xref: /linux/kernel/stop_machine.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /* Copyright 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation.
2  * GPL v2 and any later version.
3  */
4 #include <linux/stop_machine.h>
5 #include <linux/kthread.h>
6 #include <linux/sched.h>
7 #include <linux/cpu.h>
8 #include <linux/err.h>
9 #include <linux/syscalls.h>
10 #include <asm/atomic.h>
11 #include <asm/semaphore.h>
12 #include <asm/uaccess.h>
13 
14 /* Since we effect priority and affinity (both of which are visible
15  * to, and settable by outside processes) we do indirection via a
16  * kthread. */
17 
18 /* Thread to stop each CPU in user context. */
19 enum stopmachine_state {
20 	STOPMACHINE_WAIT,
21 	STOPMACHINE_PREPARE,
22 	STOPMACHINE_DISABLE_IRQ,
23 	STOPMACHINE_EXIT,
24 };
25 
26 static enum stopmachine_state stopmachine_state;
27 static unsigned int stopmachine_num_threads;
28 static atomic_t stopmachine_thread_ack;
29 static DECLARE_MUTEX(stopmachine_mutex);
30 
31 static int stopmachine(void *cpu)
32 {
33 	int irqs_disabled = 0;
34 	int prepared = 0;
35 
36 	set_cpus_allowed(current, cpumask_of_cpu((int)(long)cpu));
37 
38 	/* Ack: we are alive */
39 	smp_mb(); /* Theoretically the ack = 0 might not be on this CPU yet. */
40 	atomic_inc(&stopmachine_thread_ack);
41 
42 	/* Simple state machine */
43 	while (stopmachine_state != STOPMACHINE_EXIT) {
44 		if (stopmachine_state == STOPMACHINE_DISABLE_IRQ
45 		    && !irqs_disabled) {
46 			local_irq_disable();
47 			irqs_disabled = 1;
48 			/* Ack: irqs disabled. */
49 			smp_mb(); /* Must read state first. */
50 			atomic_inc(&stopmachine_thread_ack);
51 		} else if (stopmachine_state == STOPMACHINE_PREPARE
52 			   && !prepared) {
53 			/* Everyone is in place, hold CPU. */
54 			preempt_disable();
55 			prepared = 1;
56 			smp_mb(); /* Must read state first. */
57 			atomic_inc(&stopmachine_thread_ack);
58 		}
59 		/* Yield in first stage: migration threads need to
60 		 * help our sisters onto their CPUs. */
61 		if (!prepared && !irqs_disabled)
62 			yield();
63 		else
64 			cpu_relax();
65 	}
66 
67 	/* Ack: we are exiting. */
68 	smp_mb(); /* Must read state first. */
69 	atomic_inc(&stopmachine_thread_ack);
70 
71 	if (irqs_disabled)
72 		local_irq_enable();
73 	if (prepared)
74 		preempt_enable();
75 
76 	return 0;
77 }
78 
79 /* Change the thread state */
80 static void stopmachine_set_state(enum stopmachine_state state)
81 {
82 	atomic_set(&stopmachine_thread_ack, 0);
83 	smp_wmb();
84 	stopmachine_state = state;
85 	while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
86 		cpu_relax();
87 }
88 
89 static int stop_machine(void)
90 {
91 	int i, ret = 0;
92 	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
93 
94 	/* One high-prio thread per cpu.  We'll do this one. */
95 	sched_setscheduler(current, SCHED_FIFO, &param);
96 
97 	atomic_set(&stopmachine_thread_ack, 0);
98 	stopmachine_num_threads = 0;
99 	stopmachine_state = STOPMACHINE_WAIT;
100 
101 	for_each_online_cpu(i) {
102 		if (i == raw_smp_processor_id())
103 			continue;
104 		ret = kernel_thread(stopmachine, (void *)(long)i,CLONE_KERNEL);
105 		if (ret < 0)
106 			break;
107 		stopmachine_num_threads++;
108 	}
109 
110 	/* Wait for them all to come to life. */
111 	while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
112 		yield();
113 
114 	/* If some failed, kill them all. */
115 	if (ret < 0) {
116 		stopmachine_set_state(STOPMACHINE_EXIT);
117 		return ret;
118 	}
119 
120 	/* Now they are all started, make them hold the CPUs, ready. */
121 	preempt_disable();
122 	stopmachine_set_state(STOPMACHINE_PREPARE);
123 
124 	/* Make them disable irqs. */
125 	local_irq_disable();
126 	stopmachine_set_state(STOPMACHINE_DISABLE_IRQ);
127 
128 	return 0;
129 }
130 
131 static void restart_machine(void)
132 {
133 	stopmachine_set_state(STOPMACHINE_EXIT);
134 	local_irq_enable();
135 	preempt_enable_no_resched();
136 }
137 
138 struct stop_machine_data
139 {
140 	int (*fn)(void *);
141 	void *data;
142 	struct completion done;
143 };
144 
145 static int do_stop(void *_smdata)
146 {
147 	struct stop_machine_data *smdata = _smdata;
148 	int ret;
149 
150 	ret = stop_machine();
151 	if (ret == 0) {
152 		ret = smdata->fn(smdata->data);
153 		restart_machine();
154 	}
155 
156 	/* We're done: you can kthread_stop us now */
157 	complete(&smdata->done);
158 
159 	/* Wait for kthread_stop */
160 	set_current_state(TASK_INTERRUPTIBLE);
161 	while (!kthread_should_stop()) {
162 		schedule();
163 		set_current_state(TASK_INTERRUPTIBLE);
164 	}
165 	__set_current_state(TASK_RUNNING);
166 	return ret;
167 }
168 
169 struct task_struct *__stop_machine_run(int (*fn)(void *), void *data,
170 				       unsigned int cpu)
171 {
172 	struct stop_machine_data smdata;
173 	struct task_struct *p;
174 
175 	smdata.fn = fn;
176 	smdata.data = data;
177 	init_completion(&smdata.done);
178 
179 	down(&stopmachine_mutex);
180 
181 	/* If they don't care which CPU fn runs on, bind to any online one. */
182 	if (cpu == NR_CPUS)
183 		cpu = raw_smp_processor_id();
184 
185 	p = kthread_create(do_stop, &smdata, "kstopmachine");
186 	if (!IS_ERR(p)) {
187 		kthread_bind(p, cpu);
188 		wake_up_process(p);
189 		wait_for_completion(&smdata.done);
190 	}
191 	up(&stopmachine_mutex);
192 	return p;
193 }
194 
195 int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu)
196 {
197 	struct task_struct *p;
198 	int ret;
199 
200 	/* No CPUs can come up or down during this. */
201 	lock_cpu_hotplug();
202 	p = __stop_machine_run(fn, data, cpu);
203 	if (!IS_ERR(p))
204 		ret = kthread_stop(p);
205 	else
206 		ret = PTR_ERR(p);
207 	unlock_cpu_hotplug();
208 
209 	return ret;
210 }
211