xref: /linux/kernel/stop_machine.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 #include <linux/stop_machine.h>
2 #include <linux/kthread.h>
3 #include <linux/sched.h>
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/syscalls.h>
7 #include <linux/kthread.h>
8 #include <asm/atomic.h>
9 #include <asm/semaphore.h>
10 #include <asm/uaccess.h>
11 
12 /* Since we effect priority and affinity (both of which are visible
13  * to, and settable by outside processes) we do indirection via a
14  * kthread. */
15 
16 /* Thread to stop each CPU in user context. */
17 enum stopmachine_state {
18 	STOPMACHINE_WAIT,
19 	STOPMACHINE_PREPARE,
20 	STOPMACHINE_DISABLE_IRQ,
21 	STOPMACHINE_EXIT,
22 };
23 
24 static enum stopmachine_state stopmachine_state;
25 static unsigned int stopmachine_num_threads;
26 static atomic_t stopmachine_thread_ack;
27 static DECLARE_MUTEX(stopmachine_mutex);
28 
29 static int stopmachine(void *unused)
30 {
31 	int irqs_disabled = 0;
32 	int prepared = 0;
33 
34 	/* Ack: we are alive */
35 	smp_mb(); /* Theoretically the ack = 0 might not be on this CPU yet. */
36 	atomic_inc(&stopmachine_thread_ack);
37 
38 	/* Simple state machine */
39 	while (stopmachine_state != STOPMACHINE_EXIT) {
40 		if (stopmachine_state == STOPMACHINE_DISABLE_IRQ
41 		    && !irqs_disabled) {
42 			local_irq_disable();
43 			irqs_disabled = 1;
44 			/* Ack: irqs disabled. */
45 			smp_mb(); /* Must read state first. */
46 			atomic_inc(&stopmachine_thread_ack);
47 		} else if (stopmachine_state == STOPMACHINE_PREPARE
48 			   && !prepared) {
49 			/* Everyone is in place, hold CPU. */
50 			preempt_disable();
51 			prepared = 1;
52 			smp_mb(); /* Must read state first. */
53 			atomic_inc(&stopmachine_thread_ack);
54 		}
55 		/* Yield in first stage: migration threads need to
56 		 * help our sisters onto their CPUs. */
57 		if (!prepared && !irqs_disabled)
58 			yield();
59 		else
60 			cpu_relax();
61 	}
62 
63 	/* Ack: we are exiting. */
64 	smp_mb(); /* Must read state first. */
65 	atomic_inc(&stopmachine_thread_ack);
66 
67 	if (irqs_disabled)
68 		local_irq_enable();
69 	if (prepared)
70 		preempt_enable();
71 
72 	return 0;
73 }
74 
75 /* Change the thread state */
76 static void stopmachine_set_state(enum stopmachine_state state)
77 {
78 	atomic_set(&stopmachine_thread_ack, 0);
79 	smp_wmb();
80 	stopmachine_state = state;
81 	while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
82 		cpu_relax();
83 }
84 
85 static int stop_machine(void)
86 {
87 	int ret = 0;
88 	unsigned int i;
89 	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
90 
91 	/* One high-prio thread per cpu.  We'll do this one. */
92 	sched_setscheduler(current, SCHED_FIFO, &param);
93 
94 	atomic_set(&stopmachine_thread_ack, 0);
95 	stopmachine_num_threads = 0;
96 	stopmachine_state = STOPMACHINE_WAIT;
97 
98 	for_each_online_cpu(i) {
99 		struct task_struct *tsk;
100 		if (i == raw_smp_processor_id())
101 			continue;
102 		tsk = kthread_create(stopmachine, NULL, "stopmachine");
103 		if (IS_ERR(tsk)) {
104 			ret = PTR_ERR(tsk);
105 			break;
106 		}
107 		kthread_bind(tsk, i);
108 		wake_up_process(tsk);
109 		stopmachine_num_threads++;
110 	}
111 
112 	/* Wait for them all to come to life. */
113 	while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
114 		yield();
115 
116 	/* If some failed, kill them all. */
117 	if (ret < 0) {
118 		stopmachine_set_state(STOPMACHINE_EXIT);
119 		up(&stopmachine_mutex);
120 		return ret;
121 	}
122 
123 	/* Now they are all started, make them hold the CPUs, ready. */
124 	preempt_disable();
125 	stopmachine_set_state(STOPMACHINE_PREPARE);
126 
127 	/* Make them disable irqs. */
128 	local_irq_disable();
129 	stopmachine_set_state(STOPMACHINE_DISABLE_IRQ);
130 
131 	return 0;
132 }
133 
134 static void restart_machine(void)
135 {
136 	stopmachine_set_state(STOPMACHINE_EXIT);
137 	local_irq_enable();
138 	preempt_enable_no_resched();
139 }
140 
141 struct stop_machine_data
142 {
143 	int (*fn)(void *);
144 	void *data;
145 	struct completion done;
146 };
147 
148 static int do_stop(void *_smdata)
149 {
150 	struct stop_machine_data *smdata = _smdata;
151 	int ret;
152 
153 	ret = stop_machine();
154 	if (ret == 0) {
155 		ret = smdata->fn(smdata->data);
156 		restart_machine();
157 	}
158 
159 	/* We're done: you can kthread_stop us now */
160 	complete(&smdata->done);
161 
162 	/* Wait for kthread_stop */
163 	set_current_state(TASK_INTERRUPTIBLE);
164 	while (!kthread_should_stop()) {
165 		schedule();
166 		set_current_state(TASK_INTERRUPTIBLE);
167 	}
168 	__set_current_state(TASK_RUNNING);
169 	return ret;
170 }
171 
172 struct task_struct *__stop_machine_run(int (*fn)(void *), void *data,
173 				       unsigned int cpu)
174 {
175 	struct stop_machine_data smdata;
176 	struct task_struct *p;
177 
178 	smdata.fn = fn;
179 	smdata.data = data;
180 	init_completion(&smdata.done);
181 
182 	down(&stopmachine_mutex);
183 
184 	/* If they don't care which CPU fn runs on, bind to any online one. */
185 	if (cpu == NR_CPUS)
186 		cpu = raw_smp_processor_id();
187 
188 	p = kthread_create(do_stop, &smdata, "kstopmachine");
189 	if (!IS_ERR(p)) {
190 		kthread_bind(p, cpu);
191 		wake_up_process(p);
192 		wait_for_completion(&smdata.done);
193 	}
194 	up(&stopmachine_mutex);
195 	return p;
196 }
197 
198 int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu)
199 {
200 	struct task_struct *p;
201 	int ret;
202 
203 	/* No CPUs can come up or down during this. */
204 	lock_cpu_hotplug();
205 	p = __stop_machine_run(fn, data, cpu);
206 	if (!IS_ERR(p))
207 		ret = kthread_stop(p);
208 	else
209 		ret = PTR_ERR(p);
210 	unlock_cpu_hotplug();
211 
212 	return ret;
213 }
214