xref: /linux/kernel/stop_machine.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 
25 /*
26  * Structure to determine completion condition and record errors.  May
27  * be shared by works on different cpus.
28  */
29 struct cpu_stop_done {
30 	atomic_t		nr_todo;	/* nr left to execute */
31 	int			ret;		/* collected return value */
32 	struct completion	completion;	/* fired if nr_todo reaches 0 */
33 };
34 
35 /* the actual stopper, one per every possible cpu, enabled on online cpus */
36 struct cpu_stopper {
37 	struct task_struct	*thread;
38 
39 	spinlock_t		lock;
40 	bool			enabled;	/* is this stopper enabled? */
41 	struct list_head	works;		/* list of pending works */
42 
43 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
44 };
45 
46 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
47 static bool stop_machine_initialized = false;
48 
49 /* static data for stop_cpus */
50 static DEFINE_MUTEX(stop_cpus_mutex);
51 static bool stop_cpus_in_progress;
52 
53 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
54 {
55 	memset(done, 0, sizeof(*done));
56 	atomic_set(&done->nr_todo, nr_todo);
57 	init_completion(&done->completion);
58 }
59 
60 /* signal completion unless @done is NULL */
61 static void cpu_stop_signal_done(struct cpu_stop_done *done)
62 {
63 	if (atomic_dec_and_test(&done->nr_todo))
64 		complete(&done->completion);
65 }
66 
67 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
68 					struct cpu_stop_work *work)
69 {
70 	list_add_tail(&work->list, &stopper->works);
71 	wake_up_process(stopper->thread);
72 }
73 
74 /* queue @work to @stopper.  if offline, @work is completed immediately */
75 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
76 {
77 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
78 	unsigned long flags;
79 	bool enabled;
80 
81 	spin_lock_irqsave(&stopper->lock, flags);
82 	enabled = stopper->enabled;
83 	if (enabled)
84 		__cpu_stop_queue_work(stopper, work);
85 	else if (work->done)
86 		cpu_stop_signal_done(work->done);
87 	spin_unlock_irqrestore(&stopper->lock, flags);
88 
89 	return enabled;
90 }
91 
92 /**
93  * stop_one_cpu - stop a cpu
94  * @cpu: cpu to stop
95  * @fn: function to execute
96  * @arg: argument to @fn
97  *
98  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
99  * the highest priority preempting any task on the cpu and
100  * monopolizing it.  This function returns after the execution is
101  * complete.
102  *
103  * This function doesn't guarantee @cpu stays online till @fn
104  * completes.  If @cpu goes down in the middle, execution may happen
105  * partially or fully on different cpus.  @fn should either be ready
106  * for that or the caller should ensure that @cpu stays online until
107  * this function completes.
108  *
109  * CONTEXT:
110  * Might sleep.
111  *
112  * RETURNS:
113  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114  * otherwise, the return value of @fn.
115  */
116 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
117 {
118 	struct cpu_stop_done done;
119 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
120 
121 	cpu_stop_init_done(&done, 1);
122 	if (!cpu_stop_queue_work(cpu, &work))
123 		return -ENOENT;
124 	/*
125 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
126 	 * cycle by doing a preemption:
127 	 */
128 	cond_resched();
129 	wait_for_completion(&done.completion);
130 	return done.ret;
131 }
132 
133 /* This controls the threads on each CPU. */
134 enum multi_stop_state {
135 	/* Dummy starting state for thread. */
136 	MULTI_STOP_NONE,
137 	/* Awaiting everyone to be scheduled. */
138 	MULTI_STOP_PREPARE,
139 	/* Disable interrupts. */
140 	MULTI_STOP_DISABLE_IRQ,
141 	/* Run the function */
142 	MULTI_STOP_RUN,
143 	/* Exit */
144 	MULTI_STOP_EXIT,
145 };
146 
147 struct multi_stop_data {
148 	cpu_stop_fn_t		fn;
149 	void			*data;
150 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
151 	unsigned int		num_threads;
152 	const struct cpumask	*active_cpus;
153 
154 	enum multi_stop_state	state;
155 	atomic_t		thread_ack;
156 };
157 
158 static void set_state(struct multi_stop_data *msdata,
159 		      enum multi_stop_state newstate)
160 {
161 	/* Reset ack counter. */
162 	atomic_set(&msdata->thread_ack, msdata->num_threads);
163 	smp_wmb();
164 	msdata->state = newstate;
165 }
166 
167 /* Last one to ack a state moves to the next state. */
168 static void ack_state(struct multi_stop_data *msdata)
169 {
170 	if (atomic_dec_and_test(&msdata->thread_ack))
171 		set_state(msdata, msdata->state + 1);
172 }
173 
174 /* This is the cpu_stop function which stops the CPU. */
175 static int multi_cpu_stop(void *data)
176 {
177 	struct multi_stop_data *msdata = data;
178 	enum multi_stop_state curstate = MULTI_STOP_NONE;
179 	int cpu = smp_processor_id(), err = 0;
180 	unsigned long flags;
181 	bool is_active;
182 
183 	/*
184 	 * When called from stop_machine_from_inactive_cpu(), irq might
185 	 * already be disabled.  Save the state and restore it on exit.
186 	 */
187 	local_save_flags(flags);
188 
189 	if (!msdata->active_cpus)
190 		is_active = cpu == cpumask_first(cpu_online_mask);
191 	else
192 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
193 
194 	/* Simple state machine */
195 	do {
196 		/* Chill out and ensure we re-read multi_stop_state. */
197 		cpu_relax_yield();
198 		if (msdata->state != curstate) {
199 			curstate = msdata->state;
200 			switch (curstate) {
201 			case MULTI_STOP_DISABLE_IRQ:
202 				local_irq_disable();
203 				hard_irq_disable();
204 				break;
205 			case MULTI_STOP_RUN:
206 				if (is_active)
207 					err = msdata->fn(msdata->data);
208 				break;
209 			default:
210 				break;
211 			}
212 			ack_state(msdata);
213 		} else if (curstate > MULTI_STOP_PREPARE) {
214 			/*
215 			 * At this stage all other CPUs we depend on must spin
216 			 * in the same loop. Any reason for hard-lockup should
217 			 * be detected and reported on their side.
218 			 */
219 			touch_nmi_watchdog();
220 		}
221 	} while (curstate != MULTI_STOP_EXIT);
222 
223 	local_irq_restore(flags);
224 	return err;
225 }
226 
227 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
228 				    int cpu2, struct cpu_stop_work *work2)
229 {
230 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
231 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
232 	int err;
233 retry:
234 	spin_lock_irq(&stopper1->lock);
235 	spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
236 
237 	err = -ENOENT;
238 	if (!stopper1->enabled || !stopper2->enabled)
239 		goto unlock;
240 	/*
241 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
242 	 * queued up in reverse order leading to system deadlock.
243 	 *
244 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
245 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
246 	 *
247 	 * It can be falsely true but it is safe to spin until it is cleared,
248 	 * queue_stop_cpus_work() does everything under preempt_disable().
249 	 */
250 	err = -EDEADLK;
251 	if (unlikely(stop_cpus_in_progress))
252 			goto unlock;
253 
254 	err = 0;
255 	__cpu_stop_queue_work(stopper1, work1);
256 	__cpu_stop_queue_work(stopper2, work2);
257 unlock:
258 	spin_unlock(&stopper2->lock);
259 	spin_unlock_irq(&stopper1->lock);
260 
261 	if (unlikely(err == -EDEADLK)) {
262 		while (stop_cpus_in_progress)
263 			cpu_relax();
264 		goto retry;
265 	}
266 	return err;
267 }
268 /**
269  * stop_two_cpus - stops two cpus
270  * @cpu1: the cpu to stop
271  * @cpu2: the other cpu to stop
272  * @fn: function to execute
273  * @arg: argument to @fn
274  *
275  * Stops both the current and specified CPU and runs @fn on one of them.
276  *
277  * returns when both are completed.
278  */
279 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
280 {
281 	struct cpu_stop_done done;
282 	struct cpu_stop_work work1, work2;
283 	struct multi_stop_data msdata;
284 
285 	msdata = (struct multi_stop_data){
286 		.fn = fn,
287 		.data = arg,
288 		.num_threads = 2,
289 		.active_cpus = cpumask_of(cpu1),
290 	};
291 
292 	work1 = work2 = (struct cpu_stop_work){
293 		.fn = multi_cpu_stop,
294 		.arg = &msdata,
295 		.done = &done
296 	};
297 
298 	cpu_stop_init_done(&done, 2);
299 	set_state(&msdata, MULTI_STOP_PREPARE);
300 
301 	if (cpu1 > cpu2)
302 		swap(cpu1, cpu2);
303 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
304 		return -ENOENT;
305 
306 	wait_for_completion(&done.completion);
307 	return done.ret;
308 }
309 
310 /**
311  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
312  * @cpu: cpu to stop
313  * @fn: function to execute
314  * @arg: argument to @fn
315  * @work_buf: pointer to cpu_stop_work structure
316  *
317  * Similar to stop_one_cpu() but doesn't wait for completion.  The
318  * caller is responsible for ensuring @work_buf is currently unused
319  * and will remain untouched until stopper starts executing @fn.
320  *
321  * CONTEXT:
322  * Don't care.
323  *
324  * RETURNS:
325  * true if cpu_stop_work was queued successfully and @fn will be called,
326  * false otherwise.
327  */
328 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
329 			struct cpu_stop_work *work_buf)
330 {
331 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
332 	return cpu_stop_queue_work(cpu, work_buf);
333 }
334 
335 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
336 				 cpu_stop_fn_t fn, void *arg,
337 				 struct cpu_stop_done *done)
338 {
339 	struct cpu_stop_work *work;
340 	unsigned int cpu;
341 	bool queued = false;
342 
343 	/*
344 	 * Disable preemption while queueing to avoid getting
345 	 * preempted by a stopper which might wait for other stoppers
346 	 * to enter @fn which can lead to deadlock.
347 	 */
348 	preempt_disable();
349 	stop_cpus_in_progress = true;
350 	for_each_cpu(cpu, cpumask) {
351 		work = &per_cpu(cpu_stopper.stop_work, cpu);
352 		work->fn = fn;
353 		work->arg = arg;
354 		work->done = done;
355 		if (cpu_stop_queue_work(cpu, work))
356 			queued = true;
357 	}
358 	stop_cpus_in_progress = false;
359 	preempt_enable();
360 
361 	return queued;
362 }
363 
364 static int __stop_cpus(const struct cpumask *cpumask,
365 		       cpu_stop_fn_t fn, void *arg)
366 {
367 	struct cpu_stop_done done;
368 
369 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
370 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
371 		return -ENOENT;
372 	wait_for_completion(&done.completion);
373 	return done.ret;
374 }
375 
376 /**
377  * stop_cpus - stop multiple cpus
378  * @cpumask: cpus to stop
379  * @fn: function to execute
380  * @arg: argument to @fn
381  *
382  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
383  * @fn is run in a process context with the highest priority
384  * preempting any task on the cpu and monopolizing it.  This function
385  * returns after all executions are complete.
386  *
387  * This function doesn't guarantee the cpus in @cpumask stay online
388  * till @fn completes.  If some cpus go down in the middle, execution
389  * on the cpu may happen partially or fully on different cpus.  @fn
390  * should either be ready for that or the caller should ensure that
391  * the cpus stay online until this function completes.
392  *
393  * All stop_cpus() calls are serialized making it safe for @fn to wait
394  * for all cpus to start executing it.
395  *
396  * CONTEXT:
397  * Might sleep.
398  *
399  * RETURNS:
400  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
401  * @cpumask were offline; otherwise, 0 if all executions of @fn
402  * returned 0, any non zero return value if any returned non zero.
403  */
404 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
405 {
406 	int ret;
407 
408 	/* static works are used, process one request at a time */
409 	mutex_lock(&stop_cpus_mutex);
410 	ret = __stop_cpus(cpumask, fn, arg);
411 	mutex_unlock(&stop_cpus_mutex);
412 	return ret;
413 }
414 
415 /**
416  * try_stop_cpus - try to stop multiple cpus
417  * @cpumask: cpus to stop
418  * @fn: function to execute
419  * @arg: argument to @fn
420  *
421  * Identical to stop_cpus() except that it fails with -EAGAIN if
422  * someone else is already using the facility.
423  *
424  * CONTEXT:
425  * Might sleep.
426  *
427  * RETURNS:
428  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
429  * @fn(@arg) was not executed at all because all cpus in @cpumask were
430  * offline; otherwise, 0 if all executions of @fn returned 0, any non
431  * zero return value if any returned non zero.
432  */
433 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
434 {
435 	int ret;
436 
437 	/* static works are used, process one request at a time */
438 	if (!mutex_trylock(&stop_cpus_mutex))
439 		return -EAGAIN;
440 	ret = __stop_cpus(cpumask, fn, arg);
441 	mutex_unlock(&stop_cpus_mutex);
442 	return ret;
443 }
444 
445 static int cpu_stop_should_run(unsigned int cpu)
446 {
447 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
448 	unsigned long flags;
449 	int run;
450 
451 	spin_lock_irqsave(&stopper->lock, flags);
452 	run = !list_empty(&stopper->works);
453 	spin_unlock_irqrestore(&stopper->lock, flags);
454 	return run;
455 }
456 
457 static void cpu_stopper_thread(unsigned int cpu)
458 {
459 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
460 	struct cpu_stop_work *work;
461 
462 repeat:
463 	work = NULL;
464 	spin_lock_irq(&stopper->lock);
465 	if (!list_empty(&stopper->works)) {
466 		work = list_first_entry(&stopper->works,
467 					struct cpu_stop_work, list);
468 		list_del_init(&work->list);
469 	}
470 	spin_unlock_irq(&stopper->lock);
471 
472 	if (work) {
473 		cpu_stop_fn_t fn = work->fn;
474 		void *arg = work->arg;
475 		struct cpu_stop_done *done = work->done;
476 		int ret;
477 
478 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
479 		preempt_count_inc();
480 		ret = fn(arg);
481 		if (done) {
482 			if (ret)
483 				done->ret = ret;
484 			cpu_stop_signal_done(done);
485 		}
486 		preempt_count_dec();
487 		WARN_ONCE(preempt_count(),
488 			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
489 		goto repeat;
490 	}
491 }
492 
493 void stop_machine_park(int cpu)
494 {
495 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
496 	/*
497 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
498 	 * the pending works before it parks, until then it is fine to queue
499 	 * the new works.
500 	 */
501 	stopper->enabled = false;
502 	kthread_park(stopper->thread);
503 }
504 
505 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
506 
507 static void cpu_stop_create(unsigned int cpu)
508 {
509 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
510 }
511 
512 static void cpu_stop_park(unsigned int cpu)
513 {
514 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
515 
516 	WARN_ON(!list_empty(&stopper->works));
517 }
518 
519 void stop_machine_unpark(int cpu)
520 {
521 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
522 
523 	stopper->enabled = true;
524 	kthread_unpark(stopper->thread);
525 }
526 
527 static struct smp_hotplug_thread cpu_stop_threads = {
528 	.store			= &cpu_stopper.thread,
529 	.thread_should_run	= cpu_stop_should_run,
530 	.thread_fn		= cpu_stopper_thread,
531 	.thread_comm		= "migration/%u",
532 	.create			= cpu_stop_create,
533 	.park			= cpu_stop_park,
534 	.selfparking		= true,
535 };
536 
537 static int __init cpu_stop_init(void)
538 {
539 	unsigned int cpu;
540 
541 	for_each_possible_cpu(cpu) {
542 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
543 
544 		spin_lock_init(&stopper->lock);
545 		INIT_LIST_HEAD(&stopper->works);
546 	}
547 
548 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
549 	stop_machine_unpark(raw_smp_processor_id());
550 	stop_machine_initialized = true;
551 	return 0;
552 }
553 early_initcall(cpu_stop_init);
554 
555 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
556 			    const struct cpumask *cpus)
557 {
558 	struct multi_stop_data msdata = {
559 		.fn = fn,
560 		.data = data,
561 		.num_threads = num_online_cpus(),
562 		.active_cpus = cpus,
563 	};
564 
565 	lockdep_assert_cpus_held();
566 
567 	if (!stop_machine_initialized) {
568 		/*
569 		 * Handle the case where stop_machine() is called
570 		 * early in boot before stop_machine() has been
571 		 * initialized.
572 		 */
573 		unsigned long flags;
574 		int ret;
575 
576 		WARN_ON_ONCE(msdata.num_threads != 1);
577 
578 		local_irq_save(flags);
579 		hard_irq_disable();
580 		ret = (*fn)(data);
581 		local_irq_restore(flags);
582 
583 		return ret;
584 	}
585 
586 	/* Set the initial state and stop all online cpus. */
587 	set_state(&msdata, MULTI_STOP_PREPARE);
588 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
589 }
590 
591 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
592 {
593 	int ret;
594 
595 	/* No CPUs can come up or down during this. */
596 	cpus_read_lock();
597 	ret = stop_machine_cpuslocked(fn, data, cpus);
598 	cpus_read_unlock();
599 	return ret;
600 }
601 EXPORT_SYMBOL_GPL(stop_machine);
602 
603 /**
604  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
605  * @fn: the function to run
606  * @data: the data ptr for the @fn()
607  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
608  *
609  * This is identical to stop_machine() but can be called from a CPU which
610  * is not active.  The local CPU is in the process of hotplug (so no other
611  * CPU hotplug can start) and not marked active and doesn't have enough
612  * context to sleep.
613  *
614  * This function provides stop_machine() functionality for such state by
615  * using busy-wait for synchronization and executing @fn directly for local
616  * CPU.
617  *
618  * CONTEXT:
619  * Local CPU is inactive.  Temporarily stops all active CPUs.
620  *
621  * RETURNS:
622  * 0 if all executions of @fn returned 0, any non zero return value if any
623  * returned non zero.
624  */
625 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
626 				  const struct cpumask *cpus)
627 {
628 	struct multi_stop_data msdata = { .fn = fn, .data = data,
629 					    .active_cpus = cpus };
630 	struct cpu_stop_done done;
631 	int ret;
632 
633 	/* Local CPU must be inactive and CPU hotplug in progress. */
634 	BUG_ON(cpu_active(raw_smp_processor_id()));
635 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
636 
637 	/* No proper task established and can't sleep - busy wait for lock. */
638 	while (!mutex_trylock(&stop_cpus_mutex))
639 		cpu_relax();
640 
641 	/* Schedule work on other CPUs and execute directly for local CPU */
642 	set_state(&msdata, MULTI_STOP_PREPARE);
643 	cpu_stop_init_done(&done, num_active_cpus());
644 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
645 			     &done);
646 	ret = multi_cpu_stop(&msdata);
647 
648 	/* Busy wait for completion. */
649 	while (!completion_done(&done.completion))
650 		cpu_relax();
651 
652 	mutex_unlock(&stop_cpus_mutex);
653 	return ret ?: done.ret;
654 }
655