xref: /linux/kernel/stop_machine.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 #include <linux/stop_machine.h>
2 #include <linux/kthread.h>
3 #include <linux/sched.h>
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/syscalls.h>
7 #include <asm/atomic.h>
8 #include <asm/semaphore.h>
9 #include <asm/uaccess.h>
10 
11 /* Since we effect priority and affinity (both of which are visible
12  * to, and settable by outside processes) we do indirection via a
13  * kthread. */
14 
15 /* Thread to stop each CPU in user context. */
16 enum stopmachine_state {
17 	STOPMACHINE_WAIT,
18 	STOPMACHINE_PREPARE,
19 	STOPMACHINE_DISABLE_IRQ,
20 	STOPMACHINE_EXIT,
21 };
22 
23 static enum stopmachine_state stopmachine_state;
24 static unsigned int stopmachine_num_threads;
25 static atomic_t stopmachine_thread_ack;
26 static DECLARE_MUTEX(stopmachine_mutex);
27 
28 static int stopmachine(void *cpu)
29 {
30 	int irqs_disabled = 0;
31 	int prepared = 0;
32 
33 	set_cpus_allowed(current, cpumask_of_cpu((int)(long)cpu));
34 
35 	/* Ack: we are alive */
36 	smp_mb(); /* Theoretically the ack = 0 might not be on this CPU yet. */
37 	atomic_inc(&stopmachine_thread_ack);
38 
39 	/* Simple state machine */
40 	while (stopmachine_state != STOPMACHINE_EXIT) {
41 		if (stopmachine_state == STOPMACHINE_DISABLE_IRQ
42 		    && !irqs_disabled) {
43 			local_irq_disable();
44 			irqs_disabled = 1;
45 			/* Ack: irqs disabled. */
46 			smp_mb(); /* Must read state first. */
47 			atomic_inc(&stopmachine_thread_ack);
48 		} else if (stopmachine_state == STOPMACHINE_PREPARE
49 			   && !prepared) {
50 			/* Everyone is in place, hold CPU. */
51 			preempt_disable();
52 			prepared = 1;
53 			smp_mb(); /* Must read state first. */
54 			atomic_inc(&stopmachine_thread_ack);
55 		}
56 		/* Yield in first stage: migration threads need to
57 		 * help our sisters onto their CPUs. */
58 		if (!prepared && !irqs_disabled)
59 			yield();
60 		else
61 			cpu_relax();
62 	}
63 
64 	/* Ack: we are exiting. */
65 	smp_mb(); /* Must read state first. */
66 	atomic_inc(&stopmachine_thread_ack);
67 
68 	if (irqs_disabled)
69 		local_irq_enable();
70 	if (prepared)
71 		preempt_enable();
72 
73 	return 0;
74 }
75 
76 /* Change the thread state */
77 static void stopmachine_set_state(enum stopmachine_state state)
78 {
79 	atomic_set(&stopmachine_thread_ack, 0);
80 	smp_wmb();
81 	stopmachine_state = state;
82 	while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
83 		cpu_relax();
84 }
85 
86 static int stop_machine(void)
87 {
88 	int i, ret = 0;
89 	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
90 
91 	/* One high-prio thread per cpu.  We'll do this one. */
92 	sched_setscheduler(current, SCHED_FIFO, &param);
93 
94 	atomic_set(&stopmachine_thread_ack, 0);
95 	stopmachine_num_threads = 0;
96 	stopmachine_state = STOPMACHINE_WAIT;
97 
98 	for_each_online_cpu(i) {
99 		if (i == raw_smp_processor_id())
100 			continue;
101 		ret = kernel_thread(stopmachine, (void *)(long)i,CLONE_KERNEL);
102 		if (ret < 0)
103 			break;
104 		stopmachine_num_threads++;
105 	}
106 
107 	/* Wait for them all to come to life. */
108 	while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
109 		yield();
110 
111 	/* If some failed, kill them all. */
112 	if (ret < 0) {
113 		stopmachine_set_state(STOPMACHINE_EXIT);
114 		up(&stopmachine_mutex);
115 		return ret;
116 	}
117 
118 	/* Now they are all started, make them hold the CPUs, ready. */
119 	preempt_disable();
120 	stopmachine_set_state(STOPMACHINE_PREPARE);
121 
122 	/* Make them disable irqs. */
123 	local_irq_disable();
124 	stopmachine_set_state(STOPMACHINE_DISABLE_IRQ);
125 
126 	return 0;
127 }
128 
129 static void restart_machine(void)
130 {
131 	stopmachine_set_state(STOPMACHINE_EXIT);
132 	local_irq_enable();
133 	preempt_enable_no_resched();
134 }
135 
136 struct stop_machine_data
137 {
138 	int (*fn)(void *);
139 	void *data;
140 	struct completion done;
141 };
142 
143 static int do_stop(void *_smdata)
144 {
145 	struct stop_machine_data *smdata = _smdata;
146 	int ret;
147 
148 	ret = stop_machine();
149 	if (ret == 0) {
150 		ret = smdata->fn(smdata->data);
151 		restart_machine();
152 	}
153 
154 	/* We're done: you can kthread_stop us now */
155 	complete(&smdata->done);
156 
157 	/* Wait for kthread_stop */
158 	set_current_state(TASK_INTERRUPTIBLE);
159 	while (!kthread_should_stop()) {
160 		schedule();
161 		set_current_state(TASK_INTERRUPTIBLE);
162 	}
163 	__set_current_state(TASK_RUNNING);
164 	return ret;
165 }
166 
167 struct task_struct *__stop_machine_run(int (*fn)(void *), void *data,
168 				       unsigned int cpu)
169 {
170 	struct stop_machine_data smdata;
171 	struct task_struct *p;
172 
173 	smdata.fn = fn;
174 	smdata.data = data;
175 	init_completion(&smdata.done);
176 
177 	down(&stopmachine_mutex);
178 
179 	/* If they don't care which CPU fn runs on, bind to any online one. */
180 	if (cpu == NR_CPUS)
181 		cpu = raw_smp_processor_id();
182 
183 	p = kthread_create(do_stop, &smdata, "kstopmachine");
184 	if (!IS_ERR(p)) {
185 		kthread_bind(p, cpu);
186 		wake_up_process(p);
187 		wait_for_completion(&smdata.done);
188 	}
189 	up(&stopmachine_mutex);
190 	return p;
191 }
192 
193 int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu)
194 {
195 	struct task_struct *p;
196 	int ret;
197 
198 	/* No CPUs can come up or down during this. */
199 	lock_cpu_hotplug();
200 	p = __stop_machine_run(fn, data, cpu);
201 	if (!IS_ERR(p))
202 		ret = kthread_stop(p);
203 	else
204 		ret = PTR_ERR(p);
205 	unlock_cpu_hotplug();
206 
207 	return ret;
208 }
209