1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * kernel/stop_machine.c 4 * 5 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 7 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 9 */ 10 #include <linux/compiler.h> 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> 24 #include <linux/sched/wake_q.h> 25 26 /* 27 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 29 */ 30 struct cpu_stop_done { 31 atomic_t nr_todo; /* nr left to execute */ 32 int ret; /* collected return value */ 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 35 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 38 struct task_struct *thread; 39 40 raw_spinlock_t lock; 41 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; /* list of pending works */ 43 44 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 unsigned long caller; 46 cpu_stop_fn_t fn; 47 }; 48 49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 50 static bool stop_machine_initialized = false; 51 52 void print_stop_info(const char *log_lvl, struct task_struct *task) 53 { 54 /* 55 * If @task is a stopper task, it cannot migrate and task_cpu() is 56 * stable. 57 */ 58 struct cpu_stopper *stopper = per_cpu_ptr(&cpu_stopper, task_cpu(task)); 59 60 if (task != stopper->thread) 61 return; 62 63 printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller); 64 } 65 66 /* static data for stop_cpus */ 67 static DEFINE_MUTEX(stop_cpus_mutex); 68 static bool stop_cpus_in_progress; 69 70 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 71 { 72 memset(done, 0, sizeof(*done)); 73 atomic_set(&done->nr_todo, nr_todo); 74 init_completion(&done->completion); 75 } 76 77 /* signal completion unless @done is NULL */ 78 static void cpu_stop_signal_done(struct cpu_stop_done *done) 79 { 80 if (atomic_dec_and_test(&done->nr_todo)) 81 complete(&done->completion); 82 } 83 84 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 85 struct cpu_stop_work *work, 86 struct wake_q_head *wakeq) 87 { 88 list_add_tail(&work->list, &stopper->works); 89 wake_q_add(wakeq, stopper->thread); 90 } 91 92 /* queue @work to @stopper. if offline, @work is completed immediately */ 93 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 94 { 95 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 96 DEFINE_WAKE_Q(wakeq); 97 unsigned long flags; 98 bool enabled; 99 100 preempt_disable(); 101 raw_spin_lock_irqsave(&stopper->lock, flags); 102 enabled = stopper->enabled; 103 if (enabled) 104 __cpu_stop_queue_work(stopper, work, &wakeq); 105 else if (work->done) 106 cpu_stop_signal_done(work->done); 107 raw_spin_unlock_irqrestore(&stopper->lock, flags); 108 109 wake_up_q(&wakeq); 110 preempt_enable(); 111 112 return enabled; 113 } 114 115 /** 116 * stop_one_cpu - stop a cpu 117 * @cpu: cpu to stop 118 * @fn: function to execute 119 * @arg: argument to @fn 120 * 121 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 122 * the highest priority preempting any task on the cpu and 123 * monopolizing it. This function returns after the execution is 124 * complete. 125 * 126 * This function doesn't guarantee @cpu stays online till @fn 127 * completes. If @cpu goes down in the middle, execution may happen 128 * partially or fully on different cpus. @fn should either be ready 129 * for that or the caller should ensure that @cpu stays online until 130 * this function completes. 131 * 132 * CONTEXT: 133 * Might sleep. 134 * 135 * RETURNS: 136 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 137 * otherwise, the return value of @fn. 138 */ 139 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 140 { 141 struct cpu_stop_done done; 142 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ }; 143 144 cpu_stop_init_done(&done, 1); 145 if (!cpu_stop_queue_work(cpu, &work)) 146 return -ENOENT; 147 /* 148 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 149 * cycle by doing a preemption: 150 */ 151 cond_resched(); 152 wait_for_completion(&done.completion); 153 return done.ret; 154 } 155 156 /* This controls the threads on each CPU. */ 157 enum multi_stop_state { 158 /* Dummy starting state for thread. */ 159 MULTI_STOP_NONE, 160 /* Awaiting everyone to be scheduled. */ 161 MULTI_STOP_PREPARE, 162 /* Disable interrupts. */ 163 MULTI_STOP_DISABLE_IRQ, 164 /* Run the function */ 165 MULTI_STOP_RUN, 166 /* Exit */ 167 MULTI_STOP_EXIT, 168 }; 169 170 struct multi_stop_data { 171 cpu_stop_fn_t fn; 172 void *data; 173 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 174 unsigned int num_threads; 175 const struct cpumask *active_cpus; 176 177 enum multi_stop_state state; 178 atomic_t thread_ack; 179 }; 180 181 static void set_state(struct multi_stop_data *msdata, 182 enum multi_stop_state newstate) 183 { 184 /* Reset ack counter. */ 185 atomic_set(&msdata->thread_ack, msdata->num_threads); 186 smp_wmb(); 187 WRITE_ONCE(msdata->state, newstate); 188 } 189 190 /* Last one to ack a state moves to the next state. */ 191 static void ack_state(struct multi_stop_data *msdata) 192 { 193 if (atomic_dec_and_test(&msdata->thread_ack)) 194 set_state(msdata, msdata->state + 1); 195 } 196 197 notrace void __weak stop_machine_yield(const struct cpumask *cpumask) 198 { 199 cpu_relax(); 200 } 201 202 /* This is the cpu_stop function which stops the CPU. */ 203 static int multi_cpu_stop(void *data) 204 { 205 struct multi_stop_data *msdata = data; 206 enum multi_stop_state newstate, curstate = MULTI_STOP_NONE; 207 int cpu = smp_processor_id(), err = 0; 208 const struct cpumask *cpumask; 209 unsigned long flags; 210 bool is_active; 211 212 /* 213 * When called from stop_machine_from_inactive_cpu(), irq might 214 * already be disabled. Save the state and restore it on exit. 215 */ 216 local_save_flags(flags); 217 218 if (!msdata->active_cpus) { 219 cpumask = cpu_online_mask; 220 is_active = cpu == cpumask_first(cpumask); 221 } else { 222 cpumask = msdata->active_cpus; 223 is_active = cpumask_test_cpu(cpu, cpumask); 224 } 225 226 /* Simple state machine */ 227 do { 228 /* Chill out and ensure we re-read multi_stop_state. */ 229 stop_machine_yield(cpumask); 230 newstate = READ_ONCE(msdata->state); 231 if (newstate != curstate) { 232 curstate = newstate; 233 switch (curstate) { 234 case MULTI_STOP_DISABLE_IRQ: 235 local_irq_disable(); 236 hard_irq_disable(); 237 break; 238 case MULTI_STOP_RUN: 239 if (is_active) 240 err = msdata->fn(msdata->data); 241 break; 242 default: 243 break; 244 } 245 ack_state(msdata); 246 } else if (curstate > MULTI_STOP_PREPARE) { 247 /* 248 * At this stage all other CPUs we depend on must spin 249 * in the same loop. Any reason for hard-lockup should 250 * be detected and reported on their side. 251 */ 252 touch_nmi_watchdog(); 253 /* Also suppress RCU CPU stall warnings. */ 254 rcu_momentary_eqs(); 255 } 256 } while (curstate != MULTI_STOP_EXIT); 257 258 local_irq_restore(flags); 259 return err; 260 } 261 262 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 263 int cpu2, struct cpu_stop_work *work2) 264 { 265 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 266 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 267 DEFINE_WAKE_Q(wakeq); 268 int err; 269 270 retry: 271 /* 272 * The waking up of stopper threads has to happen in the same 273 * scheduling context as the queueing. Otherwise, there is a 274 * possibility of one of the above stoppers being woken up by another 275 * CPU, and preempting us. This will cause us to not wake up the other 276 * stopper forever. 277 */ 278 preempt_disable(); 279 raw_spin_lock_irq(&stopper1->lock); 280 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 281 282 if (!stopper1->enabled || !stopper2->enabled) { 283 err = -ENOENT; 284 goto unlock; 285 } 286 287 /* 288 * Ensure that if we race with __stop_cpus() the stoppers won't get 289 * queued up in reverse order leading to system deadlock. 290 * 291 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 292 * queued a work on cpu1 but not on cpu2, we hold both locks. 293 * 294 * It can be falsely true but it is safe to spin until it is cleared, 295 * queue_stop_cpus_work() does everything under preempt_disable(). 296 */ 297 if (unlikely(stop_cpus_in_progress)) { 298 err = -EDEADLK; 299 goto unlock; 300 } 301 302 err = 0; 303 __cpu_stop_queue_work(stopper1, work1, &wakeq); 304 __cpu_stop_queue_work(stopper2, work2, &wakeq); 305 306 unlock: 307 raw_spin_unlock(&stopper2->lock); 308 raw_spin_unlock_irq(&stopper1->lock); 309 310 if (unlikely(err == -EDEADLK)) { 311 preempt_enable(); 312 313 while (stop_cpus_in_progress) 314 cpu_relax(); 315 316 goto retry; 317 } 318 319 wake_up_q(&wakeq); 320 preempt_enable(); 321 322 return err; 323 } 324 /** 325 * stop_two_cpus - stops two cpus 326 * @cpu1: the cpu to stop 327 * @cpu2: the other cpu to stop 328 * @fn: function to execute 329 * @arg: argument to @fn 330 * 331 * Stops both the current and specified CPU and runs @fn on one of them. 332 * 333 * returns when both are completed. 334 */ 335 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 336 { 337 struct cpu_stop_done done; 338 struct cpu_stop_work work1, work2; 339 struct multi_stop_data msdata; 340 341 msdata = (struct multi_stop_data){ 342 .fn = fn, 343 .data = arg, 344 .num_threads = 2, 345 .active_cpus = cpumask_of(cpu1), 346 }; 347 348 work1 = work2 = (struct cpu_stop_work){ 349 .fn = multi_cpu_stop, 350 .arg = &msdata, 351 .done = &done, 352 .caller = _RET_IP_, 353 }; 354 355 cpu_stop_init_done(&done, 2); 356 set_state(&msdata, MULTI_STOP_PREPARE); 357 358 if (cpu1 > cpu2) 359 swap(cpu1, cpu2); 360 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 361 return -ENOENT; 362 363 wait_for_completion(&done.completion); 364 return done.ret; 365 } 366 367 /** 368 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 369 * @cpu: cpu to stop 370 * @fn: function to execute 371 * @arg: argument to @fn 372 * @work_buf: pointer to cpu_stop_work structure 373 * 374 * Similar to stop_one_cpu() but doesn't wait for completion. The 375 * caller is responsible for ensuring @work_buf is currently unused 376 * and will remain untouched until stopper starts executing @fn. 377 * 378 * CONTEXT: 379 * Don't care. 380 * 381 * RETURNS: 382 * true if cpu_stop_work was queued successfully and @fn will be called, 383 * false otherwise. 384 */ 385 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 386 struct cpu_stop_work *work_buf) 387 { 388 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, }; 389 return cpu_stop_queue_work(cpu, work_buf); 390 } 391 392 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 393 cpu_stop_fn_t fn, void *arg, 394 struct cpu_stop_done *done) 395 { 396 struct cpu_stop_work *work; 397 unsigned int cpu; 398 bool queued = false; 399 400 /* 401 * Disable preemption while queueing to avoid getting 402 * preempted by a stopper which might wait for other stoppers 403 * to enter @fn which can lead to deadlock. 404 */ 405 preempt_disable(); 406 stop_cpus_in_progress = true; 407 barrier(); 408 for_each_cpu(cpu, cpumask) { 409 work = &per_cpu(cpu_stopper.stop_work, cpu); 410 work->fn = fn; 411 work->arg = arg; 412 work->done = done; 413 work->caller = _RET_IP_; 414 if (cpu_stop_queue_work(cpu, work)) 415 queued = true; 416 } 417 barrier(); 418 stop_cpus_in_progress = false; 419 preempt_enable(); 420 421 return queued; 422 } 423 424 static int __stop_cpus(const struct cpumask *cpumask, 425 cpu_stop_fn_t fn, void *arg) 426 { 427 struct cpu_stop_done done; 428 429 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 430 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 431 return -ENOENT; 432 wait_for_completion(&done.completion); 433 return done.ret; 434 } 435 436 /** 437 * stop_cpus - stop multiple cpus 438 * @cpumask: cpus to stop 439 * @fn: function to execute 440 * @arg: argument to @fn 441 * 442 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 443 * @fn is run in a process context with the highest priority 444 * preempting any task on the cpu and monopolizing it. This function 445 * returns after all executions are complete. 446 * 447 * This function doesn't guarantee the cpus in @cpumask stay online 448 * till @fn completes. If some cpus go down in the middle, execution 449 * on the cpu may happen partially or fully on different cpus. @fn 450 * should either be ready for that or the caller should ensure that 451 * the cpus stay online until this function completes. 452 * 453 * All stop_cpus() calls are serialized making it safe for @fn to wait 454 * for all cpus to start executing it. 455 * 456 * CONTEXT: 457 * Might sleep. 458 * 459 * RETURNS: 460 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 461 * @cpumask were offline; otherwise, 0 if all executions of @fn 462 * returned 0, any non zero return value if any returned non zero. 463 */ 464 static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 465 { 466 int ret; 467 468 /* static works are used, process one request at a time */ 469 mutex_lock(&stop_cpus_mutex); 470 ret = __stop_cpus(cpumask, fn, arg); 471 mutex_unlock(&stop_cpus_mutex); 472 return ret; 473 } 474 475 static int cpu_stop_should_run(unsigned int cpu) 476 { 477 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 478 unsigned long flags; 479 int run; 480 481 raw_spin_lock_irqsave(&stopper->lock, flags); 482 run = !list_empty(&stopper->works); 483 raw_spin_unlock_irqrestore(&stopper->lock, flags); 484 return run; 485 } 486 487 static void cpu_stopper_thread(unsigned int cpu) 488 { 489 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 490 struct cpu_stop_work *work; 491 492 repeat: 493 work = NULL; 494 raw_spin_lock_irq(&stopper->lock); 495 if (!list_empty(&stopper->works)) { 496 work = list_first_entry(&stopper->works, 497 struct cpu_stop_work, list); 498 list_del_init(&work->list); 499 } 500 raw_spin_unlock_irq(&stopper->lock); 501 502 if (work) { 503 cpu_stop_fn_t fn = work->fn; 504 void *arg = work->arg; 505 struct cpu_stop_done *done = work->done; 506 int ret; 507 508 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 509 stopper->caller = work->caller; 510 stopper->fn = fn; 511 preempt_count_inc(); 512 ret = fn(arg); 513 if (done) { 514 if (ret) 515 done->ret = ret; 516 cpu_stop_signal_done(done); 517 } 518 preempt_count_dec(); 519 stopper->fn = NULL; 520 stopper->caller = 0; 521 WARN_ONCE(preempt_count(), 522 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); 523 goto repeat; 524 } 525 } 526 527 void stop_machine_park(int cpu) 528 { 529 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 530 /* 531 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 532 * the pending works before it parks, until then it is fine to queue 533 * the new works. 534 */ 535 stopper->enabled = false; 536 kthread_park(stopper->thread); 537 } 538 539 static void cpu_stop_create(unsigned int cpu) 540 { 541 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 542 } 543 544 static void cpu_stop_park(unsigned int cpu) 545 { 546 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 547 548 WARN_ON(!list_empty(&stopper->works)); 549 } 550 551 void stop_machine_unpark(int cpu) 552 { 553 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 554 555 stopper->enabled = true; 556 kthread_unpark(stopper->thread); 557 } 558 559 static struct smp_hotplug_thread cpu_stop_threads = { 560 .store = &cpu_stopper.thread, 561 .thread_should_run = cpu_stop_should_run, 562 .thread_fn = cpu_stopper_thread, 563 .thread_comm = "migration/%u", 564 .create = cpu_stop_create, 565 .park = cpu_stop_park, 566 .selfparking = true, 567 }; 568 569 static int __init cpu_stop_init(void) 570 { 571 unsigned int cpu; 572 573 for_each_possible_cpu(cpu) { 574 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 575 576 raw_spin_lock_init(&stopper->lock); 577 INIT_LIST_HEAD(&stopper->works); 578 } 579 580 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 581 stop_machine_unpark(raw_smp_processor_id()); 582 stop_machine_initialized = true; 583 return 0; 584 } 585 early_initcall(cpu_stop_init); 586 587 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 588 const struct cpumask *cpus) 589 { 590 struct multi_stop_data msdata = { 591 .fn = fn, 592 .data = data, 593 .num_threads = num_online_cpus(), 594 .active_cpus = cpus, 595 }; 596 597 lockdep_assert_cpus_held(); 598 599 if (!stop_machine_initialized) { 600 /* 601 * Handle the case where stop_machine() is called 602 * early in boot before stop_machine() has been 603 * initialized. 604 */ 605 unsigned long flags; 606 int ret; 607 608 WARN_ON_ONCE(msdata.num_threads != 1); 609 610 local_irq_save(flags); 611 hard_irq_disable(); 612 ret = (*fn)(data); 613 local_irq_restore(flags); 614 615 return ret; 616 } 617 618 /* Set the initial state and stop all online cpus. */ 619 set_state(&msdata, MULTI_STOP_PREPARE); 620 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 621 } 622 623 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 624 { 625 int ret; 626 627 /* No CPUs can come up or down during this. */ 628 cpus_read_lock(); 629 ret = stop_machine_cpuslocked(fn, data, cpus); 630 cpus_read_unlock(); 631 return ret; 632 } 633 EXPORT_SYMBOL_GPL(stop_machine); 634 635 #ifdef CONFIG_SCHED_SMT 636 int stop_core_cpuslocked(unsigned int cpu, cpu_stop_fn_t fn, void *data) 637 { 638 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 639 640 struct multi_stop_data msdata = { 641 .fn = fn, 642 .data = data, 643 .num_threads = cpumask_weight(smt_mask), 644 .active_cpus = smt_mask, 645 }; 646 647 lockdep_assert_cpus_held(); 648 649 /* Set the initial state and stop all online cpus. */ 650 set_state(&msdata, MULTI_STOP_PREPARE); 651 return stop_cpus(smt_mask, multi_cpu_stop, &msdata); 652 } 653 EXPORT_SYMBOL_GPL(stop_core_cpuslocked); 654 #endif 655 656 /** 657 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 658 * @fn: the function to run 659 * @data: the data ptr for the @fn() 660 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 661 * 662 * This is identical to stop_machine() but can be called from a CPU which 663 * is not active. The local CPU is in the process of hotplug (so no other 664 * CPU hotplug can start) and not marked active and doesn't have enough 665 * context to sleep. 666 * 667 * This function provides stop_machine() functionality for such state by 668 * using busy-wait for synchronization and executing @fn directly for local 669 * CPU. 670 * 671 * CONTEXT: 672 * Local CPU is inactive. Temporarily stops all active CPUs. 673 * 674 * RETURNS: 675 * 0 if all executions of @fn returned 0, any non zero return value if any 676 * returned non zero. 677 */ 678 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 679 const struct cpumask *cpus) 680 { 681 struct multi_stop_data msdata = { .fn = fn, .data = data, 682 .active_cpus = cpus }; 683 struct cpu_stop_done done; 684 int ret; 685 686 /* Local CPU must be inactive and CPU hotplug in progress. */ 687 BUG_ON(cpu_active(raw_smp_processor_id())); 688 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 689 690 /* No proper task established and can't sleep - busy wait for lock. */ 691 while (!mutex_trylock(&stop_cpus_mutex)) 692 cpu_relax(); 693 694 /* Schedule work on other CPUs and execute directly for local CPU */ 695 set_state(&msdata, MULTI_STOP_PREPARE); 696 cpu_stop_init_done(&done, num_active_cpus()); 697 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 698 &done); 699 ret = multi_cpu_stop(&msdata); 700 701 /* Busy wait for completion. */ 702 while (!completion_done(&done.completion)) 703 cpu_relax(); 704 705 mutex_unlock(&stop_cpus_mutex); 706 return ret ?: done.ret; 707 } 708