138 static bool set_one_prio_perm(struct task_struct *p)
139 {
140 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
141 
142 	if (uid_eq(pcred->uid,  cred->euid) ||
143 	    uid_eq(pcred->euid, cred->euid))
144 		return true;
145 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
146 		return true;
147 	return false;
148 }
149 
150 /*
151  * set the priority of a task
152  * - the caller must hold the RCU read lock
153  */
154 static int set_one_prio(struct task_struct *p, int niceval, int error)
155 {
156 	int no_nice;
157 
158 	if (!set_one_prio_perm(p)) {
159 		error = -EPERM;
160 		goto out;
161 	}
162 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
163 		error = -EACCES;
164 		goto out;
165 	}
166 	no_nice = security_task_setnice(p, niceval);
167 	if (no_nice) {
168 		error = no_nice;
169 		goto out;
170 	}
171 	if (error == -ESRCH)
172 		error = 0;
173 	set_user_nice(p, niceval);
174 out:
175 	return error;
176 }
177 
178 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
179 {
180 	struct task_struct *g, *p;
181 	struct user_struct *user;
182 	const struct cred *cred = current_cred();
183 	int error = -EINVAL;
184 	struct pid *pgrp;
185 	kuid_t uid;
186 
187 	if (which > PRIO_USER || which < PRIO_PROCESS)
188 		goto out;
189 
190 	/* normalize: avoid signed division (rounding problems) */
191 	error = -ESRCH;
192 	if (niceval < -20)
193 		niceval = -20;
194 	if (niceval > 19)
195 		niceval = 19;
196 
197 	rcu_read_lock();
198 	read_lock(&tasklist_lock);
199 	switch (which) {
200 		case PRIO_PROCESS:
201 			if (who)
202 				p = find_task_by_vpid(who);
203 			else
204 				p = current;
205 			if (p)
206 				error = set_one_prio(p, niceval, error);
207 			break;
208 		case PRIO_PGRP:
209 			if (who)
210 				pgrp = find_vpid(who);
211 			else
212 				pgrp = task_pgrp(current);
213 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
214 				error = set_one_prio(p, niceval, error);
215 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
216 			break;
217 		case PRIO_USER:
218 			uid = make_kuid(cred->user_ns, who);
219 			user = cred->user;
220 			if (!who)
221 				uid = cred->uid;
222 			else if (!uid_eq(uid, cred->uid) &&
223 				 !(user = find_user(uid)))
224 				goto out_unlock;	/* No processes for this user */
225 
226 			do_each_thread(g, p) {
227 				if (uid_eq(task_uid(p), uid))
228 					error = set_one_prio(p, niceval, error);
229 			} while_each_thread(g, p);
230 			if (!uid_eq(uid, cred->uid))
231 				free_uid(user);		/* For find_user() */
232 			break;
233 	}
234 out_unlock:
235 	read_unlock(&tasklist_lock);
236 	rcu_read_unlock();
237 out:
238 	return error;
239 }
240 
241 /*
242  * Ugh. To avoid negative return values, "getpriority()" will
243  * not return the normal nice-value, but a negated value that
244  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
245  * to stay compatible.
246  */
247 SYSCALL_DEFINE2(getpriority, int, which, int, who)
248 {
249 	struct task_struct *g, *p;
250 	struct user_struct *user;
251 	const struct cred *cred = current_cred();
252 	long niceval, retval = -ESRCH;
253 	struct pid *pgrp;
254 	kuid_t uid;
255 
256 	if (which > PRIO_USER || which < PRIO_PROCESS)
257 		return -EINVAL;
258 
259 	rcu_read_lock();
260 	read_lock(&tasklist_lock);
261 	switch (which) {
262 		case PRIO_PROCESS:
263 			if (who)
264 				p = find_task_by_vpid(who);
265 			else
266 				p = current;
267 			if (p) {
268 				niceval = 20 - task_nice(p);
269 				if (niceval > retval)
270 					retval = niceval;
271 			}
272 			break;
273 		case PRIO_PGRP:
274 			if (who)
275 				pgrp = find_vpid(who);
276 			else
277 				pgrp = task_pgrp(current);
278 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
279 				niceval = 20 - task_nice(p);
280 				if (niceval > retval)
281 					retval = niceval;
282 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
283 			break;
284 		case PRIO_USER:
285 			uid = make_kuid(cred->user_ns, who);
286 			user = cred->user;
287 			if (!who)
288 				uid = cred->uid;
289 			else if (!uid_eq(uid, cred->uid) &&
290 				 !(user = find_user(uid)))
291 				goto out_unlock;	/* No processes for this user */
292 
293 			do_each_thread(g, p) {
294 				if (uid_eq(task_uid(p), uid)) {
295 					niceval = 20 - task_nice(p);
296 					if (niceval > retval)
297 						retval = niceval;
298 				}
299 			} while_each_thread(g, p);
300 			if (!uid_eq(uid, cred->uid))
301 				free_uid(user);		/* for find_user() */
302 			break;
303 	}
304 out_unlock:
305 	read_unlock(&tasklist_lock);
306 	rcu_read_unlock();
307 
308 	return retval;
309 }
310 
311 /**
312  *	emergency_restart - reboot the system
313  *
314  *	Without shutting down any hardware or taking any locks
315  *	reboot the system.  This is called when we know we are in
316  *	trouble so this is our best effort to reboot.  This is
317  *	safe to call in interrupt context.
318  */
319 void emergency_restart(void)
320 {
321 	kmsg_dump(KMSG_DUMP_EMERG);
322 	machine_emergency_restart();
323 }
324 EXPORT_SYMBOL_GPL(emergency_restart);
325 
326 void kernel_restart_prepare(char *cmd)
327 {
328 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
329 	system_state = SYSTEM_RESTART;
330 	usermodehelper_disable();
331 	device_shutdown();
332 }
333 
334 /**
335  *	register_reboot_notifier - Register function to be called at reboot time
336  *	@nb: Info about notifier function to be called
337  *
338  *	Registers a function with the list of functions
339  *	to be called at reboot time.
340  *
341  *	Currently always returns zero, as blocking_notifier_chain_register()
342  *	always returns zero.
343  */
344 int register_reboot_notifier(struct notifier_block *nb)
345 {
346 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
347 }
348 EXPORT_SYMBOL(register_reboot_notifier);
349 
350 /**
351  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
352  *	@nb: Hook to be unregistered
353  *
354  *	Unregisters a previously registered reboot
355  *	notifier function.
356  *
357  *	Returns zero on success, or %-ENOENT on failure.
358  */
359 int unregister_reboot_notifier(struct notifier_block *nb)
360 {
361 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
362 }
363 EXPORT_SYMBOL(unregister_reboot_notifier);
364 
365 /* Add backwards compatibility for stable trees. */
366 #ifndef PF_NO_SETAFFINITY
367 #define PF_NO_SETAFFINITY		PF_THREAD_BOUND
368 #endif
369 
370 static void migrate_to_reboot_cpu(void)
371 {
372 	/* The boot cpu is always logical cpu 0 */
373 	int cpu = 0;
374 
375 	cpu_hotplug_disable();
376 
377 	/* Make certain the cpu I'm about to reboot on is online */
378 	if (!cpu_online(cpu))
379 		cpu = cpumask_first(cpu_online_mask);
380 
381 	/* Prevent races with other tasks migrating this task */
382 	current->flags |= PF_NO_SETAFFINITY;
383 
384 	/* Make certain I only run on the appropriate processor */
385 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
386 }
387 
388 /**
389  *	kernel_restart - reboot the system
390  *	@cmd: pointer to buffer containing command to execute for restart
391  *		or %NULL
392  *
393  *	Shutdown everything and perform a clean reboot.
394  *	This is not safe to call in interrupt context.
395  */
396 void kernel_restart(char *cmd)
397 {
398 	kernel_restart_prepare(cmd);
399 	migrate_to_reboot_cpu();
400 	syscore_shutdown();
401 	if (!cmd)
402 		printk(KERN_EMERG "Restarting system.\n");
403 	else
404 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
405 	kmsg_dump(KMSG_DUMP_RESTART);
406 	machine_restart(cmd);
407 }
408 EXPORT_SYMBOL_GPL(kernel_restart);
409 
410 static void kernel_shutdown_prepare(enum system_states state)
411 {
412 	blocking_notifier_call_chain(&reboot_notifier_list,
413 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
414 	system_state = state;
415 	usermodehelper_disable();
416 	device_shutdown();
417 }
418 /**
419  *	kernel_halt - halt the system
420  *
421  *	Shutdown everything and perform a clean system halt.
422  */
423 void kernel_halt(void)
424 {
425 	kernel_shutdown_prepare(SYSTEM_HALT);
426 	migrate_to_reboot_cpu();
427 	syscore_shutdown();
428 	printk(KERN_EMERG "System halted.\n");
429 	kmsg_dump(KMSG_DUMP_HALT);
430 	machine_halt();
431 }
432 
433 EXPORT_SYMBOL_GPL(kernel_halt);
434 
435 /**
436  *	kernel_power_off - power_off the system
437  *
438  *	Shutdown everything and perform a clean system power_off.
439  */
440 void kernel_power_off(void)
441 {
442 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
443 	if (pm_power_off_prepare)
444 		pm_power_off_prepare();
445 	migrate_to_reboot_cpu();
446 	syscore_shutdown();
447 	printk(KERN_EMERG "Power down.\n");
448 	kmsg_dump(KMSG_DUMP_POWEROFF);
449 	machine_power_off();
450 }
451 EXPORT_SYMBOL_GPL(kernel_power_off);
452 
453 static DEFINE_MUTEX(reboot_mutex);
454 
455 /*
456  * Reboot system call: for obvious reasons only root may call it,
457  * and even root needs to set up some magic numbers in the registers
458  * so that some mistake won't make this reboot the whole machine.
459  * You can also set the meaning of the ctrl-alt-del-key here.
460  *
461  * reboot doesn't sync: do that yourself before calling this.
462  */
463 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
464 		void __user *, arg)
465 {
466 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
467 	char buffer[256];
468 	int ret = 0;
469 
470 	/* We only trust the superuser with rebooting the system. */
471 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
472 		return -EPERM;
473 
474 	/* For safety, we require "magic" arguments. */
475 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
476 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
477 	                magic2 != LINUX_REBOOT_MAGIC2A &&
478 			magic2 != LINUX_REBOOT_MAGIC2B &&
479 	                magic2 != LINUX_REBOOT_MAGIC2C))
480 		return -EINVAL;
481 
482 	/*
483 	 * If pid namespaces are enabled and the current task is in a child
484 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
485 	 * call do_exit().
486 	 */
487 	ret = reboot_pid_ns(pid_ns, cmd);
488 	if (ret)
489 		return ret;
490 
491 	/* Instead of trying to make the power_off code look like
492 	 * halt when pm_power_off is not set do it the easy way.
493 	 */
494 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
495 		cmd = LINUX_REBOOT_CMD_HALT;
496 
497 	mutex_lock(&reboot_mutex);
498 	switch (cmd) {
499 	case LINUX_REBOOT_CMD_RESTART:
500 		kernel_restart(NULL);
501 		break;
502 
503 	case LINUX_REBOOT_CMD_CAD_ON:
504 		C_A_D = 1;
505 		break;
506 
507 	case LINUX_REBOOT_CMD_CAD_OFF:
508 		C_A_D = 0;
509 		break;
510 
511 	case LINUX_REBOOT_CMD_HALT:
512 		kernel_halt();
513 		do_exit(0);
514 		panic("cannot halt.\n");
515 
516 	case LINUX_REBOOT_CMD_POWER_OFF:
517 		kernel_power_off();
518 		do_exit(0);
519 		break;
520 
521 	case LINUX_REBOOT_CMD_RESTART2:
522 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
523 			ret = -EFAULT;
524 			break;
525 		}
526 		buffer[sizeof(buffer) - 1] = '\0';
527 
528 		kernel_restart(buffer);
529 		break;
530 
531 #ifdef CONFIG_KEXEC
532 	case LINUX_REBOOT_CMD_KEXEC:
533 		ret = kernel_kexec();
534 		break;
535 #endif
536 
537 #ifdef CONFIG_HIBERNATION
538 	case LINUX_REBOOT_CMD_SW_SUSPEND:
539 		ret = hibernate();
540 		break;
541 #endif
542 
543 	default:
544 		ret = -EINVAL;
545 		break;
546 	}
547 	mutex_unlock(&reboot_mutex);
548 	return ret;
549 }
550 
551 static void deferred_cad(struct work_struct *dummy)
552 {
553 	kernel_restart(NULL);
554 }
555 
556 /*
557  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
558  * As it's called within an interrupt, it may NOT sync: the only choice
559  * is whether to reboot at once, or just ignore the ctrl-alt-del.
560  */
561 void ctrl_alt_del(void)
562 {
563 	static DECLARE_WORK(cad_work, deferred_cad);
564 
565 	if (C_A_D)
566 		schedule_work(&cad_work);
567 	else
568 		kill_cad_pid(SIGINT, 1);
569 }
570 
571 /*
572  * Unprivileged users may change the real gid to the effective gid
573  * or vice versa.  (BSD-style)
574  *
575  * If you set the real gid at all, or set the effective gid to a value not
576  * equal to the real gid, then the saved gid is set to the new effective gid.
577  *
578  * This makes it possible for a setgid program to completely drop its
579  * privileges, which is often a useful assertion to make when you are doing
580  * a security audit over a program.
581  *
582  * The general idea is that a program which uses just setregid() will be
583  * 100% compatible with BSD.  A program which uses just setgid() will be
584  * 100% compatible with POSIX with saved IDs.
585  *
586  * SMP: There are not races, the GIDs are checked only by filesystem
587  *      operations (as far as semantic preservation is concerned).
588  */
589 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
590 {
591 	struct user_namespace *ns = current_user_ns();
592 	const struct cred *old;
593 	struct cred *new;
594 	int retval;
595 	kgid_t krgid, kegid;
596 
597 	krgid = make_kgid(ns, rgid);
598 	kegid = make_kgid(ns, egid);
599 
600 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
601 		return -EINVAL;
602 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
603 		return -EINVAL;
604 
605 	new = prepare_creds();
606 	if (!new)
607 		return -ENOMEM;
608 	old = current_cred();
609 
610 	retval = -EPERM;
611 	if (rgid != (gid_t) -1) {
612 		if (gid_eq(old->gid, krgid) ||
613 		    gid_eq(old->egid, krgid) ||
614 		    nsown_capable(CAP_SETGID))
615 			new->gid = krgid;
616 		else
617 			goto error;
618 	}
619 	if (egid != (gid_t) -1) {
620 		if (gid_eq(old->gid, kegid) ||
621 		    gid_eq(old->egid, kegid) ||
622 		    gid_eq(old->sgid, kegid) ||
623 		    nsown_capable(CAP_SETGID))
624 			new->egid = kegid;
625 		else
626 			goto error;
627 	}
628 
629 	if (rgid != (gid_t) -1 ||
630 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
631 		new->sgid = new->egid;
632 	new->fsgid = new->egid;
633 
634 	return commit_creds(new);
635 
636 error:
637 	abort_creds(new);
638 	return retval;
639 }
640 
641 /*
642  * setgid() is implemented like SysV w/ SAVED_IDS
643  *
644  * SMP: Same implicit races as above.
645  */
646 SYSCALL_DEFINE1(setgid, gid_t, gid)
647 {
648 	struct user_namespace *ns = current_user_ns();
649 	const struct cred *old;
650 	struct cred *new;
651 	int retval;
652 	kgid_t kgid;
653 
654 	kgid = make_kgid(ns, gid);
655 	if (!gid_valid(kgid))
656 		return -EINVAL;
657 
658 	new = prepare_creds();
659 	if (!new)
660 		return -ENOMEM;
661 	old = current_cred();
662 
663 	retval = -EPERM;
664 	if (nsown_capable(CAP_SETGID))
665 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
666 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
667 		new->egid = new->fsgid = kgid;
668 	else
669 		goto error;
670 
671 	return commit_creds(new);
672 
673 error:
674 	abort_creds(new);
675 	return retval;
676 }
677 
678 /*
679  * change the user struct in a credentials set to match the new UID
680  */
681 static int set_user(struct cred *new)
682 {
683 	struct user_struct *new_user;
684 
685 	new_user = alloc_uid(new->uid);
686 	if (!new_user)
687 		return -EAGAIN;
688 
689 	/*
690 	 * We don't fail in case of NPROC limit excess here because too many
691 	 * poorly written programs don't check set*uid() return code, assuming
692 	 * it never fails if called by root.  We may still enforce NPROC limit
693 	 * for programs doing set*uid()+execve() by harmlessly deferring the
694 	 * failure to the execve() stage.
695 	 */
696 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
697 			new_user != INIT_USER)
698 		current->flags |= PF_NPROC_EXCEEDED;
699 	else
700 		current->flags &= ~PF_NPROC_EXCEEDED;
701 
702 	free_uid(new->user);
703 	new->user = new_user;
704 	return 0;
705 }
706 
707 /*
708  * Unprivileged users may change the real uid to the effective uid
709  * or vice versa.  (BSD-style)
710  *
711  * If you set the real uid at all, or set the effective uid to a value not
712  * equal to the real uid, then the saved uid is set to the new effective uid.
713  *
714  * This makes it possible for a setuid program to completely drop its
715  * privileges, which is often a useful assertion to make when you are doing
716  * a security audit over a program.
717  *
718  * The general idea is that a program which uses just setreuid() will be
719  * 100% compatible with BSD.  A program which uses just setuid() will be
720  * 100% compatible with POSIX with saved IDs.
721  */
722 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
723 {
724 	struct user_namespace *ns = current_user_ns();
725 	const struct cred *old;
726 	struct cred *new;
727 	int retval;
728 	kuid_t kruid, keuid;
729 
730 	kruid = make_kuid(ns, ruid);
731 	keuid = make_kuid(ns, euid);
732 
733 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
734 		return -EINVAL;
735 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
736 		return -EINVAL;
737 
738 	new = prepare_creds();
739 	if (!new)
740 		return -ENOMEM;
741 	old = current_cred();
742 
743 	retval = -EPERM;
744 	if (ruid != (uid_t) -1) {
745 		new->uid = kruid;
746 		if (!uid_eq(old->uid, kruid) &&
747 		    !uid_eq(old->euid, kruid) &&
748 		    !nsown_capable(CAP_SETUID))
749 			goto error;
750 	}
751 
752 	if (euid != (uid_t) -1) {
753 		new->euid = keuid;
754 		if (!uid_eq(old->uid, keuid) &&
755 		    !uid_eq(old->euid, keuid) &&
756 		    !uid_eq(old->suid, keuid) &&
757 		    !nsown_capable(CAP_SETUID))
758 			goto error;
759 	}
760 
761 	if (!uid_eq(new->uid, old->uid)) {
762 		retval = set_user(new);
763 		if (retval < 0)
764 			goto error;
765 	}
766 	if (ruid != (uid_t) -1 ||
767 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
768 		new->suid = new->euid;
769 	new->fsuid = new->euid;
770 
771 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
772 	if (retval < 0)
773 		goto error;
774 
775 	return commit_creds(new);
776 
777 error:
778 	abort_creds(new);
779 	return retval;
780 }
781 
782 /*
783  * setuid() is implemented like SysV with SAVED_IDS
784  *
785  * Note that SAVED_ID's is deficient in that a setuid root program
786  * like sendmail, for example, cannot set its uid to be a normal
787  * user and then switch back, because if you're root, setuid() sets
788  * the saved uid too.  If you don't like this, blame the bright people
789  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
790  * will allow a root program to temporarily drop privileges and be able to
791  * regain them by swapping the real and effective uid.
792  */
793 SYSCALL_DEFINE1(setuid, uid_t, uid)
794 {
795 	struct user_namespace *ns = current_user_ns();
796 	const struct cred *old;
797 	struct cred *new;
798 	int retval;
799 	kuid_t kuid;
800 
801 	kuid = make_kuid(ns, uid);
802 	if (!uid_valid(kuid))
803 		return -EINVAL;
804 
805 	new = prepare_creds();
806 	if (!new)
807 		return -ENOMEM;
808 	old = current_cred();
809 
810 	retval = -EPERM;
811 	if (nsown_capable(CAP_SETUID)) {
812 		new->suid = new->uid = kuid;
813 		if (!uid_eq(kuid, old->uid)) {
814 			retval = set_user(new);
815 			if (retval < 0)
816 				goto error;
817 		}
818 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
819 		goto error;
820 	}
821 
822 	new->fsuid = new->euid = kuid;
823 
824 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
825 	if (retval < 0)
826 		goto error;
827 
828 	return commit_creds(new);
829 
830 error:
831 	abort_creds(new);
832 	return retval;
833 }
834 
835 
836 /*
837  * This function implements a generic ability to update ruid, euid,
838  * and suid.  This allows you to implement the 4.4 compatible seteuid().
839  */
840 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
841 {
842 	struct user_namespace *ns = current_user_ns();
843 	const struct cred *old;
844 	struct cred *new;
845 	int retval;
846 	kuid_t kruid, keuid, ksuid;
847 
848 	kruid = make_kuid(ns, ruid);
849 	keuid = make_kuid(ns, euid);
850 	ksuid = make_kuid(ns, suid);
851 
852 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
853 		return -EINVAL;
854 
855 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
856 		return -EINVAL;
857 
858 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
859 		return -EINVAL;
860 
861 	new = prepare_creds();
862 	if (!new)
863 		return -ENOMEM;
864 
865 	old = current_cred();
866 
867 	retval = -EPERM;
868 	if (!nsown_capable(CAP_SETUID)) {
869 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
870 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
871 			goto error;
872 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
873 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
874 			goto error;
875 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
876 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
877 			goto error;
878 	}
879 
880 	if (ruid != (uid_t) -1) {
881 		new->uid = kruid;
882 		if (!uid_eq(kruid, old->uid)) {
883 			retval = set_user(new);
884 			if (retval < 0)
885 				goto error;
886 		}
887 	}
888 	if (euid != (uid_t) -1)
889 		new->euid = keuid;
890 	if (suid != (uid_t) -1)
891 		new->suid = ksuid;
892 	new->fsuid = new->euid;
893 
894 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
895 	if (retval < 0)
896 		goto error;
897 
898 	return commit_creds(new);
899 
900 error:
901 	abort_creds(new);
902 	return retval;
903 }
904 
905 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
906 {
907 	const struct cred *cred = current_cred();
908 	int retval;
909 	uid_t ruid, euid, suid;
910 
911 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
912 	euid = from_kuid_munged(cred->user_ns, cred->euid);
913 	suid = from_kuid_munged(cred->user_ns, cred->suid);
914 
915 	if (!(retval   = put_user(ruid, ruidp)) &&
916 	    !(retval   = put_user(euid, euidp)))
917 		retval = put_user(suid, suidp);
918 
919 	return retval;
920 }
921 
922 /*
923  * Same as above, but for rgid, egid, sgid.
924  */
925 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
926 {
927 	struct user_namespace *ns = current_user_ns();
928 	const struct cred *old;
929 	struct cred *new;
930 	int retval;
931 	kgid_t krgid, kegid, ksgid;
932 
933 	krgid = make_kgid(ns, rgid);
934 	kegid = make_kgid(ns, egid);
935 	ksgid = make_kgid(ns, sgid);
936 
937 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
938 		return -EINVAL;
939 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
940 		return -EINVAL;
941 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
942 		return -EINVAL;
943 
944 	new = prepare_creds();
945 	if (!new)
946 		return -ENOMEM;
947 	old = current_cred();
948 
949 	retval = -EPERM;
950 	if (!nsown_capable(CAP_SETGID)) {
951 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
952 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
953 			goto error;
954 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
955 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
956 			goto error;
957 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
958 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
959 			goto error;
960 	}
961 
962 	if (rgid != (gid_t) -1)
963 		new->gid = krgid;
964 	if (egid != (gid_t) -1)
965 		new->egid = kegid;
966 	if (sgid != (gid_t) -1)
967 		new->sgid = ksgid;
968 	new->fsgid = new->egid;
969 
970 	return commit_creds(new);
971 
972 error:
973 	abort_creds(new);
974 	return retval;
975 }
976 
977 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
978 {
979 	const struct cred *cred = current_cred();
980 	int retval;
981 	gid_t rgid, egid, sgid;
982 
983 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
984 	egid = from_kgid_munged(cred->user_ns, cred->egid);
985 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
986 
987 	if (!(retval   = put_user(rgid, rgidp)) &&
988 	    !(retval   = put_user(egid, egidp)))
989 		retval = put_user(sgid, sgidp);
990 
991 	return retval;
992 }
993 
994 
995 /*
996  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
997  * is used for "access()" and for the NFS daemon (letting nfsd stay at
998  * whatever uid it wants to). It normally shadows "euid", except when
999  * explicitly set by setfsuid() or for access..
1000  */
1001 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1002 {
1003 	const struct cred *old;
1004 	struct cred *new;
1005 	uid_t old_fsuid;
1006 	kuid_t kuid;
1007 
1008 	old = current_cred();
1009 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
1010 
1011 	kuid = make_kuid(old->user_ns, uid);
1012 	if (!uid_valid(kuid))
1013 		return old_fsuid;
1014 
1015 	new = prepare_creds();
1016 	if (!new)
1017 		return old_fsuid;
1018 
1019 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
1020 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
1021 	    nsown_capable(CAP_SETUID)) {
1022 		if (!uid_eq(kuid, old->fsuid)) {
1023 			new->fsuid = kuid;
1024 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
1025 				goto change_okay;
1026 		}
1027 	}
1028 
1029 	abort_creds(new);
1030 	return old_fsuid;
1031 
1032 change_okay:
1033 	commit_creds(new);
1034 	return old_fsuid;
1035 }
1036 
1037 /*
1038  * Samma på svenska..
1039  */
1040 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1041 {
1042 	const struct cred *old;
1043 	struct cred *new;
1044 	gid_t old_fsgid;
1045 	kgid_t kgid;
1046 
1047 	old = current_cred();
1048 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1049 
1050 	kgid = make_kgid(old->user_ns, gid);
1051 	if (!gid_valid(kgid))
1052 		return old_fsgid;
1053 
1054 	new = prepare_creds();
1055 	if (!new)
1056 		return old_fsgid;
1057 
1058 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
1059 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1060 	    nsown_capable(CAP_SETGID)) {
1061 		if (!gid_eq(kgid, old->fsgid)) {
1062 			new->fsgid = kgid;
1063 			goto change_okay;
1064 		}
1065 	}
1066 
1067 	abort_creds(new);
1068 	return old_fsgid;
1069 
1070 change_okay:
1071 	commit_creds(new);
1072 	return old_fsgid;
1073 }
1074 
1075 /**
1076  * sys_getpid - return the thread group id of the current process
1077  *
1078  * Note, despite the name, this returns the tgid not the pid.  The tgid and
1079  * the pid are identical unless CLONE_THREAD was specified on clone() in
1080  * which case the tgid is the same in all threads of the same group.
1081  *
1082  * This is SMP safe as current->tgid does not change.
1083  */
1084 SYSCALL_DEFINE0(getpid)
1085 {
1086 	return task_tgid_vnr(current);
1087 }
1088 
1089 /* Thread ID - the internal kernel "pid" */
1090 SYSCALL_DEFINE0(gettid)
1091 {
1092 	return task_pid_vnr(current);
1093 }
1094 
1095 /*
1096  * Accessing ->real_parent is not SMP-safe, it could
1097  * change from under us. However, we can use a stale
1098  * value of ->real_parent under rcu_read_lock(), see
1099  * release_task()->call_rcu(delayed_put_task_struct).
1100  */
1101 SYSCALL_DEFINE0(getppid)
1102 {
1103 	int pid;
1104 
1105 	rcu_read_lock();
1106 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1107 	rcu_read_unlock();
1108 
1109 	return pid;
1110 }
1111 
1112 SYSCALL_DEFINE0(getuid)
1113 {
1114 	/* Only we change this so SMP safe */
1115 	return from_kuid_munged(current_user_ns(), current_uid());
1116 }
1117 
1118 SYSCALL_DEFINE0(geteuid)
1119 {
1120 	/* Only we change this so SMP safe */
1121 	return from_kuid_munged(current_user_ns(), current_euid());
1122 }
1123 
1124 SYSCALL_DEFINE0(getgid)
1125 {
1126 	/* Only we change this so SMP safe */
1127 	return from_kgid_munged(current_user_ns(), current_gid());
1128 }
1129 
1130 SYSCALL_DEFINE0(getegid)
1131 {
1132 	/* Only we change this so SMP safe */
1133 	return from_kgid_munged(current_user_ns(), current_egid());
1134 }
1135 
1136 void do_sys_times(struct tms *tms)
1137 {
1138 	cputime_t tgutime, tgstime, cutime, cstime;
1139 
1140 	spin_lock_irq(&current->sighand->siglock);
1141 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1142 	cutime = current->signal->cutime;
1143 	cstime = current->signal->cstime;
1144 	spin_unlock_irq(&current->sighand->siglock);
1145 	tms->tms_utime = cputime_to_clock_t(tgutime);
1146 	tms->tms_stime = cputime_to_clock_t(tgstime);
1147 	tms->tms_cutime = cputime_to_clock_t(cutime);
1148 	tms->tms_cstime = cputime_to_clock_t(cstime);
1149 }
1150 
1151 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1152 {
1153 	if (tbuf) {
1154 		struct tms tmp;
1155 
1156 		do_sys_times(&tmp);
1157 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1158 			return -EFAULT;
1159 	}
1160 	force_successful_syscall_return();
1161 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1162 }
1163 
1164 /*
1165  * This needs some heavy checking ...
1166  * I just haven't the stomach for it. I also don't fully
1167  * understand sessions/pgrp etc. Let somebody who does explain it.
1168  *
1169  * OK, I think I have the protection semantics right.... this is really
1170  * only important on a multi-user system anyway, to make sure one user
1171  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1172  *
1173  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1174  * LBT 04.03.94
1175  */
1176 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1177 {
1178 	struct task_struct *p;
1179 	struct task_struct *group_leader = current->group_leader;
1180 	struct pid *pgrp;
1181 	int err;
1182 
1183 	if (!pid)
1184 		pid = task_pid_vnr(group_leader);
1185 	if (!pgid)
1186 		pgid = pid;
1187 	if (pgid < 0)
1188 		return -EINVAL;
1189 	rcu_read_lock();
1190 
1191 	/* From this point forward we keep holding onto the tasklist lock
1192 	 * so that our parent does not change from under us. -DaveM
1193 	 */
1194 	write_lock_irq(&tasklist_lock);
1195 
1196 	err = -ESRCH;
1197 	p = find_task_by_vpid(pid);
1198 	if (!p)
1199 		goto out;
1200 
1201 	err = -EINVAL;
1202 	if (!thread_group_leader(p))
1203 		goto out;
1204 
1205 	if (same_thread_group(p->real_parent, group_leader)) {
1206 		err = -EPERM;
1207 		if (task_session(p) != task_session(group_leader))
1208 			goto out;
1209 		err = -EACCES;
1210 		if (p->did_exec)
1211 			goto out;
1212 	} else {
1213 		err = -ESRCH;
1214 		if (p != group_leader)
1215 			goto out;
1216 	}
1217 
1218 	err = -EPERM;
1219 	if (p->signal->leader)
1220 		goto out;
1221 
1222 	pgrp = task_pid(p);
1223 	if (pgid != pid) {
1224 		struct task_struct *g;
1225 
1226 		pgrp = find_vpid(pgid);
1227 		g = pid_task(pgrp, PIDTYPE_PGID);
1228 		if (!g || task_session(g) != task_session(group_leader))
1229 			goto out;
1230 	}
1231 
1232 	err = security_task_setpgid(p, pgid);
1233 	if (err)
1234 		goto out;
1235 
1236 	if (task_pgrp(p) != pgrp)
1237 		change_pid(p, PIDTYPE_PGID, pgrp);
1238 
1239 	err = 0;
1240 out:
1241 	/* All paths lead to here, thus we are safe. -DaveM */
1242 	write_unlock_irq(&tasklist_lock);
1243 	rcu_read_unlock();
1244 	return err;
1245 }
1246 
1247 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1248 {
1249 	struct task_struct *p;
1250 	struct pid *grp;
1251 	int retval;
1252 
1253 	rcu_read_lock();
1254 	if (!pid)
1255 		grp = task_pgrp(current);
1256 	else {
1257 		retval = -ESRCH;
1258 		p = find_task_by_vpid(pid);
1259 		if (!p)
1260 			goto out;
1261 		grp = task_pgrp(p);
1262 		if (!grp)
1263 			goto out;
1264 
1265 		retval = security_task_getpgid(p);
1266 		if (retval)
1267 			goto out;
1268 	}
1269 	retval = pid_vnr(grp);
1270 out:
1271 	rcu_read_unlock();
1272 	return retval;
1273 }
1274 
1275 #ifdef __ARCH_WANT_SYS_GETPGRP
1276 
1277 SYSCALL_DEFINE0(getpgrp)
1278 {
1279 	return sys_getpgid(0);
1280 }
1281 
1282 #endif
1283 
1284 SYSCALL_DEFINE1(getsid, pid_t, pid)
1285 {
1286 	struct task_struct *p;
1287 	struct pid *sid;
1288 	int retval;
1289 
1290 	rcu_read_lock();
1291 	if (!pid)
1292 		sid = task_session(current);
1293 	else {
1294 		retval = -ESRCH;
1295 		p = find_task_by_vpid(pid);
1296 		if (!p)
1297 			goto out;
1298 		sid = task_session(p);
1299 		if (!sid)
1300 			goto out;
1301 
1302 		retval = security_task_getsid(p);
1303 		if (retval)
1304 			goto out;
1305 	}
1306 	retval = pid_vnr(sid);
1307 out:
1308 	rcu_read_unlock();
1309 	return retval;
1310 }
1311 
1312 static void set_special_pids(struct pid *pid)
1313 {
1314 	struct task_struct *curr = current->group_leader;
1315 
1316 	if (task_session(curr) != pid)
1317 		change_pid(curr, PIDTYPE_SID, pid);
1318 
1319 	if (task_pgrp(curr) != pid)
1320 		change_pid(curr, PIDTYPE_PGID, pid);
1321 }
1322 
1323 SYSCALL_DEFINE0(setsid)
1324 {
1325 	struct task_struct *group_leader = current->group_leader;
1326 	struct pid *sid = task_pid(group_leader);
1327 	pid_t session = pid_vnr(sid);
1328 	int err = -EPERM;
1329 
1330 	write_lock_irq(&tasklist_lock);
1331 	/* Fail if I am already a session leader */
1332 	if (group_leader->signal->leader)
1333 		goto out;
1334 
1335 	/* Fail if a process group id already exists that equals the
1336 	 * proposed session id.
1337 	 */
1338 	if (pid_task(sid, PIDTYPE_PGID))
1339 		goto out;
1340 
1341 	group_leader->signal->leader = 1;
1342 	set_special_pids(sid);
1343 
1344 	proc_clear_tty(group_leader);
1345 
1346 	err = session;
1347 out:
1348 	write_unlock_irq(&tasklist_lock);
1349 	if (err > 0) {
1350 		proc_sid_connector(group_leader);
1351 		sched_autogroup_create_attach(group_leader);
1352 	}
1353 	return err;
1354 }
1355 
1356 DECLARE_RWSEM(uts_sem);
1357 
1358 #ifdef COMPAT_UTS_MACHINE
1359 #define override_architecture(name) \
1360 	(personality(current->personality) == PER_LINUX32 && \
1361 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1362 		      sizeof(COMPAT_UTS_MACHINE)))
1363 #else
1364 #define override_architecture(name)	0
1365 #endif
1366 
1367 /*
1368  * Work around broken programs that cannot handle "Linux 3.0".
1369  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1370  */
1371 static int override_release(char __user *release, size_t len)
1372 {
1373 	int ret = 0;
1374 
1375 	if (current->personality & UNAME26) {
1376 		const char *rest = UTS_RELEASE;
1377 		char buf[65] = { 0 };
1378 		int ndots = 0;
1379 		unsigned v;
1380 		size_t copy;
1381 
1382 		while (*rest) {
1383 			if (*rest == '.' && ++ndots >= 3)
1384 				break;
1385 			if (!isdigit(*rest) && *rest != '.')
1386 				break;
1387 			rest++;
1388 		}
1389 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1390 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1391 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1392 		ret = copy_to_user(release, buf, copy + 1);
1393 	}
1394 	return ret;
1395 }
1396 
1397 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1398 {
1399 	int errno = 0;
1400 
1401 	down_read(&uts_sem);
1402 	if (copy_to_user(name, utsname(), sizeof *name))
1403 		errno = -EFAULT;
1404 	up_read(&uts_sem);
1405 
1406 	if (!errno && override_release(name->release, sizeof(name->release)))
1407 		errno = -EFAULT;
1408 	if (!errno && override_architecture(name))
1409 		errno = -EFAULT;
1410 	return errno;
1411 }
1412 
1413 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1414 /*
1415  * Old cruft
1416  */
1417 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1418 {
1419 	int error = 0;
1420 
1421 	if (!name)
1422 		return -EFAULT;
1423 
1424 	down_read(&uts_sem);
1425 	if (copy_to_user(name, utsname(), sizeof(*name)))
1426 		error = -EFAULT;
1427 	up_read(&uts_sem);
1428 
1429 	if (!error && override_release(name->release, sizeof(name->release)))
1430 		error = -EFAULT;
1431 	if (!error && override_architecture(name))
1432 		error = -EFAULT;
1433 	return error;
1434 }
1435 
1436 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1437 {
1438 	int error;
1439 
1440 	if (!name)
1441 		return -EFAULT;
1442 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1443 		return -EFAULT;
1444 
1445 	down_read(&uts_sem);
1446 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1447 			       __OLD_UTS_LEN);
1448 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1449 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1450 				__OLD_UTS_LEN);
1451 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1452 	error |= __copy_to_user(&name->release, &utsname()->release,
1453 				__OLD_UTS_LEN);
1454 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1455 	error |= __copy_to_user(&name->version, &utsname()->version,
1456 				__OLD_UTS_LEN);
1457 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1458 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1459 				__OLD_UTS_LEN);
1460 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1461 	up_read(&uts_sem);
1462 
1463 	if (!error && override_architecture(name))
1464 		error = -EFAULT;
1465 	if (!error && override_release(name->release, sizeof(name->release)))
1466 		error = -EFAULT;
1467 	return error ? -EFAULT : 0;
1468 }
1469 #endif
1470 
1471 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1472 {
1473 	int errno;
1474 	char tmp[__NEW_UTS_LEN];
1475 
1476 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1477 		return -EPERM;
1478 
1479 	if (len < 0 || len > __NEW_UTS_LEN)
1480 		return -EINVAL;
1481 	down_write(&uts_sem);
1482 	errno = -EFAULT;
1483 	if (!copy_from_user(tmp, name, len)) {
1484 		struct new_utsname *u = utsname();
1485 
1486 		memcpy(u->nodename, tmp, len);
1487 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1488 		errno = 0;
1489 		uts_proc_notify(UTS_PROC_HOSTNAME);
1490 	}
1491 	up_write(&uts_sem);
1492 	return errno;
1493 }
1494 
1495 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1496 
1497 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1498 {
1499 	int i, errno;
1500 	struct new_utsname *u;
1501 
1502 	if (len < 0)
1503 		return -EINVAL;
1504 	down_read(&uts_sem);
1505 	u = utsname();
1506 	i = 1 + strlen(u->nodename);
1507 	if (i > len)
1508 		i = len;
1509 	errno = 0;
1510 	if (copy_to_user(name, u->nodename, i))
1511 		errno = -EFAULT;
1512 	up_read(&uts_sem);
1513 	return errno;
1514 }
1515 
1516 #endif
1517 
1518 /*
1519  * Only setdomainname; getdomainname can be implemented by calling
1520  * uname()
1521  */
1522 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1523 {
1524 	int errno;
1525 	char tmp[__NEW_UTS_LEN];
1526 
1527 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1528 		return -EPERM;
1529 	if (len < 0 || len > __NEW_UTS_LEN)
1530 		return -EINVAL;
1531 
1532 	down_write(&uts_sem);
1533 	errno = -EFAULT;
1534 	if (!copy_from_user(tmp, name, len)) {
1535 		struct new_utsname *u = utsname();
1536 
1537 		memcpy(u->domainname, tmp, len);
1538 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1539 		errno = 0;
1540 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1541 	}
1542 	up_write(&uts_sem);
1543 	return errno;
1544 }
1545 
1546 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1547 {
1548 	struct rlimit value;
1549 	int ret;
1550 
1551 	ret = do_prlimit(current, resource, NULL, &value);
1552 	if (!ret)
1553 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1554 
1555 	return ret;
1556 }
1557 
1558 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1559 
1560 /*
1561  *	Back compatibility for getrlimit. Needed for some apps.
1562  */
1563 
1564 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1565 		struct rlimit __user *, rlim)
1566 {
1567 	struct rlimit x;
1568 	if (resource >= RLIM_NLIMITS)
1569 		return -EINVAL;
1570 
1571 	task_lock(current->group_leader);
1572 	x = current->signal->rlim[resource];
1573 	task_unlock(current->group_leader);
1574 	if (x.rlim_cur > 0x7FFFFFFF)
1575 		x.rlim_cur = 0x7FFFFFFF;
1576 	if (x.rlim_max > 0x7FFFFFFF)
1577 		x.rlim_max = 0x7FFFFFFF;
1578 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1579 }
1580 
1581 #endif
1582 
1583 static inline bool rlim64_is_infinity(__u64 rlim64)
1584 {
1585 #if BITS_PER_LONG < 64
1586 	return rlim64 >= ULONG_MAX;
1587 #else
1588 	return rlim64 == RLIM64_INFINITY;
1589 #endif
1590 }
1591 
1592 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1593 {
1594 	if (rlim->rlim_cur == RLIM_INFINITY)
1595 		rlim64->rlim_cur = RLIM64_INFINITY;
1596 	else
1597 		rlim64->rlim_cur = rlim->rlim_cur;
1598 	if (rlim->rlim_max == RLIM_INFINITY)
1599 		rlim64->rlim_max = RLIM64_INFINITY;
1600 	else
1601 		rlim64->rlim_max = rlim->rlim_max;
1602 }
1603 
1604 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1605 {
1606 	if (rlim64_is_infinity(rlim64->rlim_cur))
1607 		rlim->rlim_cur = RLIM_INFINITY;
1608 	else
1609 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1610 	if (rlim64_is_infinity(rlim64->rlim_max))
1611 		rlim->rlim_max = RLIM_INFINITY;
1612 	else
1613 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1614 }
1615 
1616 /* make sure you are allowed to change @tsk limits before calling this */
1617 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1618 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1619 {
1620 	struct rlimit *rlim;
1621 	int retval = 0;
1622 
1623 	if (resource >= RLIM_NLIMITS)
1624 		return -EINVAL;
1625 	if (new_rlim) {
1626 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1627 			return -EINVAL;
1628 		if (resource == RLIMIT_NOFILE &&
1629 				new_rlim->rlim_max > sysctl_nr_open)
1630 			return -EPERM;
1631 	}
1632 
1633 	/* protect tsk->signal and tsk->sighand from disappearing */
1634 	read_lock(&tasklist_lock);
1635 	if (!tsk->sighand) {
1636 		retval = -ESRCH;
1637 		goto out;
1638 	}
1639 
1640 	rlim = tsk->signal->rlim + resource;
1641 	task_lock(tsk->group_leader);
1642 	if (new_rlim) {
1643 		/* Keep the capable check against init_user_ns until
1644 		   cgroups can contain all limits */
1645 		if (new_rlim->rlim_max > rlim->rlim_max &&
1646 				!capable(CAP_SYS_RESOURCE))
1647 			retval = -EPERM;
1648 		if (!retval)
1649 			retval = security_task_setrlimit(tsk->group_leader,
1650 					resource, new_rlim);
1651 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1652 			/*
1653 			 * The caller is asking for an immediate RLIMIT_CPU
1654 			 * expiry.  But we use the zero value to mean "it was
1655 			 * never set".  So let's cheat and make it one second
1656 			 * instead
1657 			 */
1658 			new_rlim->rlim_cur = 1;
1659 		}
1660 	}
1661 	if (!retval) {
1662 		if (old_rlim)
1663 			*old_rlim = *rlim;
1664 		if (new_rlim)
1665 			*rlim = *new_rlim;
1666 	}
1667 	task_unlock(tsk->group_leader);
1668 
1669 	/*
1670 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1671 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1672 	 * very long-standing error, and fixing it now risks breakage of
1673 	 * applications, so we live with it
1674 	 */
1675 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1676 			 new_rlim->rlim_cur != RLIM_INFINITY)
1677 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1678 out:
1679 	read_unlock(&tasklist_lock);
1680 	return retval;
1681 }
1682 
1683 /* rcu lock must be held */
1684 static int check_prlimit_permission(struct task_struct *task)
1685 {
1686 	const struct cred *cred = current_cred(), *tcred;
1687 
1688 	if (current == task)
1689 		return 0;
1690 
1691 	tcred = __task_cred(task);
1692 	if (uid_eq(cred->uid, tcred->euid) &&
1693 	    uid_eq(cred->uid, tcred->suid) &&
1694 	    uid_eq(cred->uid, tcred->uid)  &&
1695 	    gid_eq(cred->gid, tcred->egid) &&
1696 	    gid_eq(cred->gid, tcred->sgid) &&
1697 	    gid_eq(cred->gid, tcred->gid))
1698 		return 0;
1699 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1700 		return 0;
1701 
1702 	return -EPERM;
1703 }
1704 
1705 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1706 		const struct rlimit64 __user *, new_rlim,
1707 		struct rlimit64 __user *, old_rlim)
1708 {
1709 	struct rlimit64 old64, new64;
1710 	struct rlimit old, new;
1711 	struct task_struct *tsk;
1712 	int ret;
1713 
1714 	if (new_rlim) {
1715 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1716 			return -EFAULT;
1717 		rlim64_to_rlim(&new64, &new);
1718 	}
1719 
1720 	rcu_read_lock();
1721 	tsk = pid ? find_task_by_vpid(pid) : current;
1722 	if (!tsk) {
1723 		rcu_read_unlock();
1724 		return -ESRCH;
1725 	}
1726 	ret = check_prlimit_permission(tsk);
1727 	if (ret) {
1728 		rcu_read_unlock();
1729 		return ret;
1730 	}
1731 	get_task_struct(tsk);
1732 	rcu_read_unlock();
1733 
1734 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1735 			old_rlim ? &old : NULL);
1736 
1737 	if (!ret && old_rlim) {
1738 		rlim_to_rlim64(&old, &old64);
1739 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1740 			ret = -EFAULT;
1741 	}
1742 
1743 	put_task_struct(tsk);
1744 	return ret;
1745 }
1746 
1747 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1748 {
1749 	struct rlimit new_rlim;
1750 
1751 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1752 		return -EFAULT;
1753 	return do_prlimit(current, resource, &new_rlim, NULL);
1754 }
1755 
1756 /*
1757  * It would make sense to put struct rusage in the task_struct,
1758  * except that would make the task_struct be *really big*.  After
1759  * task_struct gets moved into malloc'ed memory, it would
1760  * make sense to do this.  It will make moving the rest of the information
1761  * a lot simpler!  (Which we're not doing right now because we're not
1762  * measuring them yet).
1763  *
1764  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1765  * races with threads incrementing their own counters.  But since word
1766  * reads are atomic, we either get new values or old values and we don't
1767  * care which for the sums.  We always take the siglock to protect reading
1768  * the c* fields from p->signal from races with exit.c updating those
1769  * fields when reaping, so a sample either gets all the additions of a
1770  * given child after it's reaped, or none so this sample is before reaping.
1771  *
1772  * Locking:
1773  * We need to take the siglock for CHILDEREN, SELF and BOTH
1774  * for  the cases current multithreaded, non-current single threaded
1775  * non-current multithreaded.  Thread traversal is now safe with
1776  * the siglock held.
1777  * Strictly speaking, we donot need to take the siglock if we are current and
1778  * single threaded,  as no one else can take our signal_struct away, no one
1779  * else can  reap the  children to update signal->c* counters, and no one else
1780  * can race with the signal-> fields. If we do not take any lock, the
1781  * signal-> fields could be read out of order while another thread was just
1782  * exiting. So we should  place a read memory barrier when we avoid the lock.
1783  * On the writer side,  write memory barrier is implied in  __exit_signal
1784  * as __exit_signal releases  the siglock spinlock after updating the signal->
1785  * fields. But we don't do this yet to keep things simple.
1786  *
1787  */
1788 
1789 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1790 {
1791 	r->ru_nvcsw += t->nvcsw;
1792 	r->ru_nivcsw += t->nivcsw;
1793 	r->ru_minflt += t->min_flt;
1794 	r->ru_majflt += t->maj_flt;
1795 	r->ru_inblock += task_io_get_inblock(t);
1796 	r->ru_oublock += task_io_get_oublock(t);
1797 }
1798 
1799 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1800 {
1801 	struct task_struct *t;
1802 	unsigned long flags;
1803 	cputime_t tgutime, tgstime, utime, stime;
1804 	unsigned long maxrss = 0;
1805 
1806 	memset((char *) r, 0, sizeof *r);
1807 	utime = stime = 0;
1808 
1809 	if (who == RUSAGE_THREAD) {
1810 		task_cputime_adjusted(current, &utime, &stime);
1811 		accumulate_thread_rusage(p, r);
1812 		maxrss = p->signal->maxrss;
1813 		goto out;
1814 	}
1815 
1816 	if (!lock_task_sighand(p, &flags))
1817 		return;
1818 
1819 	switch (who) {
1820 		case RUSAGE_BOTH:
1821 		case RUSAGE_CHILDREN:
1822 			utime = p->signal->cutime;
1823 			stime = p->signal->cstime;
1824 			r->ru_nvcsw = p->signal->cnvcsw;
1825 			r->ru_nivcsw = p->signal->cnivcsw;
1826 			r->ru_minflt = p->signal->cmin_flt;
1827 			r->ru_majflt = p->signal->cmaj_flt;
1828 			r->ru_inblock = p->signal->cinblock;
1829 			r->ru_oublock = p->signal->coublock;
1830 			maxrss = p->signal->cmaxrss;
1831 
1832 			if (who == RUSAGE_CHILDREN)
1833 				break;
1834 
1835 		case RUSAGE_SELF:
1836 			thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1837 			utime += tgutime;
1838 			stime += tgstime;
1839 			r->ru_nvcsw += p->signal->nvcsw;
1840 			r->ru_nivcsw += p->signal->nivcsw;
1841 			r->ru_minflt += p->signal->min_flt;
1842 			r->ru_majflt += p->signal->maj_flt;
1843 			r->ru_inblock += p->signal->inblock;
1844 			r->ru_oublock += p->signal->oublock;
1845 			if (maxrss < p->signal->maxrss)
1846 				maxrss = p->signal->maxrss;
1847 			t = p;
1848 			do {
1849 				accumulate_thread_rusage(t, r);
1850 				t = next_thread(t);
1851 			} while (t != p);
1852 			break;
1853 
1854 		default:
1855 			BUG();
1856 	}
1857 	unlock_task_sighand(p, &flags);
1858 
1859 out:
1860 	cputime_to_timeval(utime, &r->ru_utime);
1861 	cputime_to_timeval(stime, &r->ru_stime);
1862 
1863 	if (who != RUSAGE_CHILDREN) {
1864 		struct mm_struct *mm = get_task_mm(p);
1865 		if (mm) {
1866 			setmax_mm_hiwater_rss(&maxrss, mm);
1867 			mmput(mm);
1868 		}
1869 	}
1870 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1871 }
1872 
1873 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1874 {
1875 	struct rusage r;
1876 	k_getrusage(p, who, &r);
1877 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1878 }
1879 
1880 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1881 {
1882 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1883 	    who != RUSAGE_THREAD)
1884 		return -EINVAL;
1885 	return getrusage(current, who, ru);
1886 }
1887 
1888 #ifdef CONFIG_COMPAT
1889 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1890 {
1891 	struct rusage r;
1892 
1893 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1894 	    who != RUSAGE_THREAD)
1895 		return -EINVAL;
1896 
1897 	k_getrusage(current, who, &r);
1898 	return put_compat_rusage(&r, ru);
1899 }
1900 #endif
1901 
1902 SYSCALL_DEFINE1(umask, int, mask)
1903 {
1904 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1905 	return mask;
1906 }
1907 
1908 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1909 {
1910 	struct fd exe;
1911 	struct inode *inode;
1912 	int err;
1913 
1914 	exe = fdget(fd);
1915 	if (!exe.file)
1916 		return -EBADF;
1917 
1918 	inode = file_inode(exe.file);
1919 
1920 	/*
1921 	 * Because the original mm->exe_file points to executable file, make
1922 	 * sure that this one is executable as well, to avoid breaking an
1923 	 * overall picture.
1924 	 */
1925 	err = -EACCES;
1926 	if (!S_ISREG(inode->i_mode)	||
1927 	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1928 		goto exit;
1929 
1930 	err = inode_permission(inode, MAY_EXEC);
1931 	if (err)
1932 		goto exit;
1933 
1934 	down_write(&mm->mmap_sem);
1935 
1936 	/*
1937 	 * Forbid mm->exe_file change if old file still mapped.
1938 	 */
1939 	err = -EBUSY;
1940 	if (mm->exe_file) {
1941 		struct vm_area_struct *vma;
1942 
1943 		for (vma = mm->mmap; vma; vma = vma->vm_next)
1944 			if (vma->vm_file &&
1945 			    path_equal(&vma->vm_file->f_path,
1946 				       &mm->exe_file->f_path))
1947 				goto exit_unlock;
1948 	}
1949 
1950 	/*
1951 	 * The symlink can be changed only once, just to disallow arbitrary
1952 	 * transitions malicious software might bring in. This means one
1953 	 * could make a snapshot over all processes running and monitor
1954 	 * /proc/pid/exe changes to notice unusual activity if needed.
1955 	 */
1956 	err = -EPERM;
1957 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1958 		goto exit_unlock;
1959 
1960 	err = 0;
1961 	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
1962 exit_unlock:
1963 	up_write(&mm->mmap_sem);
1964 
1965 exit:
1966 	fdput(exe);
1967 	return err;
1968 }
1969 
1970 static int prctl_set_mm(int opt, unsigned long addr,
1971 			unsigned long arg4, unsigned long arg5)
1972 {
1973 	unsigned long rlim = rlimit(RLIMIT_DATA);
1974 	struct mm_struct *mm = current->mm;
1975 	struct vm_area_struct *vma;
1976 	int error;
1977 
1978 	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1979 		return -EINVAL;
1980 
1981 	if (!capable(CAP_SYS_RESOURCE))
1982 		return -EPERM;
1983 
1984 	if (opt == PR_SET_MM_EXE_FILE)
1985 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1986 
1987 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1988 		return -EINVAL;
1989 
1990 	error = -EINVAL;
1991 
1992 	down_read(&mm->mmap_sem);
1993 	vma = find_vma(mm, addr);
1994 
1995 	switch (opt) {
1996 	case PR_SET_MM_START_CODE:
1997 		mm->start_code = addr;
1998 		break;
1999 	case PR_SET_MM_END_CODE:
2000 		mm->end_code = addr;
2001 		break;
2002 	case PR_SET_MM_START_DATA:
2003 		mm->start_data = addr;
2004 		break;
2005 	case PR_SET_MM_END_DATA:
2006 		mm->end_data = addr;
2007 		break;
2008 
2009 	case PR_SET_MM_START_BRK:
2010 		if (addr <= mm->end_data)
2011 			goto out;
2012 
2013 		if (rlim < RLIM_INFINITY &&
2014 		    (mm->brk - addr) +
2015 		    (mm->end_data - mm->start_data) > rlim)
2016 			goto out;
2017 
2018 		mm->start_brk = addr;
2019 		break;
2020 
2021 	case PR_SET_MM_BRK:
2022 		if (addr <= mm->end_data)
2023 			goto out;
2024 
2025 		if (rlim < RLIM_INFINITY &&
2026 		    (addr - mm->start_brk) +
2027 		    (mm->end_data - mm->start_data) > rlim)
2028 			goto out;
2029 
2030 		mm->brk = addr;
2031 		break;
2032 
2033 	/*
2034 	 * If command line arguments and environment
2035 	 * are placed somewhere else on stack, we can
2036 	 * set them up here, ARG_START/END to setup
2037 	 * command line argumets and ENV_START/END
2038 	 * for environment.
2039 	 */
2040 	case PR_SET_MM_START_STACK:
2041 	case PR_SET_MM_ARG_START:
2042 	case PR_SET_MM_ARG_END:
2043 	case PR_SET_MM_ENV_START:
2044 	case PR_SET_MM_ENV_END:
2045 		if (!vma) {
2046 			error = -EFAULT;
2047 			goto out;
2048 		}
2049 		if (opt == PR_SET_MM_START_STACK)
2050 			mm->start_stack = addr;
2051 		else if (opt == PR_SET_MM_ARG_START)
2052 			mm->arg_start = addr;
2053 		else if (opt == PR_SET_MM_ARG_END)
2054 			mm->arg_end = addr;
2055 		else if (opt == PR_SET_MM_ENV_START)
2056 			mm->env_start = addr;
2057 		else if (opt == PR_SET_MM_ENV_END)
2058 			mm->env_end = addr;
2059 		break;
2060 
2061 	/*
2062 	 * This doesn't move auxiliary vector itself
2063 	 * since it's pinned to mm_struct, but allow
2064 	 * to fill vector with new values. It's up
2065 	 * to a caller to provide sane values here
2066 	 * otherwise user space tools which use this
2067 	 * vector might be unhappy.
2068 	 */
2069 	case PR_SET_MM_AUXV: {
2070 		unsigned long user_auxv[AT_VECTOR_SIZE];
2071 
2072 		if (arg4 > sizeof(user_auxv))
2073 			goto out;
2074 		up_read(&mm->mmap_sem);
2075 
2076 		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
2077 			return -EFAULT;
2078 
2079 		/* Make sure the last entry is always AT_NULL */
2080 		user_auxv[AT_VECTOR_SIZE - 2] = 0;
2081 		user_auxv[AT_VECTOR_SIZE - 1] = 0;
2082 
2083 		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2084 
2085 		task_lock(current);
2086 		memcpy(mm->saved_auxv, user_auxv, arg4);
2087 		task_unlock(current);
2088 
2089 		return 0;
2090 	}
2091 	default:
2092 		goto out;
2093 	}
2094 
2095 	error = 0;
2096 out:
2097 	up_read(&mm->mmap_sem);
2098 	return error;
2099 }
2100 
2101 #ifdef CONFIG_CHECKPOINT_RESTORE
2102 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2103 {
2104 	return put_user(me->clear_child_tid, tid_addr);
2105 }
2106 #else
2107 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2108 {
2109 	return -EINVAL;
2110 }
2111 #endif
2112 
2113 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2114 		unsigned long, arg4, unsigned long, arg5)
2115 {
2116 	struct task_struct *me = current;
2117 	unsigned char comm[sizeof(me->comm)];
2118 	long error;
2119 
2120 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2121 	if (error != -ENOSYS)
2122 		return error;
2123 
2124 	error = 0;
2125 	switch (option) {
2126 	case PR_SET_PDEATHSIG:
2127 		if (!valid_signal(arg2)) {
2128 			error = -EINVAL;
2129 			break;
2130 		}
2131 		me->pdeath_signal = arg2;
2132 		break;
2133 	case PR_GET_PDEATHSIG:
2134 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2135 		break;
2136 	case PR_GET_DUMPABLE:
2137 		error = get_dumpable(me->mm);
2138 		break;
2139 	case PR_SET_DUMPABLE:
2140 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2141 			error = -EINVAL;
2142 			break;
2143 		}
2144 		set_dumpable(me->mm, arg2);
2145 		break;
2146 
2147 	case PR_SET_UNALIGN:
2148 		error = SET_UNALIGN_CTL(me, arg2);
2149 		break;
2150 	case PR_GET_UNALIGN:
2151 		error = GET_UNALIGN_CTL(me, arg2);
2152 		break;
2153 	case PR_SET_FPEMU:
2154 		error = SET_FPEMU_CTL(me, arg2);
2155 		break;
2156 	case PR_GET_FPEMU:
2157 		error = GET_FPEMU_CTL(me, arg2);
2158 		break;
2159 	case PR_SET_FPEXC:
2160 		error = SET_FPEXC_CTL(me, arg2);
2161 		break;
2162 	case PR_GET_FPEXC:
2163 		error = GET_FPEXC_CTL(me, arg2);
2164 		break;
2165 	case PR_GET_TIMING:
2166 		error = PR_TIMING_STATISTICAL;
2167 		break;
2168 	case PR_SET_TIMING:
2169 		if (arg2 != PR_TIMING_STATISTICAL)
2170 			error = -EINVAL;
2171 		break;
2172 	case PR_SET_NAME:
2173 		comm[sizeof(me->comm) - 1] = 0;
2174 		if (strncpy_from_user(comm, (char __user *)arg2,
2175 				      sizeof(me->comm) - 1) < 0)
2176 			return -EFAULT;
2177 		set_task_comm(me, comm);
2178 		proc_comm_connector(me);
2179 		break;
2180 	case PR_GET_NAME:
2181 		get_task_comm(comm, me);
2182 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2183 			return -EFAULT;
2184 		break;
2185 	case PR_GET_ENDIAN:
2186 		error = GET_ENDIAN(me, arg2);
2187 		break;
2188 	case PR_SET_ENDIAN:
2189 		error = SET_ENDIAN(me, arg2);
2190 		break;
2191 	case PR_GET_SECCOMP:
2192 		error = prctl_get_seccomp();
2193 		break;
2194 	case PR_SET_SECCOMP:
2195 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2196 		break;
2197 	case PR_GET_TSC:
2198 		error = GET_TSC_CTL(arg2);
2199 		break;
2200 	case PR_SET_TSC:
2201 		error = SET_TSC_CTL(arg2);
2202 		break;
2203 	case PR_TASK_PERF_EVENTS_DISABLE:
2204 		error = perf_event_task_disable();
2205 		break;
2206 	case PR_TASK_PERF_EVENTS_ENABLE:
2207 		error = perf_event_task_enable();
2208 		break;
2209 	case PR_GET_TIMERSLACK:
2210 		error = current->timer_slack_ns;
2211 		break;
2212 	case PR_SET_TIMERSLACK:
2213 		if (arg2 <= 0)
2214 			current->timer_slack_ns =
2215 					current->default_timer_slack_ns;
2216 		else
2217 			current->timer_slack_ns = arg2;
2218 		break;
2219 	case PR_MCE_KILL:
2220 		if (arg4 | arg5)
2221 			return -EINVAL;
2222 		switch (arg2) {
2223 		case PR_MCE_KILL_CLEAR:
2224 			if (arg3 != 0)
2225 				return -EINVAL;
2226 			current->flags &= ~PF_MCE_PROCESS;
2227 			break;
2228 		case PR_MCE_KILL_SET:
2229 			current->flags |= PF_MCE_PROCESS;
2230 			if (arg3 == PR_MCE_KILL_EARLY)
2231 				current->flags |= PF_MCE_EARLY;
2232 			else if (arg3 == PR_MCE_KILL_LATE)
2233 				current->flags &= ~PF_MCE_EARLY;
2234 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2235 				current->flags &=
2236 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2237 			else
2238 				return -EINVAL;
2239 			break;
2240 		default:
2241 			return -EINVAL;
2242 		}
2243 		break;
2244 	case PR_MCE_KILL_GET:
2245 		if (arg2 | arg3 | arg4 | arg5)
2246 			return -EINVAL;
2247 		if (current->flags & PF_MCE_PROCESS)
2248 			error = (current->flags & PF_MCE_EARLY) ?
2249 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2250 		else
2251 			error = PR_MCE_KILL_DEFAULT;
2252 		break;
2253 	case PR_SET_MM:
2254 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2255 		break;
2256 	case PR_GET_TID_ADDRESS:
2257 		error = prctl_get_tid_address(me, (int __user **)arg2);
2258 		break;
2259 	case PR_SET_CHILD_SUBREAPER:
2260 		me->signal->is_child_subreaper = !!arg2;
2261 		break;
2262 	case PR_GET_CHILD_SUBREAPER:
2263 		error = put_user(me->signal->is_child_subreaper,
2264 				 (int __user *)arg2);
2265 		break;
2266 	case PR_SET_NO_NEW_PRIVS:
2267 		if (arg2 != 1 || arg3 || arg4 || arg5)
2268 			return -EINVAL;
2269 
2270 		current->no_new_privs = 1;
2271 		break;
2272 	case PR_GET_NO_NEW_PRIVS:
2273 		if (arg2 || arg3 || arg4 || arg5)
2274 			return -EINVAL;
2275 		return current->no_new_privs ? 1 : 0;
2276 	default:
2277 		error = -EINVAL;
2278 		break;
2279 	}
2280 	return error;
2281 }
2282 
2283 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2284 		struct getcpu_cache __user *, unused)
2285 {
2286 	int err = 0;
2287 	int cpu = raw_smp_processor_id();
2288 	if (cpup)
2289 		err |= put_user(cpu, cpup);
2290 	if (nodep)
2291 		err |= put_user(cpu_to_node(cpu), nodep);
2292 	return err ? -EFAULT : 0;
2293 }
2294 
2295 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2296 
2297 static int __orderly_poweroff(bool force)
2298 {
2299 	char **argv;
2300 	static char *envp[] = {
2301 		"HOME=/",
2302 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2303 		NULL
2304 	};
2305 	int ret;
2306 
2307 	argv = argv_split(GFP_KERNEL, poweroff_cmd, NULL);
2308 	if (argv) {
2309 		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2310 		argv_free(argv);
2311 	} else {
2312 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2313 					 __func__, poweroff_cmd);
2314 		ret = -ENOMEM;
2315 	}
2316 
2317 	if (ret && force) {
2318 		printk(KERN_WARNING "Failed to start orderly shutdown: "
2319 					"forcing the issue\n");
2320 		/*
2321 		 * I guess this should try to kick off some daemon to sync and
2322 		 * poweroff asap.  Or not even bother syncing if we're doing an
2323 		 * emergency shutdown?
2324 		 */
2325 		emergency_sync();
2326 		kernel_power_off();
2327 	}
2328 
2329 	return ret;
2330 }
2331 
2332 static bool poweroff_force;
2333 
2334 static void poweroff_work_func(struct work_struct *work)
2335 {
2336 	__orderly_poweroff(poweroff_force);
2337 }
2338 
2339 static DECLARE_WORK(poweroff_work, poweroff_work_func);
2340 
2341 /**
2342  * orderly_poweroff - Trigger an orderly system poweroff
2343  * @force: force poweroff if command execution fails
2344  *
2345  * This may be called from any context to trigger a system shutdown.
2346  * If the orderly shutdown fails, it will force an immediate shutdown.
2347  */
2348 int orderly_poweroff(bool force)
2349 {
2350 	if (force) /* do not override the pending "true" */
2351 		poweroff_force = true;
2352 	schedule_work(&poweroff_work);
2353 	return 0;
2354 }
2355 EXPORT_SYMBOL_GPL(orderly_poweroff);
2356 
2357 /**
2358  * do_sysinfo - fill in sysinfo struct
2359  * @info: pointer to buffer to fill
2360  */
2361 static int do_sysinfo(struct sysinfo *info)
2362 {
2363 	unsigned long mem_total, sav_total;
2364 	unsigned int mem_unit, bitcount;
2365 	struct timespec tp;
2366 
2367 	memset(info, 0, sizeof(struct sysinfo));
2368 
2369 	get_monotonic_boottime(&tp);
2370 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2371 
2372 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2373 
2374 	info->procs = nr_threads;
2375 
2376 	si_meminfo(info);
2377 	si_swapinfo(info);
2378 
2379 	/*
2380 	 * If the sum of all the available memory (i.e. ram + swap)
2381 	 * is less than can be stored in a 32 bit unsigned long then
2382 	 * we can be binary compatible with 2.2.x kernels.  If not,
2383 	 * well, in that case 2.2.x was broken anyways...
2384 	 *
2385 	 *  -Erik Andersen <andersee@debian.org>
2386 	 */
2387 
2388 	mem_total = info->totalram + info->totalswap;
2389 	if (mem_total < info->totalram || mem_total < info->totalswap)
2390 		goto out;
2391 	bitcount = 0;
2392 	mem_unit = info->mem_unit;
2393 	while (mem_unit > 1) {
2394 		bitcount++;
2395 		mem_unit >>= 1;
2396 		sav_total = mem_total;
2397 		mem_total <<= 1;
2398 		if (mem_total < sav_total)
2399 			goto out;
2400 	}
2401 
2402 	/*
2403 	 * If mem_total did not overflow, multiply all memory values by
2404 	 * info->mem_unit and set it to 1.  This leaves things compatible
2405 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2406 	 * kernels...
2407 	 */
2408 
2409 	info->mem_unit = 1;
2410 	info->totalram <<= bitcount;
2411 	info->freeram <<= bitcount;
2412 	info->sharedram <<= bitcount;
2413 	info->bufferram <<= bitcount;
2414 	info->totalswap <<= bitcount;
2415 	info->freeswap <<= bitcount;
2416 	info->totalhigh <<= bitcount;
2417 	info->freehigh <<= bitcount;
2418 
2419 out:
2420 	return 0;
2421 }
2422 
2423 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2424 {
2425 	struct sysinfo val;
2426 
2427 	do_sysinfo(&val);
2428 
2429 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2430 		return -EFAULT;
2431 
2432 	return 0;
2433 }
2434 
2435 #ifdef CONFIG_COMPAT
2436 struct compat_sysinfo {
2437 	s32 uptime;
2438 	u32 loads[3];
2439 	u32 totalram;
2440 	u32 freeram;
2441 	u32 sharedram;
2442 	u32 bufferram;
2443 	u32 totalswap;
2444 	u32 freeswap;
2445 	u16 procs;
2446 	u16 pad;
2447 	u32 totalhigh;
2448 	u32 freehigh;
2449 	u32 mem_unit;
2450 	char _f[20-2*sizeof(u32)-sizeof(int)];
2451 };
2452 
2453 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2454 {
2455 	struct sysinfo s;
2456 
2457 	do_sysinfo(&s);
2458 
2459 	/* Check to see if any memory value is too large for 32-bit and scale
2460 	 *  down if needed
2461 	 */
2462 	if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2463 		int bitcount = 0;
2464 
2465 		while (s.mem_unit < PAGE_SIZE) {
2466 			s.mem_unit <<= 1;
2467 			bitcount++;
2468 		}
2469 
2470 		s.totalram >>= bitcount;
2471 		s.freeram >>= bitcount;
2472 		s.sharedram >>= bitcount;
2473 		s.bufferram >>= bitcount;
2474 		s.totalswap >>= bitcount;
2475 		s.freeswap >>= bitcount;
2476 		s.totalhigh >>= bitcount;
2477 		s.freehigh >>= bitcount;
2478 	}
2479 
2480 	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2481 	    __put_user(s.uptime, &info->uptime) ||
2482 	    __put_user(s.loads[0], &info->loads[0]) ||
2483 	    __put_user(s.loads[1], &info->loads[1]) ||
2484 	    __put_user(s.loads[2], &info->loads[2]) ||
2485 	    __put_user(s.totalram, &info->totalram) ||
2486 	    __put_user(s.freeram, &info->freeram) ||
2487 	    __put_user(s.sharedram, &info->sharedram) ||
2488 	    __put_user(s.bufferram, &info->bufferram) ||
2489 	    __put_user(s.totalswap, &info->totalswap) ||
2490 	    __put_user(s.freeswap, &info->freeswap) ||
2491 	    __put_user(s.procs, &info->procs) ||
2492 	    __put_user(s.totalhigh, &info->totalhigh) ||
2493 	    __put_user(s.freehigh, &info->freehigh) ||
2494 	    __put_user(s.mem_unit, &info->mem_unit))
2495 		return -EFAULT;
2496 
2497 	return 0;
2498 }
2499 #endif /* CONFIG_COMPAT */
2500