xref: /linux/kernel/stop_machine.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/lglock.h>
24 
25 /*
26  * Structure to determine completion condition and record errors.  May
27  * be shared by works on different cpus.
28  */
29 struct cpu_stop_done {
30 	atomic_t		nr_todo;	/* nr left to execute */
31 	bool			executed;	/* actually executed? */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	spinlock_t		lock;
39 	bool			enabled;	/* is this stopper enabled? */
40 	struct list_head	works;		/* list of pending works */
41 };
42 
43 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
44 static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
45 static bool stop_machine_initialized = false;
46 
47 /*
48  * Avoids a race between stop_two_cpus and global stop_cpus, where
49  * the stoppers could get queued up in reverse order, leading to
50  * system deadlock. Using an lglock means stop_two_cpus remains
51  * relatively cheap.
52  */
53 DEFINE_STATIC_LGLOCK(stop_cpus_lock);
54 
55 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
56 {
57 	memset(done, 0, sizeof(*done));
58 	atomic_set(&done->nr_todo, nr_todo);
59 	init_completion(&done->completion);
60 }
61 
62 /* signal completion unless @done is NULL */
63 static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
64 {
65 	if (done) {
66 		if (executed)
67 			done->executed = true;
68 		if (atomic_dec_and_test(&done->nr_todo))
69 			complete(&done->completion);
70 	}
71 }
72 
73 /* queue @work to @stopper.  if offline, @work is completed immediately */
74 static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
75 {
76 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
77 	struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
78 
79 	unsigned long flags;
80 
81 	spin_lock_irqsave(&stopper->lock, flags);
82 
83 	if (stopper->enabled) {
84 		list_add_tail(&work->list, &stopper->works);
85 		wake_up_process(p);
86 	} else
87 		cpu_stop_signal_done(work->done, false);
88 
89 	spin_unlock_irqrestore(&stopper->lock, flags);
90 }
91 
92 /**
93  * stop_one_cpu - stop a cpu
94  * @cpu: cpu to stop
95  * @fn: function to execute
96  * @arg: argument to @fn
97  *
98  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
99  * the highest priority preempting any task on the cpu and
100  * monopolizing it.  This function returns after the execution is
101  * complete.
102  *
103  * This function doesn't guarantee @cpu stays online till @fn
104  * completes.  If @cpu goes down in the middle, execution may happen
105  * partially or fully on different cpus.  @fn should either be ready
106  * for that or the caller should ensure that @cpu stays online until
107  * this function completes.
108  *
109  * CONTEXT:
110  * Might sleep.
111  *
112  * RETURNS:
113  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114  * otherwise, the return value of @fn.
115  */
116 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
117 {
118 	struct cpu_stop_done done;
119 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
120 
121 	cpu_stop_init_done(&done, 1);
122 	cpu_stop_queue_work(cpu, &work);
123 	wait_for_completion(&done.completion);
124 	return done.executed ? done.ret : -ENOENT;
125 }
126 
127 /* This controls the threads on each CPU. */
128 enum multi_stop_state {
129 	/* Dummy starting state for thread. */
130 	MULTI_STOP_NONE,
131 	/* Awaiting everyone to be scheduled. */
132 	MULTI_STOP_PREPARE,
133 	/* Disable interrupts. */
134 	MULTI_STOP_DISABLE_IRQ,
135 	/* Run the function */
136 	MULTI_STOP_RUN,
137 	/* Exit */
138 	MULTI_STOP_EXIT,
139 };
140 
141 struct multi_stop_data {
142 	int			(*fn)(void *);
143 	void			*data;
144 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
145 	unsigned int		num_threads;
146 	const struct cpumask	*active_cpus;
147 
148 	enum multi_stop_state	state;
149 	atomic_t		thread_ack;
150 };
151 
152 static void set_state(struct multi_stop_data *msdata,
153 		      enum multi_stop_state newstate)
154 {
155 	/* Reset ack counter. */
156 	atomic_set(&msdata->thread_ack, msdata->num_threads);
157 	smp_wmb();
158 	msdata->state = newstate;
159 }
160 
161 /* Last one to ack a state moves to the next state. */
162 static void ack_state(struct multi_stop_data *msdata)
163 {
164 	if (atomic_dec_and_test(&msdata->thread_ack))
165 		set_state(msdata, msdata->state + 1);
166 }
167 
168 /* This is the cpu_stop function which stops the CPU. */
169 static int multi_cpu_stop(void *data)
170 {
171 	struct multi_stop_data *msdata = data;
172 	enum multi_stop_state curstate = MULTI_STOP_NONE;
173 	int cpu = smp_processor_id(), err = 0;
174 	unsigned long flags;
175 	bool is_active;
176 
177 	/*
178 	 * When called from stop_machine_from_inactive_cpu(), irq might
179 	 * already be disabled.  Save the state and restore it on exit.
180 	 */
181 	local_save_flags(flags);
182 
183 	if (!msdata->active_cpus)
184 		is_active = cpu == cpumask_first(cpu_online_mask);
185 	else
186 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
187 
188 	/* Simple state machine */
189 	do {
190 		/* Chill out and ensure we re-read multi_stop_state. */
191 		cpu_relax();
192 		if (msdata->state != curstate) {
193 			curstate = msdata->state;
194 			switch (curstate) {
195 			case MULTI_STOP_DISABLE_IRQ:
196 				local_irq_disable();
197 				hard_irq_disable();
198 				break;
199 			case MULTI_STOP_RUN:
200 				if (is_active)
201 					err = msdata->fn(msdata->data);
202 				break;
203 			default:
204 				break;
205 			}
206 			ack_state(msdata);
207 		}
208 	} while (curstate != MULTI_STOP_EXIT);
209 
210 	local_irq_restore(flags);
211 	return err;
212 }
213 
214 struct irq_cpu_stop_queue_work_info {
215 	int cpu1;
216 	int cpu2;
217 	struct cpu_stop_work *work1;
218 	struct cpu_stop_work *work2;
219 };
220 
221 /*
222  * This function is always run with irqs and preemption disabled.
223  * This guarantees that both work1 and work2 get queued, before
224  * our local migrate thread gets the chance to preempt us.
225  */
226 static void irq_cpu_stop_queue_work(void *arg)
227 {
228 	struct irq_cpu_stop_queue_work_info *info = arg;
229 	cpu_stop_queue_work(info->cpu1, info->work1);
230 	cpu_stop_queue_work(info->cpu2, info->work2);
231 }
232 
233 /**
234  * stop_two_cpus - stops two cpus
235  * @cpu1: the cpu to stop
236  * @cpu2: the other cpu to stop
237  * @fn: function to execute
238  * @arg: argument to @fn
239  *
240  * Stops both the current and specified CPU and runs @fn on one of them.
241  *
242  * returns when both are completed.
243  */
244 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
245 {
246 	struct cpu_stop_done done;
247 	struct cpu_stop_work work1, work2;
248 	struct irq_cpu_stop_queue_work_info call_args;
249 	struct multi_stop_data msdata;
250 
251 	preempt_disable();
252 	msdata = (struct multi_stop_data){
253 		.fn = fn,
254 		.data = arg,
255 		.num_threads = 2,
256 		.active_cpus = cpumask_of(cpu1),
257 	};
258 
259 	work1 = work2 = (struct cpu_stop_work){
260 		.fn = multi_cpu_stop,
261 		.arg = &msdata,
262 		.done = &done
263 	};
264 
265 	call_args = (struct irq_cpu_stop_queue_work_info){
266 		.cpu1 = cpu1,
267 		.cpu2 = cpu2,
268 		.work1 = &work1,
269 		.work2 = &work2,
270 	};
271 
272 	cpu_stop_init_done(&done, 2);
273 	set_state(&msdata, MULTI_STOP_PREPARE);
274 
275 	/*
276 	 * If we observe both CPUs active we know _cpu_down() cannot yet have
277 	 * queued its stop_machine works and therefore ours will get executed
278 	 * first. Or its not either one of our CPUs that's getting unplugged,
279 	 * in which case we don't care.
280 	 *
281 	 * This relies on the stopper workqueues to be FIFO.
282 	 */
283 	if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
284 		preempt_enable();
285 		return -ENOENT;
286 	}
287 
288 	lg_local_lock(&stop_cpus_lock);
289 	/*
290 	 * Queuing needs to be done by the lowest numbered CPU, to ensure
291 	 * that works are always queued in the same order on every CPU.
292 	 * This prevents deadlocks.
293 	 */
294 	smp_call_function_single(min(cpu1, cpu2),
295 				 &irq_cpu_stop_queue_work,
296 				 &call_args, 1);
297 	lg_local_unlock(&stop_cpus_lock);
298 	preempt_enable();
299 
300 	wait_for_completion(&done.completion);
301 
302 	return done.executed ? done.ret : -ENOENT;
303 }
304 
305 /**
306  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
307  * @cpu: cpu to stop
308  * @fn: function to execute
309  * @arg: argument to @fn
310  * @work_buf: pointer to cpu_stop_work structure
311  *
312  * Similar to stop_one_cpu() but doesn't wait for completion.  The
313  * caller is responsible for ensuring @work_buf is currently unused
314  * and will remain untouched until stopper starts executing @fn.
315  *
316  * CONTEXT:
317  * Don't care.
318  */
319 void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
320 			struct cpu_stop_work *work_buf)
321 {
322 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
323 	cpu_stop_queue_work(cpu, work_buf);
324 }
325 
326 /* static data for stop_cpus */
327 static DEFINE_MUTEX(stop_cpus_mutex);
328 static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
329 
330 static void queue_stop_cpus_work(const struct cpumask *cpumask,
331 				 cpu_stop_fn_t fn, void *arg,
332 				 struct cpu_stop_done *done)
333 {
334 	struct cpu_stop_work *work;
335 	unsigned int cpu;
336 
337 	/* initialize works and done */
338 	for_each_cpu(cpu, cpumask) {
339 		work = &per_cpu(stop_cpus_work, cpu);
340 		work->fn = fn;
341 		work->arg = arg;
342 		work->done = done;
343 	}
344 
345 	/*
346 	 * Disable preemption while queueing to avoid getting
347 	 * preempted by a stopper which might wait for other stoppers
348 	 * to enter @fn which can lead to deadlock.
349 	 */
350 	lg_global_lock(&stop_cpus_lock);
351 	for_each_cpu(cpu, cpumask)
352 		cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
353 	lg_global_unlock(&stop_cpus_lock);
354 }
355 
356 static int __stop_cpus(const struct cpumask *cpumask,
357 		       cpu_stop_fn_t fn, void *arg)
358 {
359 	struct cpu_stop_done done;
360 
361 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
362 	queue_stop_cpus_work(cpumask, fn, arg, &done);
363 	wait_for_completion(&done.completion);
364 	return done.executed ? done.ret : -ENOENT;
365 }
366 
367 /**
368  * stop_cpus - stop multiple cpus
369  * @cpumask: cpus to stop
370  * @fn: function to execute
371  * @arg: argument to @fn
372  *
373  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
374  * @fn is run in a process context with the highest priority
375  * preempting any task on the cpu and monopolizing it.  This function
376  * returns after all executions are complete.
377  *
378  * This function doesn't guarantee the cpus in @cpumask stay online
379  * till @fn completes.  If some cpus go down in the middle, execution
380  * on the cpu may happen partially or fully on different cpus.  @fn
381  * should either be ready for that or the caller should ensure that
382  * the cpus stay online until this function completes.
383  *
384  * All stop_cpus() calls are serialized making it safe for @fn to wait
385  * for all cpus to start executing it.
386  *
387  * CONTEXT:
388  * Might sleep.
389  *
390  * RETURNS:
391  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
392  * @cpumask were offline; otherwise, 0 if all executions of @fn
393  * returned 0, any non zero return value if any returned non zero.
394  */
395 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
396 {
397 	int ret;
398 
399 	/* static works are used, process one request at a time */
400 	mutex_lock(&stop_cpus_mutex);
401 	ret = __stop_cpus(cpumask, fn, arg);
402 	mutex_unlock(&stop_cpus_mutex);
403 	return ret;
404 }
405 
406 /**
407  * try_stop_cpus - try to stop multiple cpus
408  * @cpumask: cpus to stop
409  * @fn: function to execute
410  * @arg: argument to @fn
411  *
412  * Identical to stop_cpus() except that it fails with -EAGAIN if
413  * someone else is already using the facility.
414  *
415  * CONTEXT:
416  * Might sleep.
417  *
418  * RETURNS:
419  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
420  * @fn(@arg) was not executed at all because all cpus in @cpumask were
421  * offline; otherwise, 0 if all executions of @fn returned 0, any non
422  * zero return value if any returned non zero.
423  */
424 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
425 {
426 	int ret;
427 
428 	/* static works are used, process one request at a time */
429 	if (!mutex_trylock(&stop_cpus_mutex))
430 		return -EAGAIN;
431 	ret = __stop_cpus(cpumask, fn, arg);
432 	mutex_unlock(&stop_cpus_mutex);
433 	return ret;
434 }
435 
436 static int cpu_stop_should_run(unsigned int cpu)
437 {
438 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
439 	unsigned long flags;
440 	int run;
441 
442 	spin_lock_irqsave(&stopper->lock, flags);
443 	run = !list_empty(&stopper->works);
444 	spin_unlock_irqrestore(&stopper->lock, flags);
445 	return run;
446 }
447 
448 static void cpu_stopper_thread(unsigned int cpu)
449 {
450 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
451 	struct cpu_stop_work *work;
452 	int ret;
453 
454 repeat:
455 	work = NULL;
456 	spin_lock_irq(&stopper->lock);
457 	if (!list_empty(&stopper->works)) {
458 		work = list_first_entry(&stopper->works,
459 					struct cpu_stop_work, list);
460 		list_del_init(&work->list);
461 	}
462 	spin_unlock_irq(&stopper->lock);
463 
464 	if (work) {
465 		cpu_stop_fn_t fn = work->fn;
466 		void *arg = work->arg;
467 		struct cpu_stop_done *done = work->done;
468 		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
469 
470 		/* cpu stop callbacks are not allowed to sleep */
471 		preempt_disable();
472 
473 		ret = fn(arg);
474 		if (ret)
475 			done->ret = ret;
476 
477 		/* restore preemption and check it's still balanced */
478 		preempt_enable();
479 		WARN_ONCE(preempt_count(),
480 			  "cpu_stop: %s(%p) leaked preempt count\n",
481 			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
482 					  ksym_buf), arg);
483 
484 		cpu_stop_signal_done(done, true);
485 		goto repeat;
486 	}
487 }
488 
489 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
490 
491 static void cpu_stop_create(unsigned int cpu)
492 {
493 	sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
494 }
495 
496 static void cpu_stop_park(unsigned int cpu)
497 {
498 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
499 	struct cpu_stop_work *work;
500 	unsigned long flags;
501 
502 	/* drain remaining works */
503 	spin_lock_irqsave(&stopper->lock, flags);
504 	list_for_each_entry(work, &stopper->works, list)
505 		cpu_stop_signal_done(work->done, false);
506 	stopper->enabled = false;
507 	spin_unlock_irqrestore(&stopper->lock, flags);
508 }
509 
510 static void cpu_stop_unpark(unsigned int cpu)
511 {
512 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
513 
514 	spin_lock_irq(&stopper->lock);
515 	stopper->enabled = true;
516 	spin_unlock_irq(&stopper->lock);
517 }
518 
519 static struct smp_hotplug_thread cpu_stop_threads = {
520 	.store			= &cpu_stopper_task,
521 	.thread_should_run	= cpu_stop_should_run,
522 	.thread_fn		= cpu_stopper_thread,
523 	.thread_comm		= "migration/%u",
524 	.create			= cpu_stop_create,
525 	.setup			= cpu_stop_unpark,
526 	.park			= cpu_stop_park,
527 	.pre_unpark		= cpu_stop_unpark,
528 	.selfparking		= true,
529 };
530 
531 static int __init cpu_stop_init(void)
532 {
533 	unsigned int cpu;
534 
535 	for_each_possible_cpu(cpu) {
536 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
537 
538 		spin_lock_init(&stopper->lock);
539 		INIT_LIST_HEAD(&stopper->works);
540 	}
541 
542 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
543 	stop_machine_initialized = true;
544 	return 0;
545 }
546 early_initcall(cpu_stop_init);
547 
548 #ifdef CONFIG_STOP_MACHINE
549 
550 int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
551 {
552 	struct multi_stop_data msdata = {
553 		.fn = fn,
554 		.data = data,
555 		.num_threads = num_online_cpus(),
556 		.active_cpus = cpus,
557 	};
558 
559 	if (!stop_machine_initialized) {
560 		/*
561 		 * Handle the case where stop_machine() is called
562 		 * early in boot before stop_machine() has been
563 		 * initialized.
564 		 */
565 		unsigned long flags;
566 		int ret;
567 
568 		WARN_ON_ONCE(msdata.num_threads != 1);
569 
570 		local_irq_save(flags);
571 		hard_irq_disable();
572 		ret = (*fn)(data);
573 		local_irq_restore(flags);
574 
575 		return ret;
576 	}
577 
578 	/* Set the initial state and stop all online cpus. */
579 	set_state(&msdata, MULTI_STOP_PREPARE);
580 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
581 }
582 
583 int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
584 {
585 	int ret;
586 
587 	/* No CPUs can come up or down during this. */
588 	get_online_cpus();
589 	ret = __stop_machine(fn, data, cpus);
590 	put_online_cpus();
591 	return ret;
592 }
593 EXPORT_SYMBOL_GPL(stop_machine);
594 
595 /**
596  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
597  * @fn: the function to run
598  * @data: the data ptr for the @fn()
599  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
600  *
601  * This is identical to stop_machine() but can be called from a CPU which
602  * is not active.  The local CPU is in the process of hotplug (so no other
603  * CPU hotplug can start) and not marked active and doesn't have enough
604  * context to sleep.
605  *
606  * This function provides stop_machine() functionality for such state by
607  * using busy-wait for synchronization and executing @fn directly for local
608  * CPU.
609  *
610  * CONTEXT:
611  * Local CPU is inactive.  Temporarily stops all active CPUs.
612  *
613  * RETURNS:
614  * 0 if all executions of @fn returned 0, any non zero return value if any
615  * returned non zero.
616  */
617 int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
618 				  const struct cpumask *cpus)
619 {
620 	struct multi_stop_data msdata = { .fn = fn, .data = data,
621 					    .active_cpus = cpus };
622 	struct cpu_stop_done done;
623 	int ret;
624 
625 	/* Local CPU must be inactive and CPU hotplug in progress. */
626 	BUG_ON(cpu_active(raw_smp_processor_id()));
627 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
628 
629 	/* No proper task established and can't sleep - busy wait for lock. */
630 	while (!mutex_trylock(&stop_cpus_mutex))
631 		cpu_relax();
632 
633 	/* Schedule work on other CPUs and execute directly for local CPU */
634 	set_state(&msdata, MULTI_STOP_PREPARE);
635 	cpu_stop_init_done(&done, num_active_cpus());
636 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
637 			     &done);
638 	ret = multi_cpu_stop(&msdata);
639 
640 	/* Busy wait for completion. */
641 	while (!completion_done(&done.completion))
642 		cpu_relax();
643 
644 	mutex_unlock(&stop_cpus_mutex);
645 	return ret ?: done.ret;
646 }
647 
648 #endif	/* CONFIG_STOP_MACHINE */
649