xref: /linux/kernel/stop_machine.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25 
26 /*
27  * Structure to determine completion condition and record errors.  May
28  * be shared by works on different cpus.
29  */
30 struct cpu_stop_done {
31 	atomic_t		nr_todo;	/* nr left to execute */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	struct task_struct	*thread;
39 
40 	raw_spinlock_t		lock;
41 	bool			enabled;	/* is this stopper enabled? */
42 	struct list_head	works;		/* list of pending works */
43 
44 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 };
46 
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49 
50 /* static data for stop_cpus */
51 static DEFINE_MUTEX(stop_cpus_mutex);
52 static bool stop_cpus_in_progress;
53 
54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
55 {
56 	memset(done, 0, sizeof(*done));
57 	atomic_set(&done->nr_todo, nr_todo);
58 	init_completion(&done->completion);
59 }
60 
61 /* signal completion unless @done is NULL */
62 static void cpu_stop_signal_done(struct cpu_stop_done *done)
63 {
64 	if (atomic_dec_and_test(&done->nr_todo))
65 		complete(&done->completion);
66 }
67 
68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 					struct cpu_stop_work *work,
70 					struct wake_q_head *wakeq)
71 {
72 	list_add_tail(&work->list, &stopper->works);
73 	wake_q_add(wakeq, stopper->thread);
74 }
75 
76 /* queue @work to @stopper.  if offline, @work is completed immediately */
77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78 {
79 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 	DEFINE_WAKE_Q(wakeq);
81 	unsigned long flags;
82 	bool enabled;
83 
84 	raw_spin_lock_irqsave(&stopper->lock, flags);
85 	enabled = stopper->enabled;
86 	if (enabled)
87 		__cpu_stop_queue_work(stopper, work, &wakeq);
88 	else if (work->done)
89 		cpu_stop_signal_done(work->done);
90 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
91 
92 	wake_up_q(&wakeq);
93 
94 	return enabled;
95 }
96 
97 /**
98  * stop_one_cpu - stop a cpu
99  * @cpu: cpu to stop
100  * @fn: function to execute
101  * @arg: argument to @fn
102  *
103  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
104  * the highest priority preempting any task on the cpu and
105  * monopolizing it.  This function returns after the execution is
106  * complete.
107  *
108  * This function doesn't guarantee @cpu stays online till @fn
109  * completes.  If @cpu goes down in the middle, execution may happen
110  * partially or fully on different cpus.  @fn should either be ready
111  * for that or the caller should ensure that @cpu stays online until
112  * this function completes.
113  *
114  * CONTEXT:
115  * Might sleep.
116  *
117  * RETURNS:
118  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
119  * otherwise, the return value of @fn.
120  */
121 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
122 {
123 	struct cpu_stop_done done;
124 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
125 
126 	cpu_stop_init_done(&done, 1);
127 	if (!cpu_stop_queue_work(cpu, &work))
128 		return -ENOENT;
129 	/*
130 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
131 	 * cycle by doing a preemption:
132 	 */
133 	cond_resched();
134 	wait_for_completion(&done.completion);
135 	return done.ret;
136 }
137 
138 /* This controls the threads on each CPU. */
139 enum multi_stop_state {
140 	/* Dummy starting state for thread. */
141 	MULTI_STOP_NONE,
142 	/* Awaiting everyone to be scheduled. */
143 	MULTI_STOP_PREPARE,
144 	/* Disable interrupts. */
145 	MULTI_STOP_DISABLE_IRQ,
146 	/* Run the function */
147 	MULTI_STOP_RUN,
148 	/* Exit */
149 	MULTI_STOP_EXIT,
150 };
151 
152 struct multi_stop_data {
153 	cpu_stop_fn_t		fn;
154 	void			*data;
155 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
156 	unsigned int		num_threads;
157 	const struct cpumask	*active_cpus;
158 
159 	enum multi_stop_state	state;
160 	atomic_t		thread_ack;
161 };
162 
163 static void set_state(struct multi_stop_data *msdata,
164 		      enum multi_stop_state newstate)
165 {
166 	/* Reset ack counter. */
167 	atomic_set(&msdata->thread_ack, msdata->num_threads);
168 	smp_wmb();
169 	msdata->state = newstate;
170 }
171 
172 /* Last one to ack a state moves to the next state. */
173 static void ack_state(struct multi_stop_data *msdata)
174 {
175 	if (atomic_dec_and_test(&msdata->thread_ack))
176 		set_state(msdata, msdata->state + 1);
177 }
178 
179 /* This is the cpu_stop function which stops the CPU. */
180 static int multi_cpu_stop(void *data)
181 {
182 	struct multi_stop_data *msdata = data;
183 	enum multi_stop_state curstate = MULTI_STOP_NONE;
184 	int cpu = smp_processor_id(), err = 0;
185 	unsigned long flags;
186 	bool is_active;
187 
188 	/*
189 	 * When called from stop_machine_from_inactive_cpu(), irq might
190 	 * already be disabled.  Save the state and restore it on exit.
191 	 */
192 	local_save_flags(flags);
193 
194 	if (!msdata->active_cpus)
195 		is_active = cpu == cpumask_first(cpu_online_mask);
196 	else
197 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
198 
199 	/* Simple state machine */
200 	do {
201 		/* Chill out and ensure we re-read multi_stop_state. */
202 		cpu_relax_yield();
203 		if (msdata->state != curstate) {
204 			curstate = msdata->state;
205 			switch (curstate) {
206 			case MULTI_STOP_DISABLE_IRQ:
207 				local_irq_disable();
208 				hard_irq_disable();
209 				break;
210 			case MULTI_STOP_RUN:
211 				if (is_active)
212 					err = msdata->fn(msdata->data);
213 				break;
214 			default:
215 				break;
216 			}
217 			ack_state(msdata);
218 		} else if (curstate > MULTI_STOP_PREPARE) {
219 			/*
220 			 * At this stage all other CPUs we depend on must spin
221 			 * in the same loop. Any reason for hard-lockup should
222 			 * be detected and reported on their side.
223 			 */
224 			touch_nmi_watchdog();
225 		}
226 	} while (curstate != MULTI_STOP_EXIT);
227 
228 	local_irq_restore(flags);
229 	return err;
230 }
231 
232 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
233 				    int cpu2, struct cpu_stop_work *work2)
234 {
235 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
236 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
237 	DEFINE_WAKE_Q(wakeq);
238 	int err;
239 retry:
240 	raw_spin_lock_irq(&stopper1->lock);
241 	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
242 
243 	err = -ENOENT;
244 	if (!stopper1->enabled || !stopper2->enabled)
245 		goto unlock;
246 	/*
247 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
248 	 * queued up in reverse order leading to system deadlock.
249 	 *
250 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
251 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
252 	 *
253 	 * It can be falsely true but it is safe to spin until it is cleared,
254 	 * queue_stop_cpus_work() does everything under preempt_disable().
255 	 */
256 	err = -EDEADLK;
257 	if (unlikely(stop_cpus_in_progress))
258 			goto unlock;
259 
260 	err = 0;
261 	__cpu_stop_queue_work(stopper1, work1, &wakeq);
262 	__cpu_stop_queue_work(stopper2, work2, &wakeq);
263 	/*
264 	 * The waking up of stopper threads has to happen
265 	 * in the same scheduling context as the queueing.
266 	 * Otherwise, there is a possibility of one of the
267 	 * above stoppers being woken up by another CPU,
268 	 * and preempting us. This will cause us to n ot
269 	 * wake up the other stopper forever.
270 	 */
271 	preempt_disable();
272 unlock:
273 	raw_spin_unlock(&stopper2->lock);
274 	raw_spin_unlock_irq(&stopper1->lock);
275 
276 	if (unlikely(err == -EDEADLK)) {
277 		while (stop_cpus_in_progress)
278 			cpu_relax();
279 		goto retry;
280 	}
281 
282 	if (!err) {
283 		wake_up_q(&wakeq);
284 		preempt_enable();
285 	}
286 
287 	return err;
288 }
289 /**
290  * stop_two_cpus - stops two cpus
291  * @cpu1: the cpu to stop
292  * @cpu2: the other cpu to stop
293  * @fn: function to execute
294  * @arg: argument to @fn
295  *
296  * Stops both the current and specified CPU and runs @fn on one of them.
297  *
298  * returns when both are completed.
299  */
300 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
301 {
302 	struct cpu_stop_done done;
303 	struct cpu_stop_work work1, work2;
304 	struct multi_stop_data msdata;
305 
306 	msdata = (struct multi_stop_data){
307 		.fn = fn,
308 		.data = arg,
309 		.num_threads = 2,
310 		.active_cpus = cpumask_of(cpu1),
311 	};
312 
313 	work1 = work2 = (struct cpu_stop_work){
314 		.fn = multi_cpu_stop,
315 		.arg = &msdata,
316 		.done = &done
317 	};
318 
319 	cpu_stop_init_done(&done, 2);
320 	set_state(&msdata, MULTI_STOP_PREPARE);
321 
322 	if (cpu1 > cpu2)
323 		swap(cpu1, cpu2);
324 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
325 		return -ENOENT;
326 
327 	wait_for_completion(&done.completion);
328 	return done.ret;
329 }
330 
331 /**
332  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
333  * @cpu: cpu to stop
334  * @fn: function to execute
335  * @arg: argument to @fn
336  * @work_buf: pointer to cpu_stop_work structure
337  *
338  * Similar to stop_one_cpu() but doesn't wait for completion.  The
339  * caller is responsible for ensuring @work_buf is currently unused
340  * and will remain untouched until stopper starts executing @fn.
341  *
342  * CONTEXT:
343  * Don't care.
344  *
345  * RETURNS:
346  * true if cpu_stop_work was queued successfully and @fn will be called,
347  * false otherwise.
348  */
349 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
350 			struct cpu_stop_work *work_buf)
351 {
352 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
353 	return cpu_stop_queue_work(cpu, work_buf);
354 }
355 
356 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
357 				 cpu_stop_fn_t fn, void *arg,
358 				 struct cpu_stop_done *done)
359 {
360 	struct cpu_stop_work *work;
361 	unsigned int cpu;
362 	bool queued = false;
363 
364 	/*
365 	 * Disable preemption while queueing to avoid getting
366 	 * preempted by a stopper which might wait for other stoppers
367 	 * to enter @fn which can lead to deadlock.
368 	 */
369 	preempt_disable();
370 	stop_cpus_in_progress = true;
371 	for_each_cpu(cpu, cpumask) {
372 		work = &per_cpu(cpu_stopper.stop_work, cpu);
373 		work->fn = fn;
374 		work->arg = arg;
375 		work->done = done;
376 		if (cpu_stop_queue_work(cpu, work))
377 			queued = true;
378 	}
379 	stop_cpus_in_progress = false;
380 	preempt_enable();
381 
382 	return queued;
383 }
384 
385 static int __stop_cpus(const struct cpumask *cpumask,
386 		       cpu_stop_fn_t fn, void *arg)
387 {
388 	struct cpu_stop_done done;
389 
390 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
391 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
392 		return -ENOENT;
393 	wait_for_completion(&done.completion);
394 	return done.ret;
395 }
396 
397 /**
398  * stop_cpus - stop multiple cpus
399  * @cpumask: cpus to stop
400  * @fn: function to execute
401  * @arg: argument to @fn
402  *
403  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
404  * @fn is run in a process context with the highest priority
405  * preempting any task on the cpu and monopolizing it.  This function
406  * returns after all executions are complete.
407  *
408  * This function doesn't guarantee the cpus in @cpumask stay online
409  * till @fn completes.  If some cpus go down in the middle, execution
410  * on the cpu may happen partially or fully on different cpus.  @fn
411  * should either be ready for that or the caller should ensure that
412  * the cpus stay online until this function completes.
413  *
414  * All stop_cpus() calls are serialized making it safe for @fn to wait
415  * for all cpus to start executing it.
416  *
417  * CONTEXT:
418  * Might sleep.
419  *
420  * RETURNS:
421  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
422  * @cpumask were offline; otherwise, 0 if all executions of @fn
423  * returned 0, any non zero return value if any returned non zero.
424  */
425 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
426 {
427 	int ret;
428 
429 	/* static works are used, process one request at a time */
430 	mutex_lock(&stop_cpus_mutex);
431 	ret = __stop_cpus(cpumask, fn, arg);
432 	mutex_unlock(&stop_cpus_mutex);
433 	return ret;
434 }
435 
436 /**
437  * try_stop_cpus - try to stop multiple cpus
438  * @cpumask: cpus to stop
439  * @fn: function to execute
440  * @arg: argument to @fn
441  *
442  * Identical to stop_cpus() except that it fails with -EAGAIN if
443  * someone else is already using the facility.
444  *
445  * CONTEXT:
446  * Might sleep.
447  *
448  * RETURNS:
449  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
450  * @fn(@arg) was not executed at all because all cpus in @cpumask were
451  * offline; otherwise, 0 if all executions of @fn returned 0, any non
452  * zero return value if any returned non zero.
453  */
454 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
455 {
456 	int ret;
457 
458 	/* static works are used, process one request at a time */
459 	if (!mutex_trylock(&stop_cpus_mutex))
460 		return -EAGAIN;
461 	ret = __stop_cpus(cpumask, fn, arg);
462 	mutex_unlock(&stop_cpus_mutex);
463 	return ret;
464 }
465 
466 static int cpu_stop_should_run(unsigned int cpu)
467 {
468 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
469 	unsigned long flags;
470 	int run;
471 
472 	raw_spin_lock_irqsave(&stopper->lock, flags);
473 	run = !list_empty(&stopper->works);
474 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
475 	return run;
476 }
477 
478 static void cpu_stopper_thread(unsigned int cpu)
479 {
480 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
481 	struct cpu_stop_work *work;
482 
483 repeat:
484 	work = NULL;
485 	raw_spin_lock_irq(&stopper->lock);
486 	if (!list_empty(&stopper->works)) {
487 		work = list_first_entry(&stopper->works,
488 					struct cpu_stop_work, list);
489 		list_del_init(&work->list);
490 	}
491 	raw_spin_unlock_irq(&stopper->lock);
492 
493 	if (work) {
494 		cpu_stop_fn_t fn = work->fn;
495 		void *arg = work->arg;
496 		struct cpu_stop_done *done = work->done;
497 		int ret;
498 
499 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
500 		preempt_count_inc();
501 		ret = fn(arg);
502 		if (done) {
503 			if (ret)
504 				done->ret = ret;
505 			cpu_stop_signal_done(done);
506 		}
507 		preempt_count_dec();
508 		WARN_ONCE(preempt_count(),
509 			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
510 		goto repeat;
511 	}
512 }
513 
514 void stop_machine_park(int cpu)
515 {
516 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
517 	/*
518 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
519 	 * the pending works before it parks, until then it is fine to queue
520 	 * the new works.
521 	 */
522 	stopper->enabled = false;
523 	kthread_park(stopper->thread);
524 }
525 
526 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
527 
528 static void cpu_stop_create(unsigned int cpu)
529 {
530 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
531 }
532 
533 static void cpu_stop_park(unsigned int cpu)
534 {
535 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
536 
537 	WARN_ON(!list_empty(&stopper->works));
538 }
539 
540 void stop_machine_unpark(int cpu)
541 {
542 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
543 
544 	stopper->enabled = true;
545 	kthread_unpark(stopper->thread);
546 }
547 
548 static struct smp_hotplug_thread cpu_stop_threads = {
549 	.store			= &cpu_stopper.thread,
550 	.thread_should_run	= cpu_stop_should_run,
551 	.thread_fn		= cpu_stopper_thread,
552 	.thread_comm		= "migration/%u",
553 	.create			= cpu_stop_create,
554 	.park			= cpu_stop_park,
555 	.selfparking		= true,
556 };
557 
558 static int __init cpu_stop_init(void)
559 {
560 	unsigned int cpu;
561 
562 	for_each_possible_cpu(cpu) {
563 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
564 
565 		raw_spin_lock_init(&stopper->lock);
566 		INIT_LIST_HEAD(&stopper->works);
567 	}
568 
569 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
570 	stop_machine_unpark(raw_smp_processor_id());
571 	stop_machine_initialized = true;
572 	return 0;
573 }
574 early_initcall(cpu_stop_init);
575 
576 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
577 			    const struct cpumask *cpus)
578 {
579 	struct multi_stop_data msdata = {
580 		.fn = fn,
581 		.data = data,
582 		.num_threads = num_online_cpus(),
583 		.active_cpus = cpus,
584 	};
585 
586 	lockdep_assert_cpus_held();
587 
588 	if (!stop_machine_initialized) {
589 		/*
590 		 * Handle the case where stop_machine() is called
591 		 * early in boot before stop_machine() has been
592 		 * initialized.
593 		 */
594 		unsigned long flags;
595 		int ret;
596 
597 		WARN_ON_ONCE(msdata.num_threads != 1);
598 
599 		local_irq_save(flags);
600 		hard_irq_disable();
601 		ret = (*fn)(data);
602 		local_irq_restore(flags);
603 
604 		return ret;
605 	}
606 
607 	/* Set the initial state and stop all online cpus. */
608 	set_state(&msdata, MULTI_STOP_PREPARE);
609 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
610 }
611 
612 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
613 {
614 	int ret;
615 
616 	/* No CPUs can come up or down during this. */
617 	cpus_read_lock();
618 	ret = stop_machine_cpuslocked(fn, data, cpus);
619 	cpus_read_unlock();
620 	return ret;
621 }
622 EXPORT_SYMBOL_GPL(stop_machine);
623 
624 /**
625  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
626  * @fn: the function to run
627  * @data: the data ptr for the @fn()
628  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
629  *
630  * This is identical to stop_machine() but can be called from a CPU which
631  * is not active.  The local CPU is in the process of hotplug (so no other
632  * CPU hotplug can start) and not marked active and doesn't have enough
633  * context to sleep.
634  *
635  * This function provides stop_machine() functionality for such state by
636  * using busy-wait for synchronization and executing @fn directly for local
637  * CPU.
638  *
639  * CONTEXT:
640  * Local CPU is inactive.  Temporarily stops all active CPUs.
641  *
642  * RETURNS:
643  * 0 if all executions of @fn returned 0, any non zero return value if any
644  * returned non zero.
645  */
646 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
647 				  const struct cpumask *cpus)
648 {
649 	struct multi_stop_data msdata = { .fn = fn, .data = data,
650 					    .active_cpus = cpus };
651 	struct cpu_stop_done done;
652 	int ret;
653 
654 	/* Local CPU must be inactive and CPU hotplug in progress. */
655 	BUG_ON(cpu_active(raw_smp_processor_id()));
656 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
657 
658 	/* No proper task established and can't sleep - busy wait for lock. */
659 	while (!mutex_trylock(&stop_cpus_mutex))
660 		cpu_relax();
661 
662 	/* Schedule work on other CPUs and execute directly for local CPU */
663 	set_state(&msdata, MULTI_STOP_PREPARE);
664 	cpu_stop_init_done(&done, num_active_cpus());
665 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
666 			     &done);
667 	ret = multi_cpu_stop(&msdata);
668 
669 	/* Busy wait for completion. */
670 	while (!completion_done(&done.completion))
671 		cpu_relax();
672 
673 	mutex_unlock(&stop_cpus_mutex);
674 	return ret ?: done.ret;
675 }
676