1 /* 2 * kernel/stop_machine.c 3 * 4 * Copyright (C) 2008, 2005 IBM Corporation. 5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 6 * Copyright (C) 2010 SUSE Linux Products GmbH 7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 8 * 9 * This file is released under the GPLv2 and any later version. 10 */ 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 23 #include <linux/lglock.h> 24 25 /* 26 * Structure to determine completion condition and record errors. May 27 * be shared by works on different cpus. 28 */ 29 struct cpu_stop_done { 30 atomic_t nr_todo; /* nr left to execute */ 31 bool executed; /* actually executed? */ 32 int ret; /* collected return value */ 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 35 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 38 spinlock_t lock; 39 bool enabled; /* is this stopper enabled? */ 40 struct list_head works; /* list of pending works */ 41 }; 42 43 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 44 static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task); 45 static bool stop_machine_initialized = false; 46 47 /* 48 * Avoids a race between stop_two_cpus and global stop_cpus, where 49 * the stoppers could get queued up in reverse order, leading to 50 * system deadlock. Using an lglock means stop_two_cpus remains 51 * relatively cheap. 52 */ 53 DEFINE_STATIC_LGLOCK(stop_cpus_lock); 54 55 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 56 { 57 memset(done, 0, sizeof(*done)); 58 atomic_set(&done->nr_todo, nr_todo); 59 init_completion(&done->completion); 60 } 61 62 /* signal completion unless @done is NULL */ 63 static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed) 64 { 65 if (done) { 66 if (executed) 67 done->executed = true; 68 if (atomic_dec_and_test(&done->nr_todo)) 69 complete(&done->completion); 70 } 71 } 72 73 /* queue @work to @stopper. if offline, @work is completed immediately */ 74 static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 75 { 76 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 77 struct task_struct *p = per_cpu(cpu_stopper_task, cpu); 78 79 unsigned long flags; 80 81 spin_lock_irqsave(&stopper->lock, flags); 82 83 if (stopper->enabled) { 84 list_add_tail(&work->list, &stopper->works); 85 wake_up_process(p); 86 } else 87 cpu_stop_signal_done(work->done, false); 88 89 spin_unlock_irqrestore(&stopper->lock, flags); 90 } 91 92 /** 93 * stop_one_cpu - stop a cpu 94 * @cpu: cpu to stop 95 * @fn: function to execute 96 * @arg: argument to @fn 97 * 98 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 99 * the highest priority preempting any task on the cpu and 100 * monopolizing it. This function returns after the execution is 101 * complete. 102 * 103 * This function doesn't guarantee @cpu stays online till @fn 104 * completes. If @cpu goes down in the middle, execution may happen 105 * partially or fully on different cpus. @fn should either be ready 106 * for that or the caller should ensure that @cpu stays online until 107 * this function completes. 108 * 109 * CONTEXT: 110 * Might sleep. 111 * 112 * RETURNS: 113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 114 * otherwise, the return value of @fn. 115 */ 116 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 117 { 118 struct cpu_stop_done done; 119 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 120 121 cpu_stop_init_done(&done, 1); 122 cpu_stop_queue_work(cpu, &work); 123 wait_for_completion(&done.completion); 124 return done.executed ? done.ret : -ENOENT; 125 } 126 127 /* This controls the threads on each CPU. */ 128 enum multi_stop_state { 129 /* Dummy starting state for thread. */ 130 MULTI_STOP_NONE, 131 /* Awaiting everyone to be scheduled. */ 132 MULTI_STOP_PREPARE, 133 /* Disable interrupts. */ 134 MULTI_STOP_DISABLE_IRQ, 135 /* Run the function */ 136 MULTI_STOP_RUN, 137 /* Exit */ 138 MULTI_STOP_EXIT, 139 }; 140 141 struct multi_stop_data { 142 int (*fn)(void *); 143 void *data; 144 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 145 unsigned int num_threads; 146 const struct cpumask *active_cpus; 147 148 enum multi_stop_state state; 149 atomic_t thread_ack; 150 }; 151 152 static void set_state(struct multi_stop_data *msdata, 153 enum multi_stop_state newstate) 154 { 155 /* Reset ack counter. */ 156 atomic_set(&msdata->thread_ack, msdata->num_threads); 157 smp_wmb(); 158 msdata->state = newstate; 159 } 160 161 /* Last one to ack a state moves to the next state. */ 162 static void ack_state(struct multi_stop_data *msdata) 163 { 164 if (atomic_dec_and_test(&msdata->thread_ack)) 165 set_state(msdata, msdata->state + 1); 166 } 167 168 /* This is the cpu_stop function which stops the CPU. */ 169 static int multi_cpu_stop(void *data) 170 { 171 struct multi_stop_data *msdata = data; 172 enum multi_stop_state curstate = MULTI_STOP_NONE; 173 int cpu = smp_processor_id(), err = 0; 174 unsigned long flags; 175 bool is_active; 176 177 /* 178 * When called from stop_machine_from_inactive_cpu(), irq might 179 * already be disabled. Save the state and restore it on exit. 180 */ 181 local_save_flags(flags); 182 183 if (!msdata->active_cpus) 184 is_active = cpu == cpumask_first(cpu_online_mask); 185 else 186 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 187 188 /* Simple state machine */ 189 do { 190 /* Chill out and ensure we re-read multi_stop_state. */ 191 cpu_relax(); 192 if (msdata->state != curstate) { 193 curstate = msdata->state; 194 switch (curstate) { 195 case MULTI_STOP_DISABLE_IRQ: 196 local_irq_disable(); 197 hard_irq_disable(); 198 break; 199 case MULTI_STOP_RUN: 200 if (is_active) 201 err = msdata->fn(msdata->data); 202 break; 203 default: 204 break; 205 } 206 ack_state(msdata); 207 } 208 } while (curstate != MULTI_STOP_EXIT); 209 210 local_irq_restore(flags); 211 return err; 212 } 213 214 struct irq_cpu_stop_queue_work_info { 215 int cpu1; 216 int cpu2; 217 struct cpu_stop_work *work1; 218 struct cpu_stop_work *work2; 219 }; 220 221 /* 222 * This function is always run with irqs and preemption disabled. 223 * This guarantees that both work1 and work2 get queued, before 224 * our local migrate thread gets the chance to preempt us. 225 */ 226 static void irq_cpu_stop_queue_work(void *arg) 227 { 228 struct irq_cpu_stop_queue_work_info *info = arg; 229 cpu_stop_queue_work(info->cpu1, info->work1); 230 cpu_stop_queue_work(info->cpu2, info->work2); 231 } 232 233 /** 234 * stop_two_cpus - stops two cpus 235 * @cpu1: the cpu to stop 236 * @cpu2: the other cpu to stop 237 * @fn: function to execute 238 * @arg: argument to @fn 239 * 240 * Stops both the current and specified CPU and runs @fn on one of them. 241 * 242 * returns when both are completed. 243 */ 244 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 245 { 246 struct cpu_stop_done done; 247 struct cpu_stop_work work1, work2; 248 struct irq_cpu_stop_queue_work_info call_args; 249 struct multi_stop_data msdata; 250 251 preempt_disable(); 252 msdata = (struct multi_stop_data){ 253 .fn = fn, 254 .data = arg, 255 .num_threads = 2, 256 .active_cpus = cpumask_of(cpu1), 257 }; 258 259 work1 = work2 = (struct cpu_stop_work){ 260 .fn = multi_cpu_stop, 261 .arg = &msdata, 262 .done = &done 263 }; 264 265 call_args = (struct irq_cpu_stop_queue_work_info){ 266 .cpu1 = cpu1, 267 .cpu2 = cpu2, 268 .work1 = &work1, 269 .work2 = &work2, 270 }; 271 272 cpu_stop_init_done(&done, 2); 273 set_state(&msdata, MULTI_STOP_PREPARE); 274 275 /* 276 * If we observe both CPUs active we know _cpu_down() cannot yet have 277 * queued its stop_machine works and therefore ours will get executed 278 * first. Or its not either one of our CPUs that's getting unplugged, 279 * in which case we don't care. 280 * 281 * This relies on the stopper workqueues to be FIFO. 282 */ 283 if (!cpu_active(cpu1) || !cpu_active(cpu2)) { 284 preempt_enable(); 285 return -ENOENT; 286 } 287 288 lg_local_lock(&stop_cpus_lock); 289 /* 290 * Queuing needs to be done by the lowest numbered CPU, to ensure 291 * that works are always queued in the same order on every CPU. 292 * This prevents deadlocks. 293 */ 294 smp_call_function_single(min(cpu1, cpu2), 295 &irq_cpu_stop_queue_work, 296 &call_args, 1); 297 lg_local_unlock(&stop_cpus_lock); 298 preempt_enable(); 299 300 wait_for_completion(&done.completion); 301 302 return done.executed ? done.ret : -ENOENT; 303 } 304 305 /** 306 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 307 * @cpu: cpu to stop 308 * @fn: function to execute 309 * @arg: argument to @fn 310 * @work_buf: pointer to cpu_stop_work structure 311 * 312 * Similar to stop_one_cpu() but doesn't wait for completion. The 313 * caller is responsible for ensuring @work_buf is currently unused 314 * and will remain untouched until stopper starts executing @fn. 315 * 316 * CONTEXT: 317 * Don't care. 318 */ 319 void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 320 struct cpu_stop_work *work_buf) 321 { 322 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 323 cpu_stop_queue_work(cpu, work_buf); 324 } 325 326 /* static data for stop_cpus */ 327 static DEFINE_MUTEX(stop_cpus_mutex); 328 static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work); 329 330 static void queue_stop_cpus_work(const struct cpumask *cpumask, 331 cpu_stop_fn_t fn, void *arg, 332 struct cpu_stop_done *done) 333 { 334 struct cpu_stop_work *work; 335 unsigned int cpu; 336 337 /* initialize works and done */ 338 for_each_cpu(cpu, cpumask) { 339 work = &per_cpu(stop_cpus_work, cpu); 340 work->fn = fn; 341 work->arg = arg; 342 work->done = done; 343 } 344 345 /* 346 * Disable preemption while queueing to avoid getting 347 * preempted by a stopper which might wait for other stoppers 348 * to enter @fn which can lead to deadlock. 349 */ 350 lg_global_lock(&stop_cpus_lock); 351 for_each_cpu(cpu, cpumask) 352 cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu)); 353 lg_global_unlock(&stop_cpus_lock); 354 } 355 356 static int __stop_cpus(const struct cpumask *cpumask, 357 cpu_stop_fn_t fn, void *arg) 358 { 359 struct cpu_stop_done done; 360 361 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 362 queue_stop_cpus_work(cpumask, fn, arg, &done); 363 wait_for_completion(&done.completion); 364 return done.executed ? done.ret : -ENOENT; 365 } 366 367 /** 368 * stop_cpus - stop multiple cpus 369 * @cpumask: cpus to stop 370 * @fn: function to execute 371 * @arg: argument to @fn 372 * 373 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 374 * @fn is run in a process context with the highest priority 375 * preempting any task on the cpu and monopolizing it. This function 376 * returns after all executions are complete. 377 * 378 * This function doesn't guarantee the cpus in @cpumask stay online 379 * till @fn completes. If some cpus go down in the middle, execution 380 * on the cpu may happen partially or fully on different cpus. @fn 381 * should either be ready for that or the caller should ensure that 382 * the cpus stay online until this function completes. 383 * 384 * All stop_cpus() calls are serialized making it safe for @fn to wait 385 * for all cpus to start executing it. 386 * 387 * CONTEXT: 388 * Might sleep. 389 * 390 * RETURNS: 391 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 392 * @cpumask were offline; otherwise, 0 if all executions of @fn 393 * returned 0, any non zero return value if any returned non zero. 394 */ 395 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 396 { 397 int ret; 398 399 /* static works are used, process one request at a time */ 400 mutex_lock(&stop_cpus_mutex); 401 ret = __stop_cpus(cpumask, fn, arg); 402 mutex_unlock(&stop_cpus_mutex); 403 return ret; 404 } 405 406 /** 407 * try_stop_cpus - try to stop multiple cpus 408 * @cpumask: cpus to stop 409 * @fn: function to execute 410 * @arg: argument to @fn 411 * 412 * Identical to stop_cpus() except that it fails with -EAGAIN if 413 * someone else is already using the facility. 414 * 415 * CONTEXT: 416 * Might sleep. 417 * 418 * RETURNS: 419 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 420 * @fn(@arg) was not executed at all because all cpus in @cpumask were 421 * offline; otherwise, 0 if all executions of @fn returned 0, any non 422 * zero return value if any returned non zero. 423 */ 424 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 425 { 426 int ret; 427 428 /* static works are used, process one request at a time */ 429 if (!mutex_trylock(&stop_cpus_mutex)) 430 return -EAGAIN; 431 ret = __stop_cpus(cpumask, fn, arg); 432 mutex_unlock(&stop_cpus_mutex); 433 return ret; 434 } 435 436 static int cpu_stop_should_run(unsigned int cpu) 437 { 438 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 439 unsigned long flags; 440 int run; 441 442 spin_lock_irqsave(&stopper->lock, flags); 443 run = !list_empty(&stopper->works); 444 spin_unlock_irqrestore(&stopper->lock, flags); 445 return run; 446 } 447 448 static void cpu_stopper_thread(unsigned int cpu) 449 { 450 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 451 struct cpu_stop_work *work; 452 int ret; 453 454 repeat: 455 work = NULL; 456 spin_lock_irq(&stopper->lock); 457 if (!list_empty(&stopper->works)) { 458 work = list_first_entry(&stopper->works, 459 struct cpu_stop_work, list); 460 list_del_init(&work->list); 461 } 462 spin_unlock_irq(&stopper->lock); 463 464 if (work) { 465 cpu_stop_fn_t fn = work->fn; 466 void *arg = work->arg; 467 struct cpu_stop_done *done = work->done; 468 char ksym_buf[KSYM_NAME_LEN] __maybe_unused; 469 470 /* cpu stop callbacks are not allowed to sleep */ 471 preempt_disable(); 472 473 ret = fn(arg); 474 if (ret) 475 done->ret = ret; 476 477 /* restore preemption and check it's still balanced */ 478 preempt_enable(); 479 WARN_ONCE(preempt_count(), 480 "cpu_stop: %s(%p) leaked preempt count\n", 481 kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL, 482 ksym_buf), arg); 483 484 cpu_stop_signal_done(done, true); 485 goto repeat; 486 } 487 } 488 489 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 490 491 static void cpu_stop_create(unsigned int cpu) 492 { 493 sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu)); 494 } 495 496 static void cpu_stop_park(unsigned int cpu) 497 { 498 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 499 struct cpu_stop_work *work; 500 unsigned long flags; 501 502 /* drain remaining works */ 503 spin_lock_irqsave(&stopper->lock, flags); 504 list_for_each_entry(work, &stopper->works, list) 505 cpu_stop_signal_done(work->done, false); 506 stopper->enabled = false; 507 spin_unlock_irqrestore(&stopper->lock, flags); 508 } 509 510 static void cpu_stop_unpark(unsigned int cpu) 511 { 512 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 513 514 spin_lock_irq(&stopper->lock); 515 stopper->enabled = true; 516 spin_unlock_irq(&stopper->lock); 517 } 518 519 static struct smp_hotplug_thread cpu_stop_threads = { 520 .store = &cpu_stopper_task, 521 .thread_should_run = cpu_stop_should_run, 522 .thread_fn = cpu_stopper_thread, 523 .thread_comm = "migration/%u", 524 .create = cpu_stop_create, 525 .setup = cpu_stop_unpark, 526 .park = cpu_stop_park, 527 .pre_unpark = cpu_stop_unpark, 528 .selfparking = true, 529 }; 530 531 static int __init cpu_stop_init(void) 532 { 533 unsigned int cpu; 534 535 for_each_possible_cpu(cpu) { 536 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 537 538 spin_lock_init(&stopper->lock); 539 INIT_LIST_HEAD(&stopper->works); 540 } 541 542 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 543 stop_machine_initialized = true; 544 return 0; 545 } 546 early_initcall(cpu_stop_init); 547 548 #ifdef CONFIG_STOP_MACHINE 549 550 int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) 551 { 552 struct multi_stop_data msdata = { 553 .fn = fn, 554 .data = data, 555 .num_threads = num_online_cpus(), 556 .active_cpus = cpus, 557 }; 558 559 if (!stop_machine_initialized) { 560 /* 561 * Handle the case where stop_machine() is called 562 * early in boot before stop_machine() has been 563 * initialized. 564 */ 565 unsigned long flags; 566 int ret; 567 568 WARN_ON_ONCE(msdata.num_threads != 1); 569 570 local_irq_save(flags); 571 hard_irq_disable(); 572 ret = (*fn)(data); 573 local_irq_restore(flags); 574 575 return ret; 576 } 577 578 /* Set the initial state and stop all online cpus. */ 579 set_state(&msdata, MULTI_STOP_PREPARE); 580 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 581 } 582 583 int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) 584 { 585 int ret; 586 587 /* No CPUs can come up or down during this. */ 588 get_online_cpus(); 589 ret = __stop_machine(fn, data, cpus); 590 put_online_cpus(); 591 return ret; 592 } 593 EXPORT_SYMBOL_GPL(stop_machine); 594 595 /** 596 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 597 * @fn: the function to run 598 * @data: the data ptr for the @fn() 599 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 600 * 601 * This is identical to stop_machine() but can be called from a CPU which 602 * is not active. The local CPU is in the process of hotplug (so no other 603 * CPU hotplug can start) and not marked active and doesn't have enough 604 * context to sleep. 605 * 606 * This function provides stop_machine() functionality for such state by 607 * using busy-wait for synchronization and executing @fn directly for local 608 * CPU. 609 * 610 * CONTEXT: 611 * Local CPU is inactive. Temporarily stops all active CPUs. 612 * 613 * RETURNS: 614 * 0 if all executions of @fn returned 0, any non zero return value if any 615 * returned non zero. 616 */ 617 int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data, 618 const struct cpumask *cpus) 619 { 620 struct multi_stop_data msdata = { .fn = fn, .data = data, 621 .active_cpus = cpus }; 622 struct cpu_stop_done done; 623 int ret; 624 625 /* Local CPU must be inactive and CPU hotplug in progress. */ 626 BUG_ON(cpu_active(raw_smp_processor_id())); 627 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 628 629 /* No proper task established and can't sleep - busy wait for lock. */ 630 while (!mutex_trylock(&stop_cpus_mutex)) 631 cpu_relax(); 632 633 /* Schedule work on other CPUs and execute directly for local CPU */ 634 set_state(&msdata, MULTI_STOP_PREPARE); 635 cpu_stop_init_done(&done, num_active_cpus()); 636 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 637 &done); 638 ret = multi_cpu_stop(&msdata); 639 640 /* Busy wait for completion. */ 641 while (!completion_done(&done.completion)) 642 cpu_relax(); 643 644 mutex_unlock(&stop_cpus_mutex); 645 return ret ?: done.ret; 646 } 647 648 #endif /* CONFIG_STOP_MACHINE */ 649